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PREFACE 

The papers in this volume represent part of the continuing program of the 
Commission on Quantitative Methods of the International Geographical Union. 
This program has a threefold intent: to improve international communications 
among scholars undertaking quantitative methods in geographic research; to 
promote a continuous series of "state-of-the-art" reviews of statistical and ma-
thematical methods in forms useful to those seeking to improve their quan-
titative skills; and to stimulate new and highly original work on the frontiers 
of quantitative methodology. 

This collection resulted from a conference in Poznań, Poland, held primarily 
to meet the first two goals. It assembles the mathematical papers presented. 
A companion publication will be published elsewhere containing the statistical 
papers delivered at Poznań. Draft of the papers were circulated, discussed, and 
then revised for this publication. 

The Commission is indebted to each author and participant in the con-
ference, to the Institute of Geography, Polish Academy of Sciences and to Pro-
fessor Stanisław Leszczycki, to the Adam Mickiewicz University, and to the 
editors, Professors Zbyszko Chojnicki and Duane F. Marble, for their efforts 
on behalf of greater international understanding. 

Brian J. L. Berry 
Chairman of the Commission 

http://rcin.org.pl
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G E O G R A P H I A POLONICA 25, 1973 

C L A S S I F I C A T I O N A N D G E O G R A P H Y 

P H I L I P M . L A N K F O R D A N D R . K E I T H S E M P L E 

G E N E R A L CONSIDERATIONS 

Much of the scientific methodology found in geography is common to other 
social, physical, and biological sciences. All sciences, for example, place em-
phasis on observation, classification, experimentation, as well as, theory and 
model building. Classification of observations is an important, but normally 
early, step in the development of a science. The physical sciences have passed 
this step while the social sciences have just begun to produce generally-ac-
knowledged classifications. The biological sciences such as botany and zoology 
are reexamining the issue of classification presently and numerical taxonomy 
is of central concern in the debate.1 When classification and regionalization are 
shown to be analogous procedures the links between formal logic and classifica-
tion can be used to examine regionalization. The relations between regionaliza-
tion and classification have been formally stated by Bunge (1962), DeJong (1962), 
and most extensively by Grigg (1965, 1967). As early as 1956 Reynolds (1956) 
noticed that "...the delineation of regions is essentially a classification process," 
but the obvious analogy with classification was missed because regionalization 
was carried out by drawing isarithms and not by classifying similar objects. 

Classification may be defined as the grouping of objects into classes, based 
on some similarity of properties of, or relationships between, the objects. The 
object is an individual, with properties. All individuals together form the 
universe. To classify, one property possessed by all the individuals is selected 
as the differentiating characteristic. The universe of k individuals may be 
partitioned into one to k classes. The classes may be grouped into larger classes 
to form a hierarchy. 

The inverse of classification is termed logical division. Beginning with the 
universe the group is divided according to a principle. A special case of logical 
division is dichotomous division; an example is the division of the United States 
into The South and Not-the South. 

The analogy is made that regions are areal classes. The basic procedures of 
formal logic can be applied to the methods used by geographers for regionaliza-
tion. The two methods of classification, classification and division, can be equat-
ed with inductive and deductive methods. Much has been written on the latter 
method in geography and in many other disciplines. Whittlesey (1954, p. 38) 
has declared that regional systems may be arrived at by either method; the 
same point was recognized by Gilbert (1960, p. 160). Implied by this distinction 
is that theoretically either method may be used with an area of any size even 

1 See R. R. Sokal (1962), R. R. Sokal and J. Camin (1965), R. R. Sokal and P. H. A . 
Sneath (1963). 
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8 PHILIP M. L A N K F O R D A N D R. KEITH SEMPLE 

though classification is usually used for small areas and divisions employed 
for world or national classification. The world classes are deductive and there-
fore assumed to exist a priori, which is NOT the case with classification. The 
basic approaches to classification are, therefore, parallel to the methods of 
regionalization. 

The main problem in geography is the choice of the object or individual for 
classification. Bunge (1962, p. 16) suggests "place," but this does little to solve 
the problem, which is a direct consequence of the continuity of the earth's 
surface versus the ease of individual definition in zoology or botany. As an 
example of the problem, a regionalization based on natural vegetation, type 
of farming, and settlement pattern, may choose farms, plant communities, or 
settlements as the defined individual. Little attention has been given to this 
problem in English, but discussions in Russian and German have been profuse. 
The solution is simple: use what units of observation are readily available and 
label such individuals "Operational Taxonomic Units" (OTUs), as taxonomists 
have done. 

Location is another problem for the analogy with classification. Contiguity 
has no parallel with the principles of classification. Bunge (n.d., p. 1) has 
criticized Berry for not including location as a category in classification. "Since 
the locational category is the category that distinguishes geographic classifica-
tion (uniform regions) from all others, this omission is serious." This location 
problem has been essentially solved methodologically by adding location as a 
restraining characteristic during the classification process.2 

Employing the analogy between classification and regionalization, there 
are several principles of classification highly relevant:3 

(1) Classifications should be designed for a specific purpose; they rarely 
serve two purposes equally well. Purpose and use must be linked. 

(2) The classification of any group of objects should be based upon properties 
which are properties of those objects; it follows that differentiating charac-
teristics should be properties of the objects classed. 

(3) The differentiating characteristics must be important for the purpose of 
classification or else the classification is trivial. 

(4) Classifications are not final and must be changed as more knowledge is 
gained about the objects. 

(5) Classification should proceed at every stage and as far as possible on 
one principle. If this principle cannot be used for the entire classification, the 
properties used at the higher class must be more important than those used in 
lower classes. 

The established analogy between classification, the principles of logic, and 
regionalization allows a rigorous examination of methodology and results, but 
the corresponding development of a theoretical framework for regionalization 
is lacking. Rodoman (1967) declares that the theoretical problem is mathe-
matical. Geographers essentially treat the earth's surface, a positively curved 
plane or Riemann suface in three dimensional space, as a euclidean surface in 
two space, and attempt to transform the surface into the one dimensional space 
of words in sentences in a text. Mathematically the necessary transformations 
involved do not allow the preservation of spatial ordering (unique location). 
The framework therefore must be developed in terms of set theory. 

Whether old or new in method, the process of regionalization normally 

2 Such as employing a symmetric contiguity matrix to modify the grouping al-
gorithm. 

8 D. Grigg (1967), pp. 486-489. 
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C L A S S I F I C A T I O N A N D G E O G R A P H Y 9 

THE F O R M U L A T I O N OF THE SET-THEORETIC A B S T R A C T I O N 

begins by examining the characteristics or attributes of various locations on the 
earth's surface. In practice these locations are not actually points, for points are 
zero dimensional. Instead very small areas are studied. For purposes of abstrac-
tion, consider infinitesimal areas as geographical locations or points. These 
geographic units can be equated with OTUs. Beginning with these units, the 
analysis considers either the attributes of the OTUs or the interactions between 
them. 

It is obvious that each of the geographic units has many characteristics, 
such as temperature, altitude, and population potential. We can define a geo-
space, G, of dimension N containing all points on the earth's surface, where N 
is the number of attributes or characteristics of a unit. In theory there is an 
infinite number of characteristics of a location so the space G has infinite 
dimension. However, in practice only a few characteristics are selected for 
analysis, which defines a finite dimensional subset of G. 

There are many types of interaction between two geographic units. Interac-
tion can be considered to be a vector in that it has direction and magnitude. 
Measures of such dyadic interaction like migration flows and telephone calls 
assign a number to a pair of points. Dyadic interaction such as migration may 
be considered as mathematical many to one functions. Define a set of many 
to one functions F. If / is such a function, f maps two points, elements of G, 
into a vector or relation (interaction) space R. R has dimension M, the number 
of f's selected. The / chosen depends upon the measure of dyadic interaction 
being mapped. Again in practice only a small subset of F is chosen for inves-
tigation. These f's operating upon the subspace of G selected generate a subspace 
of R, so that if A c G , f eF, f(A)-+B, BczR. That is, for a set of points, A, on the 
earth's surface, and for a given f, or dyadic interaction or relation, / operating 
upon A generates a set of relations, B, which is a subset of all possible relations 
between all possible point pairs. 

Contiguity plays a dual role for not only is it a relation between two units, 
but it can be considered a characteristic of a unit. However, the abstraction 
considers units as points and therefore contiguity will be considered to be only 
a relation between two points. 

Mathematically there are five possible relations between two sets, giving 
three types of regional designs: 

(1) Ar\B = The sets have no points in common. Such a regionalization 
would be a set of well-defined regions (high closure) of the same order. 

(2) A r\B <£>, ArsB A, Ar^B^LB. The sets intersect, giving a region-
alization of overlapping regions. 

(3) ArsBz£<p, Ar\B = A, ArsB^zB. AczB. A is a subset of B. 
(4) Ar^B=£@, Ar,Bz£A, Ar\B = B. B e A B is a subset of A. 

The third and fourth relations result in a hierarchy of regions (nested 
regions), such as political regions. 

The identity relation: 
(5) Ar\B <I>, Ar\B — A, Ar\B = B, A = B. 

is of no interest here and will be ignored. 
There are, therefore, three types of regional designs possible: well-defined, 

intersecting, hierarchy. 
The abstraction also implies three types of regions. Regionalization within 

the space G would result in the usual descriptive set of homogeneous regions. 
Operating upon the set R gives the usual functional regions. A regionalization 
process could operate upon both G and R simultaneously resulting in a hybrid 
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10 PHILIP M. L A N K F O R D A N D R. K E I T H SEMPLE 

region having no identity with either of its parents. These three types of regions 
are the usual types recognized by many. 

THE S P A T I A L FIELD THEORY 

A recent development in the study of regions has been spatial field theory, 
which permits the examination of the set of f's between homogeneous and func-
tional regions. Brian Berry (1966b, 1968), noting that the same procedures of 
numerical taxonomy are used to derive both formal and functional regions, 
developed the field theory to relate the two regional types, using techniques 
of systems analysis. The field theory, operating upon a spatial system, involves 
places, their attributes, and the interaction among them. 

Choosing a subset of G, one can develop an n-place, a-attribute, matrix. The 
matrix describes spatial association and variation over the n places. Berry as-
serts that the infinite number of attributes of n places and their variation are 
actually indexed by a finite number of fundamental, independent concepts. 
Using principal components analysis the number of key factors underlying the 
total variation is identified. Each observation has a score on each factor, creating 
a nXs matrix of n-places and s-factors. This is the structure matrix. 

A similar approach is used on interaction data. Choosing the various interac-
tions, f's, for which data are available, and using the same n-places used above, 
the subset of R space is defined. For each f we can construct an n X n matrix. 
Such a matrix can be "unfolded" into an n2 — n array. The arrays for each / can 
be grouped to form an n2 — n by d interaction matrix. Again, the underlying 
factors of variation are identified. The factor scores define an n2 —n by b-factor 
behavior matrix. 

The structure and behavior matrix are, however, not enough for formulating 
a field theory. There is no way to relate the matrices. Defining the similarity 
between two points as the euclidean distance in s-space, an n2 — n by s matrix 
of place similarity of structure is developed. This similarity matrix is row-wise 
comparable with the dyads of the interaction matrix. It is now possible to 
formulate the relation between structure and behavior. 

Two views could be taken: (1) dyadic behavior is a function of characteristics 
of places, and that changes in characteristics will affect the dyadic interaction, 
or (2) place characteristics are dependent upon relationships with other places, 
and changes in relationships would change characteristics of the places. How-
ever, as mentioned, places, their attributes, and their interaction form a system. 
Instead of simple cause-effect relations spatial structure and spatial behavior 
must be discussed as in a state of mutual equilibrium with very complex inter-
dependencies.4 

In terms of the abstraction the field theory is the mapping of a subset of G 
into R and vice versa, or, simply a study of a set of f's and f~vs. 

4 Canonical correlation allows the field theory to have a mathematical state-
ment. Canonical correlation is an extension of regression analysis. Simple regres-
sion has one independent and one dependent variable. Multiple regression has 
one dependent and several independent variables. The method maximizes the 
dependence of the two sets. The correlation on various levels are weighted by fac-
tors. This allows one to examine the relation of pairs of factors across the equation. 
If the factors are "paired o f f " at every level of correlation then we have the sim-
ple "Philbrickian world" of alternating functional and uniform regions. However as 
Berry found, the relations are very complex, and Philbrick's notion is a very special 
case of the field theory. 

http://rcin.org.pl



C L A S S I F I C A T I O N A N D G E O G R A P H Y 11 

M E T H O D S O F R E G I O N A L I Z A T I O N 

A R E V I E W OF P A S T M E T H O D S 

Considering regionalization as classification, many regionalization methods 
can be contemplated. Sebastyen (1962, p. 36) has demonstrated that classification 
may be considered as part of the decision-making processes of pattern recogni-
tion. Indeed, in the general sense, regionalization is the recognition of a pattern 
in the available data. A method, of course, is an orderly procedure; an algorithm 
is a simple computational process or procedure, and therefore is a special case 
of a method. Pattern recognition methods used by geographers for regionaliza-
tion may be grouped into two categories: (1) the testing of an a priori classifica-
tion, and (2) the development of a classification. The first category includes use 
of chi square tests, analysis of variance, and discriminant analysis. Factor 
analysis and grouping algorithms form the second category. 

T E S T I N G A N A PRIORI C L A S S I F I C A T I O N 

The chi square test has been used by Zobler (1957). His aim was to statistical-
ly test the implication that there is a relationship between the data used to 
draw boundaries and those used to describe the regionalization. The chi square 
was used to test the expected distribution in each of the regions with the actual 
distribution of field data with the null hypothesis that no relation exists. That 
regionalization was chosen that produces the highest significant chi square. In 
a later paper Zobler (1958) employs the same method in allocating states in a 
regionalization of the United States. Both Zobler's papers received much com-
ment, notably by Berry (1958) and Mackay (1958) on the use of the chi square 
test. They objected to the use of relative frequencies. Berry demonstrated that 
such relative frequencies may be used to establish categories, but actual 
frequencies must be absolute, independent events, not transformable to other 
units. Variance analysis has also been used by Zobler (1957) as an extension of 
chi square analysis, testing both intra- and inter-regional variance. An F test is 
made with a null hypothesis that there is no significant difference between the 
two variances. If the chosen F value is not exceeded then the regionalization is 
not valid. The variance analysis approach, since it accounts for both intra- and 
inter-regional variance, is more rigorous than the simple chi square approach. 

Both chi square and analysis of variance procedures have received very 
little attention in the last several years. Operationally the methods are very 
cumbersome, for to derive the "best" regionalization, all possible pairs of ob-
jects would need be tested and secondly, the choice of probability level is sub-
jective. Other more rigorous methods have been sought. 

Discriminant function analysis computes the vectors associated with the la-
tent roots, X, of | W - 1 A — XI | = 0, where W is the matrix of pooled within-
group deviation scores cross products, A is the between-groups cross products 
of deviation from grand means weighted by group sizes, and I, the identity 
matrix. The method can only refine and test the goodness-of-fit of an existing 
classification. The best example of the method is represented by Casetti's study 
(1964) of climatic regions. 

T H E D E V E L O P M E N T OF A C L A S S I F I C A T I O N 

The second category contains three types of regionalization methods: (1) fac-
tor component analysis plus mapping, (2) factor component analysis plus group-
ing analysis, (3) grouping analysis. 

Factor analytic methods reiteratively process the eigenequation (R — kj)^ = 
http://rcin.org.pl



12 PHILIP M. L A N K F O R D A N D R. KEITH SEMPLE 

= 0,where R is a correlation matrix, I the identity matrix, X the latent root and 
a a column vector of factor loadings, to eliminate redundancies in the data by 
developing a new orthogonal basis for a space in which the observations are dis-
tributed. Gower (1966) has shown some of the relations between various latent 
root methods. The distances between points in a factor score space are shown 
to be the Mehalanobis D2 with a singular dispersion matrix. The classic paper 
using this first method is Kendall's study (1939) of crop productivity in England, 
mapping results of coefficients greatly similar to those produced by factor 
theory. Hagood (1941) mapped factor loadings to derive a regionalization. Later 
work in such an approach has been by Thompson, Sufrin, and Buck (1952), who 
mapped factor loadings in their study of New York. A variant of this method 
which crosses over into the next branch is a paper by Goodall (1954), who 
mapped factor scores. 

Berry is the chief contributor to the second branch with a large number of 
studies employing the same method of factor analysis to shrink the dimension-
ality of a variable space and then grouping the factor scores according to a se-
lected algorithm. This method is outlined in several articles (1959, 1961, 1966a), 
with specific examples such as a study of India (1966b). Russett's use (1965) of 
R- and Q-mode factor analysis where the factors represent groupings of objects, 
represents a variant method similar to grouping analysis. 

The success of the factor analytic method with mapping is limited by the 
subjectivity of the analysis. The second method has great objectivity and, 
operationally, the capacity to handle a large number of variables, but its suc-
cess is greatly dependent upon the grouping algorithm chosen. 

Grouping methods have been very successful in the development of classifi-
cations. Objects are grouped using some measurement of pairwise association. 
Any measurement that forms a metric space may be used. 

A space X, under a measurement of association d, is called a metric space if 
for points x, y, z, in X:5 

(1) d(x, y) is a real valued function of two variables. 
(2) d(x, y) is greater than or equal to zero, and d(x, y) — 0 if and only if 

x — y. 
(3) d(x, y) = d(y, x). 
(4) d(x, y) is less than or equal to d(x, z) + d(z, y) (the triangle inequality). 
If the space formed is not metric results may be misleading if not contradic-

tory. 
The most common example of a measurement of association that generates 

a metric space is simple euclidean distance, defined as: 

for distance in r-space for points i and j members of s. 
Sokal (1961) and others have discovered and defended the distance measure-

ment of association as the best methodologically as well as conceptually. Besides 
euclidean distance, there are many other measurements of similarity including 
noneuclidean distance. McQuitty (1957), a sociologist, bases his grouping upon 
the correlation matrix. Boolean relations in matrix form also might be applied 
to regionalization, although no attempt yet has been made.6 

Stone (1966) made use of a linking method in his study of the United King-
dom. Based on eleven variables, forming an eleven-space, distance between 
points was taken as a similarity measurement. Since the variables were not or-

5 A complete discussion is given in L. Blumenthal (1953). 
6 The mathematics have been worked out by D. Rosenblatt (1967). 

r 
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C L A S S I F I C A T I O N A N D G E O G R A P H Y 13 

thogonal, he had to compute generalized distances to offset the affects of cor-
relations. Several different analyses were attempted with a final determination 
that use of normalized data removed undesirable size effects. Berry has used the 
grouping technique for several years in a variety of studies,7 making a variety 
of modifications to the simple linking method. In further developments Kaiser 
(1964) has constructed an algorithm to account for area of region at each step 
to seek similar and compact regions. This development was carried one step fur-
ther by the Regional Science Research Institute's study of Pennsylvania (n.d.) 
by seeking nodality and compactness as well as homogeneity of the regions. 
Rubin (1965) has developed an inverse algorithm which divides the universe into 
similar regions. 

SINGLE L I N K A G E A L G O R I T H M S 

The so-called "single-linkage" algorithms are by far the most important 
clustering methods. Pairs of points are joined by steps according to a rule until 
all points are in one group. The method is conceptually simple and easy to de-
velop. Since only single links are possible, regions cannot overlap. 

Mathematically the methods begin with a finite set S of k members which 
can be partitioned into one to k subsets. The ordered set of such partitions, 
a (complete) classification, is noted as C(S).8 Each partition, Pr is assigned a rank, 
rank one being k subsets, r = k being the whole set and having rank k. If a 
classification is strictly hierarchical then for every group G of rank one there 
exists a sequence Gj ... G r + 1 ... Gk. The rank of classification then is the num-
ber of partitions. 

For each point, s, to be classified, we can define a set of neighbors N(s). 
A measurement of association exists for all neighbor pairs f(g,h), and only for 
neighbors. The measurement / must form a metric space. A point is not its own 
neighbor. When points or groups are joined, their neighborhood is defined as 
the union of their neighborhood sets. 

Given two groups G and H, if there is some geG, heH such that heN(g), then 
G and H are called neighbor groups. The set of all such pairs common to both 
sets is called the interface, I(G, H). 

A group may have an interior defined as the set of all the geG such that N(g) 
is a proper subset of G. The interior may be the empty set. Points not in the in-
terior of the group can be considered to be the boundary of the group. Note that 
these definitions are not strict in the topological sense, but are unique to this 
discussion. 

Two single linkage methods in common use are the centroid and Ward's 
grouping algorithms. Both algorithms, special cases of the general statement 
above, begin with the generation of a k by k matrix of associations between 
all pairs of points. Initially each point has k — 1 neighbors, decreasing with 
each step. An ordered set, C(S), is produced. The interface examined at each 
step in the grouping procedure comprises only the remaining pair of points 
which is most similar. 

7 The method is outlined in the papers referenced in the factor analytic section 
of this paper. 

8 This discussion is based, partly, on several discussions during 1967 with Peter 
Neely and on his two papers (n.d.). 

http://rcin.org.pl



14 PHILIP M. L A N K F O R D A N D R. KEITH SEMPLE 

The centroid and Ward's algorithms examined in this study seek the mini-
mum squared euclidean distance as the measurement of association,® although 
many other measurements may be used. Since euclidean distance forms a met-
ric space, the measurement is symmetric, d(x, y) = d(y, x), and only the upper 
left triangle of the matrix, omitting the diagonal, need be examined. Contiguity 
can be introduced into the analysis at this point. If two areas are contiguous the 
appropriate entry is scored negative, otherwise it is left positive. In effect con-
tiguous areas are made "more similar". The two methods begin by scanning the 
distance squared matrix. The results of the grouping algorithm may be 
displayed in the form of a tree graph, showing at each step which points are 
joined. Examples are given in the analysis portion of this paper. 

The centroid method, the simplest algorithm of those studied here, joins at 
each step that pair of points (i,j) for which the measurement of association is 
a minimum. The appropriate i-th row and column and j-th row and column are 
deleted from the matrix and replaced by a new point which is the centroid of the 
pair (or group). The process is repeated until all the points are grouped into one 
set. This method would be expected to work well when the data are already well 
patterned, but when groups are highly dispersed the grouping may become un-
stable. This is due to what is termed the "chaining" problem. Suppose there are 
several points in a row, evenly spaced. If one point is introduced, closer to one 
point than the others are to each other, as with point eight, the conditions are 
set up for "chaining". 

i 2 3 4 8 5 6 7 

Points four and eight would be joined first, for they are most similar. How-
ever, their centroid lies between four and eight and closer to five than to three. 
Point five would then be joined to the group (4, 8) and a new centroid placed 
somewhere between (4, 8) and five. Point six would next be joined and so on 
down the line. Only after seven was joined to the group would it be possible to 
join points one, two, and three. This process of the centroid dragging a group in 
one direction is the "chaining" problem. On a more general scale it could force 
a group to be dragged to a larger group when actually the former group was 
more similar to a very different group. The centroid grouping works well on 
well-patterned or densely-packed data, but the chaining problem exists when 
data are dispersed. 

In an attempt to develop a better algorithm Ward (1963) developed a routine 
that examines the entire matrix and joins that pair which makes the minimum 
increment to the pooled within-group sum squared distances. Within-group dis-
tances are checked at each step. The matrix is updated as above, but uses the 
group mean. By minimizing the sum of the squared deviations about the group 
mean, the procedure can: (1) maintain groups of nearly equal size, (2) maintain 
groups of high density, and (3) develop groups that are spherical in shape. The 
algorithm is better than the centroid grouping mathematically, for it can work 
in less patterned data and draw out a clean grouping. But since it employs the 
group mean for updating groups it suffers to some degree from the same 
chaining problem as the simpler centroid method. 

Operationally the centroid and Ward's algorithms have several problems in 
common. Because of the larger size of the distance-squared matrix and the size 
of present computer storage, the sample size that can be handled operationally 

9 A possible variation is seeking the maximum, instead of the minimum, squared 
euclidean distance. Using the minimum criteria the most similar objects are group-
ed; the maximum criteria groups the most dissimilar. 
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C L A S S I F I C A T I O N A N D G E O G R A P H Y 15 

is very limited.10 Scanning the entire matrix at each step emloys a large 
amount of computer time. The size of groups, their number and shape, remain 
methodological problems. Also, since the grouping produced is an entire, 
ordered set of partitions, C(S), there is no absolutely objective method to deter-
mine the level (s) at which to select regions, although the recent work by 
Hartigan (1967), and Friedman and Rubin's use of Wilk's criterion (1967), holds 
much promise for such an optimality measure. 

One approach to the problem of the determination of the optimal number of 
groupings has recently been presented by Semple, Casetti and King (1969). The 
method they propose is designed to partition a finite set of items into an opti-
mal number of groupings and then to achieve an optimal assignment of items 
to groupings. It differs from other grouping algorithms in that an optimal num-
ber of groupings is arrived at rather than being assumed a priori. The struc-
ture of the procedure is illustrated and some assumptions for its correct appli-
cation are summarized. 

Suppose that a set of items is given, and that each item is identified by the 
values of a number of variables. For simplicity, measurements on only two 
variables are assumed for each item, but no conceptual difficulty is introduced 
when a larger number of variables is used. Assume that the two variables are 
associated with the rectangular axes of a Cartesian diagram. Then each item 
is a point in the two-dimensional space and the similarity of any two items 
with respect to the variables involved, is measured by the distance between the 
two points. Hence, a cluster of points in the diagram identifies a subset of items 
which are more similar to one another than to other items outside of the cluster. 

Grouping procedures aim at dividing a set of items into groups in such a way 
that the items in any one group are more similar to one another than they are 
to items in the other groups. These procedures, therefore, should be capable of 
identifying clusters of points such as were mentioned above. 

The procedure outlined here aims at identifying clusters of point images and 
then determining which item belongs to which cluster. The method assumes 
that clusters of points do exist in the observation space. If the points, in fact, 
are distributed either randomly or uniformly in the space,11 then an optimal 
grouping becomes meaningless. 

The classification procedure proposed involves the following steps: 
(1) The ranges of the variables are determined. Clearly, these values define 

the space which includes the point images of all the items. A fine rectangular 
grid is superimposed over this space and the number of points in each grid 
cell is recorded. The centers of the grid cells, therefore, can be associated with 
the frequencies of points in the cells. The cells which include part or all of 
clusters naturally will have higher frequencies than the other cells. These fre-
quencies can be considered as measures of a two-dimensional spatial trend with 
clusters corresponding to points where relative maxima of the trend occur. 
Thus, the problem of identifying clusters can be translated into the problem of 
identifying the number and location of the relative maxima of this trend. 

(2) The extremum points of the trend are located approximately by apply-
ing an adaptation of an algorithm developed in another paper.12 This algorithm 
determines the following: 

10 A 32K computer can handle only 220 points. 
11 For the testing of randomness in point patterns see: M. F. Dacey (1963, 1964a, 

1964b), and tests for clusters see C. Mack (1950) and J. Nans (1965). 
12 E. Casetti (1968). 
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(i) the distances from the centers of cells to each grid intersection point, 
(ii) the transformation d = l / ( d + l ) of these distances, 

(iii) the correlation, for each grid point, between these transformed distances 
and the frequency values for the cells, 

(iv) the largest absolute value of these correlation coefficients and grid 
intersection to which this correlation coefficient relates. (This is taken 
to indicate, as a first approximation, the origin of the largest trend, and 
hence, the approximate location of the cluster), 

(v) the regression of the cell frequencies on the transformed distances from 
the grid intersection identified in the previous step, and 

(vi) for each cell the residual frequency resulting from this regression. 
On the residual frequences, the operations (i) through (vi) are repeated to 

generate successive approximations for the locations of other relative maxima 
of the trend. The procedure is terminated when the fraction of the total 
frequency variance explained by an additional iteration is smaller than a pre-
determined threshold. 

As a result of this second step the number and approximate cores of the 
clusters are identified. 

(3) The point images of the items are then assigned to the nearest cluster 
core. Euclidean distance is used as the criterion for this assignment. 

(4) An optimal assignment of the items to groups is obtained by applying 
a discriminant iterations technique.18 Specifically, the grouping presented in the 
third step is improved as follows: 

(i) the centroids of the point images of the items in each grouping are 
calculated, 

(ii) all point images are assigned to the nearest centroid, so that a new 
grouping is obtained, 

(iii) steps (i) and (ii) are repeated until two successive iterations generates 
the same grouping. 

(5) Artificial groups have still to be eliminated. The steps 1 through 4 above 
may generate artifical groups in several ways, the first of which is illustrated 
in Fig. 1. Here the procedure has generated a centroid related to a cluster of 
clusters rather than to clusters of point images. 

