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18 PHILIP M. LANKFORD AND R. KEITH SEMPLE

radius d, where d = (D?/2)%5. This defines the area of the smaller inner circle,
representing the inner portion of the group, to be one-half the area of the
larger circle, representing the outer portion of the group. A group is now
considered artificial if more than one-half of the group members are located
in the outer portion of the group.

At this stage, the procedure indicates how many items have been assigned to
the inner and outer portions of all groups. In this fashion real groups are iden-
tified and retained, while artificial groups are eliminated and their members
reallocated.

The result of the procedure is the partitioning of a finite set of items into
an optimal number of groupings, and the simultaneous optimal assignment of
the items to the groupings.

AN EMPIRICAL APPLICATION

In the examples that follow, small towns in southern Ontario (Fig. 4) are
grouped according to dimensions of viability. ¥ Twentyfive variables all related
to economic viability were collected for each town and a factor analysis was
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used to obtain three orthogonal dimensions of viability (Table 1). The three di-
mensions were identified as being related to (1) growth, (2) subsidization from
the Federal and Provincial governments, and (3) level of spending on communi-
ty services. The towns are grouped according to their relative position on these

14 For a description of the study area see R. K. Semple (1966).
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TABLE 1. Factor scores for small towns in southern Ontario
Factor Scores 1 2 3 Factor Scores 1 2 3
TFowns Towns
1 Acton —131 —158 139 2 Alexandria 093 —020 066
3 Alliston —232 —-054 089 4 Almonte 068 —108 —010
5 Ambherstburg —053 —138 097 6 Arnprior —001 —151 —095
7 Arthur 275 066 —073 8 Aurora —550 -—118 097
9 Alymer —037 —058 033 10 Bancroft —451 414 —397
11 Barry’s Bay 026 405 556 12 Beamsville —132 —006 011
13 Beaverton 118 268 —083 14 Belle River 001 —252 —087
15 Blenheim 150 015 —012 16 Bobcaxgeon 098 189 054
17 Bracebridge 098 —005 085 18 Bradford —040 017 046
19 Bridgeport —142 —098 115 20 Brighton —026 121 —063
21 Caledonia 019 —045 039 22 Campbellford 119 069 004
23 Cardinal —064 —064 291 24 Carleton Place 150 —003 011
25 Casselman 091 194 193 26 Chesley 348 134 275
27 Chestervillle 071 017 158 28 Chippawa —298 —198 209
29 Clinton 063 —129 —078 30 Colborne 127 141 —080
31 Crystal Beach 112 —171 —169 32 Delhi 103 —089 —167
33 Deseronto 169 —-035 —-049 34 Dresden 118 022 —088
35 Dunnville 021 —-064 038 36 Durham 146 148 —004
37 Eganville 212 —007 049 38 Elmira —013 —133 —-022
39 Elora 213  —-019 022 40 Essex 107 —188 —076
41 Exeter 076 —010 —020 42 Fenelon Falls —086 476 —062
43 Fergus 001 —-074 —028 44 Fonthill —353 -—304 119
45 Forest 183 142 105 46 Frankford 025 035 151
47 Gananoque 007 —146 —055 48 Georgetown —576 —206 —056
49 Goderich 077 —100 —076 50 Gravenhurst 147 —-071 —028
51 Grimsby —213 —166 —030 52 Hagersville 096 020 071
53 Hanover —026 —093 028 53 Harriston 169 126 —046
55 Harrow 129 -021 022 56 Havelock 182 089 006
57 Hespeler —003 —204 064 58 Huntsville 156 —036 —034
59 Iroquois —042 —122 002 60 Kemptville 021 035 074
61 Kincardine 170 039 —050 62 Kingsville 065 —064 —094
63 Lakefield 110 —044 —045 64 Listowel 105 —000 —056
65 Little Current 143 —001 —351 66 Madoc 090 121 323
67 Markdale 146 150 —066 68 Markham —1348 223 151
69 Marmora 093 086 014 70 Mattawa 223 —059 —064
71 Meaford 092 021 —040 72 Milton —320 —-076 —003
73 Milverton 249 055 —058 74 Mitchel 113 194 —059
75 Morrisburg 135 —054 —067 76 Mount Forest 196 074 —082
77 Napanee 095 —-076 —003 78 New Hamburg 082 —054 -—076
79 Niagara —078 —229 035 80 Norwich 260 162 —027
81 Orangeville —076 —121 049 82 Palmerston 196 130 025
83 Penetanguishene 115 027 012 84 Petrolia 026 —017 132
85 Picton 114 —187 020 86 Port Credit —357 —463 —034
87 Port Dover 075 —030 -—149 88 Port Elgin 145 061 —027
89 Port Perry —002 088 113 90 Port Stanley 230 006 —017

2%



20 PHILIP M. LANKFORD AND R. KEITH SEMPLE

Cont. Table 1

Factor Scores 1 2 3 Factor Scores 1 2 3
91 Prescott —159 —124 036 92 Richmond Hill —2145 427 -—-374
93 Ridgetown 223 —045 —128 94 Rockland —-070 099 115
95 Seaforth 218 048 —057 96 Shelburne 260 363 —128
97 Southampton 213 060 —073 98 Stayner 219 128 —096
99 Stirling 177 056 —011 100 Stoney Creek —801 —326 —033
101 Stouffville —481 367 356 102 Strathroy 039 —077 —033
103 Streetsville —995 —122 021 104 Sturgeon Falls —077 —083 —006
105 Sutton 121 080 —099 106 Tecumseh —038 —216 129
107 Tilbury 154 —08 —173 108 Tweed 165 005 029
109 Uxbridge 017 039 —074 110 Vankleek Hill 153 147 142
111 Walkerton —015S —107 —035 112 Waterdown —123 007 052
113 Waterford 180 093 007 114 Watford 139 241 105
115 West Lorne 165 140 087 116 Wheatley 147 —068 —073
117 Wiarton 137 057 022 118 Winchester 148 057 105
119 Wingham 221 —049 —152 120 Woodbridge —171 —236 116

three orthogonal measures of viability by (1) the centroid, (2) Ward’s and (3)
Semple’s optimal grouping procedures respectively. The same data bank was
utilized in each case.’®

THE CENTROID GROUPING

The results of the centroid grouping procedure are shown in Fig. 5. The tree
is very complex with no definite major groupings until step 86. Steps 1 to 85
consist of the development initially of many small groups. For example, at step
50 there are 24 groups with an average membership of 2.1 points. The groups
are very dense as shown by the value of the joins. After about step 50 the
major group nuclei are well defined and points are slowly to these groups. The
join values and average group membership slowly increase as the group cen-
troids wander in the metric space.

A sharp jump in join values occurs at step 86. At step 85 there are 13 groups
with an average membership of 6.6 points, with 7 relatively large groups, 4, B,
F, H, I, D, and E. (See Fig. 5) The average factor scores or group centroids of the
13 groups are in Table 2. Note that the 86 cities grouped at step 85 form 13 dis-
tinct groups in the 3 factor space. If the investigator is interested in the identi-
fication of the relatively large number of small distinct core groups, he would
stop the analysis at this point and allocate the ungrouped cities to the defined
groups.

15 The actual groupings for procedures (1) and (2) were performed by the IBM
7094/360-65 facilities of the University of Chicago’s Institute for Computer Research.
Procedure (3) was performed by the IBM 7094/360-75 facilities at the Ohio State
University. The centroid and Ward’s algorithms are contained in a program written
by Neely. The optimal grouping algorithm written by Semple may be found in Ohio
State’s Discussion Paper Number 10 footnoted previously. All of the algorithms
are available on UCLA’s Campus Computer Network IBM 360-91 facility.
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TABLE 2. Group Centroids at Step 85

21

Factors Number of
Group
I 11 I members
A —0.74 —1.66 0.90 7
B 0.32 0.23 1.01 10
C —-2.76 —0.65 0.43 2
D 1.06 —0.55 —0.50 15
E —0.10 —0.96 —0.11 12
F 1.84 1.04 —0.65 14
G —1.27 0.00 0.31 2
H 1.58 0.34 0.04 17
1 1.40 1.59 1.13 7
J —0.05 0.80 —0.68 2
K 1.10 —1.13 —1.47 5
L —1.86 —1.45 0.03 2
M 2.22 —0.51 —1.15 3
TABLE 3. Group membership at step 85
Towns by number
Group
A 1 5 19 57 79 81 106
B 2 17 18 27 46 52 60 8 89 94
C 3 72
D 4 29 33 41 49 50 58 62 63 64 T1 75 77 78 116
E 6 9 21 35 38 43 47 53 59 102 104 111
F 7 30 34 36 54 67 73 74 76 80 95 97 98 105
G 12 112
H 15 22 24 37 37 39 55 56 61 69 82 83 8 90 99
108 113 117
I 16 25 45 110 114 115 118
J 20 109
K 31 32 40 87 107
L 51 91
M 70 93 119

Grouping continues at step 86 by joining groups F and H. Even though the
two groups are distinct, particularly on the second and third factors, the F and
H group centroids are the close pair of points at this step. The grouping en-
larges existing groups then, by adding additional points.

The next distinct change in join value occurs at step 97 when the enlarged
D and enlarged E groups are joined. At step 96 there are 11 groups with an av-
erage membership of 8.8. The three large groups, D+K+M, E, and F+H, have
23, 14, and 31 points each respectively. At step 97 there are two large groups
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CLASSIFICATION AND GEOGRAPHY 23

about equal in size and ten small groups. Other “hills” in join values occur at
step 101 when B-J is joined to F+H-+1I and at step 103 when B+J+F~+H-+1I
is joined to D+ K-+ M-+E. There are three major groups at step 101 and two
major groups at 103.

The next relatively large hill is reached at step 109 when the two major
groups, A+C+L+G and B+J+G+H~+I+D+K+M-+E are joined. At the
previous step there are seven groups, two of them major.

TABLE 4. Group centroids at step 108

@rate Factors Number of
I I 111 members
enlarged 4 —1.58 —1.45 0.77 16
enlarged B 1.08 0.06 —-0.14 87
N —4.94 —2.62 0.02 3
(0] 0.97 3.69 —0.91 3
P 0.13 0.28 3.07 2
Q 2.45 0.66 —-3.13 2
R —8.98 —2.24 —0.06 2

Note that the small groups represent strongly isolated groups in the three
factor space.

As the grouping process continues P, @, and O are successively joined to the
extremely large A-+B major group. At step 117 there is an extremely sharp
rise in join values as the isolate group N+R is joined to the one large group. The
final large leap in values comes at the final step when the strongly isolated
points (68 and 92) are added to the large group. The final group of two isolated
points have average factor scores of —17.40, 3.25 and —1.11 on each factor re-
spectively.

As with all single linkage algorithms there is no totally objective criteria
available to decide where to “cut” the tree. If the investigator is interested in
a large number of distinct core groups he would stop the grouping at step 85.
If generality is important, few groups with nearly all points allocated, the tree
could be cut at step 108 where 109 points are grouped. Studying the entire tree
to allocate all points there are actually four groups at step 108; enlarged A, en-
larged B, N +R plus other strongly negative isolates, and O+P-+Q.

It is necessary to refer to the original factor structure to interpret the parti-
tion suggested above based on step 108. Group A towns are moderately low on
factor one, suggesting better than average growth rates. The same group is low
on the subsidy or second factor, and offers average spending on community
services indicated by the average score on the third factor. Spatially these
viable rural truck garden towns are located just beyond convenient daily com-
muting distance from those metropolitan centers extending from Windsor, Nia-
gara Falls and Kingston to Toronto. Most of the towns in the B group have
stagnant growth, indicated by a moderately high score on the first factor, and
have average government subsidy and average level of community services,
both of the latter being indicated by average scores. These towns in general
occupy the more rural farming areas of southern Ontario. The N and R isolates
are the fast growing dormitory suburban towns located within easy commuting
distance of their respective metropolitan center. Group O clearly shows the
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towns receiving heavy subsidies; P consists of those towns with extremely high
level of local services. Group @ is composed of towns with low growth and
a poor level of services and a moderate level of subsidization. Groups O, P and
@ occupy cores of some of the poorest farming areas in southern portions of
the province.

TABLE 5. Group membership at step 105

Towns by number

Group
A 1 3 5 12 91 106 112 120
B 2 4 6 7 9 14 15 16 17 18 20 21
22 24 25 27 29 30 31 32 33 34 35 36
37 38 39 40 41 43 45 46 47 49 50 52
53 54 55 56 58 59 60 61 62 63 64 67
69 70 71 73 74 75 76 77 78 80 82 83
84 85 87 88 89 90 93 94 95 97 98 99
102 104 105 107 108 109 110 111 111 113 116 117
118 119
N 8 48 86
o 13 42 96
P 23 66
0 26 65
R 101 103

THE WARD’S GROUPING

The complicated tree of Fig. 6 is the result of the Ward’s algorithm. Group
size is very stable and persists until very late in the grouping. The join values
increase monotonically as is characteristic of the method with no abrupt change.
The investigator could stop the grouping at almost any step if he is interested
in a certain number of partitions. However, from the tree, note that step 107 is
the last step that preserves the identity of the several large core groups, A, B,
C, D, and G.

The major groups are about equal in membership. As the grouping continues,
the large groups are linked until at step 116 there are three partitions, A+B-+C,

TABLE 6. Group centroids at step 107

(i Factors Number of
1 I 0 members
A —1.35 —1.52 0.70 12
B 0.05 0.28 0.97 16
C 0.21 —1.19 —0.25 18
D 1.83 0.53 —0.16 24
E —4.27 —2.58 0.67 5
F 1.31 1.98 0.18 15
G 1.37 —0.33 —1.04 23
H —8.98 —2.24 —0.06 2
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STEP GRAPH OF GROUPING
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26 PHILIP M. LANKFORD AND R. KEITH SEMPLE

TABLE 7. Group membership at step 107 — Ward’s

1 3 519 51 57 72 81 91106 120
2 12 17 18 20 23 27 46 52 60 66 84 89 89 94109 112
4 6 9 14 21 31 35 38 40 43 47 53 59 77 85102104 111
7 15 22 24 37 39 55 56 61 69 73 76 80 82 83 88 90 95 97 98 99108 113 117
8 28 44 48 86
13 16 25 30 36 42 45 54 67 74 96110114 115118
26 29 32 33 34 41 49 50 58 62 63 64 65 70 71 75 78 87 93 105107 116 119
100 103

TAMMO O DA

D+G+F, and isolates. The linked large groups are stable through even the
final few steps till step 117. Step 116 represents the final stage preserving any
core group identity; after that step there is only one very large group and
isolates.

The first group of towns has a factor structure that indicates average
growth, moderately low subsidization, and an average level of community serv-
ices. The membership is essentially an enlarged group A of the centroid algo-
rithm. The spatial arrangement is therefore somewhat similar, except that the
average distance of the centers from the metropolitan areas is greater.

TABLE 8. Group centroids at step 116

Gt et o oL JUTIIE Number of
| I I members
A+ B+C —0.25 —0.76 0.42 49
D+E+F 1.53 0.56 —0.40 62
Isolates —6.60 —1.89 0.59 8
TABLE 9. Group membership at step 116 — Ward’s
A+B+C

1 3 4 5 9 19 21 35 38 43 51 53 57 59 72 77 79 81 91102104 106111120
2 6 10 11 12 14 17 18 20 23 27 31 40 46 47 52 60 66 84 85 89 94109 101
D+E+F
7 15 22 24 37 39 55 56 61 69 73 76 80 82 83 88 90 95 97 98 99108113117
13 26 29 32 33 34 41 49 50 58 62 63 64 65 70 71 75 78 87 93105107 116 119
16 25 30 36 42 45 54 67 74 96114 115110118
Isolates
8 28 44 48 68 86 100 103

The second partition shows high scores on the first factor, indicating ex-
tremely low growth; average subsidies, and average community service. The
large group has nearly the same membership and spatial structure as the B
group of the centroid method.

The isolates, from this method, contain only those towns with extremely
rapid growth. Virtually all are dormitory centers.
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THE OPTIMAL GROUPING

This algorithm identified three significant groups of towns. Each group is
identified by its centroid (Table 10) and by the towns which are assigned to it
(Table 11). Group A contains seventy-two towns, B forty, and C only eight.
These three groups accounted for 89 percent of the variability on the three
viability dimensions.

TABLE 10. Group centroids

Factors Number of
Group
I II 111 members
A 1.38 0.62 —0.12 72
B —0.65 —1.26 0.29 40
C —-9.19 0.83 —0.29 8

Group A is associated with those towns that have a high positive score on
factor one, and an average score on factor two and factor three. This group is
essentially the same as the second grouping of both the previous methods except
that it is of intermediate size. Consequently, towns of Group A are characterized
by slow growth, moderate subsidization and a moderate level of spending on
recreation and community services. The four towns of this group which are
most similar to the group centroid and hence most representative of the group

TABLE 11. Group membership

Towns by number

Group

27 30 32 33 34 36 37 39 41 42 45 50
52 54 55 56 58 60 61 62 63 64 65 66
67 69 70 71 72 74 75 76 77 78 80 82
83 87 88 89 90 93 95 96 97 98 99 105
107 108 109 110 113 114 115 116 117 118 119
1 3 4 5 6 9 12 14 18 19 21 23
28 29 31 35 38 40 43 44 47 49 51 53
57 59 72 79 81 84 85 86 91 94 102 104
106 111 112 120
8 10 48 68 92 100 101 103

are Wiarton, Port Elgin, Campellford and Stirling. It is noteworthy that these
four towns occupy the core regions of the two poorest and most rural farming
areas of southern Ontario. Port Elgin and Wiarton in Grey County represent
marginal farming areas in a zone of poor quality soils and limestone outcrops.
They are the farthest removed from the large urban markets to the south and
represent at the present time an area of rural out-migration. Cambellford and
Stirling are located in a zone of marginal farming in Northumberland and
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FACTOR ANALYSIS OF COMMODITY FLOWS 33

(5) sands and gravels,

(6) crude and refined petroleum,
(7) metals and metal manufactures,
(8) bricks,

(9) cement,

(10) artificial fertilizers,

(11) chemical products,

(12) grains,

(13) potatoes,

(14) sugar beets,

(15) other crops and processed agricultural products,

(16) timber and timber manufactures,

(17) other freight.

However, there are obvious limitations to the scope of the conclusions and
estimates resulting from the regional implications of the physical volume of
commodity flow. Thus, those data on the physical volumes of the flows have
been processed so as to achieve their (estimated) value size. This processing has
been completed on the basis of a value index of the particular 17 groups of
commodities, which was estimated by W. Morawski (1967). These indices are
presented in Table 1.

TABLE 1. Index of value of one ton of commodities dispatched by railways
based on the 1962 structure of production and dispatches

Group Categories of commodities Vah}e of one ton in zI
number (in factory prices)
1) Bituminous coal 350
(0)) Brown coal and coke 555
A3) Ores and pyrites 450
©) Stones 95
(&) Sands and gravels 45
©6) Crude and refined petroleum 1985
@) Metals and metal manufactures 4580
(8) Bricks 235
(&) Cement 450
10) Artificial fertilizers 1060
ain Other chemical products 5310
12) Grains 3200
13) Potatoes 837
a4 Sugar beets 505
@as) Other crops and processed agricultural products 3800
16) Timber and timber manufactures 2040
a7 Other freight 7540

The value of commodity flows based on the statistics of railway freight
haulage, from the point of view of their application to regional analysis, is
limited with respect to the following:

(1) The 17 voivodships as the consigning-receiving units provide too little
spatial detail and permit an analysis of commodity flows only on a macro-
regional scale. This limits analysis to higher order regions only.

3 Geographia Polonica
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FACTOR ANALYSIS OF COMMODITY FLOWS 35

Normalization is completed on the basis of the formula:

z,—% i=L2%..N,

= 8

9= Il %y o606 T
where:
x,; = value of variable j of dyad i,
x; = mean of N values of variable j (N denotes the number of dyads),
s; = standard deviation of variable j.

The relationships between variables are expressed by help of the coefficient
of correlation:

Y o g @)

The correlation matrix of order n is a symmetrical matrix.

Multiple factor analysis extracts the factor (hypothetical variables), which
constitutes the basis of correlations observed in a given set variables (x,, x,,...
x,). These factors may be treated as causes of the variation observed; it is then
possible to interpret them as being of considerable importance in the measure-
ment and explanation of variation. Factor analysis helps to reduce a primary
set of variables that are characteristic of the objects under observation to a con-
siderably smaller number of factors. In this manner, the number of dimensions
of the objects diminishes and analysis becomes simpler.

In factor analysis n observed variables characterizing a set of N dyads is
linear function of m unknown “common factors” (F,, F,,... F,), where m <n
and a “unique factor” for each of the variables (U,, U,,... U,):

z;=0a,F +a,F,+...q;, F_+aU,, 3)

where a’ s are called factor loadings.

If we assume that both the observed variables and the factors are at stan-
dard form (i.e. with the mean equal to zero and the variance equal to unity)
and if we further assume that the factors are uncorrelated, then the variance of
the observed variables, z;, can be computed from

s;; = 1 =a},+al,+ ... +a?,+a} =hi4aj; 4)

h? is called the communality and it is that part of the variance of the observed
variable, which is due to the common factors, while a; the uniqueness is that
part of the variance, which is due to the unique factor.

Factor analysis, as D. N. Lawley and A. E. Maxwell (1963) emphasize, usually
implies some hypothesis as to the number of common factors underlying the set
of variables in the research problem.

Factor analysis, which consists in examing the communality of features re-
sulting from the operation of common factors, is carried out on reduced corre-
lation matrix in the form:

©®)

3*
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h? denotes the communality of variable j and is approximated from the formula:
h? ’ §=1,2..m, (6)

where 7;, and r; are maxima coefficients of correlation of variable j.

The basic problem of factor analysis is to determine the coefficients ay,...
a;, of the common factors. This determination can be made by principal factor
method.

The principal factor method makes possible the extraction of factors, which
explain the maximum communality and give the smallest possible residuals in
the correlation matrix. This means, that the sum of squares of the factor load-
ings is the largest possible for each variable.

The analysis begins with a factor F; whose contribution to the communality
of the variables has as great a total as possible. Then the first — factor residual
correlation is obtained, including the residual communalities. A second factor F,,
independent of F,. with a maximum contribution to the residual communality is
next found. This process is continued until the total communality is analysed.

If the composition of a statistical variable is taken to be

z,=a,F, +a,F,+ ... +0a,,F, i=12,..mn, (7)

with the unique factor omitted, the communality of z; is then given by:
h? = a} +a},+ ... a%,. (8)

The sum of the contribution of factor F, to the communalities of the n varia-
bles is

Ay =ah4ay+ ... +a;,. ®

The solution of the problem consists in finding such values of the coefficients
a;, for which A,, assumes the maximum value, the following condition being
fulfilled:

P =Tp= G0, Hk=12 ..m. (10)

We have here a problem involving the maximization of A,, a function of
several variables which in turn are connected by a set of relationships. The ma-
thematical procedure as outlined in H. H. Harman (1960) involves the use of
Lagrangian multipliers to obtain a set of n equations of the form

hi—1 7, AR D Ll a,,
e NE—A4 *2%.% a,

0 (11)

r.. r '3 » Lt A a,,

These equations constitute the bass for the calculation of the unknown coe-
fficients a;;.

A necessary condition for the solution of this set of equations is that the
determinant of the coefficients a;; must be equal to 0.
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0 (12)

Vs Yo voo h2—]

This is a characteristic equation, in which all roots are real.
Corresponding to the first root or eigenvalue of this equation is a column
vector or eigenvector (a,;, as;, --. Gn), Which when scaled by the factor yields

the coefficients a,,, @5y, .- Gp;.
1/2
[rirer) a

ag+aytan,

The residual correlation matrix [R’] can then be computed as and the solution
could proceed with finding the largest eigenvalue of this residual matrix, and
SO on.

[R'] = [R]—[an][a,]" (14)

H. Hotelling introduced a simplified method of calculating factor loadings
in solving the main factor. He used an approximate determination of the cha-
racteristic roots by the iteration process method without the previous unfolding
of the characteristic determinant (H. H. Harman, 1960).

In this paper H. Hotelling’s iterative method is used. The solution was based
on a programme in Gier Algol IV language using the Gier computer.

The computer-derived solution in our example yields the following eigenva-
lues:

for 1958 l, =/, 9695, lz = 2,8342,
for 1966 4, — 5, 2469, 1, = 3, 1879.

Each eigenvalue accounts for a percentage of the total common variance.

The question of how many factors should be interpreted is difficult. A con-
venient rule of thumb seems to be to evaluate all factors with an eigenvalue
equal to or greater than one or, alternately to evaluate each one which ac-
counts for a sufficiently high proportion of this communality.

In this example, factor analysis carried out by the principal factor method
yields the factorial matrices of type 17X2 for 1958 and 1966, which contain the
loadings of two factors in 17 variables (Table 2 and 3). Two factors accounted
for 95% of a total common variance in 1958 and 75% in 1966.

The interpretation of the factors is usually important in a research problem.
This interpretation is done mainly with reference to the factor loadings, which
have the form of a coefficient of correlation between the variable and a given
factor.

On any factor some variables will have low loadings and consequently will
be ignored in the process of giving an interpretation to the factor.

We assume, that the regional structure is a linear function of some simple
patterns and the factors in the linear model should illustrate the simple struc-
ture.

In 1958 an underlying two-factor structure was revealed. Factor I, account-
ing for 70.32% of common variance, consist of three groups: (1) raw ma-
terials of mineral origin (bituminous coal, brown coal and coke, ores, stones,
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TABLE 2. Factor structure
Dyadic analysis of 17 commodities in Poland, 1958

Factor loadings

Group Categories of commodities
number I II

1) Bituminous coal 0.6958 —0.4241
) Brown coal and coke 0.8649 —0.3570
A3) Ores 0.8221 —0.3998
()} Stones 0.5925 0.0087
(®)] Sands and gravels 0.9033 —0.1220
6) Crude and refined petroleum 0.4266 0.0561
@ Metals and metal manufactures 0.7814 —0.3945
8) Bricks 0.7623 0.3239
()] Cement 0.5963 —0.2578
(10) Artificial fertilizers 0.4901 0.1274
an Other chemical products 0.8900 —0.3023
(12) Grains 0.4901 0.1274
(13) Potatoes 0.2709 0.5307
(14 Sugar beets 0.4304 0.7131

(15) Other crops and processed agricultural
products 0.3144 0.4502
(16) Timber and timber manufactures 0.7683 0.4523
an Other freight 0.9477 0.0455
A 7.9695 2.8342

Per cent of common variance explained by the factor 70.32 25.01

sands and graves), (2) industrial goods (metals and metal manufactures, bricks,
cement, artificial fertilizers, other freight), (3) timber and timber manufac-
tures. Accounting for 25% of communality, Factor II represent agricultural
products. Strong loadings are recorded by the commodities: grains, potatoes,
sugar beets.

In 1966 situation changed very much. The identification of factors is not so
clear. Factor I explains only 46% of the total common variance of the variables
and comprises mainly industrial products and ores (ores, metals and metal ma-
nufactures, other chemical products, other freight), agricultural products (grains,
sugar beets, other crops and processed agricultural products), timber and
timber manufactures. Factor II is based primarily on the loadings by the raw
materials for fuel and building (brown coal and coke, stones, bricks). This
factor explains about 28 per cent of the communality of features.

Then the factor scores for dyads were evaluated according to the equation

[F] = [Z]][4], (15)
where
[F] = matrix of factor score,

[Z] = an observation matrix,
[A] = matrix of factor loadings.

This factor scores matrix of type 272X2 was transformed into two matrices
for every year (1958 and 1966) of order 17, being a starting-point for the spatial
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TABLE 3. Factor structure
Dyadic analysis of commodities in Poland, 1966

Group Categories of commodities Foclovloadines
Number I I
(€)) Bituminous coal —0.0003 0.1868
) Brown coal and coke 0.4951 0.7492
3) Ores 0.6580 0.6498
@) Stones 0.5530 0.7135
®) Sands and gravels 0.4488 0.0563
6) Crude and refined petroleum 0.1928 —0.1293
@) Metals and metal manufactures 0.5610 —0.2515
8) Bricks 0.4700 0.7355
) Cement 0.3290 —0.0017
(10) Artificial fertilizers 0.3993 0.0961
an Other chemical products 0.5629 —0.3587
(12) Grains 0.8197 0.0882
(13) Potatoes 0.3303 0.0704
(14) Sugar beets 0.6983 —0.4895
15) Other crops and processed agricultural
products 0.7201 —0.5430
16) Timber and timber manufactures 0.7392 —0.2677
an Other freight 0.7547 —0.5283
A 5.2469 3.1879
Per cent of common variance explained by the factor 46.07 27.99

grouping, which we can call “latent structure matrix” or using the term of
B. J. L. Berry “the behaviour matrix”.

Each cell of the matrix corresponds to a different element of interregional
exchange, i.e, to a different inter-regional connection. The cells on the main
diagonal referring to connection within each of the particular regions were
omitted.

In the rows of the matrix for every factor we read outflows in the term of
factor score from the particular regions i.e. their active connections, whereas in
the colums we read the inflows, i.e., the passive connections (Tables 4—7).*

FACTOR INTERPRETATION

The second step of our analysis is associated with the problem of generaliz-
ing two basic factors into a system of regional structure, changing in time. This
analysis requires the grouping together of voivodships on the basis flows in the
term of dyad factor scores.

As the method of grouping dyads for each factor we used the method describ-
ed by J. D. Nystuen and M. F. Dacey (1961), applied originally to telephone
traffic in Washington. The application of basic theorems of graph theory inter-
pretation by J. D. Nystuen and M. F. Dacey, permits hierarchical relations
between voivodships to be established in two aspects: outflows (active connec-
tions) and inflows (passive connections). If the connections in terms of factor

* Tables 4—7 at the end of the volume
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scores are ranked according to their magnitudes in the rows and columns, it is
possible to determine the dominant and subordinate voivodships. The dominant
voivodship is one which records its largest flow to a lower order voivodship.
The subordinate voivodship is one for which the largest flow is to a higher
order voivodship (Fig. 1).

N
x N ° < f;
o 2 b = O & x =<
N 2 & - = 2 T
B EEEE AR - S N S z
S3TS Sy %3 xS
S ® '2. « ¥ c ; S v L o T & 9
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Rank 359 3 4615082 171%12 477
01 X2

Fig. 1. Adjacenty matrix of graph F; (1958)
1 — largest outflow; 2 — largest inflow
The resulting hierarchy structure describing the regional pattern for each
factor in both years is presented on 8 graphs for passive and active connections
(Figs. 2-9).
The structure established by isolating the largest flows in the same manner
as was described on graphs permit maps to be drawn of regional structure.

The pattern of connection presented on maps establishes a synthetic descrip-
tion of the complexities of the country’s regional structure. That complexity is
expressed in the differentiation of various forces integrating the inter-regio-
nal links.

The main descriptive conclusions concerning regional structure, can be drawn
from a comparative analysis of changes in time of factor one, which identified
the mining and manufacturing industry. First of all the whole regional system
of country exhibits the most intensive connections with Katowice. The connec-
tions with Katowice occupy first place in the inter-regional flows of all other
regions, endowing Katowice with a focal character on the national scale. This
defines the role of Katowice (The Upper Silesian Industrial District) as that area
upon which are focussed the productive-industrial activities of the country,
the basic sections of heavy industry: coal-mining, metallurgy, engineering and
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TABLE 8. Regional
Kind of 1958
Factor
connections I order II order
active (1) Katowice (whole (1) Wroctaw (Zielona Gora,
connections country) Szczecin, Koszalin)
(2) Krakéw (Rzeszow,
Lublin)
Factor I passive (1) Katowice (whole (1) Bydgoszcz
connections country) (Gdansk)
(2) Warszawa (Poznan,
Zielona Goéra, Szczecin,
Olsztyn, Bialystok, Lublin)
(3) Krakoéw (Rzeszdéw)
active (1) Olsztyn (Gdansk,
connections Bialystok, Katowice) (1) Rzeszé6w (Krakow)
(2) Koszalin (Szczecin)
(3) Poznan (Wroctaw, Opole
Kielce, Bydgoszcz,
Warszawa)
(4) Lublin (Zielona Gora,
Rzeszéw, L6dz, Krakow)
Factor II passive (1) Poznan (Zielona Gora, (1) Koszalin (Gdarnsk,
connections Szczecin, Koszalin, Krakéw, Rzesz6w)

Bydgoszcz, Warszawa,
Gdansk, Wroctaw, Opole,
L.6dz, Krakéw, Rzeszow)
(2) Katowice (Lublin, Kielce,
Olsztyn, Bialystok)

(2) Warszawa (Opole)

chemicals. The high degree of its specialization links it with a wide area, and
as a result, gives a unity which is the functional basis of its ability for full
complex economic development; thus simultaneously it also establishes its own
inner coherence. The high intensity of the commodity flows of Katowice, the
uniformity of links, the active and passive type of dependence and its character
as an open economic region reflect the predominant role played by the raw
materials and industry of this region in the structure of the national economy.
As a result of its nodal organization, therefore, Katowice can be considered as
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structure of Poland

43

1966
III order I order II order III order
(1) Szczecin (1) Katowice (whole (1) Wroclaw
(Koszalin) country) (Zielona Goéra)
(2) Szczecin
(Koszalin)
(3) Bydgoszcz
(Gdansk, Olsztyn)
(4) Warszawa
(Bialystok)
(5) Krakéw (Lublin,
Rzeszéw)
(1) Poznan (1) Katowice (Opole, (1) Wroctaw
(Zielona Wroclaw, Zielona Gora, (Zielona Goéra)
Gora) Bydgoszcz, Gdansk, (2) Bydgoszcz
Warszawa, Bialystok, (Gdarnsk)
Kielce, Krakow, (3) Warszawa
Rzeszéw, Lublin) (Bialystok)
(2) Poznan (Koszalin, £.6dz) (4) Krakéw (1) Rzeszéw
(Rzesz6w, Lublin) (Lublin)
(1) Katowice (whole (1) Wroclaw (Zielona Goéra)
country)
(1) Krakéw (1) Wroclaw (Warszawa, (1) Rzeszéw (Poznar)
(Rzesz6w) Zielona Gora, Katowice, (2) Warszawa (Szczecin)

Poznan, Szczecin,
Rzeszéw)

(2) Krakéw (Koszalin,
Biatystok)

(3) L6dZz (Lublin,
Bydgoszcz)

(4) Kielce (Gdansk, Opole)

(3) Koszalin (Biatystok)
(4) Lublin (Bydgoszcz)
(5) Opole (Olsztyn)

the focal economic region in the national system with no changes in active con-
nections in time. (Table 8).