Fig. 1. Type one artificial group 

Four cluster centroids have been generated, three located in clusters and the 
fourth is an artificial one located in a central position. Artificial centroids are 
usually generated if the natural groupings tend toward geometrical arrange-

18 E. Casetti (1964). 
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ments in such a way that large negative trends are identified in the point images. 
For instance, in the diagram real clusters tend to have cores corresponding to 
the vertices of an equilateral triangle. Consequently, the first centroid to be 
identified would most likely be located central to the three clusters since this 
would be the core of a large negative trend. This implies, of course, that the fur-
ther from this core the greater becomes the frequency of point images. This 
situation will require special attention in the present procedure. 

A second type of artificial group may appear as a result of random trends 
being generated in steps 1 through 4. Assume a real cluster centroid has been 
identified and the regression analysis has yielded residuals which are to form 
the terms of a second spatial frequency series. This second spatial series must 
contain negative residuals, and these seem to imply some sort of negative fre-
quencies. Suppose that these negative residuals accumulate after a number of 
iterations. It is possible that by chance a trend may appear that is identified 
to be significant, in the sense that the explained variance of the trend may be 
within the threshold limit imposed on the analysis. This trend also is artificial 
and the location of the trend-maximum purely random. Consequently, items 
may be assigned to this random centroid but the group thus formed is unde-
sirable. This is illustrated in Fig. 2. 

Assume that two real groups have been identified with centroids lacated 
at a and b and a third significant group is identified with a centroid c located 
at random. Items that should be assigned to centroid a are actually closer to c 
and hence are assigned to c forming a third type of artificial group. 

In order to identify and eliminate artificial groups a "decision rule" is 
defined in the following manner. An artificial group is simply a group that has 
more than one-half of the member items located in the outer portion of the 
group. For example, suppose that the most distant member of a group is 
thought to be located on the circumference of a circle, centered at the group 
core, and with radius D being the distance the member is located from the core 
(Fig. 3). Let a second circle be defined, centered on the group core and with 

2 Geographia Polonica http://rcin.org.pl
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radius d, where d = (D2/2)0-5. This defines the area of the smaller inner circle, 
representing the inner portion of the group, to be one-half the area of the 
larger circle, representing the outer portion of the group. A group is now 
considered artificial if more than one-half of the group members are located 
in the outer portion of the group. 

At this stage, the procedure indicates how many items have been assigned to 
the inner and outer portions of all groups. In this fashion real groups are iden-
tified and retained, while artificial groups are eliminated and their members 
reallocated. 

The result of the procedure is the partitioning of a finite set of items into 
an optimal number of groupings, and the simultaneous optimal assignment of 
the items to the groupings. 

A N EMPIRICAL APPLICATION 

In the examples that follow, small towns in southern Ontario (Fig. 4) are 
grouped according to dimensions of viability.14 Twentyfive variables all related 
to economic viability were collected for each town and a factor analysis was 

used to obtain three orthogonal dimensions of viability (Table 1). The three di-
mensions were identified as being related to (1) growth, (2) subsidization from 
the Federal and Provincial governments, and (3) level of spending on communi-
ty services. The towns are grouped according to their relative position on these 

14 For a description of the study area see R. K. Semple (1966). 
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TABLE 1. Factor scores for small towns in southern Ontario 

19 

Factor Scores 1 2 3 Factor Scores 1 2 3 

rowns Towns 
1 Acton - 1 3 1 - 1 5 8 139 2 Alexandria 093 - 0 2 0 066 
3 Alliston - 2 3 2 - 0 5 4 089 4 Almonte 068 - 1 0 8 - 0 1 0 
5 Amherstburg - 0 5 3 - 1 3 8 097 6 Arnprior - 0 0 1 - 1 5 1 - 0 9 5 
7 Arthur 275 066 - 0 7 3 8 Aurora - 5 5 0 - 1 1 8 097 
9 Alymer - 0 3 7 - 0 5 8 033 10 Bancroft - 4 5 1 414 - 3 9 7 

11 Barry's Bay 026 405 556 12 Beamsville - 1 3 2 - 0 0 6 011 
13 Beaverton 118 268 - 0 8 3 14 Belle River 001 - 2 5 2 - 0 8 7 
15 Blenheim 150 015 - 0 1 2 16 Bobcaxgeon 098 189 054 
17 Bracebridge 098 - 0 0 5 085 18 Bradford - 0 4 0 017 046 
19 Bridgeport - 1 4 2 - 0 9 8 115 20 Brighton - 0 2 6 121 - 0 6 3 

21 Caledonia 019 - 0 4 5 039 22 Campbellford 119 069 004 
23 Cardinal - 0 6 4 - 0 6 4 291 24 Carleton Place 150 - 0 0 3 011 
25 Casselman 091 194 193 26 Chesley 348 134 275 
27 Chestervillle 071 017 158 28 Chippawa - 2 9 8 - 1 9 8 209 
29 Clinton 063 - 1 2 9 - 0 7 8 30 Col borne 127 141 - 0 8 0 
31 Crystal Beach 112 - 1 7 1 - 1 6 9 32 Delhi 103 - 0 8 9 - 1 6 7 
33 Deseronto 169 - 0 3 5 - 0 4 9 34 Dresden 118 022 - 0 8 8 
35 Dunnville 021 - 0 6 4 038 36 Durham 146 148 - 0 0 4 
37 Eganville 212 - 0 0 7 049 38 Elmira - 0 1 3 - 1 3 3 - 0 2 2 
39 Elora 213 - 0 1 9 022 40 Essex 107 - 1 8 8 - 0 7 6 

41 Exeter 076 - 0 1 0 - 0 2 0 42 Fenelon Falls - 0 8 6 476 - 0 6 2 
43 Fergus 001 - 0 7 4 - 0 2 8 44 Fonthill - 3 5 3 - 3 0 4 119 
45 Forest 183 142 105 46 Frankford 025 035 151 
47 Gananoque 007 - 1 4 6 - 0 5 5 48 Georgetown - 5 7 6 - 2 0 6 - 0 5 6 
49 Goderich 077 - 1 0 0 - 0 7 6 50 Gravenhurst 147 - 0 7 1 - 0 2 8 
51 Grimsby - 2 1 3 - 1 6 6 - 0 3 0 52 Hagersville 096 020 071 
53 Hanover - 0 2 6 - 0 9 3 028 53 Harriston 169 126 - 0 4 6 
55 Harrow 129 - 021 022 56 Havelock 182 089 006 
57 Hespeler - 0 0 3 - 2 0 4 064 58 Huntsville 156 - 0 3 6 - 0 3 4 
59 Iroquois - 0 4 2 - 1 2 2 002 60 Kemptville 021 035 074 

61 Kincardine 170 039 - 0 5 0 62 Kingsville 065 - 0 6 4 - 0 9 4 
63 Lakefield 110 - 0 4 4 - 0 4 5 64 Listowel 105 - 0 0 0 - 0 5 6 
65 Little Current 143 - 0 0 1 - 3 5 1 66 Madoc 090 121 323 
67 Markdale 146 150 - 0 6 6 68 Markham - 1 3 4 8 223 151 
69 Marmora 093 086 014 70 Mattawa 223 - 0 5 9 - 0 6 4 
71 Meaford 092 021 - 0 4 0 72 Milton - 3 2 0 - 0 7 6 - 0 0 3 
73 Milverton 249 055 - 0 5 8 74 Mitchel 113 194 - 0 5 9 
75 Morrisburg 135 - 0 5 4 - 0 6 7 76 Mount Forest 196 074 - 0 8 2 
77 Napanee 095 - 0 7 6 - 0 0 3 78 New Hamburg 082 - 0 5 4 - 0 7 6 
79 Niagara - 0 7 8 - 2 2 9 035 80 Norwich 260 162 - 0 2 7 

81 Orangeville - 0 7 6 - 1 2 1 049 82 Palmerston 196 130 025 
83 Penetanguishene 115 027 012 84 Petrolia 026 - 0 1 7 132 
85 Picton 114 - 1 8 7 020 86 Port Credit - 3 5 7 - 4 6 3 - 0 3 4 
87 Port Dover 075 - 0 3 0 - 1 4 9 88 Port Elgin 145 061 - 0 2 7 
89 Port Perry - 0 0 2 088 113 90 Port Stanley 230 006 - 0 1 7 
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Cont. Table 1 

Factor Scores 1 2 3 Factor Scores 1 2 3 

91 Prescott - 1 5 9 - 1 2 4 036 92 Richmond Hill - 2 1 4 5 427 - 3 7 4 
93 Ridgetown 223 - 0 4 5 - 1 2 8 94 Rockland - 0 7 0 099 115 
95 Seaforth 218 048 - 0 5 7 96 Shelburne 260 363 - 1 2 8 
97 Southampton 213 060 - 0 7 3 98 Stayner 219 128 - 0 9 6 
99 Stirling 177 056 - 0 1 1 100 Stoney Creek - 8 0 1 - 3 2 6 - 0 3 3 

101 Stouffville - 4 8 1 367 356 102 Strathroy 039 - 0 7 7 - 0 3 3 
103 Streetsville - 9 9 5 - 1 2 2 021 104 Sturgeon Falls - 0 7 7 - 0 8 3 - 0 0 6 
105 Sutton 121 080 - 0 9 9 106 Tecumseh - 0 3 8 - 2 1 6 129 
107 Tilbury 154 - 0 8 6 - 1 7 3 108 Tweed 165 005 029 
109 Uxbridge 017 039 - 0 7 4 110 Vankleek Hill 153 147 142 
111 Walkerton - 0 1 5 - 1 0 7 - 0 3 5 112 Waterdown - 1 2 3 007 052 
113 Waterford 180 093 007 114 Watford 139 241 105 
115 West Lome 165 140 087 116 Wheatley 147 - 0 6 8 - 0 7 3 
117 Wiarton 137 057 022 118 Winchester 148 057 105 
119 Wingham 221 - 0 4 9 - 1 5 2 120 Woodbridge - 1 7 1 - 2 3 6 116 

three orthogonal measures of viability by (1) the centroid, (2) Ward's and (3) 
Semple's optimal grouping procedures respectively. The same data bank was 
utilized in each case.15 

THE CENTROID G R O U P I N G 

The results of the centroid grouping procedure are shown in Fig. 5. The tree 
is very complex with no definite major groupings until step 86. Steps 1 to 85 
consist of the development initially of many small groups. For example, at step 
50 there are 24 groups with an average membership of 2.1 points. The groups 
are very dense as shown by the value of the joins. After about step 50 the 
major group nuclei are well defined and points are slowly to these groups. The 
join values and average group membership slowly increase as the group cen-
troids wander in the metric space. 

A sharp jump in join values occurs at step 86. At step 85 there are 13 groups 
with an average membership of 6.6 points, with 7 relatively large groups, A, B, 
F, H, I, D, and E. (See Fig. 5) The average factor scores or group centroids of the 
13 groups are in Table 2. Note that the 86 cities grouped at step 85 form 13 dis-
tinct groups in the 3 factor space. If the investigator is interested in the identi-
fication of the relatively large number of small distinct core groups, he would 
stop the analysis at this point and allocate the ungrouped cities to the defined 
groups. 

15 The actual groupings for procedures (1) and (2) were performed by the IBM 
7094/360-65 facilities of the University of Chicago's Institute for Computer Research. 
Procedure (3) was performed by the IBM 7094/360-75 facilities at the Ohio State 
University. The centroid and Ward's algorithms are contained in a program written 
by Neely. The optimal grouping algorithm written by Semple may be found in Ohio 
State's Discussion Paper Number 10 footnoted previously. Al l of the algorithms 
are available on UCLA's Campus Computer Network IBM 360-91 facility. 
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TABLE 2. Group Centroids at Step 85 

21 

Group Factors Number of Group 
I 11 III members 

A - 0 . 7 4 - 1 . 6 6 0.90 7 
B 0.32 0.23 1.01 10 
C - 2 . 7 6 - 0 . 6 5 0.43 2 
D 1.06 - 0 . 5 5 - 0 . 5 0 15 
E - 0 . 1 0 - 0 . 9 6 - 0 . 1 1 12 
F 1.84 1.04 - 0 . 6 5 14 
G - 1 . 2 7 0.00 0.31 2 
H 1.58 0.34 0.04 17 
I 1.40 1.59 1.13 7 
J - 0 . 0 5 0.80 - 0 . 6 8 2 
K 1.10 - 1 . 1 3 - 1 . 4 7 5 
L - 1 . 8 6 - 1 . 4 5 0.03 2 
M 2.22 - 0 . 5 1 - 1 . 1 5 3 

TABLE 3. Group membership at step 85 

Towns by number 

Group 
A 1 5 19 57 79 81 106 
B 2 17 18 27 46 52 60 84 89 94 
c 3 72 
D 4 29 33 41 49 50 58 62 63 64 71 75 77 78 116 
E 6 9 21 35 38 43 47 53 59 102 104 111 
F 7 30 34 36 54 67 73 74 76 80 95 97 98 105 
G 12 112 
H 15 

108 
22 

113 
24 

117 
37 37 39 55 56 61 69 82 83 88 90 99 

I 16 25 45 110 114 115 118 
J 20 109 
K 31 32 40 87 107 
L 51 91 
M 70 93 119 

Grouping continues at step 86 by joining groups F and H. Even though the 
two groups are distinct, particularly on the second and third factors, the F and 
H group centroids are the close pair of points at this step. The grouping en-
larges existing groups then, by adding additional points. 

The next distinct change in join value occurs at step 97 when the enlarged 
D and enlarged E groups are joined. At step 96 there are 11 groups with an av-
erage membership of 8.8. The three large groups, D + K + M, E, and F + H, have 
23, 14, and 31 points each respectively. At step 97 there are two large groups 
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about equal in size and ten small groups. Other "hills" in join values occur at 
step 101 when B + J is joined to F + H + I and at step 103 when B + J + F + H-\-I 
is joined to D + K + M + E. There are three major groups at step 101 and two 
major groups at 103. 

The next relatively large hill is reached at step 109 when the two major 
groups, A + C + L + G and B + J + G + H + I + D + K + M + E are joined. At the 
previous step there are seven groups, two of them major. 

TABLE 4. Group centroids at step 108 

Group Factors Number of Group 
I II III members 

enlarged A - 1 . 5 8 - 1 . 4 5 0.77 16 
enlarged B 1.08 0.06 - 0 . 1 4 87 

N - 4 . 9 4 - 2 . 6 2 0.02 3 
O 0.97 3.69 - 0 . 9 1 3 
P 0.13 0.28 3.07 2 
Q 2.45 0.66 - 3 . 1 3 2 
R - 8 . 9 8 - 2 . 2 4 - 0 . 0 6 2 

Note that the small groups represent strongly isolated groups in the three 
factor space. 

As the grouping process continues P, Q, and O are successively joined to the 
extremely large A + B major group. At step 117 there is an extremely sharp 
rise in join values as the isolate group N-\-R is joined to the one large group. The 
final large leap in values comes at the final step when the strongly isolated 
points (68 and 92) are added to the large group. The final group of two isolated 
points have average factor scores of —17.40, 3.25 and —1.11 on each factor re-
spectively. 

As with all single linkage algorithms there is no totally objective criteria 
available to decide where to "cut" the tree. If the investigator is interested in 
a large number of distinct core groups he would stop the grouping at step 85. 
If generality is important, few groups with nearly all points allocated, the tree 
could be cut at step 108 where 109 points are grouped. Studying the entire tree 
to allocate all points there are actually four groups at step 108; enlarged A, en-
larged B, N + R plus other strongly negative isolates, and O + P + Q. 

It is necessary to refer to the original factor structure to interpret the parti-
tion suggested above based on step 108. Group A towns are moderately low on 
factor one, suggesting better than average growth rates. The same group is low 
on the subsidy or second factor, and offers average spending on community 
services indicated by the average score on the third factor. Spatially these 
viable rural truck garden towns are located just beyond convenient daily com-
muting distance from those metropolitan centers extending from Windsor, Nia-
gara Falls and Kingston to Toronto. Most of the towns in the B group have 
stagnant growth, indicated by a moderately high score on the first factor, and 
have average government subsidy and average level of community services, 
both of the latter being indicated by average scores. These towns in general 
occupy the more rural farming areas of southern Ontario. The N and R isolates 
are the fast growing dormitory suburban towns located within easy commuting 
distance of their respective metropolitan center. Group O clearly shows the 
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towns receiving heavy subsidies; P consists of those towns with extremely high 
level of local services. Group Q is composed of towns with low growth and 
a poor level of services and a moderate level of subsidization. Groups O, P and 
Q occupy cores of some of the poorest farming areas in southern portions of 
the province. 

TABLE 5. Group membership at step 105 

Towns by number 

Group 
A 1 3 
B 2 4 

22 24 
37 38 
53 54 
69 70 
84 85 

102 104 
118 119 

N 8 48 
O 13 42 
P 23 66 
Q 26 65 
R 101 103 

THE W A R D ' S GROUPING 

The complicated tree of Fig. 6 is the result of the Ward's algorithm. Group 
size is very stable and persists until very late in the grouping. The join values 
increase monotonically as is characteristic of the method with no abrupt change. 
The investigator could stop the grouping at almost any step if he is interested 
in a certain number of partitions. However, from the tree, note that step 107 is 
the last step that preserves the identity of the several large core groups, A, B, 
C, D, and G. 

The major groups are about equal in membership. As the grouping continues, 
the large groups are linked until at step 116 there are three partitions, A + B + C, 

TABLE 6. Group centroids at step 107 

Group Factors Number of Group 
1 II III members 

A - 1 . 3 5 - 1 . 5 2 0.70 12 
B 0.05 0.28 0.97 16 
C 0.21 - 1 . 1 9 - 0 . 2 5 18 
D 1.83 0.53 - 0 . 1 6 24 
E - 4 . 2 7 - 2 . 5 8 0.67 5 
F 1.31 1.98 0.18 15 
G 1.37 - 0 . 3 3 - 1 . 0 4 23 
H - 8 . 9 8 - 2 . 2 4 - 0 . 0 6 2 

5 12 91 106 112 120 
6 7 9 14 15 16 17 18 20 21 

25 27 29 30 31 32 33 34 35 36 
39 40 41 43 45 46 47 49 50 52 
55 56 58 59 60 61 62 63 64 67 
71 73 74 75 76 77 78 80 82 83 
87 88 89 90 93 94 95 97 98 99 

105 107 108 109 110 111 111 113 116 117 

86 
96 
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TABLE 7. Group membership at step 107 — Ward's 

A 1 3 5 19 51 57 72 81 91 106 120 
B 2 12 17 18 20 23 27 46 52 60 66 84 89 89 94 109 112 
C 4 6 9 14 21 31 35 38 40 43 47 53 59 77 85 102 104 111 
D 7 15 22 24 37 39 55 56 61 69 73 76 80 82 83 88 90 95 97 98 99 108 113 117 
£ 8 28 44 48 86 
F 13 16 25 30 36 42 45 54 67 74 96 110 114 115 118 
G 26 29 32 33 34 41 49 50 58 62 63 64 65 70 71 75 78 87 93 105 107 116 119 
H 100 103 

D + G + F, and isolates. The linked large groups are stable through even the 
final few steps till step 117. Step 116 represents the final stage preserving any 
core group identity; after that step there is only one very large group and 
isolates. 

The first group of towns has a factor structure that indicates average 
growth, moderately low subsidization, and an average level of community serv-
ices. The membership is essentially an enlarged group A of the centroid algo-
rithm. The spatial arrangement is therefore somewhat similar, except that the 
average distance of the centers from the metropolitan areas is greater. 

TABLE 8. Group centroids at step 116 

Group 
Factors Number of 

II III members 

A + B+C - 0 . 2 5 - 0 . 7 6 0.42 49 
D + E+F 1.53 0.56 - 0 . 4 0 62 
Isolates - 6 . 6 0 - 1 . 8 9 0.59 8 

TABLE 9. Group membership at step 1 16 — Ward's 

A + B+C 
1 3 4 5 9 19 21 35 
2 6 10 11 12 14 17 18 

D + E+F 
7 15 22 24 37 39 55 56 

13 26 29 32 33 34 41 49 
16 25 30 36 42 45 54 67 

Isolates 
8 28 44 48 68 86 100 103 

38 43 51 53 57 59 72 77 79 
20 23 27 31 40 46 47 52 60 

61 69 73 76 80 82 83 88 90 
50 58 62 63 64 65 70 71 75 
74 96 114 115 110 118 

81 91 102 104 106 111 120 
66 84 85 89 94 109 101 

95 97 98 99 108 113 117 
78 87 93 105 107 116 119 

The second partition shows high scores on the first factor, indicating ex-
tremely low growth; average subsidies, and average community service. The 
large group has nearly the same membership and spatial structure as the B 
group of the centroid method. 

The isolates, from this method, contain only those towns with extremely 
rapid growth. Virtually all are dormitory centers. 
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THE O P T I M A L GROUPING 

This algorithm identified three significant groups of towns. Each group is 
identified by its centroid (Table 10) and by the towns which are assigned to it 
(Table 11). Group A contains seventy-two towns, B forty, and C only eight. 
These three groups accounted for 89 percent of the variability on the three 
viability dimensions. 

TABLE 10. Group centroids 

Factors Number of 
Group  

I II III members 

A 1.38 0.62 - 0 . 1 2 72 
B - 0 . 6 5 - 1 . 2 6 0.29 40 
C - 9 . 1 9 0.83 - 0 . 2 9 8 

Group A is associated with those towns that have a high positive score on 
factor one, and an average score on factor two and factor three. This group is 
essentially the same as the second grouping of both the previous methods except 
that it is of intermediate size. Consequently, towns of Group A are characterized 
by slow growth, moderate subsidization and a moderate level of spending on 
recreation and community services. The four towns of this group which are 
most similar to the group centroid and hence most representative of the group 

TABLE 11. Group membership 

Towns by number 

Group 
2 7 11 13 15 16 17 20 22 24 25 26 

27 30 32 33 34 36 37 39 41 42 . 45 50 
52 54 55 56 58 60 61 62 63 64 65 66 
67 69 70 71 72 74 75 76 77 78 80 82 
83 87 88 89 90 93 95 96 97 98 99 105 

107 108 109 110 113 114 115 116 117 118 119 
1 3 4 5 6 9 12 14 18 19 21 23 

28 29 31 35 38 40 43 44 47 49 51 53 
57 59 72 79 81 84 85 86 91 94 102 104 

106 111 112 120 
8 10 48 68 92 100 101 103 

are Wiarton, Port Elgin, Campellford and Stirling. It is noteworthy that these 
four towns occupy the core regions of the two poorest and most rural farming 
areas of southern Ontario. Port Elgin and Wiarton in Grey County represent 
marginal farming areas in a zone of poor quality soils and limestone outcrops. 
They are the farthest removed from the large urban markets to the south and 
represent at the present time an area of rural out-migration. Cambellford and 
Stirling are located in a zone of marginal farming in Northumberland and 
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Hastings Counties in eastern Ontario. These centers are mid-way between 
Toronto and Ottawa and are isolated by distance from the industrial area to the 
west. 

Group B is associated with those towns that have an average index on 
factor one, a low negative index on factor two, and a high positive index on 
factor three. Consequently, towns in group B can be considered to have mod-
erate growth rates, low aid from grants and subsidies, and low levels of ex-
penditures on recreation and community services. This group contains es-
sentially the same type of town as the initial groups of the previous two 
methods. For the most part the towns in this group are prosperous rural central 
places and retirement towns associated with the market gardening and fruit 
farming zones located in close proximity to the urbanized zone stretching from 
Toronto to the Niagara Peninsula. Secondary clusterings are found in the 
cornbelt area near Windsor and a third group along the St. Lawrence Seaway. 

The towns of group C are associated with large negative scores on factor one, 
high positive scores on factor two and low negative scores on factor three. This 
group corresponds closely to the isolates of Ward's algorithm. Towns in this 
group are fast growing, highly subsidized, and they have rapidly expanding 
recreation and community services. The town that is most representative of this 
small group is Streetsville. It is a dormitory town located no more than twenty-
five minutes by expressway from either Toronto or Hamilton and less than 
fifteen minutes from the three cities of Burlinton, Oakville and Mississauga. 
The towns in this group, with the exception of Bancroft (a town with a fluctuat-
ing mining economy), are located in predominantly rural settings but have 
convenient access to large urban areas. 

CONCLUSION 

The different groupings identified by the test algorithms established an im-
portant point. No matter how objective the algorithm, some subjectivity always 
exists. Not only is the choice of data, parameters, and method of grouping im-
portant, but the investigator should be aware of the consequences of his deci-
sions. One example would be the awareness of the inability of the centroid and 
Ward's algorithms to identify certain data patterns.16 Another would be the 
inability of Semple's algorithm to determine meaningful group unless the data 
are naturally clustered. Warnings such as these have been pointed out well by 
Johnston (1968). 

University of California, Los Angeles 
The Ohio State University, Columbus 
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S T R U C T U R A L C H A N G E S O F T H E E C O N O M I C R E G I O N S I N P O L A N D : 
A S T U D Y B Y F A C T O R A N A L Y S I S O F C O M M O D I T Y F L O W S 

Z B Y S Z K O C H O J N I C K I A N D T E R E S A C Z Y Ż 

INTRODUCTION 

Between the elements of spatial economic structure there are various types 
of linkage. Among these, of particular areal significance, are those revealing 
the spatial links which occur between various phases of the production process 
as well as between production and consumption. These are expressed above all 
in the exchange of all kinds of goods and services. Such exchanges are reflected 
most strikingly in commodity flows. These flows establish a basic measure of 
the links, i.e., interregional links binding together the fundamental structural 
elements of space economy; these elements are the economic regions. That the 
phenomenon of commodity flows is a measure of inter-regional connections 
is substantiated by the fact that such flows reveal the magnitude of goods ex-
changed which, in turn, expresses a geographical division of labour seen in 
the specialization and complexity of individual economic regions. 

The inter-regional exchange is deeply rooted in the chain of basic relations 
of economic processes. Essentially, it is the inequality within the regions 
between the level and structure of production and the level and structure of 
consumption which forms the basis for inter-regional exchange. 

The breakthrough in research on inter-regional connections based on com-
modity flows was achieved by E. Ullman (1957) who worked out for the United 
States the pattern of commodity flows between states, and presented the cha-
racteristics of certain states from an interpretation of flow phenomena. 
However, it was only later through the efforts of W. Isard (1954, 1961) that the 
theoretical conclusions resulting from such analyses were applied to the in-
vestigation of regional patterns. According to W. Isard, investigations of com-
modity flows establish the essential contents of inter-regional dependence 
which are not taken into account in the Lôsch's (1940) regional model. Com-
modity flows also throw light on the existence of regions of different order 
in a hierarchical arrangement of regional structure. 

This type of research was undertaken in Poland by Z. Chojnicki (1961, 1964) 
and W. Morawski (1968 a, b). 

Z. Chojnicki determined the degree of integration and differentiation of 
the nation's spatial structure based on the rail traffic flows between the 
voivodships for 1958. This study revealed that Poland is one region, its economic 
centre being Upper Silesia. Only within this primary transport region some 
additional subareas can be distinguished. Within the core area of industrial 
production conceived on a national scale there are — outside the Upper Silesian 
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conurbation — two subcentres: Wrocław strongly related to the north-western 
part of the whole country and Cracow related to the south-eastern part. More-
over, there are several subregions characterized by more intensive exchange of 
some products within them than with other areas. To these belong the north-
eastern part of the country with Warsaw at its main economic centre and the 
west-northern part with Poznań and the main seaports. The importance of 
this is however reduced because the author, having limited statistical data at 
his disposal, discusses these inter-regional flows only in terms of tonnage and 
not of monetary value. 

W. Morawski continued the research of inter-regional flows using value 
data for 1962. The results confirm that the whole regional system of Poland 
exhibits a conspicuous orientation towards the region of Upper Silesia. 

A somewhat different approach, but perhaps the most promising for the 
structure of flow patterns, was adopted by B. J. L. Berry (1966, 1967, 1968). 
His methods is based on the extraction of redundancies in the m X m correlation 
of commodity flows using factor analysis. In R-mode analysis, the (column) 
correlation matrix is factored, yielding groups of destinations (factor loadings) 
similar in terms of the manner in which their needs are assembled. The factor 
scores identify those origins important in shipping to each group. Q-mode 
analysis results in essentially the same information for origins. Berry's analysis 
of Indian commodity flows between 36 trade blocks follow this methodology. 

The concept of the flow matrix is further employed by B. J. L. Berry (1966, 
1968) in his general field theory of spatial structure and spatial behaviour. 
This theory considers a system that consists of places, attributes of places, and 
interactions between places, all seen through time. Factoring the nXa attribute 
matrix yields a structural dimension, and an nXs structure matrix can be 
created. Similarly, various forms of interaction, including commodity flows of 
different kinds, can be used to build an (n2 — n)Xy interaction matrix, where 
(n2 — n) dyads are treated as individual observations. This matrix can be 
reduced to an (n2 —n)Xb behaviour matrix, again by factor analysis. Cannonical 
correlation analysis provides the means of observing the similarity between 
places and groups of places in terms of their scores on the structural and be-
havioral dimensions. 

T H E S C O P E O F T H E S T U D Y 

This study will analyse the structural changes of economic regions in Poland 
based on railroad commodity flows during the period 1958-1966. 

Railroad transport in Poland plays a major role in the inter-regional ex-
change of goods. In Poland the railways share the largest part of the total 
freight tonnage moved (82,1%) and of all transportation movements (95,3%). 
This justifies to a high degree the representative character of railway transport 
as an indicator of commodity flows. 

Data from the official state statistics of commodity flows by railways bet-
ween 17 voivodships in 1958 and 1966 served as the starting-point. These data 
are published in the form of matrices, the volume of the flows being recorded 
in physical units of measurement, i.e., in tons. The matrices contain commodity 
flows for the following 17 freight groups: 

(1) bituminous coal, 
(2) brown coal and coke, 
(3) ores and pyrites, 
(4) stones, 
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(5) sands and gravels, 
(6) crude and refined petroleum, 
(7) metals and metal manufactures, 
(8) bricks, 
(9) cement, 

(10) artificial fertilizers, 
(11) chemical products, 
(12) grains, 
(13) potatoes, 
(14) sugar beets, 
(15) other crops and processed agricultural products, 
(16) timber and timber manufactures, 
(17) other freight. 
However, there are obvious limitations to the scope of the conclusions and 

estimates resulting from the regional implications of the physical volume of 
commodity flow. Thus, those data on the physical volumes of the flows have 
been processed so as to achieve their (estimated) value size. This processing has 
been completed on the basis of a value index of the particular 17 groups of 
commodities, which was estimated by W. Morawski (1967). These indices are 
presented in Table 1. 

TABLE 1. Index of value of one ton of commodities dispatched by railways 
based on the 1962 structure of production and dispatches 

G r o u P Categories of commodities V a l u e o f o n e t o n i n z l 

number (in factory prices) 

(1) Bituminous coal 350 
(2) Brown coal and coke 555 
(3) Ores and pyrites 450 
(4) Stones 95 
(5) Sands and gravels 45 
(6) Crude and refined petroleum 1985 
(7) Metals and metal manufactures 4580 
(8) Bricks 235 
(9) Cement 450 

(10) Artificial fertilizers 1060 
(11) Other chemical products 5310 
(12) Grains 3200 
(13) Potatoes 837 
(14) Sugar beets 505 
(15) Other crops and processed agricultural products 3800 
(16) Timber and timber manufactures 2040 
(17) Other freight 7540 

The value of commodity flows based on the statistics of railway freight 
haulage, from the point of view of their application to regional analysis, is 
limited with respect to the following: 

(1) The 17 voivodships as the consigning-receiving units provide too little 
spatial detail and permit an analysis of commodity flows only on a macro-
regional scale. This limits analysis to higher order regions only. 

3 Geographia Polonica 
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(2) There is insufficient differentiation in generic grouping of freight in the 
16 classified groups. From the economic point of view these do not have an 
homogeneous character and this makes impossible any differentiation in the 
individual types of raw materials and finished products. This also applies to 
any introduction of economic accounting in terms of monetary value. 

(3) Other limitations result from the existence of crosshauls, extenuated 
hauls and back-hauls which do not represent true economic links. 

Despite this, however, a comparison of railway freight flows on the inter-
regional scale does show the existence of basic regional contrasts which, from 
the point of view of regional analysis, possess fundamental significance: they 
permit one to grasp the chief inequalities in the distribution of the output of 
raw materials and mass products, and they reflect the major elements of the 
geographical division of labour. 

The definition of Poland's regional structure on the basis of the statistical 
material characterized above is limited to the existing voivodship framework. 
There is no possibility of achieving a correction of this division and as a result, 
one can only approximate reality. 

Recognition of this fact limits the investigation of regional structure to the 
voivodship as the basic element, therefore establishing the administrative-eco-
nomic units as the economic regions. It must be emphasized that the degree to 
which such an analysis is adequate is closely defined by the suitability of this 
initial system; only to that extent can one accept this analysis of the regional 
economic structure of the country. 

Analysing the structure of the system of economic regions in this form is 
an exercise in definition based on flows, types of commodities of the economic 
regions, as well as on the links occurring between them. Investigation of the 
system's structure depends on the elaboration of the kind of relationships arising 
between the system's elements. The complex of these relationships can be named 
according to the nature of the connecting elements. This establishes a substitute 
for research on the regional structure because it permits the recognition of the 
whole feature of these structural elements as well as the existing relations 
between them. This emerges only from the investigation of regional peculia-
rities, and results from the individual features which distinguish one region 
from other regions. 

Referring the investigation of regional structure to that of the spatial re-
gional structure as given, the analysis can proceed to the first important 
problem, that of the complexity of the system of economic regions regarding 
their character as elements of that system, and the links between them. 

T H E A N A L Y S I S 

The analysis of regional structure of Poland in this paper is based on the ap-
plication of two methods: 

(1) principal factor method introduced by H. Hotelling (1933), 
(2) grouping algorithm presented by J. D. Nystuen and M. F. Dacey (1961). 
The mathematical procedure starts from an interaction matrix of the order 

272X17, in which the (172 —17) possible pairs of voivodship-regions (dyads) 
occupy the rows and 17 kinds of interaction (commodities) occupy the columns. 
Dyads are treated as individual observations. The types of commodity become 
the variables in this analysis. 

This matrix is transformed into a matrix of standardized data, also of type 
272X17, which consists of the values of the particular standardized variables 
expressed in units of standard deviation. 
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Normalization is completed on the basis of the formula: 

x^-x, i= 1, 2,... N, 
(1) Sj j = 1, 2, ... n, 

where: 
xti = value of variable j of dyad i, 

Xj = mean of N values of variable j (N denotes the number of dyads), 
Sj — standard deviation of variable j. 

The relationships between variables are expressed by help of the coefficient 
of correlation: 

(2) 

The correlation matrix of order n is a symmetrical matrix. 
Multiple factor analysis extracts the factor (hypothetical variables), which 

constitutes the basis of correlations observed in a given set variables (x1} x2,... 
xn). These factors may be treated as causes of the variation observed; it is then 
possible to interpret them as being of considerable importance in the measure-
ment and explanation of variation. Factor analysis helps to reduce a primary 
set of variables that are characteristic of the objects under observation to a con-
siderably smaller number of factors. In this manner, the number of dimensions 
of the objects diminishes and analysis becomes simpler. 

In factor analysis n observed variables characterizing a set of N dyads is 
linear function of m unknown "common factors" (Fu F2,... Fn), where m < n 
and a "unique factor" for each of the variables (Uj, U2,... Un): 

z> = ailF1+aJlFi+...amFrn+a}Uj, (3) 
where a's are called factor loadings. 

If we assume that both the observed variables and the factors are at stan-
dard form (i.e. with the mean equal to zero and the variance equal to unity) 
and if we further assume that the factors are uncorrelated, then the variance of 
the observed variables, z,, can be computed from 

s2zj = 1 = a^+a2j2+ ... +a2TO+af = hj+a2,; (4) 
h) is called the communality and it is that part of the variance of the observed 
variable, which is due to the common factors, while aj the uniqueness is that 
part of the variance, which is due to the unique factor. 

Factor analysis, as D. N. Lawley and A. E. Maxwell (1963) emphasize, usually 
implies some hypothesis as to the number of common factors underlying the set 
of variables in the research problem. 

Factor analysis, which consists in examing the communality of features re-
sulting from the operation of common factors, is carried out on reduced corre-
lation matrix in the form: 

( 5 ) 
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h) denotes the communality of variable j and is approximated from the formula: 

(6) 

where rjk and rjt are maxima coefficients of correlation of variable j. 
The basic problem of factor analysis is to determine the coefficients aju... 

ajm of the common factors. This determination can be made by principal factor 
method. 

The principal factor method makes possible the extraction of factors, which 
explain the maximum communality and give the smallest possible residuals in 
the correlation matrix. This means, that the sum of squares of the factor load-
ings is the largest possible for each variable. 

The analysis begins with a factor F1 whose contribution to the communality 
of the variables has as great a total as possible. Then the first — factor residual 
correlation is obtained, including the residual communalities. A second factor F2, 
independent of with a maximum contribution to the residual communality is 
next found. This process is continued until the total communality is analysed. 

If the composition of a statistical variable is taken to be 

Zj = anF1+aj2F2+ ... +ajmFm j = 1, 2, ... n , 

with the unique factor omitted, the communality of zi is then given by: 

h) = a)1+a2j2 + ...a)m. (8) 

The sum of the contribution of factor Fj to the communalities of the n varia-
bles is 

Ax = fln+a2i+ ••• +«r (9) 

The solution of the problem consists in finding such values of the coefficients 
a^j for which Au assumes the maximum value, the following condition being 
fulfilled: 

(10) 

We have here a problem involving the maximization of Au a function of 
several variables which in turn are connected by a set of relationships. The ma-
thematical procedure as outlined in H. H. Harman (1960) involves the use of 
Lagrangian multipliers to obtain a set of n equations of the form 

These equations constitute the bass for the calculation of the unknown coe-
fficients atl. 

A necessary condition for the solution of this set of equations is that the 
determinant of the coefficients a jx must be equal to 0. 
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(12) 

This is a characteristic equation, in which all roots are real. 
Corresponding to the first root or eigenvalue of this equation is a column 

vector or eigenvector (an , a21, ... ani), which when scaled by the factor yields 
the coefficients au, a21, ... anl. 

11/2 (13) ( H y 
\ « 1 1 + «21 + « n i / 

The residual correlation matrix [R'] can then be computed as and the solution 
could proceed with finding the largest eigenvalue of this residual matrix, and 
so on. 

[R'] = [R]-[an][anY (14) 
H. Hotelling introduced a simplified method of calculating factor loadings 

in solving the main factor. He used an approximate determination of the cha-
racteristic roots by the iteration process method without the previous unfolding 
of the characteristic determinant (H. H. Harman, 1960). 

In this paper H. Hotelling's iterative method is used. The solution was based 
on a programme in Gier Algol IV language using the Gier computer. 

The computer-derived solution in our example yields the following eigenva-
lues: 

for 1958 kx = 7, 9695, A2 = 2,8342, 
for 1966 A, = 5, 2469, A2 = 3, 1879. 

Each eigenvalue accounts for a percentage of the total common variance. 
The question of how many factors should be interpreted is difficult. A con-

venient rule of thumb seems to be to evaluate all factors with an eigenvalue 
equal to or greater than one or, alternately to evaluate each one which ac-
counts for a sufficiently high proportion of this communality. 

In this example, factor analysis carried out by the principal factor method 
yields the factorial matrices of type 17X2 for 1958 and 1966, which contain the 
loadings of two factors in 17 variables (Table 2 and 3). Two factors accounted 
for 95% of a total common variance in 1958 and 75% in 1966. 

The interpretation of the factors is usually important in a research problem. 
This interpretation is done mainly with reference to the factor loadings, which 
have the form of a coefficient of correlation between the variable and a given 
factor. 

On any factor some variables will have low loadings and consequently will 
be ignored in the process of giving an interpretation to the factor. 

We assume, that the regional structure is a linear function of some simple 
patterns and the factors in the linear model should illustrate the simple struc-
ture. 

In 1958 an underlying two-factor structure was revealed. Factor I, account-
ing for 70.32% of common variance, consist of three groups: (1) raw ma-
terials of mineral origin (bituminous coal, brown coal and coke, ores, stones, 
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TABLE 2. Factor structure 
Dyadic analysis of 17 commodities in Poland, 1958 

Group Categories of commodities 
Factor loadings 

number 
Categories of commodities 

I II 

(1) Bituminous coal 0.6958 -0 .4241 
(2) Brown coal and coke 0.8649 -0 .3570 
(3) Ores 0.8221 -0 .3998 
(4) Stones 0.5925 0.0087 
(5) Sands and gravels 0.9033 -0 .1220 
(6) Crude and refined petroleum 0.4266 0.0561 
(7) Metals and metal manufactures 0.7814 -0 .3945 
(8) Bricks 0.7623 0.3239 
(9) Cement 0.5963 -0 .2578 

(10) Artificial fertilizers 0.4901 0.1274 

(11) Other chemical products 0.8900 -0 .3023 
(12) Grains 0.4901 0.1274 
(13) Potatoes 0.2709 0.5307 
(14) Sugar beets 0.4304 0.7131 
(15) Other crops and processed agricultural 

products 0.3144 0.4502 
(16) Timber and timber manufactures 0.7683 0.4523 
(17) Other freight 0.9477 0.0455 

A 7.9695 2.8342 

Per cent of common variance explained by the factor 70.32 25.01 

sands and graves), (2) industrial goods (metals and metal manufactures, bricks, 
cement, artificial fertilizers, other freight), (3) timber and timber manufac-
tures. Accounting for 25% of communality, Factor II represent agricultural 
products. Strong loadings are recorded by the commodities: grains, potatoes, 
sugar beets. 

In 1966 situation changed very much. The identification of factors is not so 
clear. Factor I explains only 46% of the total common variance of the variables 
and comprises mainly industrial products and ores (ores, metals and metal ma-
nufactures, other chemical products, other freight), agricultural products (grains, 
sugar beets, other crops and processed agricultural products), timber and 
timber manufactures. Factor II is based primarily on the loadings by the raw 
materials for fuel and building (brown coal and coke, stones, bricks). This 
factor explains about 28 per cent of the communality of features. 

Then the factor scores for dyads were evaluated according to the equation 
[F] = [Z][A], (15) 

where 
[F] = matrix of factor score, 
[Z] = an observation matrix, 
[A] = matrix of factor loadings. 

This factor scores matrix of type 272X2 was transformed into two matrices 
for every year (1958 and 1966) of order 17, being a starting-point for the spatial 
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TABLE 3. Factor structure 
Dyadic analysis of commodities in Poland, 1966 

Group Categories of commodities 
Factor loadings 

Number 
Categories of commodities 

I II 

(1) Bituminous coal -0 .0003 0.1868 
(2) Brown coal and coke 0.4951 0.7492 
(3) Ores 0.6580 0.6498 
(4) Stones 0.5530 0.7135 
(5) Sands and gravels 0.4488 0.0563 
(6) Crude and refined petroleum 0.1928 -0 .1293 
(7) Metals and metal manufactures 0.5610 -0 .2515 
(8) Bricks 0.4700 0.7355 
(9) Cement 0.3290 -0 .0017 

(10) Artificial fertilizers 0.3993 0.0961 
OD Other chemical products 0.5629 -0 .3587 
(12) Grains 0.8197 0.0882 
(13) Potatoes 0.3303 0.0704 
(14) Sugar beets 0.6983 -0 .4895 
(15) Other crops and processed agricultural 

products 0.7201 -0 .5430 
(16) Timber and timber manufactures 0.7392 -0 .2677 
(17) Other freight 0.7547 -0 .5283 

A 5.2469 3.1879 

Per cent of common variance explained by the factor 46.07 27.99 

grouping, which we can call "latent structure matrix" or using the term of 
B. J. L. Berry "the behaviour matrix". 

Each cell of the matrix corresponds to a different element of interregional 
exchange, i.e., to a different inter-regional connection. The cells on the main 
diagonal referring to connection within each of the particular regions were 
omitted. 

In the rows of the matrix for every factor we read outflows in the term of 
factor score from the particular regions i.e. their active connections, whereas in 
the colums we read the inflows, i.e., the passive connections (Tables 4—7). * 

F A C T O R I N T E R P R E T A T I O N 

The second step of our analysis is associated with the problem of generaliz-
ing two basic factors into a system of regional structure, changing in time. This 
analysis requires the grouping together of voivodships on the basis flows in the 
term of dyad factor scores. 

As the method of grouping dyads for each factor we used the method describ-
ed by J. D. Nystuen and M. F. Dacey (1961), applied originally to telephone 
traffic in Washington. The application of basic theorems of graph theory inter-
pretation by J. D. Nystuen and M. F. Dacey, permits hierarchical relations 
between voivodships to be established in two aspects: outflows (active connec-
tions) and inflows (passive connections). If the connections in terms of factor 

* Tables 4—7 at the end of the volume 
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scores are ranked according to their magnitudes in the rows and columns, it is 
possible to determine the dominant and subordinate voivodships. The dominant 
voivodship is one which records its largest flow to a lower order voivodship. 
The subordinate voivodship is one for which the largest f low is to a higher 
order voivodship (Fig. 1). 

Fig. 1. A d j a c e n t y m a t r i x of g r a p h F 2 (1958) 
1 — largest outflow; 2 — largest inflow 

The resulting hierarchy structure describing the regional pattern for each 
factor in both years is presented on 8 graphs for passive and active connections 
(Figs. 2-9). 

The structure established by isolating the largest flows in the same manner 
as was described on graphs permit maps to be drawn of regional structure. 

The pattern of connection presented on maps establishes a synthetic descrip-
tion of the complexities of the country's regional structure. That complexity is 
expressed in the differentiation of various forces integrating the inter-regio-
nal links. 

The main descriptive conclusions concerning regional structure, can be drawn 
from a comparative analysis of changes in time of factor one, which identified 
the mining and manufacturing industry. First of all the whole regional system 
of country exhibits the most intensive connections with Katowice. The connec-
tions with Katowice occupy first place in the inter-regional flows of all other 
regions, endowing Katowice with a focal character on the national scale. This 
defines the role of Katowice (The Upper Silesian Industrial District) as that area 
upon which are focussed the productive-industrial activities of the country, 
the basic sections of heavy industry: coal-mining, metallurgy, engineering and 
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TABLE 8. Regional 

Factor 
Kind of 

connections 

1958 

I order II order 

active 
connections 

(1) Katowice (whole 
country) 

(1) Wrocław (Zielona Góra, 
Szczecin, Koszalin) 

(2) Kraków (Rzeszów, 
Lublin) 

Factor I passive (1) Katowice (whole (1) Bydgoszcz 
connections country) (Gdańsk) 

(2) Warszawa (Poznań, 
Zielona Góra, Szczecin, 
Olsztyn, Białystok, Lublin) 

(3) Kraków (Rzeszów) 

active 
connections 

Factor II passive 
connections 

(1) Olsztyn (Gdańsk, 
Białystok, Katowice) 

(2) Koszalin (Szczecin) 
(3) Poznań (Wrocław, Opole 

Kielce, Bydgoszcz, 
Warszawa) 

(4) Lublin (Zielona Góra, 
Rzeszów, Łódź, Kraków) 

(1) Poznań (Zielona Góra, 
Szczecin, Koszalin, 
Bydgoszcz, Warszawa, 
Gdańsk, Wrocław, Opole, 
Łódź, Kraków, Rzeszów) 

(2) Katowice (Lublin, Kielce, 
Olsztyn, Białystok) 

(1) Rzeszów (Kraków) 

(1) Koszalin (Gdańsk, 
Kraków, Rzeszów) 

(2) Warszawa (Opole) 

chemicals. The high degree of its specialization links it with a wide area, and 
as a result, gives a unity which is the functional basis of its ability for full 
complex economic development; thus simultaneously it also establishes its own 
inner coherence. The high intensity of the commodity flows of Katowice, the 
uniformity of links, the active and passive type of dependence and its character 
as an open economic region reflect the predominant role played by the raw 
materials and industry of this region in the structure of the national economy. 
As a result of its nodal organization, therefore, Katowice can be considered as 
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structure of Poland 

1966 

III order I order II order III order 

(1) Szczecin (1) Katowice (whole (1) Wrocław 
(Koszalin) country) (Zielona Góra) 

(2) Szczecin 
(Koszalin) 

(3) Bydgoszcz 
(Gdańsk, Olsztyn) 

(4) Warszawa 
(Białystok) 

(5) Kraków (Lublin, 
Rzeszów) 

(1) Poznań (1) Katowice (Opole, (1) Wrocław 
(Zielona Wrocław, Zielona Góra, (Zielona Góra) 
Góra) Bydgoszcz, Gdańsk, (2) Bydgoszcz 

Warszawa, Białystok, (Gdańsk) 
Kielce, Kraków, (3) Warszawa 
Rzeszów, Lublin) (Białystok) 

(2) Poznań (Koszalin, Łódź) (4) Kraków (1) Rzeszów 
(Rzeszów, Lublin) (Lublin) 

(1) Katowice (whole (1) Wrocław (Zielona Góra) 
country) 

(1) Kraków (1) Wrocław (Warszawa, (1) Rzeszów (Poznań) 
(Rzeszów) Zielona Góra, Katowice, (2) Warszawa (Szczecin) 

Poznań, Szczecin, (3) Koszalin (Białystok) 
Rzeszów) (4) Lublin (Bydgoszcz) 

(2) Kraków (Koszalin, (5) Opole (Olsztyn) 
Białystok) 

(3) Łódź (Lublin, 
Bydgoszcz) 

(4) Kielce (Gdańsk, Opole) 

the focal economic region in the national system with no changes in active con-
nections in time. (Table 8). 

Second order pattern is different for active and passive connections. The ac-
tive connections constitute two regions: Wroclaw and Krakow voivodship, the 
passive connections — three: Bydgoszcz, Warszawa, Krakôw voivodship. The 
changes in time in the second order patterns show the further differentiation 
and origin of new regional centres: active — Szczecin, Bydgoszcz, Warszawa 
voivodship; passive — Wroclaw voivodship. 
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Fig. 4. Factor I. Interregional passive connections, 1958 

Fig. 9. Factor II. Interregional passive connections, 1966 http://rcin.org.pl
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Fig. 6. Factor II. Interregional active connections, 1958 

Fig. 7. Factor II. Interregional active connections, 1966 http://rcin.org.pl
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Fig. 8. Factor II. Interregional passive connections, 1958 

Fig. 9. Factor II. Interregional passive connections, 1966 
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The system is much more complicated and some subordinated regions are not 
continuous to its superior regions. This is probably partly attributable however 
to the some changes in the nature of the factor including also agricultural flows. 

Factor two in 1958 picks out mainly agricultural patterns. These relations 
permit one to find certain elements for division into structure of more uniform 
regional organization. The nature of the second factor is not the same in 1966. 
This is why we can not compare the resulting structure in time. In 1966 second 
factor identifies the raw materials for fuel and building. 

In the analysis of commodity flows for the purpose of organization of regions 
into a hierarchy one must emphasize that the different types of connections 
give varied organization, which is insufficiently integrated to establish the clear 
functional regional system. 

Adam Mickiewicz University, Poznań 
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C A N O N I C A L C O R R E L A T I O N I N G E O G R A P H I C A L A N A L Y S I S 

D . M I C H A E L R A Y A N D P A U L R . L O H N E S 

N E W I N T E R P R E T I V E D E V I C E S I N C A N O N I C A L C O R R E L A T I O N A N A L Y S I S 

The potential contribution to geographic research of canonical correlation 
analysis as a powerful multivariate tool to investigate spatial interrelationships 
between two data sets has been demonstrated in a number of recent studies 
(L. J. King, 1969, pp. 217-222 and P. R. Gould, 1969, pp. 13-14). Berry's work 
on Indian commodity flows suggested a synthesis of formal and functional re-
gions using a general field theory of spatial behavior comprising places, the 
attributes of those places and the interactions among them (B. J. L. Berry, 1966, 
and Brian J. L. Berry, 1968, pp. 419-428). Gauthier's research in the Sao Paulo 
region employed canonical correlation analysis to investigate the nature of the 
interrelationships between nodal accessibility and urban growth and identified 
the "lead" effects of transportation (H. L. Gauthier, 1968, pp. 77-94). Ray's ana-
lysis of Canadian census data revealed a hierarchy of heartland-hinterland rela-
tionships between economic and cultural characteristics that are related to cen-
tripetal and centrifugal spatial forces (D. M. Ray, 1971). 

It is the purpose of this paper to describe and illustrate a number of inter-
pretive devices which have recently emerged and which have not before been 
utilized in the geographic literature. These devices are the computation of the 
canonical factor structure matrix, the variances extracted from each measure-
ment domain by the canonical factors, the redundancy of the canonical factors 
of one set given those of the other, and the canonical factor scores. The canoni-
cal factor structure matrix provides the correlations of the variables (or measu-
rement domain) with the canonical factors and takes the place of the raw ca-
nonical vectors in which the variances are uncontrolled. The variances extrac-
ted from a measurement domain by a canonical factor may shrink to insignifi-
cance if its canonical correlation with the corresponding factor for the other 
measurement domain is low. A better measure of the interrelationships be-
tween the two measurement domains being analyzed is the redundancy measure, 
which is the product of the variance extracted and the variance shared for 
each pair of canonical factors. This paper also introduces the notion of cano-
nical factor scores which correspond to the scores computed in principal com-
ponents analysis and which provide a mapping of the observation units into the 
canonical factor space. The computation of these indexes is described in the ma-
thematical section which follows. Two research examples are then provided 
to illustrate the application and interpretation of the technique. 

4 Geographia Polonica http://rcin.org.pl
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T H E M A T H E M A T I C S 

Canonical correlation analysis provides a method for exposing the structure 
of relationships between pj measurements in one vector zx and p2 measurements 
in a second vector z2 when both vectors of measurements have been taken on one 
population. The px measurements in vector zx in the second research example 
presented in this paper are eleven labor force characteristics, and the p2 meas-
urements in vector z2 are eight cultural characteristics, where the vectors Zj and 
z2 are any given census county in the two measurement domains. Hotelling in-
troduced the technique to determine the substitutability of vector zx for vector 
ztz in the measurement of an observation (H. Hotelling, 1935, pp. 139-142). By 
contrast, it may be assumed that the two measurement domains will be clearly 
distinguishable in geographic research and that the interest will focus on the in-
terrelationships exposed. The example mentioned thus compares an acquired set 
of characteristics (labor force characteristics) with inherited characteristics (mo-
ther tongue). The canonical analysis is needed because neither the zero-order 
cross-correlations, of which there are PiXp2 , nor the full set of multiple correla-
tions of each measurement from each vector with all the measurements of the 
other vector, of which there are Pi+P2 , provide a suitably parsimonious exposi-
tion of the structure of relationships, especially if px and p2 are sizeable num-
bers. Moreover, neither of these alternatives resolves the implications of the 
correlation structures within each vector for the understanding of the cross-
correlation structure between vectors. The most competitive modeling proce-
dure is to perform orthogonal factor analyses on the two measurement domains 
separately, and then display the zero-order or multiple correlations relating 
factors of the two domains. This alternative emphasizes the internal structure 
within each vector and underemphasizes the cross-correlation structure between 
the vectors, whereas the canonical analysis emphasizes the cross-correlations 
while also considering the internal correlations. 

Although modern computing algorithms permit us to arrive at all the cano-
nical correlations simultaneously, it is helpful to think of the analysis as pro-
ceeding in steps, and indeed it may be so computed. From this viewpoint, the 
first task is to locate one linear component of each measurement vector in a fa-
shion that maximizes the correlation of the two components. Call these first 
canonical components and where: 

The problem is to choose the coefficients vectors cx and d1 so that the first 
canonical correlation, R1} is maximized. 

Note that all variables and components are assumed to be standardized to 
zero means and unit standard deviations throughout this discussion. Thus, in 
¿Cj and 7/j we have selected the maximally correlated factors of the two measu-
rement vectors Zi and z2. 

The next step is to locate a second linear component of each measurement 
vector such that the correlation of these components is maximized under the 
restriction that the correlations of these second canonical components with the 
first canonical components must be zero. The second canonical components are 

xl = cl'z1 and y 1 =rd 1 ' z 2 . 

N 

1 = 1 

x2 = c2'z1 and y2 = d2' z2. 
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The second canonical correlation is 

The restrictions are 
rx _ = 0 , r r „ = 0 , r„ „ = 0, rx u = 0 . 

In further steps it is possible to locate additional pairs of canonical compo-
nents such that at each step the new components are maximally correlated sub-
ject to the restriction that all their correlations with preceding components are 
zero. Assuming p2 ^ plf there are p2 canonical correlations available, but of 
course they descend in size as the steps progress and some of them may be trivial. 
It usually becomes a matter of scientific judgment as to how many pairs of 
canonical factors to include in a model for data. Let n be this number, which 
may be called the rank of the model for the data, where n^.p2^.p1. We array 
the n column vectors of coefficients of z1 in the matrix C, which then has pj rows 
and n columns. We array the n column vectors of coefficients for the n 
canonical components (or factors) of z2 in the matrix D, which then has 
P2 rows and n columns. If we let Rn stand for the square, symmetric matrix of 
intercorrelations among the p1 measurements in vector zlf the jactor structure 
matrix containing the correlations of the measurements in z1 with their canoni-
cal components is 

S — R C 
in which the elements sjk is the correlation of the jth measurement with the Jcth 
canonical component. 

The structure coefficients giving the correlations of the measurements in 
z2 with their canonical components are given by 

S 2 — 

where R22 is the matrix of intercorrelations among the p2 measurements in z2. 
These structure coefficients are most useful in understanding and interpreting 
the canonical components in terms of their relations with the known measure-
ments on which they are based. Meredith first suggested the use of structure 
coefficients in the interpretation of canonical components in 1964 (M. Meredith, 
1964, pp. 55-64). A convenient property of orthogonal factors, such as canonical 
factors, is that the structure coefficients are equal to the factor loadings. 