Second order pattern is different for active and passive connections. The ac-
tive connections constitute two regions: Wroctaw and Krakow voivodship, the
passive connections — three: Bydgoszcz, Warszawa, Krakéw voivodship. The
changes in time in the second order patterns show the further differentiation
and origin of new regional centres: active — Szczecin, Bydgoszcz, Warszawa
voivodship; passive — Wroctaw voivodship.
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Fig. 4. Factor I. Interregional passive connections, 1958
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Fig. 9. Factor II. Interregional passive connections, 1966
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.20 .60
o .30 .40

Then the required matrix product R,,~! R;; R;,~! Ry, is:
1.041 —.208 .50 .30 |1.190—.476 | |.50.60  .206 .251
—.208 1.041 /.60 .40, | —.476 1.1901 .30 .40  .278 .341

The required eigenvalues may be obtained by expanding the following
determinant and calculating the roots of the resulting quadratic equation:

206 —1 .251
.278 ahie.g |

These roots are 1; = R? = 546 and 1, = R} = .001, so that R, = .74 and
R, = .03. We easily decide that the second canonical correlation is trivial in
magnitude and should be ignored, so we choose the rank of our canonical model
to be n = 1. The raw eigenvector that goes with the first eigenvalue may be
obtained as the cofactors of the first row of the determinantal equation:

—.205
= Sanns
Solving the scaling equation d, = v,(»1R;,v,)~1 yields

|.545 |
737 |
=
R,
‘ .856 |
1.278 |

Solving the equation ¢; = (R;'R,.d,)

Thus the first canonical factors are

X, = .8562, +.2782,, and y, =.5452, +.737z,

To get the structure coefficients which represent the correlations between
these canonical factors and the measurements on which they are based we form

.967 .692 !

SiE=s 3y Cie= 620 and S R Uy — 846
¥ ks

The proportion of the generalized variance in the first set of measures ex-
tracted by factor x, is [(.967)2+(.620)?]/2 = .660, and this times the first canonical
R? gives .36 as the redundancy of the first factor of z, given the availability of
the first factor of z,. Similarly, the proportion of the generalized variance in z,
extracted by y, is .597, and the redundancy of y, given x; is .33. Since the
canonical model is of rank one, it also appears that U, = .36 and U, — .33.

What has been revealed about the structure of relationships among these
four variates by the canonical analysis? First of all, the three correlation
matrices, R,;, R,,, and R,,, reveal that the cross-correlations between variates
of 2, and those of z, are stronger than the internal correlations within z, or
within z,. The strongest bivariate correlation in the system is .60 between the
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migrant groups (predominantly Germans and Italians and with some Canadians
and British) living in older downtown housing and largely in the 15 to 25 age
group, but also with concentrations of population over 50 years. The black
population forms a separate factor, reflecting their distinctive location, their
relative concentration in unskilled occupations and their more-crowded housing
conditions. Dilapidated housing, however, is not significantly associated with
the proportion of census tract population that is black, and comprises a specific
fourth factor.

Certain of these socio-economic characteristics are explicitly recognized in
the morbidity data. The data on respiratory diseases are classified by the two
dominant racial groups, with the exception of lung cancer and emphysema for
which no data are available for the black population. The asthma data are
restricted to children 16 years and under, the age group for which it is most
prevalent.

The racial classification of the morbidity cases reflects itself in the factors.
Asthma separates into two factors, the first identifying non-black ethnic groups,
the second linking asthma and tuberculosis in both the male and female black
population. The third morbidity factor identifies all male emphysema cases
and mild female emphysema cases.

The scores of the 172 Buffalo census tracts on the four socio-economic and
three morbidity factors are used as input variables for the canonical correlation
analysis. The canonical factor structure matrix, shown in Table 1, reveals two
significant and one residual pattern of association between the two measure-
ment domains. Not surprisingly, the black population and incidence of respira-
tory diseases among negro population are strongly associated; indeed, every
census tract with a high score (above 2.0) on the black socio-economic variable,
has a correspondingly high score on the black respiratory morbidity incidence.

TABLE 1. Canonical correlation analysis of socio-economic and morbidity data: Buffalo, N. Y.

Canonical Factors

1 1I 111
Socio-economic variables
(1) Young-married white —.430 —.866 214
(2) Single, downtown white .241 .143 .541
(3) Black .868 — .466 —.019
(4) Dilapidated housing .030 —.120 —.818
Morbidity variables
(1) Asthma (white) —.259 —.719 .647
(2) Respiratory (black) .939 —.343 —.029
(3) Emphysema (white) .090 .586 .805
Canonical correlation 915 .830 .093
Chi-square 498.53 193.03 1.44
Degrees of Freedom 12 6 2

Note: The variables are the scores on the dimensions of separate varimax-rotated factor
analyses of socio-economic and morbidity data for the 172 census tracts of the Buffalo S.M.S.A.
Canonical variables I and II are highly significantly correlated.
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The canonical correlation between the first pair of canonical factors, .915, is
in fact a little higher than the simple correlation between the black socio-
economic variable and the black respiratory-disease variable, which is 878 (see
Table 1).

The second pair of canonical factors identifies the age differences between
the predominant occurrence of asthma (children) and tuberculosis (under forty
years) on the one hand, and emphysema (concentrated among males over forty)
on the other, and underlines the high asthma incidence in census tracts with
a predominant young-married white population. Once again the canonical cor-
relation (.830) is higher than the simple correlation between the two variables
with their highest loading on the canonical variates (.630 between young-
married white and asthma). None of the socio-economic variables used identifies
by a negative sign with emphysema in the second pair of canonical factors,
and no importance can be attached to the high coefficients of emphysema,
single downtown white population and dilapidated housing on the third, residual
pair of canonical variates because of the low canonical correlation.

The variance extracted from the measurement domains by each of the three
pairs of canonical correlates is much the same, but the redundancy measure
for the third pair is severely reduced by the low canonical correlation (see
Table 2).

TABLE 2. Canonical variance extracted and redundancy: Buffalo example

Socio-economic Morbidity
Squared variables variables
Canonical canonical AL IS FIm s s AT L AN L
factors correlation variance redundancy variance redundancy
extracted extracted

1 .837 .250 .209 318 .266

2 .688 251 172 .326 224

3 .009 251 .002 .356 .003

Total 752 .383 1.000 .494

This analysis of the Buffalo morbidity-socio-economic variables is highly
simplified, and the complete data indicate other inter-relationships, such as
the relative concentration of cancer of the digestive system among the Polish-
ethnic population, related, presumably, to their diet. Nonetheless, the first two
pairs of canonical variates in the above analysis also dominate the factor
structure in the canonical correlation analysis of the complete data, and this
analysis reveals more than can be learned from a simple correlation alone of
the two sets of scores from the factor analysis, which, it will be recalled, is the
most competitive modeling procedure.

THE OCCUPATION AND CULTURAL STRUCTURE IN CANADA

The second research example investigates the interrelationships and spatial
structure of occupational and cultural characteristics in Canada. Since Con-
federation in 1867, Canada has achieved a rate of economic and population
growth that is among the highest in the world. Migration has contributed a
surprisingly small proportion of the population increase because of heavy em-
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58 D. MICHAEL RAY AND PAUL R. LOHNES
TABLE 3. Correlation matrix (R;;) for selected occupational data: Canada 1961
No. Variable 1 2 3 5
Name Managers Professional Farmers Miners
(2) Professional .643
(3) Farmers —.396 —.534
(5) Miners —.124 —.032 —.236
(99 Male/Female L.F.
ratio —.529 —.448 .197 .220

Note: The occupation data are for male labor force as a per cent of total male labor force.
For definitions and a discussion of the ethnic composition of the labor force see Canada,
Dominion Bureau of Statistics, 1961 Census of Canada, General Review, Series 7.1 Bulletin 12

The Canadian Labor Force, 1967.

The correlations indicate the degree and direction of spatial association at the census

county level.

TABLE 4. Correlation matrix (R,,) for selected mother tongue data: Canada, 1961

Mother Tongue English
French —.940
Indian and Eskimo —.010
Italian .136
Polish .190
Yiddish (Jewish) —.041

French

=72
—.195
—.410

.004

Indian
and Italian Polish
Eskimo
.024
.176 .283
—.053 .363 147

Note: Mother tongue is language learned at birth and still spoken.

TABLE 5. Correlation matrix (R,;) for selected occupational and mother
tongue variables by census county: Canada, 1961

Male/
Female Average
Mother Tongue Mal,la' PFOfes' Farmers LoBgers  \iners  Labor Family
gerial sional etc. TReriae e

Ratio
English .323 .089 —.060 .051 —.001 .123 .080
French —.262 —.065 —.096 .021 —.043 —.145 —.098
Indian and Eskimo —.155 —.068 .040 134 .348 .190 —.072
Italian .308 379 —.334 —.106 .241 —.153 .507
Polish —.198 —.152 .477 —.143 —.043 .064 —.156
Yiddish (Jewish) .284 .347 —.166 —.135 —.031 —.229 .306

Note: “Loggers” is defined by the census of Canada
hunters. See Tables 3 and 4 for other data definitions.

to include fishermen, trappers and
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with each other (see Table 7). The first canonical factor, which is examined here
in some detail, loads on the Polish-Ukrainian-German population and
farming. The structure coefficients are somewhat higher for the cultural
than for the labor force variables so that the variance extracted (which
equals the mean sum of squares) is .232 compared with .184 (see Table 8).
Multiplying the variance extracted by the squared canonical correlation (.512)
gives a redundancy in the labor force data given the cultural data of .094,
and of .232 in the cultural data given the labor force data. In part, the difference
between the two redundancy measures may reflect the three extra labor force
variables which may add to the dimensionality, or rank, of the labor force
matrix. In part, the difference in the redundancy measure reflects a truly
asymmetric relationship between occupation and mother tongue on the first
canonical factor in which three cultural groups are highly associated with
a single occupation.

Two scores may be computed for each county on the first canonical factor
score and the simple correlation computed between these scores and a set of

TABLE 7. Occupational and mother tongue canonical factors:
Canada, 1961

Canonical factors

1 11 111 v v
Labor force
(1) Managerial —209 476 508 —436 170
(2) Professional —173 557 128 —248 509
{3) Farm Workers 803 —503 —052 —190 —222
(4) Loggers —351 —122 117 528 —196
(5) Miners 003 453 —175 611 —241
(6) Craftsmen —624 461 —312 —188 154
(7) Laborers —625 109 —225 292 —004
(8) Labor Force Participation Rate 484 593 —-012 —342 185
(9) Male/Female Labor Force Ratio 113 —172 176 486 —525
(10) Unemployment —397 091 033 484 227
(11) Average Family Income 011 772 —038 —513 156
Cultural variables
(1) English 041 222. 885 011 -313
(2) French —358 —285 —806 —069 296
(3) German 665 034 137 —259 —220
(4) Indian & Eskimo 328 255 —032 764 —101
(5) Italian —029 895 —109 —065 078
(6) Polish 746 340 028 055 109
(7) Ukrainian 788 —193 —022 208 248
(8) Yiddish 046 390 217 —217 836
Canonical Correlation =g TS .703 .599 489 372
Chi-Square 510.67 354.38 206.08 109.39 39.69
Degrees of freedom 88. 70 54 40 28

Note: Leading decimal points omitted in structure coefficients. Three additional factors are
extracted but have low redundancies (see Table 8).
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TABLE 8. Canonical variance extracted and redundancy: Canada example
S Labor force Cultural variables
. quared
Canonical SRS
factor g variance redundancy variance Redundancy
correlation extracted extracted
1 512 .184 .094 232 119
2 .494 .202 .100 .163 .080
3 .358 .046 .016 .187 .068
4 .240 .174 .042 .094 .023
5 .139 .077 .011 .128 .018
6 .044 .058 .003 .060 .003
7 .022 .066 .001 .040 .001
8 .012 .055 .001 .093 .001

marker variables to give the canonical factors spatial expression (see Table 9).
Again the cultural characteristics have greater regularity and have higher
correlations but both possess a significant east-west gradient that has been
identified in previous studies. This gradient has been related to centripetal
and centrifugal forces acting at an intercontinental scale during the early
staple-export phase of Canada’s economic development when it was closely tied
to Northwest Europe (W. T. Easterbrook and M. H. Watkins, 1967, and D. M. Ray,

1971).

TABLE 9. Spatial structure of the canonical factors

Canonical
factor

East-West Contrasts (I)

Labor force scores
Mother tongue scores
Heartland-Hinterland (IV)
Labor force scores
Mother tongue scores
Metropolitan (I and V)
Labor force scores
Mother tongue scores
Labor force scores
Mother tongue scores
English-French contrasts (III)
Labor force scores
Mother tongue scores

Popula-
tion
Potential

—.285
—.361

—.434
—.250

.203
182
.298
.386

~.160
~.252

Simple correlation with:

Vancou-
ver

—.425
—.516

153
.107

—.265
—.265
.165
226

.143
.054

distance form

Winni-
peg

—.568
—.747

.070
.034

.027
047
.041

—.148

.004
.090

Toronto

222
339

.320
.099

—.205
—.215
—.118
—.137

.087
.029

Mont-
real

.403
537

.161
.062

128
170
—.174
—.325

320
428

Halifax

.615
.650

—.202
—.079

.308
.303
—.156
—.118

~.020
.050
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The east-west progression of values on the first canonical factor are illustra-
ted by the provincial averages for five of the variables with high loadings (see
Table 10). The per cent of the county male labor force in farming increases
east to west across Canada with a correlation of .429 and the provincial averages
follow this trend with the severe exceptions of Prince Edward Island and British
Columbia. The percentage of the male labor force amployed as craftsmen, who
essentially comprise the factory workers, has a negative loading (—.624) on
canonical factor one and a simple correlation with distance from Halifax of
—.3186, although the provincial range in values is much smaller than for farmers.

TABLE 10. Provincial values for characteristics with high coefficients on the
east-west canonical factor

Total No. % of male s \
popula- of labor force A of population
Province tion Census employed as with mother tongue

in 1000’s Counties farmers crafts- German Polish Ukrainian

men
Newfoundland 458 10 1.8 27.7 0.1 — —
Prince Edward Island 105 3 32.8 18.6 0.1 0.4 0.1
Nova Scotia 737 18 6.7 25.7 0.2 0.3 0.1
New Brunswick 598 15 9.2 25.7 0.2 0.2 0.1
Quebec 5,259 66 9.1 31.0 0.6 0.1 0.3
Ontario 6,236 54 8.8 31.5 2.9 1.4 1.4
Manitoba 922 20 21.3 23.9 9.1 1.4 9.2
Saskatchewan 925 18 43.2 16.6 9.7 1.9 7.3
Alberta 1,332 15 25.2 21.6 7.3 1.8 6.3
British Columbia 1,629 10 5.1 30.8 4.4 1.5 1.2
Canada 18,238 229 12.2 28.8 3.1 0.9 2.0

Note: Canada total includes 10 provinces and the Yukon and Northwest Territories
Source: Canada, DBS (1967), p. 12-9

The east-west increase in the per cent of the population with German, Polish
and Ukrainian mother tongue is more regular than that of the employment
characteristics; the simple correlations with distance from Halifax are .542,
.531 and .431 respectively. These increases are indicative of the general increase
in cultural heterogeneity east to west across Canada; no provinces show greater
cultural heterogeneity than the Prairie Provinces (where more than a quarter
of the population have a minority-group mother tongue) and none show less
than the Atlantic Provinces (where less than 3% of the population have mother
tongue other than English or French).