Several indices may be computed from the factor structure matrices. The 
sum of squares across a row of Sx or S2 gives the communality of a measure-
ment, which is the proportion of the variance of the measurement explained or 
extracted by the n canonical factors. The sum of squares for a column (a factor) 
of Sj or S2, divided by the number of rows (p1 or p2), gives the proportion of 
the generalized variance of the measurement domain extracted by that factor. 
The redundancy of each factor in one set of measurements when the correspond-
ing factor of the other set is available is given by the product of the proportion 
of variance extracted by the factor times the squared canonical correlation. 
That is, the redundancy of factor k of zx when factor k of z2 is available is 

1 Pl 

- Y * 2 p, Z_J 1 , k 
U l k = Rz 

Notice that the bracketed term is the proportion of variance extracted by 
the term. In general these redundancies of corresponding factors will not be 
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equal because the factors will not extract the same proportions of variance 
from their respective domains. Redundancy is an important index because 
a factor may have a strong canonical correlation but be a trivial explanatory 
construct for the measurement vector it is based on. The redundancy measure 
was proposed by Stewart and Love in 1968 (D. K. Stewart and W. A. Love, 1968, 
pp. 160-163). The total redundancy of one set of canonical factors given the 
availability of the other set is simply the sum of the redundancies for the 
factors. That is, 

T. W. Anderson (T. W. Anderson, 1958, pp. 288-306) proves that the complete 
canonical analysis is computed as the eigenstructure of the nonsymmetric 
matrix product 

where R n and R22 are as previously defined, R12 is the cross-correlations bet-
ween the measurements in zx and those in z2, and 

R21 = R12. 
The eigenstructure is 

(R^R21R^R12)V = VL 

where L is a diagonal matrix of eigenvalues and V is a matrix in which 
the jth column contains the eigenvector for Xj. The eigenvalues of this matrix 
product are the squared canonical correlation coefficients R2k. The right 
eigenvectors are weights for the canonical variates of z2. Since eigenvectors 
are defined only up to a constant of proportionality which may vary as a func-
tion of the numerical analysis procedure employed, it is necessary to scale the 
raw eigenvectors to guarantee unit variances for the canonical factors. Lett-
ing V be the raw eigenvectors, we get the desired coefficients for factors of z2 as 

i 

D = V(V'R22V)~ 2 

(the uncorrelatedness of the factors is verified by the observation that V R22 V 
is a diagonal matrix). When we have the coefficients dk for the fcth factor of z2 

(as the fc-th column of D), the corresponding coefficients for the kth factor of z1 

are obtained as 

rtfc 

This formula is derived by T. W. Anderson (T. W. Anderson, 1958, pp. 
288-306). A complete account of the canonical analysis procedure may be found 
in Cooley and Lohnes who list a FORTRAN program for computing such ana-
lyses which was used to compute the two research examples which follow in 
this presentation, and who provide the following numerical example (W. W. Co-
oley and P. R. Lohnes, 1971). 

Assume these relationships among two measures in zy and two measures 
in z2: 

1.00 .20 1.00 .40 | 
R ii = = I . _ .. j ^ 2 2 = = 

.20 1.00 
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•Ri 
.50 .60 

! .30 .40 

Ri2 is: Then the required matrix product R22 -1 ^21 1 

1.041 - . 2 0 8 
- . 2 0 8 1.041 

The required eigenvalues may be obtained by expanding the following 
determinant and calculating the roots of the resulting quadratic equation: 

.50 .30 1.190 —.476 ; ; .50 .60 .206 .251 
| .60 .40 ; ' - . 4 7 6 1.190 ' .30 .40 .278 .341 

.206 —X .251 

.278 .341- /1 = 0 

These roots are Xx = R\ = .546 and l2 = R22 = .001, so that R1 = .74 and 
R2 = .03. We easily decide that the second canonical correlation is trivial in 
magnitude and should be ignored, so we choose the rank of our canonical model 
to be n = 1. The raw eigenvector that goes with the first eigenvalue may be 
obtained as the cofactors of the first row of the determinantal equation: 

v, = 

Solving the scaling equation dx 

- . 2 0 5 
- . 2 7 8 

u1(viR22v1)~i yields 
.545 
.737 

Solving the equation Cj = (R11iR12d1) 
1 

RT 
.856 
.278 

Thus the first canonical factors are 
x1 = .856zli + .278zl2 and yx = .545z2i + .737z22 

To get the structure coefficients which represent the correlations between 
these canonical factors and the measurements on which they are based we form 

s i — - R u c i — 
.967 
.620 

and Sn — R 9 9 dn — 
.692 j 

.846 

The proportion of the generalized variance in the first set of measures ex-
tracted by factor x1 is [(.967)2 + (.620)2]/2 = .660, and this times the first canonical 
R2 gives .36 as the redundancy of the first factor of z1 given the availability of 
the first factor of z2. Similarly, the proportion of the generalized variance in z2 
extracted by yx is .597, and the redundancy of yx given xl is .33. Since the 
canonical model is of rank one, it also appears that Uj = .36 and U2 — .33. 

What has been revealed about the structure of relationships among these 
four variates by the canonical analysis? First of all, the three correlation 
matrices, jRn, R22, and R12, reveal that the cross-correlations between variates 
of zx and those of z2 are stronger than the internal correlations within zx or 
within z2. The strongest bivariate correlation in the system is .60 between the 
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first variate of z1 and the second variate of z2. A factor of has been located 
that correlates .74 with a located factor of z2. The structure coefficients show 
that the canonical factor of zx has a very strong correlation (.97) with the first 
variate of and a moderate correlation (.62) with the second variate of 
This canonical factor is an important explanatory construct for zly inasmuch as 
it extracts 66% of the generalized variance. That the strongest correlation (.85) 
of the factor of 2j2 is with the second variate of z2 is consistent with the location 
of the strongest bivariate cross-correlation. Again this is a general factor of 
some importance in explaining z2, since it extracts 60% of the generalized 
variance. The two redundancy indices are nearly the same (.36 and .33) and 
may be taken as indications that the canonical model shows approximately a 
third of the generalized variance in each measurement domain as redundant, 
given the other. 

The most significant result is perhaps the overwhelming adequacy of a rank 
one model for the canonical correlation analysis of the data. Parsimony has 
been achieved without loss of precision. 

M O R B I D I T Y A N D S O C I O - E C O N O M I C T R A I T S IN B U F F A L O 

The application and interpretation of canonical correlation analysis is now 
illustrated by a highly-simplified example based on a recent study of the in-
terrelationships between and the spatial structure of morbidity and socio-eco-
nomic traits in Buffalo.1 Morbidity research has revealed significant rela-
tionships between disease and socio-economic characteristics in a number of 
United States urban centers. For example, the incidence of cancer of the 
respiratory system has been found to increase among the lower socio-economic 
groups in studies conducted in Buffalo and New Haven (E. M. Cohart, 1955, 
pp. 455-461). Nevertheless, no previous attempts had been made to explore the 
relationships between a wide range of morbidity and socio-economic charac-
teristics. 

Recent records for nine types of morbidity were gathered for the Buffalo 
Standard Metropolitan Statistical Area.2 These data were coded and aggregated 
by census tract to make them compatible for analysis with a selection of 
seventy-four socio-economic variables from the 1960 census. 

The morbidity and socio-economic measurement domains have been reduced 
to their underlying dimensions by separate factor analyses for the purposes of 
this example and a reworked canonical correlation analysis is presented below 
using a selection of four of the socio-economic and three of the morbidity fac-
tors. The first socio-economic dimension describes the young-married white 
population, including some Canadian and United Kingdom immigrants, pre-
dominantly in the age group 25 to 50 years, with children under 15. This group 
is associated with post-war constructed owner-occupied housing, and a diversi-
fied occupation structure including professionals, and machinery and transpor-
tation workers. A second white factor identifies young-single, and older im-

1 The authors wish to thank Mr. Mindangus Matulionis for his assistance in 
providing the data, which were gathered for his M. A. thesis, State University of 
New York at Buffalo, Department of Geography, 1970. 

2 The data were made available by the Respiratory Disease Association of W e s t -
ern New York Inc., the Public Health Research Institute for Chronic Diseases of 
the State University of New York Medical School at Buffalo, the Erie County 
Health Department and the Roswell Park Memorial Institute, a Cancer research 
hospital. The morbidity data was classified where possible, by sex and race providing 
twenty-two morbidity measures. 
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migrant groups (predominantly Germans and Italians and with some Canadians 
and British) living in older downtown housing and largely in the 15 to 25 age 
group, but also with concentrations of population over 50 years. The black 
population forms a separate factor, reflecting their distinctive location, their 
relative concentration in unskilled occupations and their more-crowded housing 
conditions. Dilapidated housing, however, is not significantly associated with 
the proportion of census tract population that is black, and comprises a specific 
fourth factor. 

Certain of these socio-economic characteristics are explicitly recognized in 
the morbidity data. The data on respiratory diseases are classified by the two 
dominant racial groups, with the exception of lung cancer and emphysema for 
which no data are available for the black population. The asthma data are 
restricted to children 16 years and under, the age group for which it is most 
prevalent. 

The racial classification of the morbidity cases reflects itself in the factors. 
Asthma separates into two factors, the first identifying non-black ethnic groups, 
the second linking asthma and tuberculosis in both the male and female black 
population. The third morbidity factor identifies all male emphysema cases 
and mild female emphysema cases. 

The scores of the 172 Buffalo census tracts on the four socio-economic and 
three morbidity factors are used as input variables for the canonical correlation 
analysis. The canonical factor structure matrix, shown in Table 1, reveals two 
significant and one residual pattern of association between the two measure-
ment domains. Not surprisingly, the black population and incidence of respira-
tory diseases among negro population are strongly associated; indeed, every 
census tract with a high score (above 2.0) on the black socio-economic variable, 
has a correspondingly high score on the black respiratory morbidity incidence. 

TABLE 1. Canonical correlation analysis of socio-economic and morbidity data: Buffalo, N. Y. 

Canonical Factors 

I II III 

Socio-economic variables 
(1) Young-married white - . 4 3 0 - . 8 6 6 .214 
(2) Single, downtown white .241 .143 .541 
(3) Black .868 - . 4 6 6 - . 0 1 9 
(4) Dilapidated housing .030 - . 1 2 0 - . 8 1 8 
Morbidity variables 
(1) Asthma (white) - . 2 5 9 - . 7 1 9 .647 
(2) Respiratory (black) .939 - . 3 4 3 - . 0 2 9 
(3) Emphysema (white) .090 .586 .805 

Canonical correlation .915 .830 .093 
Chi-square 498.53 193.03 1.44 
Degrees of Freedom 12 6 2 

Note: The variables are the scores on the dimensions of separate varimax-rotated factor 
analyses of socio-economic and morbidity data for the 172 census tracts of the Buffalo S.M.S.A. 

Canonical variables I and II are highly significantly correlated. 
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The canonical correlation between the first pair of canonical factors, .915, is 
in fact a little higher than the simple correlation between the black socio-
economic variable and the black respiratory-disease variable, which is 878 (see 
Table 1). 

The second pair of canonical factors identifies the age differences between 
the predominant occurrence of asthma (children) and tuberculosis (under forty 
years) on the one hand, and emphysema (concentrated among males over forty) 
on the other, and underlines the high asthma incidence in census tracts with 
a predominant young-married white population. Once again the canonical cor-
relation (.830) is higher than the simple correlation between the two variables 
with their highest loading on the canonical variates (.630 between young-
married white and asthma). None of the socio-economic variables used identifies 
by a negative sign with emphysema in the second pair of canonical factors, 
and no importance can be attached to the high coefficients of emphysema, 
single downtown white population and dilapidated housing on the third, residual 
pair of canonical variates because of the low canonical correlation. 

The variance extracted from the measurement domains by each of the three 
pairs of canonical correlates is much the same, but the redundancy measure 
for the third pair is severely reduced by the low canonical correlation (see 
Table 2). 

TABLE 2. Canonical variance extracted and redundancy: Buffalo example 

Canonical 
factors 

Squared 
canonical 

correlation 

Socio-economic 
variables 

Morbidity 
variables 

variance 
extracted 

redundancy variance 
extracted 

redundancy 

1 .837 .250 .209 .318 .266 
2 .688 .251 .172 .326 .224 
3 .009 .251 .002 .356 .003 

Total .752 .383 1.000 .494 

This analysis of the Buffalo morbidity-socio-economic variables is highly 
simplified, and the complete data indicate other inter-relationships, such as 
the relative concentration of cancer of the digestive system among the Polish-
ethnic population, related, presumably, to their diet. Nonetheless, the first two 
pairs of canonical variates in the above analysis also dominate the factor 
structure in the canonical correlation analysis of the complete data, and this 
analysis reveals more than can be learned from a simple correlation alone of 
the two sets of scores from the factor analysis, which, it will be recalled, is the 
most competitive modeling procedure. 

THE OCCUPATION A N D C U L T U R A L STRUCTURE IN C A N A D A 

The second research example investigates the interrelationships and spatial 
structure of occupational and cultural characteristics in Canada. Since Con-
federation in 1867, Canada has achieved a rate of economic and population 
growth that is among the highest in the world. Migration has contributed a 
surprisingly small proportion of the population increase because of heavy em-
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migration, but it has produced a cultural diversity that is retained as a national 
mosaic with associated occupational and social-class attributes. These attributes 
are spatially interwoven to produce distinctive regionalisms that threaten na-
tional unity and, as demonstrated by the recent tragic events in Quebec Prov-
ince, "it is unlikely that regionalism is anywhere at the centre of more national 
problems" (G. Merrill, 1968, pp. 531-555). 

An earlier attempt to investigate the interrelationships between cultural 
and economic characteristics in seven of Canada's ten provinces commented 
on the difficulty of identifying culture (D. M. Ray, 1971). Culture is defined 
by the Canada Royal Commission on Bilingualism and Biculturalism as "a way 
of being, thinking and feeling. It is a driving force animating a significant 
group of individuals united by a common tongue, and sharing the same customs, 
habits and experience" (Canada, 1967, p. XXXI). The earlier canonical correla-
tion study employed census data on place of birth, ethnic origin and religion 
together with period of immigration to identify culture, although the analysis 
revealed serious errors in the census ethnic data. This example employs mother 
tongue as a surrogate measure of culture because it is less subject to ennumera-
tion error than ethnic origin and because it may be a more sensitive indicator 
of cultural attachment.3 This example also uses an expanded set of seven occupa-
tion groups supplemented by the labor-force participation rate, unemployment 
rate, male/female employment ratio and average family income for the whole 
of Canada. 

Some high correlations occur both among the occupational and the mother 
tongue data, and between the two measurement domains (see Tables 3, 4 and 5). 
The occupational correlations underline the expected spatial association of the 
professional and managerial work-force (.643) and the contrast between areas 
with concentration of such workers and those with concentrations of farmers 
and a high male to female ratio of the labor force. The highest positive correla-
tion in the complete RX1 matrix is .770 between per cent of the county male labor 
force in professional occupations and county average family income. The highest 
negative correlation is — .724 between farmes and craftsmen. 

The correlation table for mother tongue reveals the almost complete spatial 
separation of English and French cultures in Canada (r = — .940). This separa-
tion can be traced to the locational differences in initial colonization, the 
tendency of English settlers to migrate from any area becoming predominantly 
French-Canadian, and the tendency for minority groups to be assimilated. The 
complete R22 matrix indicates that the German, Italian, Polish and Ukrainian 
all have positive correlations with English and negative with French, revealing 
the tendency for minority ethnic groups to be located in regions that are 
predominantly English. The Jewish group is an important exception, being 
almost entirely located in the largest metropolitan centers, including Montreal. 

The high within-group correlations make the patterns of between-group 
association more difficult to discern, though the R21 matrix indicates some of 
the important dimensions of association. The highest positive correlation with 
per cent of county labor force in managerial occupations is English ( + .323) 
and the highest negative is French ( — .262). The census data in fact reveals that 
7.6% of the French ethnic labor force is employed in managerial work, compar-
ed with 12.1% of the British and 10.2% of the total labor force. Even in Quebec 

3 Ethnic origin is based upon the racial, linguistic or national origin of the 
individual, if he is an immigrant, or, in the case of native-born Canadians, of the 
paternal ancestor who first entered the North American continent. Mother tongue 
is more simply the language learned at birth and still spoken. Some assimilation of 
ethnic minority groups has occurred and, for example, 1 0 % of Canada's population 
reporting French ethnic origin, have English mother tongue. http://rcin.org.pl
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TABLE 3. Correlation matrix ( /?n) for selected occupational data: Canada 1961 

No. Variable 1 2 3 5 
Name Managers Professional Farmers Miners 

(2) Professional .643 
(3) Farmers - . 3 9 6 - . 5 3 4 
(5) Miners - . 1 2 4 - . 0 3 2 - . 2 3 6 
(9) Male/Female L.F. 

ratio - . 5 2 9 - . 4 4 8 .197 .220 

Note: The occupation data are for male labor force as a per cent of total male labor force. 
For definitions and a discussion of the ethnic composition of the labor force see Canada, 
Dominion Bureau of Statistics, 1961 Census of Canada, General Review, Series 7.1 Bulletin 12 
The Canadian Labor Force, 1967. 

The correlations indicate the degree and direction of spatial association at the census 
county level. 

TABLE 4. Correlation matrix (/?22) for selected mother tongue data: Canada, 1961 

Indian 
Mother Tongue English French and Italian Polish 

Eskimo 

French - . 9 4 0 
Indian and Eskimo - . 0 1 0 - . 1 7 2 
Italian .136 - . 1 9 5 .024 
Polish .190 - . 4 1 0 .176 .283 
Yiddish (Jewish) - . 0 4 1 .004 - . 0 5 3 .363 

Note: Mother tongue is language learned at birth and still spoken. 

TABLE 5. Correlation matrix (/?21) for selected occupational and mother 
tongue variables by census county: Canada, 1961 

Mother Tongue Mana-
gerial 

Profes-
sional 

Farmers Loggers 
etc. 

Miners 

Male/ 
Female 
Labor 
Force 
Ratio 

Average 
Family 
Income 

English .323 .089 - . 0 6 0 .051 - . 0 0 1 .123 .080 
French - . 2 6 2 - . 0 6 5 - . 0 9 6 .021 - . 0 4 3 - . 1 4 5 - . 0 9 8 
Indian and Eskimo - . 1 5 5 - . 0 6 8 .040 .134 .348 .190 - . 0 7 2 
Italian .308 .379 - . 3 3 4 - . 1 0 6 .241 - . 1 5 3 .507 
Polish - . 1 9 8 - . 1 5 2 .477 - . 1 4 3 - . 0 4 3 .064 - . 1 5 6 
Yiddish (Jewish) .284 .347 - . 1 6 6 - . 1 3 5 - . 0 3 1 - . 2 2 9 .306 

Note: "Loggers" is defined by the census of Canada to include fishermen, trappers and 
hunters. See Tables 3 and 4 for other data definitions. 
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Province, which is 81% French, "the firms which provide most employment 
and which most influence the course of economic development are owned and 
controlled by English-language interests," (Canada, 1967, pp. IX-IV) so that the 
proportion of the French-Canadian labor force in managerial occupations is 
exceeded, even in Quebec Province, by almost every other ethnic group (see 
Table 6). Thus A. H. Richmond (1969, p. 7) writes, 

"Already, the economic domination of American and English-Canadian com-
panies means that, with the growth of industrialization, immigrants and native-
born French-speaking Canadians alike have found themselves compelled to learn 
English in order to take advantages of opportunities for upward social mobility. 
The present crisis in Quebec is in large part an indication of the determination 
of French-Canadians that this will not be the sine qua non of individual or 
collective prosperity in the future. A 'quiet revolution' has been taking 
place ..." 

The highest correlations between the county proportion of the male labor 
force in professional occupations and the mother tongue proportions of the 
county population are for Italian and Jewish. (See Table 5.) The Jewish labor 
force has the most extreme occupation profile in Canada with 13.7% in profes-
sional and technical occupations compared with 7.6% for the total labor force. 
By contrast only 2.8% of Italian labor force is in professional and technical 
occupations and 19.2% is employed as laborers, compared with 1.1% for the 
Jewish. But the Italian group is almost as concentrated in large urban centers 
as the Jewish (75% of the Italians compared with 94% of Jews living in the 
census metropolitan areas in 1961), so that their county intercorrelation (.362) 
is the highest either has with any mother tongue group. Thus the Italian group 
shares, vicariously, the high association of the Jewish population with pro-
fessional occupations and high average family income. The Polish group iden-
tifies with farming, reflecting the relative concentration of the Slavic popula-
tion in the farming regions of western Canada. The Indian and Eskimo popula-
tion has rather low correlations with all the occupational variables, but, as 
expected, has its highest correlations with loggers (which includes fishermen, 
trappers and hunters), miners and a high male to female labor force ratio. 

As in the previous example, the interrelationships between the two measure-
ment domains are more clearly focussed in the factor structure matrix than in 
the simple correlation matrix so that the correlations of the occupational and 
mother tongue variables are higher with their respective canonical factors than 

TABLE 6. Per cent of male labor force, 15 years of age and over, 
in managerial occupations in Quebec Province, by ethnic group: 1961 

Ethnic group Per cent Ethnic group Per cent 

French 7.9 Polish 13.3 
British 15.4 Scandinavian 14.8 
German 11.2 Ukrainian 8.1 
Hungarian 9.9 Other European 15.2 
Italian 6.1 Asiatic 25.1 
Jewish 37.7 Native Indian 3.1 
Netherlands 14.2 Total 9.6 

Source: Canada, DBS, (1967), pp. 12-114 to 12-115. 
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with each other (see Table 7). The first canonical factor, which is examined here 
in some detail, loads on the Polish-Ukrainian-German population and 
farming. The structure coefficients are somewhat higher for the cultural 
than for the labor force variables so that the variance extracted (which 
equals the mean sum of squares) is .232 compared with .184 (see Table 8). 
Multiplying the variance extracted by the squared canonical correlation (.512) 
gives a redundancy in the labor force data given the cultural data of .094, 
and of .232 in the cultural data given the labor force data. In part, the difference 
between the two redundancy measures may reflect the three extra labor force 
variables which may add to the dimensionality, or rank, of the labor force 
matrix. In part, the difference in the redundancy measure reflects a truly 
asymmetric relationship between occupation and mother tongue on the first 
canonical factor in which three cultural groups are highly associated with 
a single occupation. 

Two scores may be computed for each county on the first canonical factor 
score and the simple correlation computed between these scores and a set of 

TABLE 7. Occupational and mother tongue canonical factors: 
Canada, 1961 

Canonical factors 
I II III IV V 

Labor force 
(1) Managerial - 2 0 9 476 508 - 4 3 6 170 
(2) Professional - 1 7 3 557 128 - 2 4 8 509 
(3) Farm Workers 803 - 5 0 3 - 0 5 2 - 1 9 0 - 2 2 2 
(4) Loggers - 3 5 1 - 1 2 2 117 528 - 1 9 6 
(5) Miners 003 453 - 1 7 5 611 - 2 4 1 
(6) Craftsmen - 6 2 4 461 - 3 1 2 - 1 8 8 154 
(7) Laborers - 6 2 5 109 - 2 2 5 292 - 0 0 4 
(8) Labor Force Participation Rate 484 593 - 0 1 2 - 3 4 2 185 
(9) Male/Female Labor Force Ratio 113 - 1 7 2 176 486 - 5 2 5 

(10) Unemployment - 3 9 7 091 033 484 227 
(11) Average Family Income 011 772 - 0 3 8 - 5 1 3 156 

Cultural variables 
(1) English 041 222. 885 011 - 3 1 3 
(2) French - 3 5 8 - 2 8 5 - 8 0 6 - 0 6 9 296 
(3) German 665 034 137 - 2 5 9 - 2 2 0 
(4) Indian & Eskimo 328 255 - 0 3 2 764 - 1 0 1 
(5) Italian - 0 2 9 895 - 1 0 9 - 0 6 5 078 
(6) Polish 746 340 028 055 109 
(7) Ukrainian 788 - 1 9 3 - 0 2 2 208 248 
(8) Yiddish 046 390 217 - 2 1 7 836 

Canonical Correlation .715 .703 .599 .489 .372 
Chi-Square 510.67 354.38 206.08 109.39 39.69 
Degrees of freedom 88. 70 54 40 28 

Note: Leading decimal points omitted in structure coefficients. Three additional factors are 
extracted but have low redundancies (see Table 8). 
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TABLE 8. Canonical variance extracted and redundancy: Canada example 

61 

Squared Labor force Cultural variables 
Canonical . . 

factor variance redundancy variance Redundancy 
correlation e x t r a c t e d extracted 

1 .512 .184 .094 .232 .119 
2 .494 .202 .100 .163 .080 
3 .358 .046 .016 .187 .068 
4 .240 .174 .042 .094 .023 
5 .139 .077 .011 .128 .018 
6 .044 .058 .003 .060 .003 
7 .022 .066 .001 .040 .001 
8 .012 .055 .001 .093 .001 

marker variables to give the canonical factors spatial expression (see Table 9). 
Again the cultural characteristics have greater regularity and have higher 
correlations but both possess a significant east-west gradient that has been 
identified in previous studies. This gradient has been related to centripetal 
and centrifugal forces acting at an intercontinental scale during the early 
staple-export phase of Canada's economic development when it was closely tied 
to Northwest Europe (W. T. Easterbrook and M. H. Watkins, 1967, and D. M. Ray, 
1971). 

TABLE 9. Spatial structure of the canonical factors 

Simple correlation with : 
distance form 

factor Popula-
tion 

Potential 

Vancou-
ver 

Winni-
peg Toronto 

Mont-
real Halifax 

East-West Contrasts (I) 

Labor force scores - . 2 8 5 - . 4 2 5 - . 5 6 8 .222 .403 .615 
Mother tongue scores - . 3 6 1 - . 5 1 6 - . 7 4 7 .339 .537 .650 

Heartland-Hinterland (IV) 
Labor force scores - . 4 3 4 .153 .070 .320 .161 - . 2 0 2 
Mother tongue scores - . 2 5 0 .107 .034 .099 .062 - . 0 7 9 

Metropolitan (II and V) 

Labor force scores .203 - . 2 6 5 .027 - . 2 0 5 .128 .308 
Mother tongue scores .182 - . 2 6 5 .047 - . 2 1 5 .170 .303 
Labor force scores .298 .165 .041 - . 1 1 8 - . 1 7 4 - . 1 5 6 
Mother tongue scores .386 .226 - . 1 4 8 - . 1 3 7 - . 3 2 5 - . 1 1 8 

English-French contrasts (III) 
Labor force scores 
Mother tongue scores 

.160 

.252 
.143 
.054 

.004 

.090 
.087 
.029 

.320 

.428 
.020 

.050 
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The east-west progression of values on the first canonical factor are illustra-
ted by the provincial averages for five of the variables with high loadings (see 
Table 10). The per cent of the county male labor force in farming increases 
east to west across Canada with a correlation of .429 and the provincial averages 
follow this trend with the severe exceptions of Prince Edward Island and British 
Columbia. The percentage of the male labor force amployed as craftsmen, who 
essentially comprise the factory workers, has a negative loading ( — .624) on 
canonical factor one and a simple correlation with distance from Halifax of 
— .316, although the provincial range in values is much smaller than for farmers. 

TABLE 10. Provincial values for characteristics with high coefficients on the 
east-west canonical factor 

Province 

Total 
popula-

tion 

No. 
of 

Census 

% of male 
labor force 
employed as 

% of population 
with mother tongue 

in 1000's Counties farmers crafts- German Polish Ukrainian 
men 

Newfoundland 458 10 1.8 27.7 0.1 
Prince Edward Island 105 3 32.8 18.6 0.1 0.4 0.1 
Nova Scotia 737 18 6.7 25.7 0.2 0.3 0.1 
New Brunswick 598 15 9.2 25.7 0.2 0.2 0.1 
Quebec 5,259 66 9.1 31.0 0.6 0.1 0.3 
Ontario 6,236 54 8.8 31.5 2.9 1.4 1.4 
Manitoba 922 20 21.3 23.9 9.1 1.4 9.2 
Saskatchewan 925 18 43.2 16.6 9.7 1.9 7.3 
Alberta 1,332 15 25.2 21.6 7.3 1.8 6.3 
British Columbia 1,629 10 5.1 30.8 4.4 1.5 1.2 

Canada 18,238 229 12.2 28.8 3.1 0.9 2.0 

Note: Canada total includes 10 provinces and the Yukon and Northwest Territories 
Source: Canada, DBS (1967), p. 12-9 

The east-west increase in the per cent of the population with German, Polish 
and Ukrainian mother tongue is more regular than that of the employment 
characteristics; the simple correlations with distance from Halifax are .542, 
.531 and .431 respectively. These increases are indicative of the general increase 
in cultural heterogeneity east to west across Canada; no provinces show greater 
cultural heterogeneity than the Prairie Provinces (where more than a quarter 
of the population have a minority-group mother tongue) and none show less 
than the Atlantic Provinces (where less than 3% of the population have mother 
tongue other than English or French). 

The east-west gradient of economic and cultural variation is a pervasive 
element of Canadian geography shared by many other characteristics not in-
cluded in this analysis. Indeed, some characteristics such as population distin-
guished by Canadian province or country of birth and by period of immigration 
have much higher correlations with distance from Halifax than any of the 
characteristics analyzed here. This east-west gradient identifies the relation-
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ships among accessibility, physical resource endowment and timing of regional 
development and the changing European origins of settlers as transportation 
improved and the scale of spatial interaction widened from trans-Atlantic to 
semi-global (Canada, 1965). 

Similarly the remaining canonical factors identify other pervasive elements 
of Canadian geography. The fourth labor force canonical factor focuses on re-
gional disparities in income found in areas with lower population potential and 
it displays a heartland-hinterland pattern (see Table 7 and 9). The highest labor 
force scores are for nothern Manitoba and northern Saskatchewan, and for the 
Newfoundland census counties excluding those along the Corner-Brook — 
St. John's development axis. The fourth mother tongue canonical factor identi-
fies the areas with relative concentrations of Indian and Eskimo but the cano-
nical correlation is rather low (.489) reducing the redundancy of this factor 
(see Table 8). Two pairs of metropolitan factors emerge which appropriately 
distinguish the Italian and Jewish mother tongues and the typical urban occupa-
tion profile and a concentration in professional occupations respectively. The 
scores and values for selected variables, given in Table 11 for the counties 
containing Canada's seventeen metropolitan areas, suggest the systematic 
heartland-hinterland and east-west gradients in the metropolitan characteristics 
of the second pair of canonical factors and the relative high concentration of 
Jewish population in just three cities, Montreal, Toronto and Winnipeg which 
helps to explain the low canonical correlation for the fifth pair of canonical 
correlates. English-French contrasts, which did not load on any canonical factor 
in a previous canonical correlation analysis, have the third highest canonical 
correlation in this analysis (.599) (D. M. Ray, 1971). Nevertheless, the variance 
extracted from the labor force data is only .046 and the corresponding redun-
dancy, .016, compared with a redundancy of .068 for this factor on the cultural 
data. As far as can be judged from available census data, French-English 
differences are predominantly cultural, notwithstanding the low participation 
of French-speaking Canadians in managerial occupations. 

CONCLUSIONS 

Canonical correlation analysis is considerably enhanced by the four new 
interpretive devices described and applied in this paper and it becomes a much 
more powerful analytic technique than factor analysis, the most competitive 
modeling device, where two measurement domains are being analyzed. The 
factor structure matrix identifies the canonical factors by their correlations 
with the measurement domains, as in factor analysis. The variance extracted 
corresponds to the per cent eigenvalue in factor analysis. The product of the 
variance extracted by the squared canonical correlation indicates the variance 
accounted for in one measurement domain given the other, and it is the best 
single indication of where the factoring should stop, or the rank of the models. 
This redundancy measure has no equivalent in factor analysis. The canonical 
factor scores increase the flexibility of the technique and permit further 
analysis of the spatial expression of the canonical factors using marker variables, 
mapping and regionalization. The disparities between the scores for any factor 
on the two measurement domain may be mapped to reveal the spatial deviations 
from the factor association. Such disparities may also appear as secondary 
factors with low canonical correlations. The two research examples indeed only 
probe the application of this technique but should convince most readers of the 
power of canonical correlation in geographical analysis. 
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TABLE 11. The metropolitan scores and marker variables on factors II and V 

Canonical factor II Canonical factor V 

Metropolitan area 
Pop. in 
1000' s 

M.A. C.C. 

ave-
labor rage 
force family 
score l n c " 

ome 

mother 
ton-
gue 

score 

It-
alian 

labor 
force 
score 

pro. mother % 
fess- t o n g u e Je" 
ional s c o r e w i s h 

Atlantic Prov. Mean - . 1 4 $4773 - . 4 2 .07 1.15 6.88 .01 .08 
St. John's 91 189 - 1 . 2 6 4043 - . 5 4 .04 .45 6.36 - . 2 0 .02 
Halifax 184 226 .46 5331 - . 3 3 .19 .160 7.42 - . 0 1 .08 
St. John 96 89 .36 4946 - . 4 0 .09 1.40 6.87 .25 .13 
Quebec Prov. Mean 1.21 5961 1.49 2.32 3.08 10.73 3.90 .95 
Montreal 2110 1872 2.37 6098 3.43 4.49 4.24 10.39 7.26 1.77 
Quebec 358 331 .04 5823 - . 4 5 .19 1.92 11.07 .53 .10 
Prov. of Ontario Mean 1.72 6026 2.06 3.32 .70 8.78 .85 .40 
Hamilton 395 359 1.40 5914 3.30 5.07 .55 7.69 .04 .21 
Kitchener 155 177 2.04 5822 .10 .50 .19 6.65 - . 2 6 .12 
London 181 221 1.16 5824 .68 .96 1.15 8.43 - . 4 1 .10 
Ottawa 430 353 1.51 6879 .95 1.87 2.79 15.19 1.00 .34 
Sudbury 111 166 3.00 5973 2.34 4.05 - 2 . 3 0 5.39 - . 3 3 .10 
Toronto 1824 1733 2.17 6459 4.48 6.55 1.49 10.79 5.35 1.57 
Windsor 193 258 .79 5311 2.59 4.20 1.07 7.30 .57 .33 
Prairie Prov. Mean 1.51 6010 .81 .94 1.23 9.41 2.76 .75 
Winnipeg 476 476 1.30 5874 1.50 .83 1.33 8.71 7.98 1.85 
Calgary 279 318 1.72 6255 .67 1.10 .95 10.21 .07 .24 
Edmonton 338 411 1.52 9502 .25 .89 1.40 9.51 .25 .17 
B. Columbia Mean .53 5629 .61 1.02 .26 8.30 - . 7 2 .09 
Vancouver 790 908 .89 5816 .87 1.38 .65 8.97 - . 6 1 .14 
Victoria 154 291 .17 5442 .34 .65 - . 1 4 7.62 - . 8 2 .03 

Can. Metro. Mean 1.16 5748 1.16 1.94 1.10 8.73 1.21 1.02 

Can. Census Div. Mean 0.00 4463 0.00 .54 0.00 5.12 0.00 .08 

Note: Population is given for the metropolitan area (M.A.) and census county (C.C.), all other 
data are for the census county in which the metropolitan area is located. 
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T H E P R A C T I C A L A P P L I C A T I O N O F O N E D I M E N S I O N A L 
S P E C T R A L A N A L Y S I S 

J O H N N . R A Y N E R 

(1) I N T R O D U C T I O N 

In recent years the geographer has been exposed to a bewildering variety of 
quantitative techniques the usefulness of many of which have yet to be de-
monstrated. Furthermore, discussions of the lesser known techniques tend to 
be very technical or, alternatively, are limited in scope. In consequence the 
relative values of these procedures are difficult to assess by the majority of 
geographers and are quickly dismissed. One such technique is spectral analysis 
which is often wrongly classified as being too complicated or being applicable 
only to periodic data sets of which there are few. This paper attempts to 
review briefly at a relatively non technical level the scope of the technique, 
or better, group of techniques, which may be labelled "spectral" or "Fourier", 
and to describe in detail the simple though long calculations involved. Central 
to these is the Fourier transformation which is nothing more than a particular 
form of curve fitting by least squares. At the outset it should be noted that 
these techniques usually apply to data which have equally spaced coordinates 
in space and/or time. Other arrangements of data are possible but they will 
not be included in the present discussion. 

(2) W H A T I S S P E C T R A L A N A L Y S I S ? 

(2.1) G E N E R A L 

As used by the author this procedure involves the analysis of data through 
a particular transformation which arranges the results in the form of a spec-
trum. The term spectrum has the same meaning as is used for the decomposition 
of light, or more generally, of electromagnetic waves. It refers to the ordering 
of characteristics of a data set according to scale. Thus, for example, light may 
be classified by wavelengths varying between 4/100,OOOths and 7/100,OOOths of 
a centimeter. Alternatively, because these waves are travelling at a constant 
speed of 3X1010 cm s - 1 they may be specified by the frequency at which they 
pass i.e. 7.5X1014 to 4.3 X1014 cycles per second. These are extremely small 
wavelengths and extremely high frequencies but the same ideas may be used 
for other phenomena and other scales. 

Many social and physical data are recorded continuously or at successive 
discrete time intervals. For instance, a large number of temporal series are 
available for the number of vehicles passing specific points in a road network 
per unit time or for atmospheric pressure systems passing a weather station. 
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Similarly maps and photographs record two dimensional series with space 
rather than time as the independent variable. The spectrum rearranges the 
fluctuations in the temporal (or spatial) series according to rank in size or 
scale of time (or space). Therefore, the spectrum of traffic presents the data 
according to the average intervals of time between single vehicles and groups 
of vehicles. It might be anticipated that a strong diurnal fluctuation would 
show up: more vehicles are on the streets during daylight than during darkness. 
This particular class or rank would be labelled one cycle per day, or seven 
cycles per week, or period of one day, etc. Other scales in time will appear. 
They may or may not be obvious in the data (see for example Fig. 1). Often, 
general consistent changes are apparent in the data. These are called trends 
and will appear at the very largest scales in a given study. For example, if in-
terest were centered upon fluctuations of temperature of the scale of seconds 
and the total length of observations were an hour or so, the diurnal fluctuation 
would appear as a trend. At the other extreme, if temperature were considered 
over thousands of years back from the present, the general increase in tem-
perature since the last glaciation would be called a trend. 

Fig. 1 

The spectrum, then, is a particular set of spectacles through which a set of 
data may be viewed. The spectrum will contain the same information as was 
present in the original data but in its new form it may be 1) more easily describ-
ed and interpreted or 2) more easily manipulated. 

(2.2) THE SPECTRUM FOR DESCRIPTION A N D INTERPRETATION 

From the point of view of description and interpretation of data the spectrum 
must be placed alongside the mean and total variance as a statistical charac-
teristic. This is because coordinate data are usually intercorrelated: adjacent 
observations tend to be similar. Therefore, even if the data are normally 
distributed, the mean and variance are not sufficient descriptors. If they were, 
then the next observation along a traverse would be within one standard 
deviation of the mean 68% of the time. For most naturally occurring series the 
last observation on a traverse must be taken into account in predicting the 
next. For example, if the last observation were in the tail of the distribution 
then it is highly likely that the next one would be there also and not close to 
the mean. To quantify this interdependence the autocovariances or autocorrela-
tions are usually calculated. These indicate the degree of relationship between 
adjacent, alternate, every third, fourth etc. observations. Usually the correla-
tion drops off from + 1 at zero lag (distance between observations) and oscillates 
around zero at higher lags, (Fig. 2). The more slowly the autocorrelation function 
descends the more persistent will be the particular phenomenon being observed. 
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Unfortunately, it is not easy to put statistical confidence bands around the 
autocorrelation function and, because the function is itself autocorrelated, it 
is difficult to interpret beyond the first few lags. The same is not true of the 
spectrum of the function. This, it turns out, is the scale decomposition of the 
variance. In other words, it separates the total variance into components which 
characterize a given size of disturbance. For example, in a time series of tempe-
rature the diurnal and annual fluctuations are clearly two separate scales which 
contribute in an additive sense to the total variance. These components viewed 
as percentages of the total variance indicate their relative importance and 
probability of influencing the sequence of temperature. It should be standard 
practice therefore in describing coordinate data to present the spectrum of the 
variance as well as the mean and total variance. 

But the student searches for more than mere description. He also seeks ex-
planation in the form of associations and relationships. The spectrum can be a 
tool toward this end by indicating different generating processes. Frequently 
different processes have different spectra: they produce a peak or set of peaks 
at different scales and the spectra of the phenomena they influence will often 
contain these peaks. Consequently an analysis of the spectrum may suggest 
different lines of investigation. As a further step spectral correlation and 
regression can be carried out between the hypothesized process and the ob-
served phenomenon (Rayner 1967). 

Two types of spectra are produced depending upon the assumptions made 
about the original observations. If the data are assumed to be periodic and 
repeat themselves indefinitely beyond the limits of observation, the spectrum 
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will be made up of discrete lines corresponding to specific frequencies. On the 
other hand, if the data are assumed to be non-periodic then the spectrum will 
be continuous and the characteristic such as variance must be assigned to 
bands containing an infinite number of frequencies (Fig. 3). The sequence of 
calculations necessary for each type is different but the transformation pro-
cedure, which is relatively simple although somewhat tedious (see section 4), 
is the same. 

<2.3) THE SPECTRUM FOR M A N I P U L A T I O N 

Use of the spectrum for the manipulation of data is analogous to the use of 
logarithms. Several types of calculation such as the filtering of data, the 
calculation of differentials, and the recognition of patterns are more easily 
carried out in the spectral domain. The data are assumed to be periodic, are 
transformed, manipulated and are then retransformed. Unlike logarithms all 
the data must be used to produce each transformed element and the procedure 
for retransformation is identical, excepting for a constant, to that for initial 
transformation. This means that the same computer subroutine or calculation 
sheets may be used. 

(2.4) S U M M A R Y 

A restatement of the more important preceding points may help clarify the 
technique for the reader. Spectral analysis is the general name applied to a 
large number of procedures central to which is the calculation of a spectrum by 
means of a Fourier transformation. This is essentially a curve fitting procedure 
where the coefficients of regression are explicitly labelled according to the 
scales of fluctuations present in the original data which may or may not be 
periodic. The uses to which a spectrum is put may be grouped into two classes. 
First, it may be used as a descriptive statistical characteristic to indicate the 
presence or absence of particular scales and to assess their relative importance 
in the data. It may confirm a priori hypotheses or suggest new ones about 
the generating processes giving rise to the fluctuations. Secondly, it may be 
used like logarithms as a means of simplifying calculations. 

(3) O U T L I N E O F T H E A R I T H M E T I C 

Production of the discrete spectrum is the basic step in the calculations and 
is dealt with separately. It involves the calculation of the coefficients, a and b 
for a Fourier series 

n - 1 

X[j] = a[0] + + a|~|cos7ij, (3.0) 
k = l 

where X[j] is one of the n observations. Note that if n is even, say 20, then the 
summation goes from k = 1 to 9 and if n is odd, say 19, then the summation 
goes from k = 1 to 9 and a[n/2] is not included in the equation. 

(3.1) THE DISCRETE SPECTRUM 

The unmodified observations are fed directly into the transformation routine 
(section 4, which works with two sets of data at once) and the results ax[fc] and 
bx[k] provide the basis for further calculations. Both a and b and each of the 
following excepting for (3.1.1) produce spectra. 
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(3.1.1) Frequency 

The frequency k, an integer varying between 0 and n/2, specifies the scales 
calculated as number of cycles (number of complete oscillations of a cosine 
curve) over the data interval n. Therefore, if n = 12 and k = 3 the frequency 
would be 3 cycles in the interval of 12 observations. If the original observations 
were 2 hours apart (At, = 2 hrs.) then this frequency could be expressed in 
cycles per hour by using the relationship, 

frequency, / = k/nAt, (3. 1. 1. 1) 

3 1 and in the above example f would equal — ~ — c y c l e per hour. Alternatively, 
X A o 

the coordinates of the spectral output may be expressed in terms of period or 
wavelength, the inverse of frequency. Thus with k — 3, n = 12 and At = 2 hrs. 
the period becomes 8 hrs. per cycle. 
(3.1.2) Amplitude 

One characteristic of a sinusoidal curve is the amplitude, half the height 
between the maximum and minimum. For a given frequency, k, this is related 
to the cosine and sine coefficients by 

Ax[k] = (al[k]+bl[k]Y'\ ( 3 . 1 . 2 . 1 ) 

(3.1.3) Phase and Phase Shift 

Another useful characteristic of the sinusoidal curve is the position of the 
maximum in the curve as expressed by the phase, 

<Px[k] = arctan(fc> x [ fc] /a x [ fc] ) (degrees) . (3 . 1. 3. 1 

In terms of distance along the original coordinate space this may be conver-
ted to phase shift. 

Distance of maximum from X n 
(3 . 1 . 3 . 2 ) 

origin in units of data spacing k x 360 

(3.1.4) Variance 

The variance of a sinusoidal curve is related to the amplitude 

o2x[k] = Al[k]/2 = (al[k]+bl[k))l2, (3. 1. 4. 1) 

excepting for k = n/2 (n even) when 

6|[n/2] = Al[n/2] = al[n/2]. (3. 1. 4. 2) 

2njk . . 2 Jijk 
c o s - — f - o x s i n 

(3.1.5) Graphical Representation 

Because of the trigonometric relationship 

— = a x n . _ n 

(3 . 1 . 5 . 1) 

Equation (3.0) may be rewritten 
j - i 

X[j] = <Px[k]j + A J n / 2 ] c o s * j , ( 3 . 1 . 5 . 2 ) 
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which says that the series X[j] is the simple arithmetic sum at each [j] of a 
finite number of cosine waves each having its own scale (frequency), amplitude 
and phase. As an example of one such wave, if aa;[2] = 3 and bx[2] = 4, then, 
from equations (3.1.2.1) and (3.1.3.1), Ax[2] = 5 and #x[2] = arctan Vs = 53°8' (see 
Figure 4). It should be noted that A[0] = a[0] is a constant and equal to the 

o n-i 
F i g . 4 

(3.1.6) Aliasing 

Because observations are made at discrete intervals of time or space, the 
calculable frequencies are limited (kmax = n/2). However, the frequencies beyond 
this limit may still be represented in the discrete data, and since every observa-
tion must be accounted for exactly by the calculable frequencies, the magnitude 
of the calculable frequencies may be significantly different from the true 
magnitudes. This effect is known as aliasing. Care is therefore necessary in 
selecting a datum spacing such that the magnitude of frequencies greater than 
fcmax are relatively small. 
(3.2) THE CONTINUOUS SPECTRUM 

There are two different approaches to the calculation of the spectrum of non 
periodic data. For those with little knowledge of the subject it is suggested that 
they select initially the method which will most quickly give them results. The 
results will be comparable but the direct method has advantages of overall 
efficiency on large computers. 
(3.2.1) The auto-covariance method 

This is the older of the two methods and follows from the discussion of auto-
covariances in section 2. The steps are 

(a) Remove mean from the original data. X[i] 
(b) Calculate the auto-covariances for approximately n/10 lags, i.e., 

maximum j = ra + 1 
n - j + 1 

x [ j ] = n - j + 1 1 ] (3.2. 1. 1) 
i = i 

This produces m + l estimates of X[j] 
(c) Either 

(i) Fit zero phase cosine curve to X[j] ( l ^ j ^ n x + l) 
m 

« [ 0 ] = - ¿ r ( X [ l ] + X [ m + l D + - L £ x [ j ] , 
3 = 2 
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m 

a[k] = -Lx[l]+^^]x[flcos + ±-X[m + l]coskn, 
7 = 2 

0 < k < m 

m 

a[m] = _ L - X [ l ] + ( _ l ) j _ 1 X [ j ] , (3. 2. 1/2) 
; = 2 

or 
(ii) Increase X[m + 1] to X[2m] by making 

X[2m + 2 - j ] = X[j] 1 < j < m . (3 .2 .1 .3 ) 

and apply the method in section 4 for X[j]. Since the function is sym-
metrical only a coefficients corresponding to those in (3.2.1.2) will be 
returned. 

(d) Smooth final results to adjust for having analysed a sample of limited 
length from a continuum. For example, the number of terms summed in step b 
decreases with increasing lag. The results are m+1 estimates of the variance 
which must be assigned to bands. The frequencies of the centers of these bands 
are given by k. One simple smoothing procedure which may be used is -y, y, 
known as hanning, 

fi»[0] = 0.5(a I [0]+a I [ l ] )> 

aj[r] = 0.5axpc] + 0 .25 (a [ f c - l ]+a [ f c+ l ] ) f (3. 2. 1.4) 

d|[m] = 0.5 (a[m — 1]-fa [m]), 
where r = k. 

There are no phases and the frequencies are given by r/2mAt in cycles per 
units of t. Each band is not completely independent of adjacent bands. Con-
sequently, they share degrees of freedom of 2n/m each (the end bands have n/m 
degrees of freedom each). 

(3.2.2) The direct method 

(a) Remove mean from original data x[j] of D observations. 
(b) Smooth or taper the ends of data to account for the edge effects produced 

by removing a sample from the continuum. This is similar to smoothing in 
step d. of 3.2.1. Similarly various smoothing routines may be used. For example, 
a cosine bell of 6 observations would multiply the first x by 0 the second by .067, 
the third by .025, the fourth by .5, the fifth by .75, and the sixth by .933. The 
last six observations would be multiplied by the same factors in reverse order. 
This weighting function may be expressed as 

m = i i 1 - 0 0 8 ^ " ) ' (3 .2 .2 .1) 

where G is the number of observations to be smoothed. G is arbitrary but may 
be between D/20 and D/4. 

(c) Add zeros to the end of the data to increase resolution of frequencies 
and to select an N which may be factored. This step produces a series X[j] or N 
observations long. 
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(d) Apply transform of section 4. 
(e) Calculate the variances of the elementary bands using; (3.1.3.2) 
(f) Group the variances by summing the elementary bands to increase sta-

tistical confidence. For example, if 2 z + l elementary bands are added in each 
group, this may be expressed as 

Therefore, the true variance of a given band will be between degrees of 
freedom times the estimated variance divided by the chi square value at the 5% 
level and degrees of freedom times the estimated variance divided by the chi 
square value at the 95% level 90% of the time. 

(3.2.4) Interpretation 

Whereas simple periodic functions have been used in calculating the spectrum 
care should be taken to avoid the assumption that true periodicities necessarily 
exist. Any one band in the continuous spectrum represents an infinite number 
of frequencies centered upon the one used to identify that band. Any charac-
teristic for that band, such as variance, is the sum of the continuous frequencies. 
It may well be that the actual variance fluctuates wildly (look, for example, 
at the elementary bands). The final estimate therefore is only an estimate of 
the central tendency for that band and consequently may be misleading. For 
instance, a band of periods of 9 to 5 days might have all its variance supplied 
by 9 days, yet it would be combined with and swamped by all the other periods 
and assigned to the central period of six days. On the other hand too much 
importance must not be attached to a given elementary band since it has only 
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two degrees of freedom. Obviously specific peaks or valleys must be taken 
as tentative and further analysis, by the taking of more samples or by the 
application of other procedures, will be necessary. The variance spectrum 
should be thought of as a probability function indicating the probable scales 
in the data. Also, remember that aliasing may be a source for serious error. 

(3.3) SPECTRAL REGRESSION AND OTHER USES OF THE FOURIER TRANSFORM 

Cross spectral analysis or spectral regression may be approached either 
through direct calculation of the Fourier coefficients or via a calculation of 
the lagged covariances. In either one the central procedure is the Fourier 
transform. The equations may be found in Rayner (1971). 

The other uses referred to include filtering, differentiation and pattern 
recognition. Again the central procedure is the Fourier transform and the other 
details, which are outside the scope of this paper may be found in Rayner (1971). 

(4) C A L C U L A T I O N OF T H E F O U R I E R C O E F F I C I E N T S 

As already indicated, regardless of whether the original data are assumed 
to be periodic or not the calculation of the spectrum involves the fitting of 
a Fourier Series (an ordered set of sinusoidal curves) by least squares. As 
such it may be considered similar to any other curve fitting procedure. However, 
because sinusoidal functions are orthogonal the arithmetic is considerably 
simplified and calculation of the covariance matrix is unnecessary. Also, a 
number of short-cut algorithms have been developed which involve the mi-
nimum in calculations. Of these, presently the most general and often the 
most efficient is the Fast Fourier Transform. (Gentleman and Sande, 1966). In 
essence this requires that the transform be computed in steps, each one involv-
ing a factor of the total number of observations. Procedures may be developed 
for any factor but that involving the factor 4 is the most efficient. In the 
present discussion the factors 4, 2, 3 and 5 will be used. Hence N, the total number 
of observations, is a restricted set (see table 4.1.1). In detail the Fast Fourier 
Transform may be set up in a number of ways. The one chosen here is one used 
by Sande. It allows the calculation of the transform of two series simultaneously. 
Also, in order to save computer storage space, the answers are stored in the 
locations of the original data and must be sorted at the end. The following 
'hand' calculations are kept in this form so that the reader might easily convert 
them to a program for any size of computer. 

TABLE 4.1.1. Numbers between 1 and 100 with factors 
4, 2, 3 and/or 5 

1 0 

12 

2 
3 
4 
4 
6 
8 

15 
16 

18 

18 

20 
24 
27 
30 

32 
36 
40 
40 
45 
48 
54 
60 

64 
72 
75 
75 
80 
81 

96 
100 
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(4.1) THE TRANSFORMATION ALGORITHM 

Input to the procedure are two equally spaced series X and Y, each with N 
observations which must have factors only 4, 2, 3 and/or 5. If only one series is 
available Y may be entered as zeros. Both X and Y have indices from 1 to N. 
It should be noted that this changes for the unravelling step. 

The calcu^tions are divided into steps, T, (see page 77 for the list and 
further explanation of symbols) each one referring to a different factor FT 
where the factors are labelled 4's first followed by 2's, 3's and 5's. For example, 
if N = 45, Ft = 3, F2 = 3, F3 = 5, and n, the total number of factors or steps, = 3. 

For each factor a sheet has been drawn up indicating what copying, recopy-
ing and arithmetic must be performed. In any step N/FT sheets of the same 
factor FT must be used. Thus, if N = 45, there are required 15 sheets for factor 
F1 = 3, 15 sheets for factor F2 = 3 and 9 sheets for factor F3 = 5, Each step is 
specified by its number T, a counter M and the value of the counter at the 
previous step MP, where M = MP/FT and MP in the first step equals N. Thus 
for N — 45 these variables will be: 

For N = 360 this would read: 
Step no. T 1 2 3 4 5 
Factor FT 4 2 3 3 5 
MP N = 360 90 45 15 5 
M = MP/FT 90 45 15 5 1 

Within each step two indices J and K are used to specify which set of X's 
and Y's and which angles are to be used. Whereas T is the most slowly varying 
index, J is intermediate and K is the fastest. In each step J starts at 1 and in-
creases by 1 to M whereas for each J, K starts at MP and increases by MP to N. 

Therefore for N = 45 J and K take on the following values: 
T = 1, f\ = 3, MP = N = 45, M = 15 
J* = 1 2 3 4 5 6 15 
K = 45 45 45 45 45 45 45 
T = 2, F2 - 3, MP = 15, M - 5 
J1 = 1 2 3 4 5 
K = 15, 30, 45 15, 30, 45 15, 30, 45 15,30, 45 15, 30, 45 
T = 3, F3 = 5, MP = 5, M =-- 1 
X = 1 
K = 5, 10, 15, 20, 25, 30, 35, 40, 45 

To prevent duplication and confusion the top right hand corner of each 
sheet contains sequencing information: 

Step no. T of n, 
Sheet no. ((J— 1) N + K)/MP of N/FT. 

In each step every observation in the X and Y series is processed and is 
replaced by an answer. These answers are used as input X and Y to the succeed-

http://rcin.org.pl



ONE DIMENSIONAL SPECTRAL A N A L Y S I S 77 

ing step. Note that the trigonometric terms are functions of J and not of K. 
Therefore they remain the same in a given step for a given J and may be 
recopied. Also, in the final step the sine term is always zero and the cosine 
always one which simplifies the calculations on those sheets. In recopying for 
'5 AS A FACTOR' X(J0) and Y(J0) are needed twice from the previous step. 
Do not copy line 24 into 25. 
Summary of procedure: 

(1) Factor N and number the factors FT. 
(2) Calculate MP and M for each step. 
(3) Find the values of J and K for each step. 
(4) Label the necessary arithmetic sheets from the above information. 
(5) Proceed by completing the calculations on each sheet whose order is 

indicated by the label. 
The answers of the final step are the unsorted two sided complex coefficients. 

K E Y F O R S Y M B O L S U S E D I N T H E C A L C U L A T I O N S 

N — the total number of observations in one series. N must be the same for 
two series which are to be transformed together 

n — the number of factors in N 
FT — the particular factor of N for which a given sheet is designed e.g. where 

FT = 3 the sheet will be needed "3 AS A FACTOR". 
T — the step number. Is the most slowly varying index. T starts at 1 and 

increases by one for each separate factor 
As an example of the above symbols 

N = F,.F2.F3. ... -F T . ... -Fn 

the following magnitudes might be used: 
N = 360, Fj = 4, F2 = 2, F3 = 3, F4 = 3, F5 = 5, n = 5. 