The east-west gradient of economic and cultural variation is a pervasive
element of Canadian geography shared by many other characteristics not in-
cluded in this analysis. Indeed, some characteristics such as population distin-
guished by Canadian province or country of birth and by period of immigration
have much higher correlations with distance from Halifax than any of the
characteristics analyzed here. This east-west gradient identifies the relation-
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TABLE 11. The metropolitan scores and marker variables on factors II and V

Canonical factor II Canonical factor V
ave-
g mother A
Pop. in labor ragfe oy labor pro- mother 9
Metropolitan area 1000’ s force family It- force tongue Je-
gue y fess- ;
M.A. CC. score mc ' alian score ; .. score wish
ome

Atlantic Prov. Mean —.14 $4773 —42 .07 1.15 6.88 .01 .08
St. John’s 3 91 189 —1.26 4043 —.54 .04 45 636 —.20 .02
Halifax 184 226 46 5331 —-.33 .19 160 7.42 -—.01 .08
St. John 96 89 36 4946 —.40 .09 1.40 6.87 ) .SERN|3
Quebec Prov. Mean 1.21 5961 1.49 232 3.08 10.73 3.90 .95
Montreal 2110 1872 237 6098 3.43 4.49 424 10.39 726 1.77
Quebec 358 331 04 5823 —45 .19 1.92 11.07 .53 .10
Prov. of Ontario Mean 1.72 6026 2.06 3.32 70 8.78 .85 .40
Hamilton 395 359 1.40 5914 330 5.07 55 7.69 .04 21
Kitchener 155 177 2.04 5822 10 .50 19 6.65 —.26 .12
London 181 221 1.16 5824 68 96 1.15 843 —.41 .10
Ottawa 430 353 1.51 6879 95 1.87 279 1519 1.00 34
Sudbury 111 166 3.00 5973 2.34 405 —-230 539 -—.33 .10
Toronto 1824 1733 2.17 6459 4.48 6.55 1.49 10.79 535 1.57
Windsor 193 258 79 5311 2.59 420 1.07 730 .57 33
Prairie Prov. Mean 1.51 6010 81 94 123 941 2.76 75
Winnipeg 476 476 130 5874 1.50 .83 133 871 798 1.85
Calgary 279 318 1.72 6255 .67 1.10 95 10.21 .07 .24
Edmonton 338 411 1.52 9502 25 .89 140 9.51 .25 .17
B. Columbia Mean .53 5629 61 1.02 .26 830 -—-.72 .09
Vancouver 790 908 .89 5816 .87 1.38 .65 897 —.61 .14
Victoria 154 291 17 5442 34 65 —.14 7.62 —.82 .03
Can. Metro. Mean 1.16 5748 1.16 194 1.10 8.73 1.21 1.02
Can. Census Div. Mean 0.00 4463 0.00 .54 0.00 5.12 0.00 .08

Note: Population is given for the metropolitan area (M.A.) and census county (C.C.), all other
data are for the census county in which the metropolitan area is located.

State University of New York, Buffalo
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-ONE DIMENSIONAL SPECTRAL ANALYSIS 69

Unfortunately, it is not easy to put statistical confidence bands around the
autocorrelation function and, because the function is itself autocorrelated, it
is difficult to interpret beyond the first few lags. The same is not true of the
spectrum of the function. This, it turns out, is the scale decomposition of the
variance. In other words, it separates the total variance into components which
characterize a given size of disturbance. For example, in a time series of tempe-
rature the diurnal and annual fluctuations are clearly two separate scales which
contribute in an additive sense to the total variance. These components viewed
as percentages of the total variance indicate their relative importance and
probability of influencing the sequence of temperature. It should be standard
practice therefore in describing coordinate data to present the spectrum of the
variance as well as the mean and total variance.

.l
\ Awocorrelation Function

\

Aytocorrelotion

Log (datonce Detween observolions) ——e

Fig. 2

But the student searches for more than mere description. He also seeks ex-
planation in the form of associations and relationships. The spectrum can be a
tool toward this end by indicating different generating processes. Frequently
different processes have different spectra: they produce a peak or set of peaks
at different scales and the spectra of the phenomena they influence will often
contain these peaks. Consequently an analysis of the spectrum may suggest
different lines of investigation. As a further step spectral correlation and
regression can be carried out between the hypothesized process and the ob-
served phenomenon (Rayner 1967).

Two types of spectra are produced depending upon the assumptions made
about the original observations. If the data are assumed to be periodic and
repeat themselves indefinitely beyond the limits of observation, the spectrum

Dewscrete Contvmuous
Spectrum Spectrum
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(3.1.1) Frequency

The frequency k, an integer varying between 0 and n/2, specifies the scales
calculated as number of cycles (number of complete oscillations of a cosine
curve) over the data interval n. Therefore, if n» = 12 and k = 3 the frequency
would be 3 cycles in the interval of 12 observations. If the original observations
were 2 hours apart (4t = 2 hrs.) then this frequency could be expressed in
cycles per hour by using the relationship,

frequency, f = k/n4t, 3.1.1.1)

1
and in the above example f would equal —-— cycle per hour. Alternatively,
(o]

12X 2
the coordinates of the spectral output may be expressed in terms of period or
wavelength, the inverse of frequency. Thus with k = 3, n = 12 and 4t = 2 hrs.
the period becomes 8 hrs. per cycle.

(3.1.2) Amplitude

One characteristic of a sinusoidal curve is the amplitude, half the height
between the maximum and minimum. For a given frequency, k, this is related
to the cosine and sine coefficients by

A, [K] = (@2[k]4-b2[k]) . (3.1.2.1)

(3.1.3) Phase and Phase Shift

Another useful characteristic of the sinusoidal curve is the position of the
maximum in the curve as expressed by the phase,

& _[k] = arctan (b [k]/a,[k]) (degrees). 3.1.3. 1

In terms of distance along the original coordinate space this may be conver-
ted to phase shift.

Distance of maximum from P.IKIX 1 (3.1.3.2)
origin in units of data spacing kX 360 St T
(3.1.4) Variance
The variance of a sinusoidal curve is related to the amplitude
o2[k] = A[k)/2 = (ai[k]+b2[K]/2, (3.1.4.1)
excepting for k = n/2 (n even) when
6n/2] = A%[n/2] = ai[n/2]. (3.1.4.2)
(3.1.5) Graphical Representation
Because of the trigonometric relationship
O ile - "
(a2 [k]+bi[k])’ -'cos( S u;_gk;} oL axcos.z_’:;’ﬁ +b,sin E’;‘Lﬂc :
(3.1.5.1)

Equation (3.0) may be rewritten
x—1

2xik

ik
n

> . s [
X[l = Advi+ ¥ A.lkicosi

—

— @, [k])+ A [n/2]cosmj, (3.1.5.2)

k=1
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which says that the series X[j] is the simple arithmetic sum at each [j] of a
finite number of cosine waves each having its own scale (frequency), amplitude
and phase. As an example of one such wave, if a.[2] = 3 and b.[2] = 4, then,
from equations (3.1.2.1) and (3.1.3.1), A.[2] = 5 and P.[2] = arctan */s = 53°8’ (see
Figure 4). It should be noted that A[0] = a[0] is a constant and equal to the
mean of X[j].

Waovelength

0 26734 360°
o n-i

Fig. 4

(3.1.6) Aliasing

Because observations are made at discrete intervals of time or space, the
calculable frequencies are limited (k.. = 1/2). However, the frequencies beyond
this limit may still be represented in the discrete data, and since every observa-
tion must be accounted for exactly by the calculable frequencies, the magnitude
of the calculable frequencies may be significantly different from the true
magnitudes. This effect is known as aliasing. Care is therefore necessary in
selecting a datum spacing such that the magnitude of frequencies greater than
knax are relatively small.

(3.2) THE CONTINUOUS SPECTRUM

There are two different approaches to the calculation of the spectrum of non
periodic data. For those with little knowledge of the subject it is suggested that
they select initially the method which will most quickly give them results. The
results will be comparable but the direct method has advantages of overall
efficiency on large computers.

(3.2.1) The auto-covariance method

This is the older of the two methods and follows from the discussion of auto-
covariances in section 2. The steps are

(a) Remove mean from the original data. X[i]

(b) Calculate the auto-covariances for approximately =/10 lags, i.e.,

maximum j = m+1
n-j+1

; 1 A R
X[l = =571 ; X[E]X[i+j—1]. 3.2.1.1)
This produces m+1 estimates of X[j]

(c) Either
(i) Fit zero phase cosine curve to X[j] (1<|j<<n,t+1)

al0] = g X+ XEmA 1)+ > X,
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74 JOHN N. RAYNER

(d) Apply transform of section 4.

(e) Calculate the variances of the elementary bands using; (3.1.3.2)

(f) Group the variances by summing the elementary bands to increase sta-
tistical confidence. For example, if 2z+1 elementary bands are added in each
group, this may be expressed as

82[0] = a2[0] + \ @

K=

(k] +b% (kD
; .

2z41)42 oy 2 (e
axlr) e ﬁﬂ.}ﬂl) 0<r<m (3.2.2.2)

—_— b
r(2z41)=2

NpE=d 1.1 b [k
apm= . GEIEOED | oy o
e <

k=N/l-z2

As in the auto-covariance method the frequencies of the centers of the bands
are given by r/2mAt. However, the bands are almost independent and the num-
ber of degrees of freedom is given by

(2z+1)(D—-G) D-G

b oed Tt S il 3.2.2.3
N/2 m ( )

(3.2.3) Confidence bands
The confidence bands of spectral estimates are given by the following:
2 [k ok
ot o WP X P (3.2.3.1)
- 7

smaller larger

i probability level 4 prokability level

Therefore, the true variance of a given band will be between degrees of
freedom times the estimated variance divided by the chi square value at the 5%
level and degrees of freedom times the estimated variance divided by the chi
square value at the 95% level 90% of the time.

(3.2.4) Interpretation

Whereas simple periodic functions have been used in calculating the spectrum
care should be taken to avoid the assumption that true periodicities necessarily
exist. Any one band in the continuous spectrum represents an infinite number
of frequencies centered upon the one used to identify that band. Any charac-
teristic for that band, such as variance, is the sum of the continuous frequencies.
It may well be that the actual variance fluctuates wildly (look, for example,
at the elementary bands). The final estimate therefore is only an estimate of
the central tendency for that band and consequently may be misleading. For
instance, a band of periods of 9 to 5 days might have all its variance supplied
by 9 days, yet it would be combined with and swamped by all the other periods
and assigned to the central period of six days. On the other hand too much
importance must not be attached to a given elementary band since it has only
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PROBLEM NAME

STEP NO OF
SHEET NO OF
4 AS A FACTOR
N o - g L MP=__ M S0 oy L Ragmis =
TH = (J—1)360/MP = ___COS(TH) =Cl| = SIN(TH) = DI = _
COS(2TH) = C2 = SIN(2TH) = D2 =
COS(3TH) = C3 = _ SIN(3TH) = D3 =
JO = J4+K—MP =
JI = JO+M = _
2 =JI+4M =
JB=2+M =
X (J0) X1 Y (JO) Y(J1)
XJ2) X(J3) Y(J2) Y(UJ3)
ADD Al A2 A3 Ad
SUB Si S2 S3 S4
Al S AT T e N
A2 S4 A4 S2
ADD X(JO) A6 Y (JO) A8
SUB SS chor ., R S7 S8
S$5.C2 A6.C1 $6.C3
S7.D2 S8.D1 AS8.D3
ADD X{J1) X(J2) X(3)
S7.C2 S8.C1 A8.C3
85. D2 A6.D1 $6.D3
SUB Y1) YU Y(J3)
PROBLEM NAME
STEP NO ‘™ OF
SHEET NO OF
2 AS A FACTOR
TH = (J—1)360/MP = COS(TH) = Cl = SIN(TH) = DIl = _
JO = J+K—~MP =
JI = JO+M =
XJo) Y (JO)
XA Y(J1)
ADD X(JO0) YOS o = =
SUB Si S2
S1.Cl1 S2.C1
S2.D1 S1.D1
ADD X(J1) SUB Y(J1)
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N____ T=—_

CA = COS(360/3)MP =

TH = (J=1)360/MP =

JO = J4+K~MP = _

JI = JO+M =
22 =JI+M =
X(JO)
X1
X@J2)

ADD (ALL 3) X(J0)
ADD (J1-J2) Al
SUB (J1-J2) Si

X(Jo)
AlL.CA
ADD A3

A3
S4
ADD AS
SUB S6

AS.Cl
$6.D1
ADD X(J1)

§$5.C1
AS.D1
SUB Y(J1)

PROBLEM NAME

MP =
=0.50000 DA = SIN(360/3) =

COS(TH) = Cl =
COS(2TH) = C2 =

Y (J0)
A2.CA
A4

A4
S3
A6
S5

S5.C2
A6.D2
X(J2)

A6.C2
$6.D2
Y(J2)
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Y (J0)
Y1)
Y(J2)
Y(J0)
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SIN(TH) = DI =
SINQTH) = D2 =
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N=

Tm=

TH = (J—-1)360/MP =

— COS(TH)

PROBLEM NAME

5 AS A FACTOR

MP =
CA = COS(360/5) = 030902 DA = SIN(360/5)
CA = COS(2.360/5) = —0.80902 DA = SIN(2.360/5) =

JOHN N. RAYNER

- R

COSQ2TH) = C2 =
COS(3TH) = C2 =

COS(4TH) = C4 =

JO = J+K-MP = _

JI = JO+M = ol
2= JI1+M =
B =R2+M=
M =13+M =
XJn X@12)
X(J4) X(33)
ADD Al A2
SUB S1 S2
X(J0) Y(0)
Al A3
A2 Ad
ADD X(JO) Y (JO)
XJo) X(J0)
AlL.CA AlLCB
A2.CB AZCA" ..
ADD AS A6
S1.DA S3.DA
S2.DB S4.DB
ADD A9 =) AlO
AS A6
Al0 S6 _
ADD R1 R2
SUB R4 R3
R1.C1 R2.C2
Q1.D1 Q2.D2
ADDX(J1) X(J32)
Q1.C.1 Q.2
R1.DI1 R2.D2
SUBY(1) Y(2)

Y1)
Y(J4)

Y (J0)
A3.CA
A4.CB

A7

S1.DB
S2.DA
S5

A7
A9
Q4
Ql

R3.C3
Q3.D3
X@3)

Q3.C3
R3.D3
Y(3)

http://rcin.org.pl

STEP NO OF
SHEET NO OF
s st - Wl
0.95106 =5
0.58779

SIN(TH) = DI =
SIN(Q2TH) = D2 =
SIN(3TH) = D3 =
SIN(ATH) = D4 =

Y(QJ2)
Y(J3)
A4

Y (J0)
A3.CB
A4.CA

S3.DB
S4.DA
S6

A8
S5
Q3
Q2

R4.C4

Q4.D4
X(J4)

Q4.C4
R4.D4

Y(Q4) ___
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interpolated from small scale atlas maps and are only approximate. With N as
20 the factors are F; = 4 and F, = 5. The necessary nine sheets of calculations
are given in the following pages. Some rounding was performed so any recal-
culation may give small differences in the last decimal places.

TABLE 5.1. Monthly mean temperature at 60° N in °F

Lat. E Jan. Jul. Lat. W Jan. Jul.

0 36 55 180 15 46
18 25 60 162 0 50
36 12 62 144 25 56
54 4 63 126 0 64
72 —6 64 108 —15 61
90 -9 65 90 -21 49

108 —18 63 72 -13 47
126 —-32 67 54 10 47
144 —15 55 36 30 52
162 -5 55 18 38 55

The relationships between the unsorted I, sorted L and frequency indices K
arel given in Table 5.2. The sorted results are listed in Table 5.3 and the un-
ravelled coefficients in Table 5.4. The equations in 3.2.1 were applied to produce
the amplitudes, phase shifts, and variance components for January and July.
They are given in Tables 5.5 and 5.6 but, for better appreciation of their relative
magnitudes, the reader may wish to plot them as discrete spectra (Fig. 3).
Positive and negative phase shifts refer to degrees longitude east and west res-
pectively.

TABLE 5.2. Relationships between indices
I — unsorted; L — sorted; K — frequency

L 1 K L I K L 1 K L 1 K
1 1 0 6 12 5 11 8 10 16 19 15
2 11 1 7 7 6 12 18 11 17 5 16
3 6 2 8 17 7 13 4 12 18 15 17
4 16 3 9 3 8 14 14 13 19 10 18
S 2 4 10 13 9 15 9 14 20 20 19

Most of the results are self explanatory. In winter the mean temperature
for 60°N is low but the variance is nine times larger than in summer. This
suggests that factors controlling the degree of variation in temperature along
the latitude are much more effective in winter than in summer. Usually it is
assumed that land and sea differences account for most of the variation and
that their effect is reversed with the seasons. The magnitude of the effect is
seldom discussed.

Further information on the often accepted notion of seasonal temperature
reversal is provided by the harmonics. Clearly the relative temperature of land
and sea do change over. However, it is not a symmetrical change or the phases
for the two months should be different by 180°.