Note that the factors are ordered such that the 4's are computed first follo-
wed by 2's, 3's and 5's in that order. For sorting the 4's are ignored and only 
2's, 3's and 5's are used as factors. 
MP — a counter from the previous step. For the first step MP = N and in 

succeeding steps MPT = MT_X (M of previous step) 
M — a counter M = MP/FT 
J — an index. Is intermediate between T and K. Starts at 1 and increases 

by 1 to M in a particular step T. Note that the cosines and sines for a 
fixed T and J remain constant so do not need to be recomputed as K 
changes 

K — in index. It the most rapidly changing index. Starts at MP and in-
creases by MP to N for a particular J. 

(4.2) SORTING 

The final answers are arranged in such a way that they be sorted by a set 
of nested indices which are controlled by the factors. It should be noted that 4 
is no longer considered a factor and must be replaced by two 2's. Therefore for 
N = 60 the factors will be F(1) = 2, F(U) = 2, F(111) = 3, F(iv) = 5. Then the indices 
vary such that 

I goes from H to N in steps of NF{ I = H, 60, 30 
H goes from G to N/F ( i ) in steps of N/FwF{ll) H = G, 30,15 

Cont. on page 81 
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G goes f rom F to N/F ( i )F ( i i ) in steps of N/F ( l ) F ( i i ) F(111) G = F, 15, 5 
F goes from E to N/Fa) F ( l l ) F ( i l l ) in steps of N/F ( i ) F ( i i )  
Fan) FlM F = E, 5, 1 
E is 1 
and in full with L increasing by 1 

E = 01 
F = 01 
G = 01 06 11 02 
H = 01 16 06 21 11 26 02 17 
J = 01, 31, 16, 46, 06, 36, 21, 51, 11, 41, 26, 56, 02, 32, 17, etc. 

L = 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 
Then correctly labelled 

X ( l ) is in X ( l ) 
X(2) is in X(31) 
X(3) is in X(16) 

etc. 
X(L) is in X(I) 

For more factors the number of indices must be increased accordingly. The 
most slowly varying index must start at one. 
(4.3) UNRAVELLING THE ODD A N D EVEN PARTS 

The sorted answers contain the cosine and sine coefficients of the X and Y 
series as even and odd functions. If ax[fc], ay[k], bx[fc], and by[k] are the coeffi-
cients of the cosine and sine of functions at frequency k (an integer varying 
from 0 to AT—1) then the computed series 

X[k] = (ax[k]+bv\k])N/2, 
Y[k]=(av{k]-bx{k])N/2. 

Now since the a's are even (symmetrical about N12) and the b's are odd (asym-
metrical about N/2) the four separate coefficients may be unravelled by the 
following: 

ax[k] = ( X p c ] + X [ i V - ? c - 2 ] ) / i V 
bx[k] = (X[k]—X[N—k — 2])/N 
ax[k) = (Y[k]+Y[N-k-2])/N 
bx[k] = — ( Y [k] — Y[N — k — 2])/N 

Note that ax [0] = X[0]/N, ay [0] = Y [0]/iV, bx[ 0] = bv[0] = 0 and if N 
is even ax\N/2] =X[N/2]/N, av[N/2] = Y[N/2]/N, bx[N/2] = bv[N/2] = 0 . 

(5) AN EXAMPLE 

For demonstration two sets of periodic data have been selected. These are 
observations of mean monthly temperatures at 18° intervals along latitude 60°N 
for the months of January and July. Observations, as listed in Table 5.1, were 

17 7 1 + N ~ 1 

For k — 1 to — - — 2 
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interpolated from small scale atlas maps and are only approximate. With N as 
20 the factors are F1 = 4 and F2 = 5. The necessary nine sheets of calculations 
are given in the following pages. Some rounding was performed so any recal-
culation may give small differences in the last decimal places. 

TABLE 5.1. Monthly mean temperature at 60° N in °F 

Lat. E Jan. Jul. Lat. W Jan. Jul. 

0 36 55 180 15 46 
18 25 60 162 0 50 
36 12 62 144 25 56 
54 4 63 126 0 64 
72 - 6 64 108 - 1 5 61 
90 - 9 65 90 - 2 1 49 

108 - 1 8 63 72 - 1 3 47 
126 - 3 2 67 54 10 47 
144 - 1 5 55 36 30 52 
162 - 5 55 18 38 55 

The relationships between the unsorted I, sorted L and frequency indices K 
are1, given in Table 5.2. The sorted results are listed in Table 5.3 and the un-
ravelled coefficients in Table 5.4. The equations in 3.2.1 were applied to produce 
the amplitudes, phase shifts, and variance components for January and July. 
They are given in Tables 5.5 and 5.6 but, for better appreciation of their relative 
magnitudes, the reader may wish to plot them as discrete spectra (Fig. 3). 
Positive and negative phase shifts refer to degrees longitude east and west res-
pectively. 

TABLE 5.2. Relationships between indices 
I — unsorted; L — sorted; K — frequency 

L / K L I K L I K L I K 

1 1 0 6 12 5 11 8 10 16 19 15 
2 11 1 7 7 6 12 18 11 17 5 16 
3 6 2 8 17 7 13 4 12 18 15 17 
4 16 3 9 3 8 14 14 13 19 10 18 
5 2 4 10 13 9 15 9 14 20 20 19 

Most of the results are self explanatory. In winter the mean temperature 
for 60°N is low but the variance is nine times larger than in summer. This 
suggests that factors controlling the degree of variation in temperature along 
the latitude are much more effective in winter than in summer. Usually it is 
assumed that land and sea differences account for most of the variation and 
that their effect is reversed with the seasons. The magnitude of the effect is 
seldom discussed. 

Further information on the often accepted notion of seasonal temperature 
reversal is provided by the harmonics. Clearly the relative temperature of land 
and sea do change over. However, it is not a symmetrical change or the phases 
for the two months should be different by 180°. 
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TABLE 5.3. Sorted results of the calculations performed on the 60° N temperature 

K X(K) Y{K) K X{K) Y(K) 

0 61. 1136. 10 41.00004 14.00004 
1 200.74634 59.16919 11 -51.59653 16.22517 
2 223.26517 -76.90573 12 33.56717 -15.87638 
3 -8 .64100 140.25755 13 2.99461 11.95756 
4 -20.09388 -1 .92878 14 -9 .78194 -21.73210 
5 10.00006 -38.99998 15 -3 .99993 24.99999 
6 -9 .46401 30.89101 16 10.78896 -40.86906 
7 4.13436 -26.46730 17 0.65302 -51.37708 
8 19.73781 -2 .32454 18 159.98101 16.74675 
9 -29.39373 4.26040 19 85.10308 -50.01520 

TABLE 5.4. The Fourier coefficients 

k ax[k] bx[k] av[k] by[k] 

0 3.05000 56.80000 
1 14.29247 -5.45921 0.45769 5.78216 
2 19.16230 4.68262 -3 .00794 3.16420 
3 -0 .39939 -9.58173 4.44402 -0 .46470 
4 -0 .46524 -1.94701 -2 .13989 -1 .54414 
5 0.30000 3.19996 0.69999 0.69999 
6 -0 .96229 -2 .63115 0.45794 0.01589 
7 0.35644 1.92124 -0.72548 0.05698 
8 2.66524 -0 .67759 -0 .91004 -0 .69146 
9 -4.04951 -0.59823 1.02427 1.11014 

10 2.05000 0.70000 

TABLE 5.5. Spectral estimates for January temperatures 

k Ax[k] $x[k]/k ¿Ilk] %a2 

0 3.05 
1 15.30 - 2 1 117.0 30 
2 19.73 7 194.6 50 
3 9.59 - 3 1 45.9 12 
4 2.00 - 2 6 2.0 1 
5 3.21 17 5.1 1 
6 2.80 - 1 9 3.9 1 
7 1.95 11 1.9 0 
8 2.75 - 2 3.7 1 
9 4.09 19 8.3 2 

10 2.05 0 4.2 

total 386.9 

1 
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TABLE 5.6. Spectral estimates for July temperatures 

k Av[k\ <PV[k]/k aim % o2 

0 56.80 
1 5.80 85 16.8 39 
2 4.36 67 9.5 22 
3 4.46 - 2 9.9 23 
4 2.63 - 3 6 3.4 8 
5 0.99 27 .4 1 
6 0.45 0 .1 0 
7 0.72 25 .2 1 
8 1.14 - 1 7 .6 2 
9 1.51 5 1.1 3 

10 - 0 . 7 0 18 .4 

total 42.9 

1 

In each season the first three harmonics are the most important. In January 
the second harmonic stands out, accounting for 50% of the variance. With 
maxima over Europe (7°E) and the N. Pacific (173°W) and minima over E.N. 
America (83°W) and W. Central Asia (97°E) this appears to describe nicely the 
land and sea (currents) relationship. The first harmonic (30%) just emphasizes 
the warmth of the Atlantic compared to the cold of eastern Asia. 

In summer the first harmonic becomes more prominent (39%) centered over 
Asia but some 74° west of the cold pole. This may be accounted for in part by 
the relative warmth of the North Atlantic. The coldest part is in fact over the 
Canadian archipelago. The second harmonic is no more important than the 
third which effects it cancels out over Canada. Despite the relative increase in 
importance of the higher harmonics in summer their actual magnitudes are 
small. 

Of course, the above discussion is very superficial. However, the calculations 
do show clear differences between summer and winter which cannot be com-
pletely accounted for by a simple seasonal reversal in the effects of land and 
sea. It is suggestive of new lines of enquiry which may be pursued further using 
spectral or other techniques. The example serves to underline the fact that 
spectral techniques like other quantitative techniques do not solve problems 
themselves. They are vehicles for testing ideas and creating new ones. 

(6) COMMENT 

This paper has attempted to give an introduction to Fourier techniques for 
the geographer who has little knowledge of the subject and little mathematical 
background. It should serve as a starting point for reading further and under-
standing some of the substantive papers based upon these techniques. A fuller 
exposition is given in Rayner (1971) and more advanced treatments are to be 
found in Blackman and Tukey (1959), Granger and Hatanaka (1964), and Jenkins 
and Watts (1968). Some examples of application are climatology (Horn and 
Bryson, 1960), economics (Hamermesh 1969), geography (Tobler 1969), geomor-
phology (Speight 1967), meteorology (Fiedler and Panofsky, 1970), oceanography 
(N.A.S., 1963), pattern recognition (Bauer et al., 1967), and water pollution 
(Wastler 1969). 

Cont. on page 92 
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A very simple example with periodic data has been used to illustrate the 
fast Fourier transform, an economical way of obtaining regression coefficients. 
The procedure would have been identical for non-periodic data had steps a 
through c of 3.2.2 been applied. Finally, steps e and j would have produced the 
variance spectrum which would have been continuous rather than discrete. On 
the other hand, the simple periodic coefficients are the ones required, if purely 
manipulative procedures are to follow, regardless of whether the data are as-
sumed periodic or not. 

A word of caution is necessary about spectral analysis and quantitative 
techniques in general. Research in geogprahy will pose many types of question. 
The researcher must select that technique or set of techniques which are best 
suited to the problem at hand. Variance is an important basic statistical charac-
teristic of data but it is not always useful. Similarly for sequenced data the 
variance spectrum is a basic statistical function yet it is not always the best for 
a specific problem (see Box et al., 1967). 

The Ohio State University, Columbus 
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P I O T R K O R C E L L I A N D B E N I A M I N K O S T R U B I E C 

I N T R O D U C T I O N 

Several authors have recently suggested that urban growth can be repre-
sented as a wave-like diffusion process (Blumenfeld 1954, Boyce 1966, Morrill 
1968 and 1970, Korcelli 1969, 1970 and 1972). It may be assumed that this line 
of research will also expand in the future. Its relation to other approaches, as 
well as some insights it gives into the nature of the spread of urbanization, are 
discussed elswhere (Korcelli 1972). This form of analysis, however, beside certain 
advantages it offers, brings also some dangers, which can not be overemphasiz-
ed. Two particular problems may be noted: 

The improvement of the concepts has not been supported by an extensive 
body of sound, empirical evidence. This, in part, is a consequence of scarcity of 
adequate data, especially when large spatial and temporal series should be em-
ployed. If it persists, such a gap may eventually prevent further development 
of the theory. 

The second problem relates to the methodology itself. While it is usually 
tempting to classify a phenomenon under investigation as a part of a broader 
system, one may loose, by doing so, some of its rather essential properties. The 
following citation from Beckmann (1970, p. 116) well illustrates the point: 

"Although it is interesting that the same mathematical equation appears to 
apply to a particle, heat diffusion, and to human migration, this conclusion 
should not be accepted uncritically. After all, we do not seek to reproduce the 
well-known equations of mathematical physics but to develop models that best 
reflect economic conditions". 

The objections of this paper are, therefore, twofold. First, we attempt to 
find some statistical evidence, however limited, for the aforementioned concepts 
of urban growth. The method applied is believed to be consistent with the theory 
tested. Second, we want to trace, on the basis of the data employed, some of the 
specific features of the urban growth process, as opposed to other spatial diffu-
sion processes. 

TRANSFORMATION OF THE BASIC DATA 

This is a crucial step of the analysis, since it specifies what is meant by the 
urban growth wave. Both its course, speed and dimensions are dependent on 
the convention chosen since it is an abstract construct and there are no methods 
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of measuring it directly. If we now stipulate that population increase should be 
the phenomenon under consideration, we may define our dependent variable as: 

Y = P 1 L ( i = 1,2,3, . . . ,n), 
l j pt (j = 0,1,2, ...,k), 1 ' 

where ptj denotes the rate of population increase within the j-th areal unit (zone) 
and in the i-th time period; while Pt is the rate of population increase for the 
whole region. (See Fig. 1 and 2). 

Fig. 1. Rate of population growth 1940-1950. Philadelphia region 
Data source: Blumenfeld (1954) 

The advantages in selecting this particular method are as follows: 
(1) The dynamics of urban growth can be effectively represented for both 

the inner and the outer segments of the metropolitan area; 
(2) By taking into account variations in the regional growth rates, the in-

dices for various time periods are made more comparable with each other; 
(3) There is a greater likelihood that more than one crest can be identified; 
(4) Periodicity in the growth process, if such exists, is more easily detected. 

The limitations, however, are as numerous: 
(1) Because of wide variations in population density within a metropolitan 

area the same value of Y tends to indicate different growth cycles at different 
locations. At very low densities the amplitudes may assume high values even 
at a quite moderate absolute increase level. 

(2) Negative displacements are, by definition, smaller than the positive ones. 
(3) Mistreatment of the time factor. This is probably the most serious limita-

tion of the method, since a continuous wave is being simulated by a discrete data 
series. Only a partial justification of this procedure is possible. We may suppose 
that intensity of change in the time interval for which the data are available 
(usually a decade) is also representative for a single point in time in the middle 
of this interval. In fact, a growth rate can not be identified on a cross-sectional 
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basis, though an approximation may be obtained if the length of time intervals 
is substantially contracted. 

(4) The problem of areal units, which may be interpreted in a way analogous 
to that of temporal units. It is also commonly encountered in alternative ap-
proaches, e.g., the analysis of transformations of population density profiles. 

Fig. 2. Rate of population growth 1950-1960. San Francisco region 
Data source: Korcelli (1969) 

THE A N A L Y S I S 

Harmonic analysis belongs to a family of statistical techniques concerned 
with the analysis of temporal and spatial series of data. Application of these 
methods to the geographical problems has been so far limited (King 1969), 
though quite recently a number of studies dealing with the subject have been 
appearing (Curry 1967, Rayner 1970, Tobler 1969 and 1970, and the articles 
by Rayner and Tobler in this issue). It is not difficult to foresee an expansion 
of this literature in the future, as application of time series analysis in other 
social sciences, particularly economics (Granger 1969) has proved extremely 
fruitful. 

For the present study harmonic analysis has been performed on two spatial 
data series, relating to population change within the Philadelphia and San Fran-
cisco metropolitan areas. In the former case the data pertain to the time period 
1940-1950, and in the latter to 1950-1960. A radially symmetric field of urban 
growth is assumed, thus the basic census areal units (tracts or townships) are 
aggregated by concentric zones. These for the Philadelphia region are 2 miles, 
and for the San Francisco region 20 kilometers (about 12.5 miles) in diameter. 

The traditional applications of the technique have concerned cases, such as 
investigation of vibrations or sound waves, where the fundamental period is 
rather evident. It may be noted that any curve of finite length can also be 
described mathematically with the help of harmonic analysis, though the for-
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mula employed may often involve a large number of elements. As the wave-
like concept of urban growth does assume periodicity of change in the value 
of Y, its testing by way of harmonic analysis seems justified. According to this 
concept, an urban area experiences in its development the passage of several 
growth cycles, each cycle being composed of a definite sequence of phases. This 
hypothesis may be transferred to the analysis of the spatial series of data as 
shown in Fig. 1 and 2. Here the culminations are supposed to represent the 
crests of successive growth waves. This assumption, of course, is not a very 
safe one, but it remains in line with the previously mentioned general hypo-
theses. 

In accordance with the theory of harmonic motion the wave, in an elastic 
medium, has a profile given by: 

k 

Y t i = Y + ^ A t S i n f a j + c O , ( 2 ) 
j = 0 

where: 
Yt = the mean level of the i-th wave, equal to sin 0°, 
At = the amplitude of the i-th wave, 
bt = the wavelength, 
ct = the phase. 

For both regions only one time period is analysed, therefore i is equal to 
either 1 or 2, respectively. The points of measurement (j = 0,1,2,.., k) are regul-
arly spaced and situated at increasing distances from the city center, which is 
assumed to be the source of the waves. The coordinates of a given point on the 
sinusoid are: 

YtJ = A tsin(b t j + ct). (3) 

If we now denote by d* the maximum difference between the pairs of the 
following numbers: 

Y i 0 , Y t l , Yt2, . . . , Y t l0, 

then the amplitude of the i-th wave is equal to: 

4 , = T 5 r d " 

where 1.90 is the mean maximum difference between the numbers: 

s i n ( b j + ct). (¿ = 0,1, 2, . . . ,10) 

For the Philadelphia region (Fig. 1) At equals 18, while dt is 35. In order to 
estimate the period of the sinusoid, bt, and the phase, cu with the short series 
of data available, the least squares technique has been used. The values of bt 
and Cj are selected so as to minimize the differences between: 

ct and cp0, bi + Ci and cpl, 2bi + cl and <p2, . . . , lObj + Cj and <p10. 

To estimate these values we minimize the following function: 
10 

F(c, b) = ^(bj + c-cp,)* (4) 
) = 0 
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and then compare its partial derivatives with respect to the parameters to zero: 
dF = 110 + 5 5 5 - ^ + 0, 
oc 

where 
S 1 = V o ' V l ' ^ ' ••• > <PlO 

and 
dF ~-r- = 385b + 55c — S2 = 0, 
GO 

where 
= <Pi + %<P2 + 3<p3 + ... + 10g?10. 

From the above equations we obtain estimators of the wavelength bt, and the 
phase, ct 

b = 

c = - ¿ ( 7 ^ - ^ ) . 

The angles are found from the equation as follows: 

sin(btj + ct) = Y t i ~ Y t . (5) 

The arc sins of the right sides give the angles q?j as 

j. 180° + 90° + ^ 
from which we select the series most closely approximating an arithmetic 
progression with a rate of increase equal to b, where bx = 149°. 

The basic parameters of the population growth wave for the Philadelphia 
region are therefore as follows: the mean equilibrium level Y t = 107.1; the am-
plitude, A1 = 18, the wavelength, b1 = 149°, and the phase, cx = 267°. 

There is usually little likelihood that an empirical curve can be closely ap-
proximated by the fundamental term only. This is also true in case of this data 
set. The next step is to complicate the function by adding a second term, with 
different amplitude and period. The latter must be a submultiple of the funda-
mental period. 

The basic parameters of the second harmonic term are: 
Y ; = - 1.9; A[ = 30; b[ = 25°; c; = 118°. 

One could pursue this procedure to a point at which the theoretical curve 
would almost meet the empirical one. It is not, however, the purpose of the 
present paper. Inadequacies related to the basic data and their transformation, 
as well as numerous simplifying assumptions, which are built into the model, 
preclude a meaningful interpretation of subsequent harmonic terms. Therefore, 
we have to be satisfied with the approximation afforded by the fundamental 
and second harmonics (see Table 1). 

This yields the equation: 

Y4) = Yt + A tsin(b1j + c1) + Yi + A;(sinbi j + c;) + € j , (6) 

where Sj is a random element 

7 Geographia Polonica 
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TABLE 1. Predicted and observed rates of population growth for the Philadelphia region 
(1949-1950) 

Value of Yu 

j Fundamental Second harmonic  
predicted observed 

0 91.0 - 0 . 5 90.5 90.7 
1 123.9 - 1 4 . 8 109.1 89.3 
2 104.3 - 8 . 0 96.3 94.9 
3 107.2 10.8 118.0 121.6 
4 119.8 11.0 130.8 124.1 
5 92.6 27.0 119.6 118.4 
6 106.5 14.2 120.7 110.1 
7 95.2 22.0 117.2 105.1 
8 103.3 13.0 116.3 122.7 
9 125.8 - 0 . 5 125.3 113.0 

10 96.8 11.6 108.4 108.5 

By substituting the numerical values we obtain: 
Y1) = 107.1+18sin(149 o j + 267°) + 30sin(25°j+118°) + ^ (7) 

A similar analysis has been carried out for the San Francisco region (see 
Fig. 2 and Table 2). As in the former case, the estimators of wavelength and 
phase have been found by using least squares techniques. The set of equations 
has the form: 

285 + 8 c —Si = 0, 
140b + 28c — S2 = 0. 

TABLE 2. Predicted and observed rates of population growth for the San Francisco region 
(1950-1960) 

Value of Yi, 
j Fundamental Second harmonic  

predicted observed 

0 83.7 - 8 . 9 74.8 75.0 
1 131.0 - 2 4 . 3 106.7 121.1 
2 121.0 6.1 127.1 135.3 
3 111.2 30.5 141.7 136.3 
4 116.0 - 2 1 . 8 94.2 91.1 
5 91.2 7.9 99.1 98.9 
6 139.7 - 1 0 . 8 128.9 136.5 
7 79.6 22.7 102.3 96.9 

These yield the values of the parameters: 

c = » ¿ ( 5 ^ - 5 0 , 
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where 

The analysis was terminated after the second harmonic term was identified. 
The period of this latter term was found to be half of that of the fundamental 
component (b2 = 162°30' while b2 = 81°10'). The values of the other parameters 
are: 

The solution of the equation (2) for the San Francisco region is the following 
(see also Table 2): 

Y2j = 113.92 + 34.52sin(162c20' j + 232°30 ' ) - 28sin(24°40' j + 81°10') + e,. 

CONCLUSIONS 

The scope of this study has been rather narrow. In fact, we have made an 
attempt to extend the analysis onto other time periods (back to 1900), but the 
variations in the parameters that have been revealed do not allow far-reaching 
generalizations about the behavior of urban growth waves. The one parameter 
which is characterized by a certain level of stability is the wavelength. Its value 
for the San Francisco region was about 45-50 miles in four out of seven periods, 
for Philadelphia it was about 10 miles in three out of five cases. It should be 
noted that these figures are not strictly comparable with each other, as the 
areal units for which the data had been aggregated were different for both 
regions. 

The virtue of harmonic analysis lies in its ability to separate various over-
lapping components of a given phenomenon. It has been earlier hypothesized 
(Korcelli 1972) that spatial variations in the intensity of urban growth are 
products of several processes superimposed one upon another. These growth 
components are related to regular oscillations, wave asymmetry, changes in the 
rate of growth of the system (metropolitan area), "maturity" of an area, and, 
finally, to its various levels of attractiveness. We can identify our fundamental 
term with the basic (cyclical) growth component, but we may only suspect the 
second harmonic term to be associated with the wave asymmetry. Hypotheses 
concerning the correspondence of subsequent harmonic terms to the postulated 
growth components could be tested on more extensive sets of data. Theoretically, 
we would assume the random element in our formula to represent the spatial 
variations in the level of attractiveness (local resistance), but because of data 
limitations it is treated here as a more inclusive category. 

An alternative, and possibly even more challenging approach to the analysis 
of urban growth waves would be to study the change in the temporal rather 
than in the spatial dimension. As this problem will be the subject of subsequent 
work, we shall not treat it here in any detail. One point should be noted. Figu-
re 3 demonstrates that in order to be able to observe a full cycle of growth for 

7* 
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a given area one needs a series of data extending over at least several decades. 
The length of the cycle may be different for various places; one can also antici-
pate that at a finer areal scale faster rates of change could be recorded. 

Time 

Fig. 3. Rates of population growth, 1890-1960, within a concentric zone extending 
10 to 20 km from the center of San Francisco 

• 

We have attempted to demonstrate a way in which harmonic analysis can 
be used for predicting the intensity of population change within a metropolitan 
area and in a broader zone that surrounds it. Although the results are not as 
satisfactory as might have been anticipated, we would attribute this fact largely 
to inadequancies of data rather than to the approach selected. Arbitrary ele-
ments, however, pose certain questions. Some of the problems, like those relat-
ing to the units of time and space, are rather difficult to overcome, while others, 
like a more precise definition of the dependent variable, should be solved in 
future research. 

Institute of Geography PAN, Warsaw 
Wrocław University 
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REGIONAL ANALISIS 
TIME SERIES EXTENDED TO TWO DIMENSIONS 

W A L D O R . T O B L E R 

For the last several years an effort has been made to explore the relevance 
of an extension of time series analysis to the study of geographical problems. 
To date this has resulted in several published papers, with several more in 
preparation, and the introduction of a course entitled "Regional Analysis" at the 
University of Michigan during the fall semester of 1969. It would be a fairly 
accurate description of this course to take the twelve chapter outlines from 
H. T. Davis' The Analysis of Economic Time Series and to recast them all into 
a two-dimensional framework, modifying the content to emphasize the geo-
graphical distribution of population and of poverty. From a mathematical point 
of view the extension to two dimensions is a fairly natural generalization with 
only a few really interesting aspects. The formal treatment requires only that 
the students be familiar with probability theory, complex variables, some linear 
algebra, integral calculus, and so on. Our concern has been more with the 
substantive geographical interpretations, and social applications, of the concepts 
rather than the mathematical details. The suggestion that it might be useful to 
extend to the spatial case those methods used for the study of time series is 
of course not at all new. 

Historically the study of time series has two sources. One is from the 
sciences, both social and natural, sources related to those which gave rise to the 
field of statistics. The other source is from telegraphy and electrical transmis-
sion studies. Norbert Wiener was able to combine these two sources and the 
hybrid has shown the expected vigor. The reason that time series studies differ 
from other studies is of course that the observations are not independent of each 
other. The central hypothesis of the historian is that the present is related to 
the past. A similar situation holds in the case of spatial series. The central 
dogma in geography asserts that what happens at one place is not independent 
of what happens at another. The most extensive development of the two-di-
mensional variants of time series analysis which are of interest to geographers 
are in geophysics, including seismology, meteorology and oceanography, and 
in picture processing with the related fields of visual perception, pattern 
recognition, optics and holography. The challenge is to demonstrate the validity, 
if any, of concepts from these fields to studies of society. Only a small number 
of people seem to be following these lines. 

In the first instance consider a geographical distribution to be completely 
static, an atemporal or purely spatial point of view. Probably the simplest 
approach is to consider only one spatial dimension, e.g., the distribution of 
population along highway 40 from Baltimore to San Francisco. This distribu-
tion can be, and in fact has been, studied and analyzed by time series methods. 
The motivation comes from central place theory which suggests a repetitiveness 
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in the distribution of populated places throughout the landscape. Extending the 
analysis to examine the two-dimensional distribution of population is relatively 
simple. One of the interesting results, an empirical observation, is the near 
rotational symmetry of the bivariate autocorrelation function, which suggests 
that an isotropic assumption may be invoked without severe violence to the 
actual geographical processes. 

This example is used to illustrate an important transfer of concepts from 
the temporal to the spatial domain. The spatial sampling along US 40 in the 
study cited resulted in one observation every mile of the 2900 mile long route. 
In time series it is usually required that one have a long record of equally spaced 
observations. What is a long spatial record? If the earth's circumference is 
assumed to be 40,000 km, one-fourth of which is land, then one might obtain a 
record of 10,000 observations, sampling every kilometer. This would be consider-
ed a long record in economics, and a reasonable record in electronics. The two-
dimensional case is more complicated. Here it is not only the size of the sampling 
interval, but also its shape and orientation which affect the resolution of the 
data. This suggests the use of interval independent measures. Instead, most de-
mographic data are made available on a rather absurd basis, by countries, 
counties, or census tracts, etc. We now have had experience in converting 
these data into "square" units, e.g., 1.5-mile squares for a 90-by-90-mile region 
including Detroit, or five-degree quadrilaterals for world population data. Our 
experience is that it is easier than one might expect. We do not do this simply 
to satisfy a Teutonic sense of orderliness, but because it allows a greater analysis 
capability. For example, if one has demographic data on a square lattice, then 
a rather obvious interpretation of the notion of "population pressure" is to 
compute the finite difference approximation to the spatial gradient. The vector 
field calculated in this manner does in fact define the edges of cities rather 
well. One could object that the objects of interest are coordinate invariants, 
which is true, but the practical advantages of uniform spatial data intervals 
seem great. The sampling theorem would also appear to have some relevance 
to the study of spatial distributions. Statistics books which deal with methods 
of demographic sampling do not mention this theorem, a rather curious 
omission. Presumably this is due to the fact that most demographers are in-
terested in the frequency distributions, and not the geographical distributions, 
of their data. 