ONE DIMENSIONAL SPECTRAL ANALYSIS

83

TABLE 5.3. Sorted results of the calculations performed on the 60° N temperature

K X(X) Y(X) K X(X) Y(X)
0 61. 1136. 10 41.00004 14.00004
1 200.74634 59.16919 11 —51.59653 16.22517
2 223.26517 —76.90573 12 33.56717 —15.87638
3 —8.64100 140.25755 13 2.99461 11.95756
4 —20.09388 —1.92878 14 —9.78194 —21.73210
5 10.00006 —38.99998 15 —3.99993 24.99999
6 —9.46401 30.89101 16 10.78896 —40.86906
7 4.13436 —26.46730 17 0.65302 —51.37708
8 19.73781 —2.32454 18 159.98101 16.74675
9 —29.39373 4.26040 19 85.10308 —50.01520
TABLE 5.4. The Fourier coefficients
k a;[k] by [k] aylk] bylk]
0 3.05000 56.80000
1 14.29247 —5.45921 0.45769 5.78216
2 19.16230 4.68262 —3.007%4 3.16420
3 —0.39939 —9.58173 4.44402 —0.46470
4 —0.46524 —1.94701 —2.13989 —1.54414
5 0.30000 3.19996 0.69999 0.69999
6 —0.96229 —2.63115 0.45794 0.01589
7 0.35644 1.92124 —0.72548 0.05698
8 2.66524 —0.67759 —0.91004 —0.69146
9 —4.04951 —0.59823 1.02427 1.11014
10 2.05000 0.70000
TABLE 5.5. Spectral estimates for January temperatures
k Ax[k] D [K)/k 52 [k] % o*
0 3.05
1 15.30 —21 117.0 30
2 19.73 7 194.6 50
3 9.59 -31 45.9 12
4 2.00 —26 2.0 1
5 3.21 17 5.1 1
6 2.80 —19 3.9 1
7 1.95 11 1.9 0
8 2.75 -2 3.7 1
9 4.09 19 8.3 2
10 2.05 0 4.2 1

total 386.9
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TABLE 5.6. Spectral estimates for July temperatures

k Aylk] Dylkl/k o [k] % o
0 56.80
1 5.80 85 16.8 39
2 4.36 67 9.5 22
3 4.46 -2 9.9 23
4 2.63 —36 34 8
5 0.99 27 4 1
6 0.45 0 1 0
7 0.72 25 2 1
8 1.14 —-17 .6 2
9 1.51 5 1.1 3

10 —0.70 18 4 1

total 42.9

In each season the first three harmonics are the most important. In January
the second harmonic stands out, accounting for 50% of the variance. With
maxima over Europe (7°E) and the N. Pacific (173°W) and minima over E.N.
America (83°W) and W. Central Asia (97°E) this appears to describe nicely the
land and sea (currents) relationship. The first harmonic (30%) just emphasizes
the warmth of the Atlantic compared to the cold of eastern Asia.

In summer the first harmonic becomes more prominent (39%) centered over
Asia but some 74° west of the cold pole. This may be accounted for in part by
the relative warmth of the North Atlantic. The coldest part is in fact over the
Canadian archipelago. The second harmonic is no more important than the
third which effects it cancels out over Canada. Despite the relative increase in
importance of the higher harmonics in summer their actual magnitudes are
small.

Of course, the above discussion is very superficial. However, the calculations
do show clear differences between summer and winter which cannot be com-
pletely accounted for by a simple seasonal reversal in the effects of land and
sea. It is suggestive of new lines of enquiry which may be pursued further using
spectral or other techniques. The example serves to underline the fact that
spectral techniques like other quantitative techniques do not solve problems
themselves. They are vehicles for testing ideas and creating new ones.

(6) COMMENT

This paper has attempted to give an introduction to Fourier techniques for
the geographer who has little knowledge of the subject and little mathematical
background. It should serve as a starting point for reading further and under-
standing some of the substantive papers based upon these techniques. A fuller
exposition is given in Rayner (1971) and more advanced treatments are to be
found in Blackman and Tukey (1959), Granger and Hatanaka (1964), and Jenkins
and Watts (1968). Some examples of application are climatology (Horn and
Bryson, 1960), economics (Hamermesh 1969), geography (Tobler 1969), geomor-
phology (Speight 1967), meteorology (Fiedler and Panofsky, 1970), oceanography
(N.A.S,, 1963), pattern recognition (Bauer et al.,, 1967), and water pollution
(Wastler 1969).

Cont. on page 92
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PROBLEM NAME TEMP. 60°N JAN +JUL.

STEPNO _ ! OF _2
SHEET NO _! OF _5
4 AS A FACTOR
R e M R, Mon. 90 i s P A
TH = (J-1)360/MP = __ 00 COS(TH) =Cl=__19  SIN(TH) =Dl = __ 00

COSQ2TH) = C2 = __10__

COS(BTH) =Cl= 1.0

SING3TH) = D3 = 0.0

JO = J+K-MP = _ 1
J1 = JO+M = 6
N =J1+M = i
B=R2+M= 16
XJo) 36. X1 -9. Y (JO) 33 Y1) 63,
X(n) 15, xu}) -21. Y(JZ) 46, Y(JJ) 49,
ADD Al 1. A2 —=30. A3 . Ad 114,
SUB SI 2l. S2 12 S3 9. S4 16.
Al s, | 21. A3 101. s3 9.
A2 — 30, S4 16. A4 114, s2 12,
ADD X (J0) 1. A6 37. Y (JO) FIER AS8 21.
SUB SS 81, S6 5. S7 —13. S8 = 2
SSJ()?% ,;:.Cl S6.C3
S7 L.D1 A8.D3
ADD X(J1) (I X(2) 3. X(@3) _____ s
S7.C2 S8.C1 A8.C3
Ss5.D2 A6.D1 S6.D3
SUB Y(J1) ~13. Y(J2) -3, Y(J3) 21
PROBLEM NAME __TEMP. 60'N JAN4JUL
STEP NO 1 OF 2
SHEET NO 2 OF s
4 AS A FACTOR
N= 2 Tw 1 MP = 20 M= 3§ ¥R Kms 2

TH = (J=1)360/MP = 18. COS(TH) = Cl = _095106 SIN(TH) = D] = _0.30902

COS(2TH) = C2 = _080%2 gQIN(2TH) = D2 = 0.58779
COS(3TH) = C3 = _038779  SIN(3TH) = D3 = 080902

JO=J+K-MP = 2
JI = JO+M = 7
2 =JI14+M = 12
B=R2+Mm= 74 ) ¢

X(Jo) 2s. X@an —18. Y (JO) 60. Y1) 63.

XJ2) 0. X3 ~13. Y(J2) so. Y(J3) 47.
ADD Al 25. A2 -31. A3 110, Ad 110.
SUB S1 25. s2 —%. S3 10, S4 16.

Al 25. 81 SRS A3 110. S3 10.
A2 = ) RS S4 16. Ad 110. s2 —S.

ADD X (J0) ~6. A6 41 Y (JO) 220 A8 5.
SUB SS 56. S6 9. s7 0. S8 15.

S5.C2 45.30495 A6.C1 38.99332 $6.C3 5.29007

S§7.D2 0= —SED{ A8 ARy 4.04308
ADD X(J1) 45.30495 X(J2) 43.62857 X(J3) —__933sis

S7.C2 N Ty o | 14.26585 AR.C3 2.93893

S5.D2 3291595~ A6.DI ___ 126699 §6.D3 T8I
SUB Y1) ~32.91595 Y(J2) 159616 y(J3) ~ —43a2
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PROBLEM NAME TEMP 60°N JAN +JUL
STEPNO _! OF _2
SHEET NO __ 3 OF __$

4 AS A FACTOR
N=_2 T=_1 MP = _20 M=_$ J= 3 Ko 20

TH = (J=1)360/MP = 36. COS(TH) = Cl = _080%02 SIN(TH) = DI = _0.58779
COS(2TH) = C2 = 03092 SIN(2TH) = D2 = ~095106_
COS(3TH) = C3 = 0308902 SIN(TH) = D3 = _035106

J0=J+K-MP=_3

J1 = JO+M = T
R=J1+M= = A
B =12+M= | T
X000 o _sB o X0 = . YO) YD 67.
XN Somee e XIS Y(JZ) E 7 ) T, SR
ADD Al AT o A2 -22. 118.0 TV T | T
SUB S1 iR =1 N S2 —42. ss 6.0 sS4 % ST
Al . S1 ~13. A3 118. " P
A2 G S4 20. Ad 114, S2 o, T
ADD X(J0) 15. A6 7 Y (JO) 232 A8 ~36. 3
SUB S5 59. S6 ~33. S7 4. S8 48.
S5.C2 1823201 A6.CI 5.66312 $6.C3 10.19755
§7.D2 L% 380423 S8.DI 2821368 AB8.D3 —34.23802
ADD X(J1) 2203624 X2 33.8763%0 xX(J3) —24.04047
$7.C2 1.23607 S$8.C1 38.83281 A8.C3 11.12460
$5.D2 T 861122 A6.DI 4.11450 S6.D3 —31.38486
SUB Y1) $4.87625 Y(J2) 3471831 Y(J3) 42.50946
PROBLEM NAME  TEMP 60°N JAN +JUL
STEP NO I OF 2
SHEET NO 4. OF s
4 AS A FACTOR
N=_2 T=_1_ MP= 20 M=_35 T -4 Km_20
H=(J—1)360/MP = 5. COS(TH) = Cl = _0.5877% SIN(TH) =Dl = _080%2

COSQTH) = C2 = 030902 SIN(Q2TH) = D2 = _095106

COS(3TH) = C3 = 095106 SIN(G3TH) = D3 = 030902
JO=J+K-MP = 4

J1 = JO+M = g
2 = JI+M = TR
B =1R2+M = @
X(J0) 4. X1 =13, Y (JO) 63. v YR T g
X@2) 0. X(13) 30. Y(J2) 64. YQ3) s
ADD Al 4. A2 15, A3 127. Ad 107,
SuUB S1 4 82 -4 S3 = S4 3.
Al 4, S1 3 A3 127. < S3 -1
A2 1S, sS4 3. Ad 107. S2 —45.
ADD X(J0) 19. A6 7 Y (JO) 234, A8 —46.
suB SS =11. S6 1 s7 20. S8 aa.
$5.C2 3.39918 A6.C1 4.11450 S$6.C3 ~0.95106
S7.D2 1902112 S8.DI 3559673 A8.D3 _ 14 21483
ADD X(J1) ___ 2242050 X(J2) 39.71123 X(J3) __ 1516589
§7.C2 ~6.18033 S8.C1 2586255 A8.C3 4374857
Ss5.D2 ~10.46162 A6.D1 5.66312 S6.D3 0.30902
SUB Y1) ~ 428129 Y(J2) 20.19943 Y(J3) 4343955
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PROBLEM NAME TEMP 60°N JAN +JUL
STEPNO _ ! OF _ 2
SHEET NO _ S OF _§
4 AS A FACTOR
N = 20 T = 1 MP = 20 M = 5 j = s K = 20
TH = (J=1)360/MP = 72 COS(TH) = Cl = _030%2 S§IN(TH) = Dl = _ 095106
COS(ZTH) = C2 = -.50902 31N(2’|'}{) =D2 = 0.58779
COSATH) = C3 = —.00902_ SIN(3TH) = D3 = ~0.58778
JO=J+K-MP= __$
Jl = JO4+M = 10
2 =J14+M = 15
B=R2+M= 0
X(JO) —6. X{n -5 Y (JO) 64. W) s et T
X(J2) o L X(J3) 3s. ' 4 r 4 )il VA g 0 ) 3s.
ADD Al -21. A2 33, A3 125, Ad 110.
SUB SI 9. S2 43, . R | sS4 0.
Al -21. S 9. A3 128, S3 P
A2 3. S4 0. Ad 110. S2 — 43,
ADD X(J0) 12. A6 9. Y (J0) 23s. A8 - 40.
SUB Ss - 54, S6 9. S7 15. S8 46,
§5.02 43.68689 A6.C1 278116 $6.C3 728116
S$7.D2 881679 S8.D1 41.74858 AS8.D3 2351137
ADD X(J1) $2.50368 X(J2) _ 4652974 X(J3) 16.23021
§7.C2  —12.13525 S8.CI1 14.21480 A8.C3 32.36070
S5.D2 3174043 A6.D1 8.55951 S6.D3 - 5.29006
SUB YU 19.60518 Y(J2) 5.65529 Y(J3) 3765076
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PROBLEM NAME  TEMP 60°N JAN+JUL
STEP NO 2  OF 2

5 AS A FACTOR

N= 2 Tw= 2 MP = S M= 1 J = 1 K= S

CA = COS(360/5) = 030902 DA = SIN(360/5) = 095106
CB = COS(2.360/5) = —0.80902 DB = SIN(2.360/5) =  0.58779

e

TH = (J—1)360MP = __ 9. COS(TH) =Cl = __10 SIN(TH) = D1 =
COSQ2TH) = C2 = __ 1.0 SINQ2TH) = D2 =
COS(3TH) = C2 = __ 1.0 SIN(3TH) = D3 =
COS(4TH) = C4 = __190  SIN(4TH) = D4 =

e

e

JO = J+K~MP = __!

J1 = JO+M = 2
RN=J+M= 3
B=R+M= 4
J4=134+M = s
Xan = X(12) 3t. Y@ 220. Y(J2) 22
X4 S L 19. Y4 233. Y(13) 234.
ADD Al s A2 3. A3 435, A4 466.
SUB 8I —18. S2 =4 S3 =15 S4 =2
X(0) i R A
Al ST VRCSN s T
U U TCRIGEY (L E S
ADD X(J0) 61. Y (JO) 1136.

XOP At oo —oXINg . e YOn o ML . YOR 3
Al.CA 185410  AJ.CB __ —48%410 A3 CA __ 14060289 A3 CB _ —368.10254
A2.CB _ —21.50636  A2.CA 1050659 A4 CB _—337.00171  A4.CA _ 144.00208

ADD AS __ —465246 A6 26.65249 A7 _ —21.3992 A8 —9.10046
SI.DA  —17.11%0 S3.DA __—14.26585 S1.DB ~10.58014 S3.DB —~8.81679
S2.DB —2.35114 S4.DB ~1.17557 S2.DA ~3.80422 S4.DA —1.90211
ADD A9 _ —1947014 Al0 _ —154412  SUBSS - 6.77592 S6 ~6.91468
AS _ —46546 A6 26.65249 A7 _ —21.39892 A8 —9.10046
Al0  —1544142 S6 —~6.91468 A9 ~19.47014 S5 -6.77592
ADD Rl _ —20.09388 R2 19.73781 Q4 _ —4086906 Q3 _ —1587638
SUB R4 10.78896 R3 33.56717 Q1 —1.92878 Q2 ~2.32454

RI.CI _ R2.C2 R3.C3 _ R4.C4

Q1.DI1 Q2.D2 Q3.D3 Q4.D4
ADD X(J1) - 20.09388 X(J2) 19.73781 =) 3356717 X(4) 10.78896

Q1.C1 Q.2 — Qa3 Q4.C4

RL.DI _ R2.D2 R3.D3 R4.D4
SUB Y1) ~1.92878 Y(J2) ~2.32454 Y(J3) ~ 1587638 Y ()4) —40.86906
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PROBLEM NAME _ TEMP 60°N JAN+JUL
STEPNO _2 OF _2
SHEET NO _2 OF _ 4

5 AS A FACTOR
N= 2 Tm 2 NP - 8 M= 1 J= 1 K= 10

CA = COS(360/5) = 03092 DA = SIN(360/5) = 0.95106
CB = COS(2.360/5) = —0.80902 DB = SIN(2.360/5) =  0.58779

TH = (J=1)360/MP = 0. COS(TH) = Cl = 1.0 SIN(TH) = DIl =
Cosm)-a- 1.0 sm(z'n{)-oz-
COS(4TH) = C4 = 1.0 SIN(4TH) = D4 =

e

JO=J+K-MP = __6
7

J1 = JO+M =
2 =J14M = 8
B =1R2+M= ;L
J4 =J3+M = el |
X0 4530495 XJ2) 22.03624 Y(J1) _ —3291598 Y(J2) _ —34.87628
X(J4) __ 5250368  X(13) 22.42030 Y (14) 19.60518 Y(J3) 4.28129
ADD Al 97.80863 A2 44.45654 A3 —1331077 A4 —50.59496
SUB S1 ~7.19873 S2 ~0.38406 S3  —-sus113 S4 —59.15754
X(J0) 81. Y(QJ0) -1
Al 97.80863 A3 —1331077
A2 44.45654 A4 —50.59496

ADD X(J0) __ 223.26517 Y(J0) __-7690573

X000 _ -1 X0 _ g YO .=t o X)) . =%s -
Al.CA 3022455 AICB -79.12878 A3 CA -411326  A3CB 10.76564
A2.CB 359660  A2.CA 1373783 A4.CB 4093214 A4.CA  —1563471

ADD AS 7525850 A6 15.60905 A7 2381888 A8  —17.86607

SI.DA 684638 SIDA  —49.95055 SI.DB  —423130 SIDB 3087117
S2DB  —0.22575 S4DB _ -347719%  S2 DA __ -036527  S4 DA _ —3626216

ADD A9 -7.07213 Al0 —8472251 SUBSS  —3.86603 S6 25.39099

AS 75.25850 A6 15.60905 A7 2381888 A8 —17.86607

A0 —84,72251 S6 25.39099 A9 —7107m213 §5  —3.86603

ADD Rl  -9.46401 R2  41.00004 Q4 16.74675 Q3 _ -21.73210

SUB R4  159.98101 R3  —9.7819%4 Ql 30.89101 Q2 14.00004
R1.C1 R2.C2 2 BV IRIES R4.C3
Q1.D1 Q2.D2 QiD3 Q4.D4

ADD X(jl) ~9.46401 x(jz) 41.00004 x(jj) ~9.75194 X(M) 159.98101
Q1.C1 Q2.C2 Q3.C3 Q4.C4
R1.DI R2.D2 R3.D3 R4.D4

SUB YU1) 3089101 Y(J2) 14.00004 Y(J3) _ —21.73210 Y (J4) 16.74675
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PROBLEM NAME TEMP 60°N JAN + JUL
STEPNO _2 OF _ 2
SHEET NO _ 3 _OF _ 4

5 AS A FACTOR

N= 2 T = 2 m-_i M= 1 i R K= 15

CA = COS(360/5) = 030902 DA = SiN(360/5) = 0.95106
CB = COS(2.360/5) = —0.80902 DB = SIN(2.360/5) = 0.58779

TH = (J=1)360/MP = __ 00 COS(TH) =Cl = __10 SIN(TH) =Dl = _ 0.
COSQRTH) = C2 = _ 10  SINQTH)=D2 = __ 0.
COS(3TH) = C2 = __ 10 SIN@BTH) =D3 = _ 0
COS(4TH) = C4 = 10  SINM4TH) = D4 = 0.

JO= J+K~MP = __ 1l

Jl = JO+M = 12
2 =J1+M = 13
B=R2+M = 14
J4=)4+M = A .
b <A1)) 43.62857 X(J2) 31.87680 Y1) 1.59616 Y(J2) 34.71831
X(J49) 46.52974 X(13) 39.71123 Y (J4) 5.65529 Y(J3) 20.19943
ADD Al 90.15831 A2 73.58803 A3 7.25145 Ad 491774
SUB SI ~290117 S2 583443 S3 ~4.05914 sS4 14.51888
XQo) __ 3. YO =3t
Al 90.15831 A3 7.25145
A2 _ 7358803 Ad 5491774

ADD X(J0) __ 20074634 Y(J0) __ 5916919

X0 St i s ) SR Y S - YO, e
Al.CA 27.86046 AlL.CB __ —7293953 A3.CA 224082 A3.CB — 3.86654
A2CB %9539  A2CA 2273996  A4.CB 4442935  A4.CA 16.97052

ADD AS $.32654 A6 —13.199%6 A7 —45.18853 A8 £.10398
S1.LDA ~2.75917 S3.DA ___—1.86047 S1.DB -1.70527  S3.DB __—2385%
S2DB 342938 S4.DB 8.53399 S2.DA — 5.54885 S4.DA 1380827

ADD A9 618855 Al0 467352 SUBSS 384358 S6  —16.19417

AS 5.32654 A6 —13.199% A7 —45.18883 A8 81039
Al0 467352 §6 —1619417 A9 ~6.18855 S5 3.84358

ADD RI 10.00006 R2 2939373 Q4  —51.37708 Q3 11.95756

SUB R4 0.65302 R3 2.99461 Q1 _ —38.99998 Q2 4.26040
R1.CI R2.C2 R3.C3 R4.C4
Q1.DI Q2.D2 Q3.D3 Q4.D4

ADD X(J1) 10.00006 X(J2) _ —29.39313 X(J3) 2.99461 X(J4) 0.65302
Q1.C1 Q.C2 Q3.C3 __ Q4c4
R1.D1 R2.D2 R3.D3 R4.D4

SUB Y(J1) _ —38.99998 Y(32) 4.26040 Y(J3) 11.95756 Y(J4) _ —51.37708

http://rcin.org.pl
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PROBLEM NAME TEMP 60°N JAN 4 JUL
STEPNO _ 2 OF _2
SHEETNO 4 OF _ 4

5 AS A FACTOR

N= 20 s DN MP = _ S Mm _1_ Tl K=_2_

CA = COS(360/5) = 0.30902 DA = SIN(360/5) = 0.95106
CB = COS(2.360/5) = —0.80902 DB = SIN(2.360/5) = 0.58779

TH = (J=1)360)MP = _ 0. =~ COS(TH) =Cl = 1.0 SIN(TH) = DI = 0.
COS(2TH) = C2 = 10 SINQRTH) = D2 = 0.
COS(3TH) = C3 = 1.0 SIN(3TH) = D3 = 0.
COS(4TH) = C4 = 10 SIN(4TH) = D4 - 0.

J0=J+K~MP = _16 _

I = JO+M = 17
R2=J14+M= 18
B=R+M= _19
J4 = J34M= 20
XU 9.33515 X(J2) 24.04047 Y(J1) 4322 Y (J2) 42.50946
X(J4) 16.23021 X(J3) _ —15.16589 Y (J4) 37.65076 Y(J3) 43.42955
ADD Al 25.56536 A2 —39.20636 A3 33.30854 Ad §5.94901
SUB  SI ~6.89506 S2  —B874s8 S§3  —41.9929% S4 093009
p (1)) IS TR 4 ¢ | M | R
Al 255633 A ___ 333088
A2 3920636 Ad §5.94901

ADD X(J0) __ 864100 Y(JO) __ 14025755

X (J0) 5. X(J0) 5. Y (JO) 21. Y (JO) 21.0
Al.CA 790014 AI.CB __ 2068279  A3CA __ 1029291  A3CB _ 2694714
A2.CB ITI8S8  A2.CA  —1211544 A4CB -695M16  A4.CA 26.55972

ADD AS 4461872 A6 —21.798) A7 —3824125 A8 20.61258

SI.LDA __ -6557%9  SIPDA _ —-39937%67 S| DB __ —405282 S1.DB __ 2468286
S2.DB __ —521636 S4DB __ 054669 S2DA _ 844023 S4DA __ —088456

ADD A9 —11.77395 Al10 4048436 SUB SS 4.38741 S6 —2.79830
AS 44.61872 A6 21792 A7 ~38.24125 A8 2061258
Al0 4048436 S6 ~23.79830 A9 _ 1177395 S5 4.38741
ADD RI 4.13436 R2  —51.59653 Q4 5001520 Q3 24.9999
SUB R4 $5.10308 R3 ~3.99993 Ql ~ 2646730 Q2 1622517
R1.C1 R2.C2 R3.C3 R4.C4
Q1.D1 Q2.D2 Q3.D3 Q4.D4
ADD X(J1) 4.13436 X(J2) _ —51.59653 X(J3) —3.99993 X(J4) 85.10308
Q1.CI Q2.C2 Q3.C3 Q4.C4
R1.DI1 R2.D2 R3.D3 R4.D4

SUB YOI) _—264710  Y(Q2) 162517  Y(S)_ W98 Y(4) -0
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98 PIOTR KORCELLI AND BENIAMIN KOSTRUBIEC

TABLE 1. Predicted and observed rates of population growth for the Philadelphia region
(1949-1950)

Value of Yj;

J Fundamental Second harmonic
predicted observed

0 91.0 —-0.5 90.5 90.7

1 123.9 —14.8 109.1 89.3

2 104.3 -8.0 96.3 94.9

3 107.2 10.8 118.0 121.6

4 119.8 11.0 130.8 124.1

5 92.6 27.0 119.6 118.4

6 106.5 14.2 120.7 110.1

7 95.2 22.0 117.2 105.1

8 103.3 13.0 116.3 122.7

9 125.8 -0.5 125.3 113.0
10 96.8 11.6 108.4 108.5

By substituting the numerical values we obtain:
Y,; = 107.1+ 18sin(149°j + 267°)+ 30sin(25°j + 118°) + ¢, )

A similar analysis has been carried out for the San Francisco region (see
Fig. 2 and Table 2). As in the former case, the estimators of wavelength and
phase have been found by using least squares techniques. The set of equations
has the form:

28b+8c—Sl = (),
140b +28c—S, = 0.

TABLE 2. Predicted and observed rates of population growth for the San Francisco region

(1950-1960)
Value of Yy
J Fundamental Second harmonic —
predicted observed
0 83.7 —8.9 74.8 75.0
1 131.0 —243 106.7 121.1
2 121.0 6.1 127.1 135.3
3 111.2 30.5 141.7 136.3
4 116.0 —21.8 94.2 91.1
5 91.2 7.9 99.1 98.9
6 139.7 —10.8 128.9 136.5
7 79.6 22.7 102.3 96.9

These yield the values of the parameters:




7

S, = Zq’u
5

Sz - ZN’;
=

A, = 34.52, A} = 28,
¢, = 232°30’, c; = 24°40’,
Y, = 111.20, Y, = 2.72.
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104 WALDO R. TOBLER

in the distribution of populated places throughout the landscape. Extending the
analysis to examine the two-dimensional distribution of population is relatively
simple. One of the interesting results, an empirical observation, is the near
rotational symmetry of the bivariate autocorrelation function, which suggests
that an isotropic assumption may be invoked without severe violence to the
actual geographical processes.

This example is used to illustrate an important transfer of concepts from
the temporal to the spatial domain. The spatial sampling along US 40 in the
study cited resulted in one observation every mile of the 2900 mile long route.
In time series it is usually required that one have a long record of equally spaced
observations. What is a long spatial record? If the earth’s circumference is
assumed to be 40,000 km, one-fourth of which is land, then one might obtain a
record of 10,000 observations, sampling every kilometer. This would be consider-
ed a long record in economics, and a reasonable record in electronics. The two-
dimensional case is more complicated. Here it is not only the size of the sampling
interval, but also its shape and orientation which affect the resolution of the
data. This suggests the use of interval independent measures. Instead, most de-
mographic data are made available on a rather absurd basis, by countries,
counties, or census tracts, etc. We now have had experience in converting
these data into “square” units, e.g., 1.5-mile squares for a 90-by-90-mile region
including Detroit, or five-degree quadrilaterals for world population data. Our
experience is that it is easier than one might expect. We do not do this simply
to satisfy a Teutonic sense of orderliness, but because it allows a greater analysis
capability. For example, if one has demographic data on a square lattice, then
a rather obvious interpretation of the notion of “population pressure” is to
compute the finite difference approximation to the spatial gradient. The vector
field calculated in this manner does in fact define the edges of cities rather
well. One could object that the objects of interest are coordinate invariants,
which is true, but the practical advantages of uniform spatial data intervals
seem great. The sampling theorem would also appear to have some relevance
to the study of spatial distributions. Statistics books which deal with methods
of demographic sampling do not mention this theorem, a rather curious
omission, Presumably this is due to the fact that most demographers are in-
terested in the frequency distributions, and not the geographical distributions,
of their data.

Fig. 1. World population by 5 degree quadrilaterals
Department of Geography, University of Michigan 15:55.20; Oct. 28, 1969

Spatial sampling is thus one area in which the comparison of time series
analysis with regional analysis provides some insight. Another useful idea, or
set of ideas, is contained in the notion of a trend. The data in these cases is
decomposed into a set of components, and these may be given a spatial in-
terpretation: Regional trends, National trends, local trends. A national trend
might be from the Northwest to the Southeast, for example. With the advent of
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digital computers these methods have enjoyed great popularity and many for-
mal methods have evolved. These include the fitting of bivariate functions,
smoothing, and so on. These methods can be extended to treat the entire earth
using spherical harmonics.

1960

Fig, 2. Actual population growth, Detroit, Region
Non-linear vertical scale

Since the spherical shape of the earth has now been mentioned it should
be pointed out that all geographical distributions are truly periodic, doubly
periodic in fact, but in a rather trivial sense. The topology of the earth has
other consequences; for example, any vector valued function on such a surface
must have at least one singularity, there are no squares, the distinction between
interpolation and extrapolation is less clear and so on. These topological facts
do not hold for all two-dimensional spaces of course.

At a somewhat different level, historians divide history into periods, and
so do geologists. This process may be referred to “epochodization.” Geographers
do the two-dimensional equivalent when they partition space into disjoint sets.
This is known as ‘regionalization.” One interpretation of these procedures is
that they are attempts to find domains within which the phenomena of concern
are stationary. But the subject does not appear to have been approached from
this point of view, and it might be fruitful to do so.

Now consider both space and time, a spatio-temporal series. The notion of
temporal lags is quite familiar to model builders. It is also obvious that most
systems involve spatial lags, which are not one-sided but three or more sided.
Typical forecasting procedures are weighted such that the recent past has more
influence than the far past. The central dogma of geography asserts that a
similar decay in space is involved. A space-time cone of recent and nearby
events is relevant. A technical question which then arises concerns the com-
patibility between the spatial and temporal observation scales for data collec-
tion purposes.

The use of positionally invariant linear operators has been of great utility
in the study of electrical signals over time. These same procedures may be
used to compare geographical distributions at two different time periods; the
mathematics are similar to those used in optics. Not all people behave the
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SOME ASPECTS OF NETWORK THEORY 109

D Iv A circuit is a path whose initial and terminal points are identical.
A circuit defined by a path of order one is called a loop.

There are at least three important levels at which network descriptive tech-
niques may be applied. The first level concerns the use of graph theoretic
measures of a network to summarize its salient properties. At another level,
numerical indices may be constructed from the topological properties of a net-
work to facilitate comparison with other networks. At a third level one may use
some of the descriptive techniques for the evaluation of the performance cha-
racteristics of the network. In order fully to delineate the advantages and
problems associated with the applications of these measures and indices we
need a few more definitions and concepts.

D I.vi Henceforth we shall regard networks and graphs as synonymous.

D Lvii Let A = {A,|i€l} denote the set of given vertices of N, indexed by
the finite set I. Then N is said to be planar if it can be represented on the two
dimensional plane. More precisely N is planar if for i, j, k, 1 in I, 4,A;n A Al
belongs in A whenever this intersection is non-empty.

N is non-planar if for any i, j, k, 1 in I the following are realizable:

(a) A,A;nALA =g,
b A/AnA AEA,
(c) 8 # AA;n A A e A
The simple examples shown in Figs. 1 and 2 are quite instructive. In the

first example we have a network consisting of five vertices represented by
Fig. la and its realization on the two dimensional plane is shown in Fig. 1b.

Fig. 1. Examples of planar graphs

Note that in Fig. 1b the intersection of every pair of links (if non-void) occurs
in one of the given vertices and that Figs. la and 1b are isomorphic (D Lviii).
On the other hand, Fig. 2a and Fig. 2b illustrate the case of a non-planar graph,
since at least one new vertex A* results from the intersection of pairs of links
in the network.

D I.viii Two graphs iv, and N, are said to be isomorphic if and only if

(a) there exists a one-one correspondence (i) between the vertices of N, and
the vertices of N, and (ii) between the links of N; and the links of N,.



110 NURUDEEN ALAO

(b) such one-one correspondence preserves neighborhood (incidence) pro-
perties. (See Fig. 3a and Fig. 3b).

D Lix Consider a planar graph isomorphic with a circuit of order n =4, in
which all vertices are directly linked. For many purposes, it is convenient to
operate on a convex polygon equivalent of such a circuit (see Fig. 4). We shall

refer to such a polygon as the c.p. isomorph of the graph N. A link such as 4,4,

o

Fig. 2. Non-planar graphs

D D' ct

Fig. 3. An example of isomorphic graphs

Fig. 1.
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114 NURUDEEN ALAO

We remark that the connectivity matrix Q defines the topology of the
network N. Thus any statement about the topology of a network is a statement
about its connectivity matrix. (See Fig. 6).

b e

N MR D e A M G Rty O
n 01 100O0O0OO0OO0OOUO0OOU OO
b L TR0 U el « T M RE ) il v GR
c 3 17072 "0 0710 '0.70:"0 0
d 01" 11 &1 10 0:0:00"0
° 0 001 010 O0UO0OO0ODOUO0OODO
£ o 6 01 1.0 00 0:0:0-0
£ B0 L RN 0.0 0 e
h 0 00O0O0O0OI1 O0OO0ODOUOODO
i 804900 00 [0 1040 N0
b | g'0.0%0:'0 0 :00.:0:'9.73"]
k :90. 090 :0 0 0 00 2:0-1
L 0+ 0" 0500 072002 1170

Fig. 6.