Fig. 1. World population by 5 degree quadrilaterals 
Department of Geography, University of Michigan 15:55.20; Oct. 28, 1969 

Spatial sampling is thus one area in which the comparison of time series 
analysis with regional analysis provides some insight. Another useful idea, or 
set of ideas, is contained in the notion of a trend. The data in these cases is 
decomposed into a set of components, and these may be given a spatial in-
terpretation: Regional trends, National trends, local trends. A national trend 
might be from the Northwest to the Southeast, for example. With the advent of 
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digital computers these methods have enjoyed great popularity and many for-
mal methods have evolved. These include the fitting of bivariate functions, 
smoothing, and so on. These methods can be extended to treat the entire earth 
using spherical harmonics. 

1930 1940 

1950 1960 

Fig. 2. Actual population growth, Detroit, Region 
Non-linear vertical scale 

Since the spherical shape of the earth has now been mentioned it should 
be pointed out that all geographical distributions are truly periodic, doubly 
periodic in fact, but in a rather trivial sense. The topology of the earth has 
other consequences; for example, any vector valued function on such a surface 
must have at least one singularity, there are no squares, the distinction between 
interpolation and extrapolation is less clear and so on. These topological facts 
do not hold for all two-dimensional spaces of course. 

At a somewhat different level, historians divide history into periods, and 
so do geologists. This process may be referred to "epochodization." Geographers 
do the two-dimensional equivalent when they partition space into disjoint sets. 
This is known as "regionalization." One interpretation of these procedures is 
that they are attempts to find domains within which the phenomena of concern 
are stationary. But the subject does not appear to have been approached from 
this point of view, and it might be fruitful to do so. 

Now consider both space and time, a spatio-temporal series. The notion of 
temporal lags is quite familiar to model builders. It is also obvious that most 
systems involve spatial lags, which are not one-sided but three or more sided. 
Typical forecasting procedures are weighted such that the recent past has more 
influence than the far past. The central dogma of geography asserts that a 
similar decay in space is involved. A space-time cone of recent and nearby 
events is relevant. A technical question which then arises concerns the com-
patibility between the spatial and temporal observation scales for data collec-
tion purposes. 

The use of positionally invariant linear operators has been of great utility 
in the study of electrical signals over time. These same procedures may be 
used to compare geographical distributions at two different time periods; the 
mathematics are similar to those used in optics. Not all people behave the 
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same so that one would not expect a linear space invariant model to be very 
effective. It is however quite easy to formulate a migration model in these 
terms — essentially a finite difference form of the diffusion equation — and 
this in fact fits the empirical data quite well. Scientifically it is an oversimpli-
fication but it provides a useful null model. In the long run it will be necessary 
to develop multivariate spatio-temporal analyses for the transportation system 
influences the population distribution, and vice versa. Cross-correlation between 
spatial series provides a formal method for comparing some types of geogra-
phical maps, and these ideas have been extended to cross-spectral estimates. 
These methods appear quite complicated when examined in detail but have 
become more practicable with the advent of the Fast Fourier transform. Thus, 
while regional analysis is not a panacea, some of the approaches may be sug-
gestive and provide insight for demographic studies. 

University of Michigan, Ann Arbor 
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SOME ASPECTS OF NETWORK THEORY 

N U R U D E E N A L A O 

In so far as one may adequately characterize network theory as a body of 
facts about the structure of points and their interconnecting links, one may 
justly argue that every aspect of network theory is geographically relevant. 
Indeed, the virtual universal applicability of results from network theory is 
attested to by the importance accorded the theory in vastly divergent subjects 
such as neurology, psychology, sociology, economics, geography, electrical en-
gineering and even history (see Pitts (1965)). Unfortunately the less trivial 
aspects of this theory (many of which are important in geography) are accessible 
mainly to the mathematically sophisticated. There are at least two conditions 
which render the less trivial aspects relatively inaccessible. The first has to 
do with the vast combinatorial problems involved. Thus several transport 
network problems are deceptively simple to enunciate but would require the 
examination of a vast number of cases to solve completely. The second condition 
relates to the difficulty of obtaining analytic solutions and consequently the 
necessity for providing efficient algorithms. Consequently, to assert that every 
aspect of network theory has geographic relevance is to suggest that geogra-
phers do have lots of theoretical problems to contend with for a long time to 
come. 

The account presented in the following pages is not intended to cover all 
applications of network theory in geography. Neither is it designed to survey 
all network techniques at present available. Rather, it identifies some signifi-
cant aspects of network theory and techniques which have recently received 
attention in geography or which are potentially useful in tackling some geogra-
phic problems. The approach is expository although wherever extra gains are 
derivable from rigorous treatment, we do not hesitate to be rigorous. Experts 
in this area may find that sometimes many of the steps included could be 
omitted. We have however insisted on including many elementary steps in 
order to make the exposition as self-contained as possible. Our aim, we reiterate 
is to select major problems and techniques in this area and treat them as simply 
and as efficiently as possible. In this regard, a word of caution is in order. In 
some of the problems dealt with here the geometric approach is employed. 
Because of its pedagogical advantages, the geometric approach is usually ap-
pealing. However, geometric intuition can quite often be misleading as is 
evident in the geometric "demonstration" of the nonsense that every plane 
triangle is isosceles. Consequently, whenever we appeal to geometric intuition 
in any construction, we shall usually take pains to prove that the construction 
makes sense. 

Our account is divided into four sections. Section I is concerned with nota-
tion, general definitions and general descriptive techniques used on networks. 
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It sets forth essential graph theoretic notions which are used in comparing 
networks. Section I is very brief in its discussion of the use of major indices; 
it places great emphasis on their interpretation. Section II deals with the effi-
cient geometric structure of networks in the two dimensional Euclidean 
space E 2; it unifies many problems in this area via the Reflection Principle and 
its generalization on the one hand, and recent mathematical formulations of 
the Steiner problem by Melzak (1961), DeMar (1968), Gilbert and Pollak (1968) 
and Cockayne (1967), on the other. Section III is devoted to the analysis of 
network flow problems of which two broad types are considered. First are the 
direct link "many sources-many destinations" flow problems and next, the 
transshipment types. This section reviews the analyses of flow problems and 
provides interpretation of the key steps in such analyses. Section IV combines 
Sections I—III through the consideration of networks in which construction 
and flow costs are incorporated into the minimand. In geography, the major 
contribution towards solutions of the problems of Section IV are due largely 
to Garrison and Marble (1958, 1965) and Werner (1968). 

Throughout this paper examples will be drawn mainly from human geo-
graphy. The more important applications in physical geography (most hydrology 
and geomorphology) have been reviewed in a recent book by Haggett and 
Chorley (1969). 

SECTION I 

In this introductory section we shall deal with the basic descriptive tech-
niques for networks and set out general notations and definitions which apply 
to other sections as well. Most of the descriptive notions that have been applied 
to networks belong in graph theory. A major reason for setting out definitions 
clearly is that in network theory different authors use various terms differently 
with the result that only a few terms can be called standard. 

NOTATION AND DEFINITIONS 

D I. i A network N consists of a set of points (that will variously be referred 
to as nodes, vertices, sources) together with lines joining them. The points of the 
network are denoted {-At} leI for an appropriate index set I. 

D I.ii A link in a network is a line joining any two points in the network. 
A link is also called an arc or an edge. A link between At and Aj is denoted 
variously as AtAj, (At, Aj) while the Euclidean length of such a link is denoted 
| AfAj |. If the link is directed we write A{ -> A} to indicate that flow is feasible 
in the direction from At to Aj and if flow is possible in both directions we write 
the link as AtAj or more emphatically Ay We call N a directed network 
in case its links are directed, and we denote it N. 

D. I.iii Let Au Aj be any two points of N. By a chain between the points 
Ai and Aj, we mean a sequence of consecutive links, AtAiv A^A^, ..., AimA}, the 
first member of which has Ax as the first of its defining points and the last 
member of which has Aj as the second of its defining points. 

D I.iv A path PAj between At and Aj in N is a chain through which a flow 
A 4 

from At to Aj is realizable. The order of the path is the number of links in the 
corresponding chain. P^ik] is a path of order fc linking At to Aj. At would be 
referred to as the initial point and Aj as the terminal point of the path. http://rcin.org.pl
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D I.v A circuit is a path whose initial and terminal points are identical. 
A circuit defined by a path of order one is called a loop. 

There are at least three important levels at which network descriptive tech-
niques may be applied. The first level concerns the use of graph theoretic 
measures of a network to summarize its salient properties. At another level, 
numerical indices may be constructed from the topological properties of a net-
work to facilitate comparison with other networks. At a third level one may use 
some of the descriptive techniques for the evaluation of the performance cha-
racteristics of the network. In order fully to delineate the advantages and 
problems associated with the applications of these measures and indices we 
need a few more definitions and concepts. 

D I.vi Henceforth we shall regard networks and graphs as synonymous. 
D I.vii Let A = {At\iel} denote the set of given vertices of N, indexed by 

the finite set I. Then N is said to be planar if it can be represented on the two 
dimensional plane. More precisely N is planar if for i, j, k, I in I, AtA} n AkAl 
belongs in A whenever this intersection is non-empty. 

N is non-planar if for any i, j, k, I in I the following are realizable: 

(a) AlAjnAkAl = 0, 

(b) AlA,nAkAleA, 
(c) 0 # AiAjnAkAqeA. 

The simple examples shown in Figs. 1 and 2 are quite instructive. In the 
first example we have a network consisting of five vertices represented by 

Note that in Fig. lb the intersection of every pair of links (if non-void) occurs 
in one of the given vertices and that Figs, la and lb are isomorphic (D I.viii). 
On the other hand, Fig. 2a and Fig. 2b illustrate the case of a non-planar graph, 
since at least one new vertex A* results from the intersection of pairs of links 
in the network. 

D I .viii Two graphs and N2 are said to be isomorphic if and only if 
(a) there exists a one-one correspondence (i) between the vertices of and 

the vertices of N2 and (ii) between the links of Nx and the links of N2. 
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(b) such one-one correspondence preserves neighborhood (incidence) pro-
perties. (See Fig. 3a and Fig. 3b). 

D I.ix Consider a planar graph isomorphic with a circuit of order n ^ 4, in 
which all vertices are directly linked. For many purposes, it is convenient to 
operate on a convex polygon equivalent of such a circuit (see Fig. 4). We shall 
refer to such a polygon as the c.p. isomorph of the graph N. A link such as A^3 

Fig. 3. A n example of isomorphic graphs 

Fig. 17. 
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will subsequently be referred to as an exterior link, while a link such as A2A4 
will be referred to as an interior link. Any two links in a graph will be called 
non-intersecting if either they have no point in common or the only point they 
have in common belongs in A. 

SOME ELEMENTARY IDENTITIES 

ID 1. If N is non-planar, there are (") pair-wise combinations of its given 
points. Hence N can have no more than -§n(n — 1) links. 

ID 2. If N is planar and contains n given points, then N can have no more 
than 3(n — 2) links. 

DESCRIPTIVE INDICES A N D MEASURES 

It will become apparent after we have defined the various indices that have 
hitherto been used in geography that for any given network these are easy to 
compute. Consequently, rather than give detailed examples of how to compute 
these indices, we shall merely refer to the various literature in which they have 
been used and summarize their results. However, we shall discuss in some detail 
what seems to be more important, and what has up to now not been adequately 
dealt with in the literature: the problem of interpreting these indices. 

For any network, there exists a variety of interesting indices which relate 
the number of vertices of the network to the number of links. Of these indices 
only four (Cyclomatic number, Alpha index, Beta index and Gamma index) 
have been accorded the widest application in geography. 

Cyclomatic number: Suppose we have a network N determined by n given 
nodes and e actual number of edges. Then the cyclomatic number jj, of iV is 
defined as 

Since the minimum number of links required to connect all n points is n— 1, 
e — u + 1 gives the number of links which are in excess of the minimum required. 
The same interpretation (mutatis mutandis) holds for e~n + p. Consequently, 
ju may be interpreted as the degree of circuity in the network. 

Alpha index: Let N be a network with n vertices. The maximum circuity in 
N is equivalent to the difference between the maximum realizable number of 
links and the number of links in the smallest tree connecting all n vertices of N. 
That is, the maximum circuity is equal to 

ju = e — n+ 1, if the network is connected, 

jli = e — n + p, if the network can be broken 
into p subsets each of which 
is connected. 

(i) 3(n - 2) - (n - 1) = 2n - 5, if N is planar, 
or 

(ii) T ( n - l ) - ( n - l ) = 
n (71- l ) ( n - 2 ) if N is non-planar. 

2 

The Alpha index is then defined as: 
(i) a = ///271 — 5, if N is planar, 

or 
(ii) a = 2ju/(n- l ) (n — 2), if N is non-planar, 
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where fx is the cyclomatic number. Clearly a has its minimum when the circuity 
ju is smallest, i.e., when ju = 0 and has its maximum when jn is largest, i.e., when 
ju = 2n-5 or ju = ^ - (n - l ) (n -2 ) . Thus 0 s^a < 1. 

Beta index: The Beta index relates the actual number of links to the total 
number of vertices and is written as 

P = e/n. 

Clearly /? = 0 for a completely disconnected network and if the network 
is a circuit of order n. 

Gamma index: The Gamma index measures the ratio of the actual number 
of links to the maximum possible. It is defined as 

y = e/3(n - 2), if N is planar, 

y = 2e/n(n — 1), if N is non-planar. 

For examples see Figs. 5a and 5b. 

Fig. 5. Examples illustrating computation of (planar) network indices 

11 = 11-9+1 = 3 n = 8 + 4+4—(8—5—4)+3 = 20 
o = 3/(2 • 10-5) = 1/5 a = 2/2n-5 = 2/34-5 = 2/29 

( a ) p = 11/10 ( } 0 = 16/17 
•/ = 11/3(10-2) = 11/24 y = 16/48 — 1/3 

We shall next briefly consider the following questions: 
(1) How have these graph theoretic indices been used empirically? 
(2) How can they be correctly interpreted? 
(3) To what other geographical problems can they be applied and how? 
Probably the most thorough applications of these indices are represented in 

the works by Garrison and Marble (1965) and Kansky (1963), who have applied 
these indices on a global scale. Kansky postulated that a consistent relationship 
exists between several of the graph theoretic indices and levels of economic 
development of various countries. Kansky (1963) related selected graph theoretic 
indices (for railroads and highways) by a linear regression technique to selected 
components of the regional economy of twenty-five countries of the world. 
He reported a "strong relation" between the two variables at the country level, 
but a weaker relation at the lower regional level. 

In evaluating and interpreting the measures themselves, the first thing to 
note is that each of them is in general a many-to-one function. This fact has 
both advantages and disadvantages. Assuming that each of the measures has 
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well-established interpretations (i.e., each of the measures has an unambiguous 
meaning) then their many-to-one property yields few exhaustive groups of 
network types for detailed theoretical study. In the absence of such interpreta-
tions, the many-to-oneness can hardly be meaningfully (i.e., scientifically) ex-
ploited. Furthermore, on a comparative basis, Werner et al. (1968), using eight 
regular types of networks labelled A, B, ..., H, have found that "all three meas-
ures rank the networks in the same sequence, i.e., the relationship o(I) ^ o(J) is 
the same for a, y and I, J,eA, {B, ..., H} ." 

At an empirical level, Garrison and Marble (1965) posed the following ques-
tions: "Can the structure of transportation systems be related to the features 
of the areas within which they are located?" They answered this question by 
establishing a series of regression equations between level of socioeconomic 
development and the physical features of an area (as independent variables) on 
the one hand and the various indices as dependent variables on the other. Whilst 
they concluded that the fit they obtained was generally good, they warned that 
"the ultimate answer to the question requires generating the actual transporta-
tion network, given the characteristics of the area that contain the network." 
Thus we necessarily reach the conclusion that this goal is unattainable through 
the indices defined above principally because of their many-to-oneness. 

The interdependence among the various measures has led Garrison and 
Marble to employ a principal component analysis (with data on 22 nations) and 
they obtained three principal dimensions: the first dimension is a combination 
of number of nodes, number of edges and the cyclomatic number; the second 
is a combination of the a — and y — indices, combines a number of nodes, a 
number of edges and the network diameter. 

In concluding this section, it is important to stress two points. First, the em-
pirical applications of the various graph theoretic measures are largely still at 
the initial stages. Powerful inductive techniques still have to be brought to 
bear on these indices to elevate their interpretations to more general levels 
which enable interregional comparisons to be made. Themes that may profitably 
be pursued have been enunciated by Garrison and Marble (1965), Kansky (1963) 
and Werner et al. (1968). However, there is at present no body of comprehensive 
general statements that could serve as indicators of expectations against which 
the empirical observations derived from the applications of these indices could 
be tested. 

Secondly, there are several questions which the geographic literature has put 
to many of these indices, but which these indices can never answer meaning-
fully. In other instances, several mathematical operations have been performed 
on these indices in fashions which should make one raise questions about the 
validity of the operations, in the circumstances in which they are used. For 
example, what does it mean (for empirical purposes) to add these indices, or to 
take linear combinations of them? All of these point to our earlier remark that 
we are far from a full understanding of these indices vis-a-vis network struc-
ture and network performance. 

N E T W O R K S A S MATRICES 

To every oriented network N there corresponds a square matrix (linear 
transformation) called the adjacency matrix or connectivity matrix whose ele-
ments at j are defined as follows: 

!

1 if the point Ai e N is linked to the point Ajt 

0 if Ai is not connected to Ay 

8 Geographia Polonica 
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We remark that the connectivity matrix Q defines the topology of the 
network N. Thus any statement about the topology of a network is a statement 
about its connectivity matrix. (See Fig. 6). 

Connectivity matrix associated with Fig. 6 

Although several useful properties can be extracted from connectivity ma-
trices, the mathematical notions by which such extraction is accomplished are 
fairly deep and advanced (see Alao, 1970). Consequently, it is not surprising that 
most applications of the connectivity matrix in geography have been based 
on the result of direct matrix multiplication. We therefore proceed to exhibit 
the important properties associated with such multiplication and the application 
to geographic problems. 
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D I.x Pick any points AU AJ in N. The product 
k— 1 

(* ) (atv1avjv2av2v3 ••• avk_iVk = j) = OiVj J~J «vhvh+1> with Vk = j, 
h — l 

is a path of order k in N in case this product has the value 1. In case the above 
product is zero, we shall say that there exists no path between At and A}eN 
through the (k — 1) points (vertices or nodes) Av , AVo, ..., A y • 

Consider the matrix multiplication rule applied to the adjacency matrix Q. 
Let ati denote the (z, j)-th element of Q • Q or Q2. Then 

n 

(**) iij = y^aikakj. 
k = l 

Let Z^i, j) = {t\aitotj = 1}. If vheZl(i, j) then there is a path from the point 
AteN, through the point AvheN to the terminal A^N. Thus $t j is the number 
of elements in (i.e., the cardinality of) the finite set Z*(i, j). Consequently, we 
arrive at the interpretation of the elements of Q2 as the number of ways of 
connecting pairs of points in N through two links. Here lies the foundation of 
the combinatorial application (and implication) of the adjacency matrix. 

Again let ^ denote the (ij) element of Q3 = Q-Q2 . Then 
n 

Va = ^ « t k l i c j . where is the cardinality of Z^fc, j) 
fc = 1 

n n 

= X j a i k S akh(Xh> k = 1 h = l 
n Tl 

= ^ ^ aikakhahj 
k=lh=l 

which is a sum of products of the form (*) above. Let 
2 

j) = { K K - i K a i v , ) Y\ a v n v h + 1 = 1, w h e r e = j } . 
ft=i 

Note that Z2(i, j) is a set of sequences. Now it becomes clear that is the 
cardinality of Z2(i, j) and we can thus logically interpret rji} as the total number 
of ways of linking the point A{eN. through the points {AV( } h + 1 c N to the ter-
minal point A^eN. Consequently each element of Q3 is exactly the number of 
ways of connecting pairs of points in N through three links. 

Hence by the principle of recursive definition, we arrive at the conclusion 
that for any positive integer N, the elements of QN are integers which represent 
the number of ways of making pairwise connections of points on N through N 
links, where, in general, 

N 

ZN(i, j ) = { K } £ = 1 | ( a 1 V i ) n ° V h + 1 = ^ = ^ 
k = l 

We now proceed to define two more indices: 
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Let j) denote the minimum of the set (k\Zk(ij) for the pair Ah Ai of 
points in N. Assume that N contains n given points. Then the functions 

D(At) = i r a x v>(i, j), 
U j i n 

n 
S(At) = 

j=i 

are respectively called the associated number and the Shimbel-index of the 
point AI of N. 

Evidently these two indices contain statements of the "degree" of accessi-
bility to individual vertices of the network. In respect of the associated number, 
if we adopt the convention that whenever the set {k\Zk(i, j) ^ is empty, 
D(Aj) = oo (it can be shown that this convention makes sense mathematically), 
then we can interpret the associated number in the following manner: the 
smaller the associated number of a node the higher is its accessibility, and in 
particular, a completely isolated node has associated number oo. The Shimbel-
index on the other hand is an unweighted sum of certain critical linkages to 
a given node. From purely a priori considerations we may say that if the in-
terest in accessibility is to isolate critical link sequences (and Kissling's, 1969, 
applications to highways in Canada would lead one to conclude that there are 
very many instances in which this is the case) the associated number is a more 
powerful index than the Shimbel index. 

The two indices have been tested in a number of other ways in order to 
evaluate their use in discriminating various types of regular networks. Probably 
the most comprehensive is that reported in Werner et al. (1968), where frequ-
ency arrays of the scores of eight different types of network on the two indices 
have been carefully studied. On the basis of comparison of the means and 
variances of these scores, Werner et al. concluded that the Shimbel-index has 
by far the greater discriminating power in so far as the eight networks are 
concerned. Neither of the indices can however indicate the presence of direc-
tional bias in the structure of accessibility of the network. 

Finally Kissling (1969) used Shimbel's shortest distance matrix for indentify-
ing the importance of highway linkages and claimed that the index was useful 
in revealing probable growth points in the system. A shorter method for com-
puting shortest distance between points in a network is identified at the end 
of the third section. 

SECTION II 

This section is devoted to a class of problems which (following the majority 
of scholars in this area) we shall call Steiner problems. Although the solution 
strategy adopted here partially integrates the abstract versions given by Gilbert 
and Pollak (1968), DeMar (1968), Cockayne (1967) and Melzak (1961), our 
motivation is different and simpler, deriving largely from elementary geometric 
principles. The generalized Steiner problem has practical as well as theoretical 
interest. For example, it has applications to optimal layout of pipelines, to 
optimal location of central facilities and allied geographical problems. All the 
examples which follow are assumed to be set in the Euclidean plane E2 (i.e., 
the space of ordered pairs in which length is defined by the well-known Pytha-
gorean theorem and in which the notion of the inner product helps us define 
angles). For us a consequence of assuming E2 is that if construction cost is a 
monotone function of length and if construction cost is the only cost incurred 
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in creating networks, then the least cost network is the minimum length 
network. 

The simplest form of the Steiner network problem may be stated thus: 
(a) Given three points in E2, find the shortest network connecting them. 
(b) Given three points {A t } f = 1 in E2, find a fourth point A4 in Es, so that 

3 

the sum I ^ A l is as small as possible. A4 may coincide with Au i = 1,2,3. 
i = i 

It will soon become clear that (a) and (b) are equivalent, in the sense that a 
solution to the one is automatically a solution to the other and vice versa. For 
expository simplicity, we shall concentrate on (b) (which is in fact the mathe-
matical dual of the well-known Weberian location problem) and work through 
Figs. 7-9 to formulate general solution principles. 

Consider Fig. 7 in which Au A2 and A3 have given fixed locations. Choose 
a fourth point A4 whose location is arbitrary except that it belongs in the convex 
hull of Alt A2 and A3 (i.e., the smallest convex set containing Alf A2, A3 which is 
obviously the triangle \AXA2A3). 

Consider the set of lines ATT(AT), T(A4)T(A3) with the property that \A2AT\ 
= \AIT(AI)\ a n d | A2AA | = \AIT{A3)\. (Figs . 7 -9 ) . 

Clearly for any arbitrary location of AT inside /\A1A2A3 it is possible to 
generate lines A4T(A4) and T(AT)T(A3) with the properties stated in the last 
paragraph. We then pose the question, what rigid motion (s) of the plane would 
enable us to achieve such properties? In this case, it is simpler to employ rota-
tions. Thus for any arbitrary location of A4 in A ABC, a rotation of /\A2A3AA 

onto AA2T ,(A3)T(A4) gives all the above properties. With such a rotation for 
any location of AT in A ABC, we have 

3 

(=i 

The right hand side of this identity is smallest when and only when AU A4, 
T(A4), T(A3) are collinear. Consequently, problem (b) reduces to finding the 
location for AT such that AU A4, T(A4), T(A3) are collinear. 

http://rcin.org.pl



118 N U R U D E E N A L A O 

Thus we shall completely answer question (b) if we can exhibit the exact 
location of A4 which satisfies the collinearity condition of the last paragraph. 
We turn to Fig. 8 for the basis of such a solution. Since we rotated A A 2 A 3 A t 

onto AA2T(A3)T(A4) , we necessarily have that 

(i) A A2AiT(Ai) is equilateral when each of its angles is 60°, 
(ii) <£A3A2T{A3) = 6 0 ° , 

(iii) = \ A ^ 3 \ . 

In consequence of facts (ii) and (iii), A A 2 A 3 T { A 3 ) is equilateral, which in 
turn implies that 

( iv) <$rA2AiT(A3) = <£A2A3T(A3). 

In consequence of (iv) the points Ai, A4, A3, T(A3) must lie on a circle, i.e., 
these points together with the line segments joining them constitute a cyclic 
quadrilateral. In consequence of this fact <$iA2AfA3 + <£A2T(A3)A3 = 180°, which 
implies that <^.A2AfA3 = 180 — 60 = 120°. Consequently we have arrived at a 
complete constructive proof of the solution of problem (b). The essential steps 
of the solution are now isolated (Fig. 9). 

Step I: Using A2A3 as base, construct an equilateral A A 2 A 3 T ( A 3 ) with (A3) 
as apex located on the side of BC opposite to that in which Ax is located. It is 
clear from the preceding paragraphs that an implicit assumption is that 
^ A ^ A , < 120°. 

Step II: Join A1 to T(A3) and AXT(A3) is the required minimal line. 
Step III: Circumscribe A A 2 A 3 T ( A 3 ) in a circle and call the intersection of 

this circle with A^iAJ the point Af. Thus the network consisting of the line 
segments A1A*, A2A* and A3Af is the required optimal network. In case any 
of the angles of /\AlA2A3 is greater than 120°, it is clear that At must coincide 
with that point. 
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To solve problem (a), i.e., the Steiner problem for N ( > 3) points, we must 
formulate an appropriate (b)-equivalent. To do this, we need to extract the 
more general properties from the N — 3 case. We first give a couple of defini-
tions. 

D II.i Every point (such as Af in Fig. 9) added to the given N points and 
located in their convex hull will be called an A*-point. Furthermore, if I* is the 
index set for A*-points, 

A* = {Af\iel*}. 

Let JU{A*) = number of elements in A*, and M = N+/U(A*). 
D Il.ii We shall refer to the case where each of the angles of /\A1A2A3 is 

less than 120° as the normal case. Consider Fig. 8 and observe the three angles 
on A* which are associated with the given points Au Az, A3. We shall say that 
V* is a carrier of (or carries) each of these angles. 

D. Il.iii S(L, ( n j ^ , , l(ni} rij), A*) is the solution to the Steiner problem (a) 
where L is the total length of the associated network, the set (n j j f i j is the 
totality of nodes in the networks, and l(nh rij) is the link joining node nt to rij. 
For brevity, we shall occasionally denote the set simply by S. 

PROPERTIES OF S <L, l(nv n.), A*>. 

Property 1. All Z(nt, rij), i^j, i, j = 1, ..., M, must be straight lines. Here 
M = number of A*-points plus N. 

Remark. Property 1 is necessarily true since the points are located in E2. 
Property 2. If S is normal, every A*-point carries angles each of which is 

exactly 120°. In case A*-points coincide with given points, then any angle car-
ried must exceed 120°. 

Proof. Suppose specifically that a <C 120° is carried by A* and is associated 
with given points Ak, Aj4 Consider now /\AfAkAj. It is easy to see that steps I, 
II and III can be used to create a new A*-point, say (Af,)k j , which carries an 
angle of 120° associated with Ak, AJ} and which creates a new S' of length L' 
with L' < L contradicting the optimality of S. 