Connectivity matrix associated with Fig. 6

Although several useful properties can be extracted from connectivity ma-
trices, the mathematical notions by which such extraction is accomplished are
fairly deep and advanced (see Alao, 1970). Consequently, it is not surprising that
most applications of the connectivity matrix in geography have been based
on the result of direct matrix multiplication. We therefore proceed to exhibit
the important properties associated with such multiplication and the application
to geographic problems.
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SOME ASPECTS OF NETWORK THEORY 117

in creating networks, then the least cost network is the minimum length
network.

The simplest form of the Steiner network problem may be stated thus:

(a) Given three points in E?, find the shortest network connecting them.

(b) Given three points {A,}{_, in E?, find a fourth point A, in E? so that
3 —
the sum ) |A,A,| is as small as possible. 4, may coincide with 4,, i = 1,2,3.
=31}

It will soon become clear that (a) and (b) are equivalent, in the sense that a
solution to the one is automatically a solution to the other and vice versa. For
expository simplicity, we shall concentrate on (b) (which is in fact the mathe-
matical dual of the well-known Weberian location problem) and work through
Figs. 7-9 to formulate general solution principles.

Consider Fig. 7 in which A,, A, and A, have given fixed locations. Choose
a fourth point A, whose location is arbitrary except that it belongs in the convex
hull of 4,, 4, and A4, (i.e., the smallest convex set containing A,, 4,, 4, which is
obviously the triangle A4, A4,A4,).

Fig. 7 Fig. 8 Fig. 9.

Cgr}sider the set of lines AT(A,), T(A,)T(A;) with the property that | A,A4,]
= |AT(A)| and |A,A,| = |AT(A,)|. (Figs. 7-9).

Clearly for any arbitraryrlgcation‘of A, inside AA,A,A, it is possible to
generate lines A,T(A,) and T(A,)T(A,) with the properties stated in the last
paragraph. We then pose the question, what rigid motion (s) of the plane would

enable us to achieve such properties? In this case, it is simpler to employ rota-
tions. Thus for any arbitrary location of A, in AABC, a rotation of AA4,4,A,

onto AA,T(A,)T(A,) gives all the above properties. With such a rotation for
any location of A, in AAABC, we have

3
3|44 = |A,A,+|AT(A)|+|T(A)T(A,).
i=1
The right hand side of this identity is smallest when and only when 4,, 4,,
T(A,), T(A,) are collinear. Consequently, problem (b) reduces to finding the
location for A, such that A,, A,, T'(4,), T(A,) are collinear.
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Thus we shall completely answer question (b) if we can exhibit the exact
location of A, which satisfies the collinearity condition of the last paragraph.

We turn to Fig. 8 for the basis of such a solution. Since we rotated /\A,A;A,
onto AA,T(A,;)T(A,), we necessarily have that

(i) AA,A,T(4A,) is equilateral when each of its angles is 60°,
(i) <C4;4,T(4;) = 60°

(ili) [A,T(A)| = |4, 4,|.
In consequence of facts (ii) and (iii), AAA,A;T(4,) is equilateral, which in
turn implies that

(iv) 4, AT(4;) = LA, 4A,T(A4).

In consequence of (iv) the points Az, A4, As, T(A3s) must lie on a circle, i.e,,
these points together with the line segments joining them constitute a cyclic

quadrilateral. In consequence of this fact <A, A¥A;+<[A,T(A4;)A; = 180°, which
implies that <{A,A¥A; = 180—60 = 120°. Consequently we have arrived at a

complete constructive proof of the solution of problem (b). The essential steps
of the solution are now isolated (Fig. 9).

~ .
' \ [ ’
/ \ +
‘£ J
o -‘ \\ |‘ /
o S &> I3
\ ; . \
a -~ e s
t AL
- \ -l
z i

Step I: Using A,A, as base, construct an equilateral A\A,A4,T(4;) with (4;)
as apex located on the side of BC opposite to that in which A, is located. It is
clear from the preceding paragraphs that an implicit assumption is that

<X A,AA, < 120°

Step II: Join A, to T'(4,;) and A,T(4,) is the required minimal line.

Step III: Circumscribe AA,A;T(4;) in a circle and call the intersection of
this circle with A,T(A,) the point A¥. Thus the network consisting of the line
segments A,A¥*, A,A¥ and A,A¥ is the required optimal network. In case any

with that point.

of the angles of AA,A,A, is greater than 120° it is clear that AT must coincide
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120 NURUDEEN ALAO

that by this intersection property (which forces us to include several links twice)
we have 3r links. The links that are double-counted are those between the
A*-points of which (links) there are most (r—1). Consequently S contains at
least 3r—(r—1) = 2r+1 links, i.e,,

N+r—12>2r+1,
or —r > 2—N,
ie,r < N-2

which proves Property 5.

Remark. If S is normal, then r = N—2.

We are now in a position to formulate the (b)-equivalent of the generalized
Steiner problem.

(b)-Equivalent Problem: Let { A;}{., be a set of points located in E*. By creat-
ing r A*-points in the convex hull of {4,}/L,, r<C N—2, construct the network
of minimal length which connects all the given points via the created A*-points.
In other words, construct

S = 8L, {n}iy, Ui, ), (AT

The tools for solving this problem are essentially given in Properties 1—5 and
steps I-III. In the interest of concreteness, we shall illustrate the solution with
N =4 and N = 5 cases and conclude with general remarks.

Examine Fig. 10 in which the given points are A,, 4,, A; and A,. We want
to construct the network of minimum length connecting these points. In this
case r <_ 2. So we must really examine minimum length networks with no
A*-point, with one A*-point and with two A*-points to determine the global
minimum. Clearly, once we specify the exact value of r, we have determined
possible topologies of the network. Thus we define the minimum length network
associated with a specified value of r as a relatively minimum length network
(RELM), i.e., relative to a specified topology. We shall illustrate the principles
with reference to the maximum value of r. We shall refer to networks associated
with the maximum value of r as networks with complete topology (NECOM).

Thus, in Fig. 10, we attempt to expose the basis of a minimum length NECOM
for the four given points A, 4,, 4,, A,. In this case, r = 2 and we assume some
arbitrary location for A¥ and A¥ initially. Using Property 3, we know that the
RELM network must have the following connection pattern: A, =Af, A, — A},
A¥= A, A, = Af, A, = A}. Consider the sequence of line segments (paths)
which connect the points T(4,), T(A¥), A¥, A¥, T(A¥) and T(4,) with |A4,A¥ =
= |AIT(4D|, |A*A.| =|T(AHT(A4)[, |A,4% = |A*T(AH| and |4%4,| =
== |T(A;")T(A3)|. Observe that this path has the same length as that of the
network. So the network is of minimum length when this path is a straight line.
Steps I-III are used to construct the associated RELM (Fig. 11) as follows:

(1) Partition the four points into two sets by joining A; to 4, and A, to A,.

(2) Construct equilateral A\T(A;)A,A, with apex T(A,). Construct equilateral

AT(A,)A A, with apex T(4,). Join T(A,)T(4,). The circumcircle on the first
equilateral A cuts T(A,)T(A,) at A¥ and the circumcircle on the second equila-
teral A cuts T(4,)T(4,) at A¥.

(3) Join A¥ to A,, A¥ to A,, A to A,, and AF to A,.
1

Given the value r, the alternative topologies are determined by the parti-
tioning adopted in (1) so that for r = 2, an alternative to Fig. 11 is Fig. 14.
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Consequently, the NECOM corresponding to r = 2 for four given points is of
two types given by Fig. 11 and Fig. 14 and the appropriate RELM for r = 2 is
Fig. 11 or Fig. 14 according as the former or the latter has the smaller total
length. It could happen that the location of some of the given points, e.g.,
A;, A, in Fig. 12, is such that the (r = 2) topology cannot be realized. Thus in
Fig. 12, the RELM would consist of the following set of links: A,A¥, A,4%, AfA,,
A%

Figure 13 illustrates a NECOM case in which there are five given points A,,
A, A, .., 4;. In a NECOM with five given points r = 3. Again we partition
the points into two sets of pairs and a third set consisting of the single point A,.
Next construct the equilateral AA;A,T(4;), and AA,A,T(4,). Join T(A,)T(4,).
The problem is now essentially reduced to that of finding the minimum length
network for the three points A;, T'(A4,), T(A4;). Construct the equilateral
AT(A)T(A,)T(T(Ay). Join A; to T(T(A4;)) and this line intersects the circum-
circle of the last equilateral triangle at A¥. Join T'(4,) to A¥, T(A;) to A¥ and
these two lines intersect the circumcircle of AT(A,)A;4, and AT(AA;4,
respectively at A¥ and A* Join A, to A}, A, to A}, A, to A¥ and A, to A}

It should now be clear that for any given finite number of points, the same
solution procedure applies. The major problem, however, is that, to identify
the RELM, in this case we have to examine all possible partitions (or pairing of
the set of given points) and construct the associated NECOM. This is certainly
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that there are capacity constraints on the links? Probably the simplest solution
technique for this problem is that due to Ford and Fulkerson (1962), which 1s
based on the max-flow-min-cut theorem. Complete exposition of the solution
method cannot be undertaken in an essay of this length and so the reader is
referred to Kaufman (1967) for a thorough treatment of this problem. An im-
portant application of this maximum flow problem is to the evaluation of the
efficiency of networks with respect to flows in an economy. In this respect, the
maximum flow problem surpasses in power any of the indices which we eva-
luated in the first section. Furthermore, it can be shown that its dual solves the
minimum path problem of Shimbel which forms the basis of Kissling’s (1969)
investigations of the linkage importance of regional highways in Canada.

Two Examples of the Maximal Flow Problem: As with the generalized
Hitchcock problem, we deal with flow from an origin through several inter-
mediate nodes to a destination. In this part, however, we put capacity constra-
ints on the various links and ask: What is the maximum flow that the network
system can accommodate per unit of time? The initial data are summarized in
the network shown in Fig. 15.

Consider Fig. 15. The numbers in circles are the nodes of which there are
twelve. Node (0) refers to the origin and @ to the terminus (or destination) of
all flows. The arrows indicate the possible directions of flow and the numbers
beside each arrow indicate the maximum capacity of the corresponding link.
We solve the problem in a series of steps illustrated by Figs. 16-19. The first
step in the solution consists in applying the law of conservation of flows to
each node. Simply stated, one relabels the links in such a way that for each
node the sum of incoming flows is equal to that of outgoing flows. Thus Fig. 18
is derived from Fig. 15 by application of the conservation principle. Consider
node @ in Fig. 16. Total incoming flow is 4+5+9+3 = 21; total outgoing flow
is 13+4+4 = 21. The reader can check that every other node of Fig. 16 has
the property that total inflow minus total outflow associated with it is zero. In
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applying the conservation principle, it is essential that the capacities of links
are not exceeded. Consequently, wherever the capacity of a link has been atta-
ined, we show the link by pecked lines.

Fig. 16

The second step is illustrated in Fig. 17. This step consists in the application
of the completion principle. Simply stated, an origin-destination (in this case
a (0) — (2) flow is said to be complete if, and only if, at least one link in the
path of the flow has been used to capacity. Thus step 2 consists in transforming
Fig. 16 into Fig. 17 in which every possible path has at least one dotted link,
whilst for each node the conservation principle still holds.
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The third step is a little more tricky and somewhat more difficult to describe.
This step enables us to answer the question: Given the “complete” flow struc-
ture of Fig. 17, is it possible to increase the number of “complete” links and
maintain conservation of flows in each node? To answer the question we con-
sider the set Zi%, each member of which is a chain (consisting of a sequence of
successive adjacent links) with the property that the first link is incident
on (@ and the last is incident on (2. Thus defining C7, [k] as a chain consisting
of k links with the first link incident on m and the last link incident on n,
we note that CZ[k]eZ!* if m = 0 and n = 12. Now consider C;*[k]eZ%?, and for
the sake of simplicity label the links of C}*[k] successively as (0, o(1)), (o(1),
o(2)), ..., (o(k—12, 12). Put a [+] at the origin. There are essentially three cases
to consider for any such Cy*[k].

[+o]

Fig. 18. First adjustment

(1) None of the links is saturated.

(2) One or more of the links are saturated and the feasible flow direction
is exactly that indicated by the labelling order.

(3) One or more of the links are saturated but the feasible flow direction
of such link(s) is opposite to the direction indicated by our labelling.

The reader might ask, how is case (1) possible when the flow structure of
Fig. 17 is complete? The only answer is that case (1) is possible since Z;® is
direction-free, i.e., elements of Zi? need not be “paths” linking @ to @). whereas
‘“‘completeness’” is path-dependent. We deal with the cases as follows:

Case. (1). Mark the origin with a [+]. Next consider the link (0, o(1)). If the
flow is feasible in that direction put [+0] on node o(l); if flow is feasible only
in the opposite direction, put [—0] on node o¢(l). Perform the same operation on
every link and every node of Cy’[k], so that the operation ends with [+ o(k —1)]
on node ®@). In case there are links whose terminal nodes bear negative signs,
among them identify that whose flow value v is smallest. Next consider the
set of links whose terminal nodes bear positive signs; for the i-th member of
this set let P, be the difference between the flow value and the capacity, and let

9 Geographia Polonica
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total flow in such a cut is equal to the maximum flow the network can accom-
modate. The maximal flow in the network we have so far been studying is
5+12+10+14 = 41. We must emphasize that the cut need not have all (or
any) of its component links directly incident on the origin. Figure 20 and Fig. 21

provide an example to illustrate this last point. The wavy line defines the cut
which consists of those links directly intersecting the cut. Notice that in this
case only one of the links is directly incident on the origin. Thus the maximum
flow in this network is 6 +0+3+11+2 = 22,

III-2 ONE ORIGIN-ONE DESTINATION MANY INTERMEDIATE NODE FLOW PROBLEM

The network flow problem discussed in this section is fundamental to many
sequential decision problems and in particular has all the basic essential pro-
perties of a dynamic programming problem. In the network (Fig. 22) displayed
below, the number encircled indicate nodes; arrows indicate direction of links
between nodes and the number beside each link is the flow cost, assuming
links are uncapacitated. The problem we wish to solve is to find the sequence
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of links through which commodities must move from the origin (0). i.e., supply
center, to the destination so that total flow cost is as low as possible. We
shall establish the solution in stages, working backwards from the destination
to the origin. The principle underlying the solution is the naive-sounding, yet
fundamental principle of dynamic programming, namely that any path which
is optimal for any stage must be included in the total optimal path linking the
origin to the destination. We proceed stage-wise as in Table 1:

T Stagel[ = = = = -=-*%.

B St.'. I~-,‘

Fig. 22.

TABLE 1. Solution stages for the one origin-one destination-many intermediate nodes flow

problem
STAGE I
STAGE 1 Flow cost to destination ) Opti-
Flow cost to destination §) via nodes mal
From From
Node ) 5 Node @ o0 o0 o 9 @
® 4 ) 5 13 12 o0 5
® 4 (i} co oo 10 5 @
7 o0 o0 7 6 ®»
STAGE III STAGE 1V
Flow cost to destination ) Opti- Flow cost to destination @) Opti-
via nodes mal via nodes mal
@ » () ) Node ) 3 3 Node
From From
Node @ oo 9 2; %10 # Node ® TG f Tl ¥ @
@ 00 o0 10 8 )
@ 0o 00 o0 11 v}




Sl ™ * A
a
s rfads - p ?n W
."‘: A\ - ,“4?,; S o i

-l W
"\ e PRS- *
v ] 4 '- ¥ .y - “3‘
» Fh ey v."-.'a Y N o A ey .
v

]
P SIL Ve S e

- > ‘e
QJ . .
f’ R e » B F7 ey

TR SRS & 6L SRR




130 NURUDEEN ALAO

Notation:

pu — flow cost per unit distance per unit flow,

.; = total flow between source A; and destination A4;,
¢ = construction cost per unit length (in terms of capital cost by unit ca-
pacity per time).

Given the above variables, we proceed with a statement of our basic problem
as follows:

Problem: Given are the points A,, A,, 4,;, each in R%. Find the point A¥

through which Ai, Az, and As can be connected so that the network consisting

of links A,A*, A,A¥ and A,A¥ is of least flow plus construction costs.
Solution: One of the simplest approaches to the solution of the above problem
is to set up a diagram such as Fig. 23 in which the coordinate system is arran-
ged so that A, = (0, 0), A, = (x,, 0), 4; = (x;, y;) and A¥ = (z, y). The total
cost per unit length along the link A,A¥ = ¢+ uf,;; along the link AZA’,“ =
= ¢ 1 ufy;; and along the link A;A¥ = c+ u(fi5+5,s).

(0.0) 9

Put t, = ¢t ufis; t, = ¢t puf,s; and t, = e+ ulfis+£2). Thus, if T is the total
flow and construction cost for the network in Fig. 23, we have

T(x, y) = T(AY) = (T2 + )2+ t,((%, — ) + y*)V* + (T — ) + (Yo — y)) -

The point (z, y) for which T is minimum satisfies the following partial diffe-
rential equation (which constitute necessary conditions):

T ¢ x Tr,—T 4 X, —x 1
ox 1 (IT;/‘) 2 2 (ll — )+ “:)1 2 ((x ) 4 (y u)_')l : {
1 ) : Yy Ys— Y 0. (2

a = by -ty — s — YT I
oy "X+ YY)V *((x,— )+ y*)'? ((x;— ) + (¥, — y)*)*
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SUFFICIENT CONDITIONS

To establish sufficiency, one checks that the Hessian matrix

o°T T

I ox? ax dy
HEyy=q a5 = g
Jyaox cy*

is positive definite. A direct computation of elements of the above Hessian is
quite space consuming. However, that H is positive definite follows from the
fact that the function T(x, y) is a strictly convex function, a fact also gua-
rantees the uniqueness of A}.

APPLICATIONS OF THE BASIC RESULT

The basic result just derived is used in solving multiple point network prob-
lems via the principles of decomposition and conjunction which we elaborate
as follows. It is convenient to discuss the principles under two categories. In
the first category, we already have a network but would like to investigate the
possibilities for reducing flow and construction costs. In the second category,
we have only a pattern of points that we wish to connect by a network of mi-
nimum flow and construction costs. It should be clear that these two categories
are substantially different in at least two respects: proportion of new nodes
that can be created, and hence the number of alternative network structures
that may emerge. The steps involved in effecting the reduction are now brie-
fly outlined.

Category I (Figs. 24a-24c)
Step 1. Select nodal points of the network (e.g., A* in Fig. 24a).
Step 2. Group the links which converge on A* into pairs, as for example,

links (A*A,, A*A)), (A*A,, A*A,), and (4*A,, A*A,).

n
a g

. o A
- a0 v
¥ ~ ™
=Y
oz A- ‘_ ________ oA
pie 2 o A
. - .9
¥ ‘ 1 A®
’ &
yid .“.‘ _— - A
. -/ B / .‘-_Y
o e

Fig. 24. Category 1

Step 3. Each pair of links, say (A*4,;, A*A)), in the group identified is re-
placed by a triple of links (4,4%., A;A*, A*A¥) so that A¥ is an additional
node through which flows from two branches may be conjoined into a single
branch A*A¥ .
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Step 4. Consider any non-empty set {A* Aik}f:=1 of links of conjoined
flows which in consequence of the application of Step 3 intersect at a common
point A"f . (There is no reason why any such point must exist. Fig. 24c is a de-
composition of Fig. 24b in which no such point occurs.) In case such a point
occurs, it is replaced by a triangle so that A* is replaced by three new points.

Step 5. Consider the set {A*k}kEI of new points. Take the first element A¥
of this set, and consider the links, say A, A*, A, A* and A*A¥, which are

incident on the point A*. Fix all other points of the decomposed network
(i.e., the network obtained by applying Steps 1 to 4). Next apply the basic re-
sult to locate A* so as to minimize the flow and construction costs of the net-
work linking the points 4;, A, and A* .

Step 6. Repeat step 5 for every A* until every such point has assumed

a location from which a shift away increases the total costs. Such locations are
attainable in view of the fact that Step 5 systematically reduces costs which
have a lower bound.

CATEGORY II

In this second category, all of the steps used in Category I apply, together
with the following additional principle which one applies during the decom-
position stage. Namely, every given point is the terminal of two conjoined
flows. Thus for three points, Fig. 25a shows the most general decomposition.
In this threepoint case, there are exactly 12 possible solutions, each represen-
ting different topologies. Figure 25b contains four possible solutions (the trian-
gle plus three V-solutions), and Fig. 25c contains eight possible solutions

Fig. 25. Category 2
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subject to:
- Z:z:,, = -8 (supply constraint)

Zx., =>d, (demand constraint)
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—Zy > —C,.—k" } (capacity constraint)

= Z: Zk"¢" = -T (budget constraint)
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TABLE 4. The behaviour matrix scores on dyadic fagtor |
The result of the application of factor analysis to a dyadle matrix of Polish commodity Mows, by value in 1908

Destimation
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TABLE 3, The behaviour matrix scores on dyadic factor 11
The result of the application of factor analysis 10 & dysdbe matrix of Polish commodity Mlows, by value in 1938

Destination
mi‘l:’“”"h’" Bizhsiok Bydgmece  Gidasisk  Katowice  Kieke  Kossalin Krakdw  Lublin Lol Oketyn  Opale Pozeasi  Reeséw  Secrecln  Wamzawa  Wroclw  Zielons Gorm  Total ramk
yoivodship
Bialystok 0 0806 - 04876 14598 - (L3185 - 06M6 02405 00630 —D49E7 00151 05266 DS94 08703 06342 02981 00841 06033 339 8
Bydgosree 0,4597 0 070X -2 —0,538) 03744 0.7043 —03220 05674 -—0.3050 ~ 01108 21923 06046 LT 03496 03230  —0.5407 —2.0B5] 1
Gdafsk A1 01075 0 — 4006 0.597% 05017 - DATRE  —0.56EE - 04406 0T4S -0.5211 0.3104 -0.6047  -0.2793 01500 06303 0.3357 — 4, 7080 12
Katowice - 1. 2811 27686 - 3 1200 [ ~-L0120 —1.0726 ~ GABES ~ L9433 -~ L6100 = 1. 3748 ~5.5319 =3a757 = 1. 5299 — 1. TOBY - 5.7192 - 46583 13428 46,0026 17
Kieloe — BLG289 07321 ~ 6901 L0851 0 ME3RY 123330 04219 08618 06162 0858 -0WTSR =0M062 -00GE26 - L20KT 0520 —0.379 - 132711 14
Koszalin — 06016 05192 04399 L1912 00851 0 ~08499 03972 -01565 -06325 03976 22882 0.9 LS 0092  -00)% 04040 0.9973 3
Krakdw 06721 (L8006 06752 44150 — 14431 ~ 05513 ] ~ 1418 ~ 1058y —05R2S L i | = 16437 —1.2AT - 09758 15134 1.1596 - 10,6297 - 19,9627 16
Lablin ~QLE7E2 ~.5855 LR 1630 - 0,399 - DL6R2E 0.205) L] 06477 07565 ~iIT6D 13308  ~0.4843 — 07366 ~ 0,782 0.6632 0, 6685 -1.3303 5
Lodi ~ 05865 ~(0.3589 - 0.6000 0, 6800 - (L4595 06254 -0 —0.5618 ] ~ 06231 ~ (. 5608 L7995 D273 — 04965 04747 00726 - 0.5204 —~3. 3485 10
CHsztyn 00713 LELed] 11292 21598 — 03002 04783 -0.0233 00420 — 02410 [ ~ 04485 0.6757 - 06009 - QL0938 1.4356 -0.21  —0.4935 1.6942 1
Opole (L4526 ~ 12878 - 10,5973 01764 — (.B40% 03569  —026X8 00176 —0.5500 ALE133 [ - 12871 ~ (BG4 ~1.1543 0505 ooz -0,8212 TANEY 13
Poenan — 04769 0B —024r 1.4200 00039 04412 01081 =0,2978 43 —0440% 00036 ] ~ 0. 3439 — (M6 67983 0. T000 0.4581 T.4522 1
Rzesziva 0,598 05474 —0.3520 00850 04242 06099 1LB08) 03381 —0uSpEd 05961 —Dudidd 00939 o — 06006 04087 00200 - 05730 —4.3557 4]
Srcoecin -0.5737 03506 04937 0.1353 0.5327 05T -ATIR 05475 w3 ~ 05863 ~ 04138 1409 —0LSE24 o 0.5214 02252 0. 3150 =1 2940 9
Warszawi —~ 07639 0.5554  —0. 7498 21329 ~0846) 05379 042 08752  —0MO9 04515 ~ 05919 32384 =081 —0.0735 o 0529 —0.4555 =11,2342 4
Wroclaw —.6524 0. 7826 0.7513 40680 00326 07088 00N 0467 -02010 - 05MH —0.5549 QMTS 06455 16348 0.496% o —0.8338 —11.7820 L]
Ziclona Géaa —~0.6357 —02%43  —0.J287 11594 04254 0.6248 02421 —~ 05675 00191 =0.5233 - 0ATER 14430 05837 04042 6771 Q1318 L - 1. 3463 6
Total ~94B68 61T 75922 21737 -9.5082 —6XM1 - I0ESTE  —B.1426 73883 - BSAED  — 116X B1282 116361  —R20M 23981 60650 —6E0GE 106 9708
rank 13 L] 9 3 14 [ 15 1] ] iz 7 I 16 i 2 4 7




TABLE 6. The behaviour matrix scores on dyadic factor |
The result of the appikation of fector analysis (o o dyadic matrix of Polish commadity Mows, by value In 1966

Destination
mu:ﬂmum Bialysiok Bydgoarer  Gidafak Katowicr Kicloe Koszalin Erakiw Lublin Lo Dilsryn Opole Pornas Roesrdw Sroreckn  Warmawa Wrochiw ficlona Géa  Total rank
voivadship =
Hiatysaok 0 -1.7639  —1.2971 -1.1392 - L3468 26252 —LMO0E —LTE0D}  —2.3802 08109 22155 -1 186} ~ 1. 3006 ~2ad14 7081 13604 23117 W74 "
Bydgoiics —L1971 o 16142 3oz 15665 —).3208 O.BES8 - L1197 0017 07025 0864 1. 26402 SR i.3878 [ —0.84%) 17634 6735 i
Gdarisk — LM 05054 L —L002T  —2.5474 1.80TR L1768 26220 22926 —1.0466 - 3.6268 19053 26191 14T 1.5678 21T  —24%8 -32.7492 13
Katowice - 1.7258 19965 1.028% o 14570 = 1.5404 11854  —08M2 16732 — 10508 BTG 180382 02651 0,294 40203 R.91%0 12182 18 4083 1
Kiclce =2.8661 -1t} -235520 16350 ] —16123 =Du3EKI =1.5367 12T ~20800  —LI%E2 LBT60  — 22485 3.3182 09760 IEL 235003 17,0650 9
Koszalin ~25M8 - 19648 2IT46 20004 150174 o =23 16N 23692 26294 2 5086 -~ 16125 26170 20843 23381 19637  =24429 =35 T7197 16
Korakdw - 15812 oo I.698% 79578 0.0542 —2.2265 L) —0.3643 01227 23247 16142 0.7072 34582 2.03%0 09524 - (L0074 2.0TRG 02401 2
Luklin — 21069 18361 LE411 1397 19702 ~L3065  —1.2003 L] 23764 ~2.0097 - 22210 - D6RSD 0.0850 2421 -0.7589 12126 22665 -27.3083 ]
Lt ~26313 ~1.4726 - 20132 05576 —21388 -21M9) =2[072 - 25485 0 — 24802 ~2.3264 — 06638 24195 2 008 16139 20047 25m 15227 12
Olartyn ~ 15386 - 24211 —~ 15401 237 2A001 =3.5702 ~L 1248 — 25201 29045 [ 25010 21389 2 4041 THERD 1.9181 24792 2 6640 16,9263 17
Opole — 2.9 — DGR - 23142 73926 16328 ~ 1. T452 00841 — 12911 14373 22488 [} 1. 585G 1165483 12397 D4ETY 13601 [N =B, 2437 ]
Pozradh 25898 0.8790 18312 0.0418 LETIO 16357 —13(% -2 A%90 06563 — 24991 - 16444 0 - 23760 1545 - 1.J955 - .16 02606 ~21.2079 7
Raesriv 23242 - L6697 —~1.7323 13962  —20506  —2.6540 -1, 15941 =122 1.5251 - 20966 —25213 1.5275 o 13259 16249 ~ 1.6T8E 23928 - 304192 10
Saceecin — L6598 - LORRE — 200 16 1B ARG 11213 T 25445 3 4547 36846 24531 12818 2.9380 0 2 38010 2312 1.1 15,0472 14
Warszawa — L5347 10612 ~0.3581 L4070 11548 -2.3382 13867 L1448 1.84% - 20928 AL k] 01294 2252 OLHGTS 0 1.60%) 23574 20,7634 [
Wreoclaw 23376 0.6742 1.3060 61196 L5394 —1.5506 10615 20030 0.6EEG -2.3150 29833 1.9707 1.7913 -0,6235 -0 4029 0 09451 25549 ]
Zielrn Goisra ~24993 276 -13582 Laos -2 18%8  -2287) 248N 2364} -2T0E2 - 24ERT 11302 19817 2.3625 25018 113 o 3. 1RAS 15
Total —35.6758 183548 15409 155903 284947 - 33 4503 ~TI816 - 309886 e MR ] 13 0049 15,3407 1.7197 5,950 2%, THoH 12,4455 |2 s 9. T46H A6 8129
rank 17 7 9 1 1 16 2 14 8 (5 6 3 10 ] 3 4 13
TABLE 7. The behaviowr matrix scores on dvadie Factor 11
The result of the application of factor analysis to a dyadic matrix of Polish cammodity Mows, by value in 1966
Dhes timation
om‘rﬂl\'ﬂﬂhv Bialystok Dydgoarcr  Calaiik Kalpwice Kiclee Kaoazalin Krakdw Lublin Laxdi Olsztyn Opole P Rresadw Smrecin . Wardawa Wrochw  Ziclona CGidea Total rank
voivodship
Bialywiok ] “BIOIE  —D6TI4 02009 004%7 0. 847 00840 Cokd 0024 —0T5R 00244 ~ o115 0.1 009 0LO5ED 06134 OOME - DORIE 23015 16
Bydgossce —0.079% o - 1.5363 ~ 24174 - 0LAT02 ~ 0. 2616 ~Du1135 ~masal 14324 D09l ~0.T259 ~1.79TH: D 0BET ~(hA%4n 15324 09731 -0.3351 —13.32a2 7
Cidaak - DL0004 0.7433 0 [NE 1] 0N -0 0.2797 0.2432 0,209 ~ 01308 02693 00026 0.2530 01915 oy 0.2328 0.223) 1.6080 13
Kalowice 09315 36590 3.5088 o 64000 0.9206 11,7183 27189 54081 1.634] B.O35S 51406 26856 32140 7.0569 131752 1L.BE79 TR 1
Kiclee 0325 05413 03149 1.3773 1] 0.7648 03772 17T 0.5738 0,383% 0.31558 04119 03960 oLAGA3 06252 0.8392 0.3630 B.757S 4
Koszalin 0TS 00053 00 01737 16T L] UG 64 D458 0445 0.2361 [REE T {LOKOT 02227 427 [ Erlh} 0.0lis .1 2HE P 1
Krakimw 0.3933 0.8073 0.4332 . 23600 19128 04358 ] 19109 1.0329 0,39%3 24579 0477 08557 DAS2E 14200 100654 06427 20,5452 2
Lusbdin LR 00825 02181 - 01333 0.1428 02161 — 023D o 1845 0Es1T 01412 04604 DATS o.2431 00742 0.1 745 01080 1.3927 14
Liwli 02377 01888 03290 04074 02672 0, 2490 02187 02659 [ 0733 o, 1829 — 03458 02669 [UER L LLRES L] 03202 205 43370 T
Olsrtyn ~ 01543 0.1734 (L1348 00624 02195 02164 —00IT] 02400 0.2264 o 04505 0.0 1 0,151 02237 00037 01E14 02021 L i
Opale 03847 03092 03420 16008 1. 7403 04863 iTas 04774 0, 166d 0,295 o O.4404 01260 DATAD 1. 4608 0656 L4872 87186 4
Porman 02969 — 1.DGTE 02391 ool 01874 - 0,0470 ~ o362 040 ~0,0333 02504 BN /] 13238 (AR ] 01591 02039 01770 L9212 12
Rreazin 0186 0.2254 00701 03359 s 03673 — 0029 —n27e7 02974 00514 0.2204 074 o 05736 00297 07406 0.1542 32288 ]
Szczecin o.2367 01054 01863 02481 o.4101 —D.0354 035438 0,2360 a2 0,2276 01430 - 00241 n.1%63 0 05432 0.3321 — 01058 3. 3 ]
Warszawa 00250  ~0.53%4 05849  — 16420 053654 00782 —00Tss 0.2681 0,.2687 0.2579 0IOTO - 107K 03018 05195 o [ ey | 1521 1.2782 3
Wroclaw 0.2980 1040 055018 23547 14393 wsang nEIz2 05414 06348 05903 05078 09748 asn7 (1§ 1ieky 1.032% o LR rE]] 16,3303 3
Zieloma Cidaa 0,4433 0.7 0,1979 00561 0.2763 0.2872 1742 02766 02386 03745 1.2307 01590 03497 2188 02319 10901 L 45044 6
Total 18520 51582 838 K A% 137603 44390 143985 E.4340 8.0093 FrAL ] 157884 1.9766 7.3504 7.01%6 10,8267 18,7345 74611 1427508
rank 15 1z 13 7 3 14 2 ] 3 i3 4 17 10 1 ] i 9
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