Property 3. If AfeA*, there must exist links { l(nlk, n ^ } ^ ! with ni = A* such 
that ¿3 i1 and 

n i ( n t k n t ) = { A f } . 
k = 1 

Proof. This property simply states that every A*-point is the intersection of 
exactly three links. First suppose that AfeA* and that Af is the intersection of 
two links. Then Af must carry one angle greater than 120° which implies that 
Af is exactly coincident with one of the given points hence AfeA*. If, however, 
AfeA* and Af is a terminal of one of the links in S, then we claim that S cannot 
be optimal, for we can generate S' = S—{Af} of smaller length and in which 
all given points are connected. Finally, if AfeA* is the intersection of more 
than three links, then one of the angles carried by Af must be less than 120°, 
which contradicts Property 2. This completes the proof of Property 3. 

Property 4. S(L, {nJJli.lin,, n )̂, A*) cannot contain a loop. 
Property 5. ju(A*) ̂  N—2. 
Proof. Let JU>(A*) = r. Since there are N given points, we have a total of 

(N + R) points. In the light of Properties 1 — 4 together with the fact that we are 
operating in E2, S is connected if S contains {N + R— 1) links. On the other hand, 
by Property 3, each member of A* is the intersection of exactly three links. So 
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that by this intersection property (which forces us to include several links twice) 
we have 37" links. The links that are double-counted are those between the 
A*-points of which (links) there are most (r — 1). Consequently S contains at 
least 3r —(r—1) = 2 r + l links, i.e., 

N + r—1 ^ 2 r + 1, 

o r - r ^ 2 — N, 

i.e., r < N - 2 , 

which proves Property 5. 
Remark. If S is normal, then r = N~ 2. 
We are now in a position to formulate the (b)-equivalent of the generalized 

Steiner problem. 
(b)-Equivalent Problem: Let {Aj } f= 1 be a set of points located in E2. By creat-

ing r A*-points in the convex hull of {-Aj}^!., r ^ . N — 2 , construct the network 
of minimal length which connects all the given points via the created A*-points. 
In other words, construct 

S = S < L , {nt}?=1,l(nt,ii,), { A f } U > . 

The tools for solving this problem are essentially given in Properties 1 — 5 and 
steps I—III. In the interest of concreteness, we shall illustrate the solution with 
N = 4 and N = 5 cases and conclude with general remarks. 

Examine Fig. 10 in which the given points are Alf A2, A3 and A4. We want 
to construct the network of minimum length connecting these points. In this 
case r < 2 . So we must really examine minimum length networks with no 
A*-point, with one A*-point and with two A*-points to determine the global 
minimum. Clearly, once we specify the exact value of r, we have determined 
possible topologies of the network. Thus we define the minimum length network 
associated with a specified value of r as a relatively minimum length network 
(RELM), i.e., relative to a specified topology. We shall illustrate the principles 
with reference to the maximum value of r. We shall refer to networks associated 
with the maximum value of r as networks with complete topology (NECOM). 

Thus, in Fig. 10, we attempt to expose the basis of a minimum length NECOM 
for the four given points Au A2, A3) A4. In this case, r = 2 and we assume some 
arbitrary location for A* and A* initially. Using Property 3, we know that the 
RELM network must have the following connection pattern: At ^Af, A3 Af, 
A* A*, Ax Af, A2^±Af. Consider the sequence of line segments (paths) 
which connect the points T(A2), T(A*), A*, Af, T(A*) and T(A3) with | A^Af| = 
= 1 AfTjAf) 1, | A*A21 =\T(A*)T(A;)'[, \A^A*\ = \A*T(A*)\ and |A*A~I = 
= | T(Af)T(A3) |. Observe that this path has the same length as that of the 
network. So the network is of minimum length when this path is a straight line. 
Steps I—III are used to construct the associated RELM (Fig. 11) as follows: 

(1) Partition the four points into two sets by joining to A2 and A4 to A3. 
(2) Construct equilateral /\T{A3)A3Ai with apex T(A3). Construct equilateral 

AT(A 2 )A 1A 2 with apex T(A2). Join T(A2)T(A3). The circumcircle on the first 
equilateral A cuts T(A2)T(A3) at Af and the circumcircle on the second equila-
teral A cuts~T(A i)f(A3) at Af. 

(3) Join Af to A 4 , Af to A3, A* to Alt a n d A* to A 2 . 

Given the value r, the alternative topologies are determined by the parti-
tioning adopted in (1) so that for r = 2, an alternative to Fig. 11 is Fig. 14. 
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Consequently, the NECOM corresponding to r = 2 for four given points is of 
two types given by Fig. 11 and Fig. 14 and the appropriate RELM for r = 2 is 
Fig. 11 or Fig. 14 according as the former or the latter has the smaller total 
length. It could happen that the location of some of the given points, e.g., 
A3, A4 in Fig. 12, is such that the (r = 2) topology cannot be realized. Thus in 
Fig. 12, the RELM would consist of the following set of links: A,A*, A ^ A f , A f A i f 
A4 A3. 

Figure 13 illustrates a NECOM case in which there are five given points Au 

A2, A3, ..., A5. In a NECOM with five given points r = 3. Again we partition 
the points into two sets of pairs and a third set consisting of the single point A5. 
Next construct the equilateral AA3A4T(A3 ) , and /\AlA2T(A1). Join T(A2)T(A3). 
The problem is now essentially reduced to that of finding the minimum length 
network for the three points A5, T(A2), T(A3). Construct the equilateral 
AT(A2)T(A3)T(T(A3)). Join A5 to T(T(A3)) and this line intersects the circum-
circle of the last equilateral triangle at Af. Join T(A2) to Af, T(A3) to Af and 
these two lines intersect the circumcircle of AT(A 2 )A 1A 2 and AT(A 3 )A 3A 4 
respectively at Af and A*. Join Aj to Af , A2 to A f , A3 to Af and A4 to A f . 

It should now be clear that for any given finite number of points, the same 
solution procedure applies. The major problem, however, is that, to identify 
the RELM, in this case we have to examine all possible partitions (or pairing of 
the set of given points) and construct the associated NECOM. This is certainly 
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an unsatisfactory state of affairs since we do not possess any general system-
atic procedure for eliminating alternative topologies so that to obtain minimal 
length networks in the global sense would involve tremendous computational 
drudgery. Compounding this is the fact that global optima are by no means 
unique. 

Examples of applications in geography of the network notions which we 
have been discussing in this section are scanty. In fact, to date probably the only 
geographer who has approached network problems in a vein similar to ours is 
Werner (1969). However, geographical problems to which these notions are 
applicable are many (at least on a theoretical level) so that the scarcity of pub-
lished geographical examples may be argued to be due to the fact that the type 
of formulation expounded in this section is relatively unknown. 

SECTION III. FLOWS ON NETWORKS 

III-l OPTIMAL MULTI-SOURCE MULTI-DESTINATION FLOWS WHERE ONLY DIRECT 
UNCAPACITATED LINKS ARE PERMITTED 

This problem is of course the network interpretation of the fundamental 
Hitchcock problem. Basically one seeks a pattern of demand-supply linkages 
(over a network of direct links) which (pattern) ensures that the following 
conditions are met: 

(a) no supply location is called upon to supply more than its capacity, 
(b) the demand of every location for the commodity is met, 
(c) the total flow cost is as small as possible. 

Denote the set of supply locations by S, and the set of demand points by D. 
Further, for every ieS and jeD, let (a) tlj} x t j respectively be the unit flow cost 
and the amount of commodity moved from i to j, and (b) ou dj respectively 
represent availability at i and total demand at j. 

The problem verbalized above may be symbolized as follows: 

ieS jeD ieS jeD jeD ieS 

xtj ^ 0, i e S, j e d ] . 

Several algorithms have been constructed for solving this problem. The four 
best known are (a) the stepping-stone algorithm, (b) modified distribution 
method or MODI, (c) Vogel's approximation technique, and (d) simplex algor-
ithm. Space limitation prevents our reviewing these algorithms but the interes-
ted reader will find a particularly lucid exposition of the first three in Metzger 
(1958) and of the fourth in Dantzig (1962). 

The Hitchcock problem as characterized above has been the foundation for 
several more general network flow problems. Generalizations have involved the 
introduction of capacity constraints (reviewed in Garrison (I960)), the inclusion 
of flow through intermediate nodes or the so-called transshipment problem 
(see Orden (1956) and Quandt (1960) for two different methods of solving this 
problem) and the introduction of multiple commodities (see Werner et al., 1968). 

Related to this basic Hitchcock problem but characteristically involving 
many intermediate nodes is the maximum flow problem. Simply, it is concerned 
with the question: Given a source, a destination and a directed network of links 
from the source through a finite number of nodes to the destination, what is 
the maximum flow that can arrive at the destination from the source given 
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that there are capacity constraints on the links? Probably the simplest solution 
technique for this problem is that due to Ford and Fulkerson (1962), which is 
based on the max-flow-min-cut theorem. Complete exposition of the solution 
method cannot be undertaken in an essay of this length and so the reader is 
referred to Kaufman (1967) for a thorough treatment of this problem. An im-
portant application of this maximum flow problem is to the evaluation of the 
efficiency of networks with respect to flows in an economy. In this respect, the 
maximum flow problem surpasses in power any of the indices which we eva-
luated in the first section. Furthermore, it can be shown that its dual solves the 
minimum path problem of Shimbel which forms the basis of Kissling's (1969) 
investigations of the linkage importance of regional highways in Canada. 

Two Examples of the Maximal Flow Problem: As with the generalized 
Hitchcock problem, we deal with flow from an origin through several inter-
mediate nodes to a destination. In this part, however, we put capacity constra-
ints on the various links and ask: What is the maximum flow that the network 
system can accommodate per unit of time? The initial data are summarized in 
the network shown in Fig. 15. 

Consider Fig. 15. The numbers in circles are the nodes of which there are 
twelve. Node (Ô) refers to the origin and ® to the terminus (or destination) of 
all flows. The arrows indicate the possible directions of flow and the numbers 
beside each arrow indicate the maximum capacity of the corresponding link. 
We solve the problem in a series of steps illustrated by Figs. 16-19. The first 
step in the solution consists in applying the law of conservation of flows lo 
each node. Simply stated, one relabels the links in such a way that for each 
node the sum of incoming flows is equal to that of outgoing flows. Thus Fig. 16 
is derived from Fig. 15 by application of the conservation principle. Consider 
node © in Fig. 16. Total incoming flow is 4 + 5 + 9 + 3 = 21; total outgoing flow 
is 13 + 4 + 4 = 21. The reader can check that every other node of Fig. 16 has 
the property that total inflow minus total outflow associated with it is zero. In 
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applying the conservation principle, it is essential that the capacities of links 
are not exceeded. Consequently , wherever the capacity of a link has been atta-
ined, we show the link b y pecked lines. 

The second step is illustrated in Fig. 17. This step consists in the application 
of the completion principle. Simply stated, an origin-destination (in this case 
a (0) — flow is said to be complete if, and only if, at least one link in the 
path of the flow has been used to capacity. Thus step 2 consists in transforming 
Fig. 16 into Fig. 17 in which every possible path has at least one dotted link, 
whilst for each node the conservation principle still holds. 

Fig. 17. 
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The third step is a little more tricky and somewhat more difficult to describe. 
This step enables us to answer the question: Given the "complete" flow struc-
ture of Fig. 17, is it possible to increase the number of "complete" links and 
maintain conservation of flows in each node? To answer the question we con-
sider the set Z\2, each member of which is a chain (consisting of a sequence of 
successive adjacent links) with the property that the first link is incident 
on (5) and the last is incident on Thus defining [k] as a chain consisting 
of k links with the first link incident on m and the last link incident on n, 
we note that C£[k]eZJ2 if m = 0 and n - 12. Now consider Cl2[k]eZl02, and for 
the sake of simplicity label the links of Cj2[fc] successively as (0, a(l)), (a(l), 
a(2)), ..., (o(k 12, 12). Put a [ + ] at the origin. There are essentially three cases 
to consider for any such Cj2[fc], 

Fig. 18. First adjustment 

(1) None of the links is saturated. 
(2) One or more of the links are saturated and the feasible flow direction 

is exactly that indicated by the labelling order. 
(3) One or more of the links are saturated but the feasible flow direction 

of such link(s) is opposite to the direction indicated by our labelling. 
The reader might ask, how is case (1) possible when the flow structure of 

Fig. 17 is complete? The only answer is that case (1) is possible since Z\2 is 
direction-free, i.e., elements of Zj2 need not be "paths" linking ® to whereas 
"completeness" is path-dependent. We deal with the cases as follows: 

Case. (1). Mark the origin with a [ + ]. Next consider the link (0, a(l)). If the 
flow is feasible in that direction put [ + 0] on node o(l); if flow is feasible only 
in the opposite direction, put [~0] on node o(l). Perform the same operation on 
every link and every node of Co2[fc], so that the operation ends with [ + a(fc —1)] 
on node © . In case there are links whose terminal nodes bear negative signs, 
among them identify that whose flow value v is smallest. Next consider the 
set of links whose terminal nodes bear positive signs; for the i-th member of 
this set let Pt be the difference between the flow value and the capacity, and let 
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p = min {Pi } . Let q = min {p, v}. If q = v, add v to the flow value on each 
i 

positive link and subtract v from each negative link. As a result of this sub-
traction, the chain Cj2[fc] will contain a link with flow value zero. In this case 
(unless p = v) no link can be completed in the chain. On the other hand, if 
q = p, add p to all positive links and subtract v from all negative links. This 
last operation results in at least one link in Cj2[Jc] being completed and case (1) 
becomes case (2). 

Case (2). For case (2), we may without loss of generality suppose that only 
one link in Cl2[k] is saturated and that link has a flow direction which exactly 
follows the direction of the labelling. Qlearly in this case there is no way of 
increasing the number of saturated links without exceeding the capacity of at 
least one link (the initially saturated link). 

Case (3). In this case, use the steps of case (1) until either one of the negative 
links has zero flow or case (3) is reduced to case (2). 

Thus by taking care of case (l)-(3) for all chains, we arrive at a situation 
in which we can find no CQ2[JC] in which any additional link can be completed. 
How is this situation reflected in the flow structure? This question leads us to 
one of the most important theorems in network flow theory: max-flow-min-cut 
theorem. Examine Fig. 18 again. Place [ + ] beside the origin. Consider the chain 
CJ2[6] defined by the ordered set of links ( ® ® ) , ( ® ® ) , ( © ©) , ( © ® ) , @ ) , 
( ® ©)• I n view of the feasible direction of flow we have the associated sign 

Fig. 19. Final adjustment 

pattern [ + ], [ + 0], [ + 1], [ + 2], [ - 6 ] , [ - 10 ] , [+11]. Thus this chain is a case (3) 
type and the flows are changed accordingly. The same procedure is applied to 
all chains until we arrive at Fig. 19 where the links ( ® ©) , ( ® ® ) , ( ® ® ) , 
and ( © @ ) are all saturated so that starting with [ + ] on ® no sign can be 
put on © , ® , or @ without exceeding the capacity of the associated links 
( ® ® ) , ( ® ® ) , ( ® ® ) and ( © © ) . These sets of links which separate the nodes 
upon which [ + ] or [—] can be located from the nodes on which neither [ + ] 
nor [—] can be located, constitute a cut (and in fact the minimum cut). The 
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total flow in such a cut is equal to the maximum flow the network can accom-
modate. The maximal flow in the network we have so far been studying is 
5 + 12 + 10 + 14 = 41. We must emphasize that the cut need not have all (or 
any) of its component links directly incident on the origin. Figure 20 and Fig. 21 

provide an example to illustrate this last point. The wavy line defines the cut 
which consists of those links directly intersecting the cut. Notice that in this 
case only one of the links is directly incident on the origin. Thus the maximum 
flow in this network is 6 + 0 + 3 + 11 + 2 = 22. 

III-2 ONE ORIGIN-ONE DESTINATION M A N Y INTERMEDIATE NODE FLOW PROBLEM 

The network flow problem discussed in this section is fundamental to many 
sequential decision problems and in particular has all the basic essential pro-
perties of a dynamic programming problem. In the network (Fig. 22) displayed 
below, the number encircled indicate nodes; arrows indicate direction of links 
between nodes and the number beside each link is the flow cost, assuming 
links are uncapacitated. The problem we wish to solve is to find the sequence 
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of links through which commodities must m o v e f r o m the origin i.e., supply 
center, to the destination ® so that total f l o w cost is as low as possible. W e 
shall establish the solution in stages, working backwards f r o m the destination 
to the origin. T h e principle underlying the solution is the naive-sounding, yet 
fundamental principle of dynamic programming, namely that any path which 
is optimal for any stage must be included in the total optimal path linking the 
origin to the destination. W e proceed stage-wise as in T a b l e 1: 
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Thus the solution consists of the following sequence of nodes (and the im-
plied links) ® , © , © , © , 

The solution procedure may be described as follows: One first partitions the 
network into stages. Stage I consists of all nodes that are connected over one 
link to the destination; Stage II consists of all nodes that are connected over 
two links to the destination, etc. The computation for Stage I involves mainly 
the listing of the flow cost from node © to © , node © t o © and node (5) to 
For Stage II, we calculate the cost of flow from © directly through © to © , 
through © to through © to ® , and through © to We use the symbol 
"00" to indicate that two nodes are not directly linked. However, a unit flow 
from © through © into © costs $(5 + 4) = $9. Hence, we enter © in the © © 
cell of the table describing Stage II. We follow the same procedure for nodes 
© , © and © . Next, for each row (in the table representing Stage II) we identify 
the cell with the smallest cost and we indicate the column number correspond-
ing to that cell and transfer that number to the extreme right under Optimal 
Node. Thus (in Stage II) the value 9 is the lowest in row © and that value 
corresponds to column ® . 

By substituting distance for cost in the procedure outlined above, we may 
derive a solution for the minimum path problem for every pair (x, y) of points 
in the given network. 

Call the origin x and the destination y. We label the vertices of the network 
as follows: x has the label zero; a vertex r has the label t if the least number 
of steps that must be traversed from x to get to r is t. Define Qx(t) = {r|r is at 
least t steps away from x } Then Qx(t + 1) = {r\reij(t) and a member of Qx{t) 
is linked to r). We continue in this fashion until we reach yeQx(n) and 
e Qx{n— 1). Then n is the shortest distance between x and y. 

SECTION IV 

In the earlier sections, problems of flows on networks, and problems of opti-
mal network structure, have been treated separately. The relative simplicity 
thus achieved enabled us to obtain a variety of interesting results for networks 
consisting of a fairly large number of given points. Quite often, in reality, the 
problem of finding the optimal network structure may involve finding the 
network connecting a set of points so that the construction and flow costs are 
minimized simultaneously. Unfortunately, the introduction of differential con-
struction and flow costs introduces at least two fundamental problems which 
quite severely restrict the solution, interpretation and aplication of this aspect 
of network theory. First, by combining both cost, we introduce considerable 
distortion into the uniform surface with which the second section of this paper 
dealt. A result of this distortion is a sharp increase in the number of network 
alternatives that must be examined to arrive at an optimal solution. Secondly, 
we run into a problem of incompatible dimensions (since flow cost is really 
measured per unit time per unit time) all of whose solutions to date (see 
Quandt, 1960) are largely artificial and prevent an unambiguous interpretation. 

Bearing these two issues in mind, we shall proceed to formulate the next 
problem following the general structure provided initially be Friedrich (1956) 
and Beckmann (1952) and later elaborated by Werner (1968). However, the me-
thods (i.e., the arguments) we employ in this section are more compact and, 
we hope, much simpler than those of the authors just mentioned. 
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Notation: 

¡a — flow cost per unit distance per unit flow, 
j = total flow between source Ai and destination Ajt 

c = construction cost per unit length (in terms of capital cost by unit ca-
pacity per time). 

Given the above variables, we proceed with a statement of our basic problem 
as follows: 

Problem: Given are the points Alt A2, A3, each in R2. Find the point A* 
through which Ai, Ai, and A3 can be connected so that the network consisting 
of links AxA* , A2Af and A3Af is of least flow plus construction costs. 

Solution: One of the simplest approaches to the solution of the above problem 
is to set up a diagram such as Fig. 23 in which the coordinate system is arran-
ged so that Ax = (0, 0), A2 = (x2, 0), A3 = (x3, y3) and A* = (x, y). The total 
cost per unit length along the link AXA* = c + /i/13; along the link A2Af = 
= jui23; and along the link A3A* = c+ ju(fl3 + f23). 

Put tj — c+juj13; t2 = c+juf23-, and t0 = c + ju(f13+f23). Thus, if T is the total 
f low and construction cost for the network in Fig. 23, we have 

T(x, y) = T(Af) = Ux2 + y2y>2 + t2((x2 - x)2 + y2Y2 + t0((x3 - x)2 + (j/, - y)2)f. 

The point (x, y) for which T is minimum satisfies the following partial diffe-
rential equation (which constitute necessary conditions): 
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Equations (1) and (2) above are equivalent to the following: 

t1sina — t2sinfi— t0cosy = 0, (1') 
t1cosa — t,cos/5 — t0siny = 0. (2') 

To simplify the relations, we first add (1') times sin/5 to (2') times ( — cos/?) to 
obtain 

i^sina sin/5 — t, sin2/? —10 sin/? cos y — tl cos a cos (5 —t2 cos2/? +10 cos/? sinv) = 0, 

or 

t^sina sin/3 — cos a cos/3) —12(sin2/? + cos2ß) — £0(sin/? cos^ — cos ß siny) = 0, 

i.e., 
— t1cos(a + ß) — t2 — t0sin(ß — y) = 0, 

or 
sin 2(ß-y) = (1/to) [t2 + t1cos(a + ß)]2. 

Next we add (1') times cos ß to (2') times sin ß to obtain 

t1 sina cos ß — 12 sin ß cos ß —10 cos ß cos y 

+ tiCOsasin/? + t2cos/?sin/? —t0sin/?sin}' = 0, 

or 
tj(sina cosß + cosß siny) — t0(cos/? cosy + sin/? sin^) = 0, 

or 
t1sin(a + Jö) -t0cos(ß — y) = 0, 

or 

c o s 2 ( ß - y ) = ~ sin2(a + /?). (2") 

Now add (1") to (2") to obtain 

1 = ~ [ t l + t2cos2(a + ß) + 2txt2cos(a + ß) + tiSin2(a -j- /?)] 

or 
t2 = t2 + tj + 2t1t2cos(a 4- ß), 

which yields 
t2 — t2 — f2 o ''a cos(a + /?) = cosö0 = 

¿ t 1 t 2 

Thus the necessary conditions may be expressed in terms of angles as the 
following set of equations: 

t2 — f2 — t2 

«*9> = <3> 
where j = (i + 1) mod 3, k = (i + 2) mod 3 and 0 ^ i ^2. 
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SUFFICIENT CONDITIONS 

To establish sufficiency, one checks that the Hessian matrix 
d2T c2T 

H(x, y) = 
d x 2 

¿2 T 

dydx 

dxdy 
d2T 

is positive definite. A direct computation of elements of the above Hessian is 
quite space consuming. However, that H is positive definite follows from the 
fact that the function T(x, y) is a strictly convex function, a fact also gua-
rantees the uniqueness of A*. 

APPLICATIONS OF THE BASIC RESULT 

The basic result just derived is used in solving multiple point network prob-
lems via the principles of decomposition and conjunction which we elaborate 
as follows. It is convenient to discuss the principles under two categories. In 
the first category, we already have a network but would like to investigate the 
possibilities for reducing flow and construction costs. In the second category, 
we have only a pattern of points that we wish to connect by a network of mi-
nimum flow and construction costs. It should be clear that these two categories 
are substantially different in at least two respects: proportion of new nodes 
that can be created, and hence the number of alternative network structures 
that may emerge. The steps involved in effecting the reduction are now brie-
fly outlined. 

Category I (Figs. 24a-24c) 

Step 1. Select nodal points of the network (e.g., A* in Fig. 24a). 
Step 2. Group the links which converge on A* into pairs, as for example, 

links (A*A,, A*A~), (A*A~3, A*Ai), and {A*A5, A*A6). 

Fig. 24. C a t e g o r y 1 

Step 3. Each pair of links, say {A*Ai, A*Aj), in the group identified is re-
placed by a triple of links (AtA*., AjA*k., A*A*K) so that Afk is an additional 
node through which flows from two branches may be conjoined into a single 
branch A*A? . 
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Step 4. Consider any non-empty set {A*A i f c )£ = , of links of conjoined 
flows which in consequence of the application of Step 3 intersect at a common 
point A* . (There is no reason why any such point must exist. Fig. 24c is a de-
composition of Fig. 24b in which no such point occurs.) In case such a point 
occurs, it is replaced by a triangle so that A* is replaced by three new points. 

Step 5. Consider the set {A*J,c€I of new points. Take the first element A* 
of this set, and consider the links, say A^A*, A t A * and A* Af*, which are 
incident on the point A* . Fix all other points of the decomposed network 
(i.e., the network obtained by applying Steps 1 to 4). Next apply the basic re-
sult to locate A* so as to minimize the flow and construction costs of the net-
work linking the points At^ At and A* . 

Step 6. Repeat step 5 for every A* until every such point has assumed 
a location from which a shift away increases the total costs. Such locations are 
attainable in view of the fact that Step 5 systematically reduces costs which 
have a lower bound. 

C A T E G O R Y I I 

In this second category, all of the steps used in Category I apply, together 
with the following additional principle which one applies during the decom-
position stage. Namely, every given point is the terminal of two conjoined 
flows. Thus for three points, Fig. 25a shows the most general decomposition. 
In this threepoint case, there are exactly 12 possible solutions, each represen-
ting different topologies. Figure 25b contains four possible solutions (the trian-
gle plus three V-solutions), and Fig. 25c contains eight possible solutions 

F i g . 25. C a t e g o r y 2 
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(a Y-solutions; three solutions depending on which A* merges with its corre-
sponding A {; three solutions depending on which pair Af, A*+1 merges with its 
corresponding Au Ai+1; and Fig. 25c itself). Thus, it can be seen that the in-
troduction of f low costs abruptly increases the number of admissible topologies 
for optimal solutions. 

Finally, we shall briefly discuss the problem of link addition to networks. 
From the point of view of application in planning situations, this problem is 
undoubtedly as important as any we have mentioned. It is, however, far more 
complex for at least two reasons. First, we require an understanding of prac-
tically all of the foregoing problems before we can even adequately characte-
rize the important dimensions of the link addition problem. Secondly, it posse-
sses ties with the notions of systems effect of transportation improvements, 
which (effects) are still scarcely understood and in any case are extremely dif-
ficult to measure cardinally. Consequently, all the difficulties we encounter in 
the previous sections are compounded here. 

The question one seeks to answer is: Given that the capacity of a network 
needs to be increased, which of the existing links in the network should be 
improved and which new links should be created in order either (1) to provide 
maximum stimulus to productive activities and have enough network capa-
city to cope with new increases in flow or (2) to provide least (suitably de-
fined) cost additional capacity to accommodate expected flow increases or (3) 
to have some combination of (1) and (2) via the concept of cost effectiveness? 
The formulation of a suitable model for the realization of any of the above ob-
jectives runs into difficulties because (a) the effects of capacity addition are 
not localized but are rather spread throughout the system and we possess no 
general theory for tracing them out completely and (b) the number of alter-
natives grows very fast compared with the increase in number of links; (for 
example, in a problem involving n links there are 2n alternative solutions to 
consider; for four links this means 32 alternatives!). 

To date two main approaches have been used in the solution of the link 
addition problem: calculus of variations and various adaptations of basic Hit-
chcock problem in linear programming. Models using the calculus of variations 
have been developed by Beckmann (1952) and Friedrich (1956). The models 
are hampered by the lack of general algorithms for solving the systems of 
equations. Furthermore, the approach demands far more mathematical sophi-
stication than has been assumed in this paper. 

A simple linear programming formulation is the following. 
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where = unit flow cost from i to j; xtj = flow from i to j\ ci} = existing 
capacity of zj-links; ktj = added capacity in i — j link; (j)^ = unit construction 
(capital) cost on i—j link and T — available capital budget. 

The objective function is designed to minimize only flow cost and hence to 
avoid the problem of dimension referred to earlier. The model can be compli-
cated in several directions, examples of which may be found in Garrison and 
Marble (1958), Quandt (1960) and Werner et al. (1968). Finally, as Roberts and 
Funk (1964) have reported, even this simple model can be very hard to solve 
because of the vast number of numerical iterations required to arrive at a final 
result. 

CONCLUSIONS 

It is important to stress three points in concluding this paper. First, only 
very few network concepts have been applied to geographic problems. Among 
these, graph theory seems to be the most frequently used and even in this case 
we still lack empirical interpretations which are consistent with the under-
lying theory. Secondly, we have hitherto been able to solve only special cases 
of the network problems that are of fundamental interest to us. Finally, and in 
consequence of the first two points, we have striven in this paper on the one 
hand to expose the theoretical properties of the network concepts so that inter-
pretations might consistently be checked against the theory and on the other 
hand we have indicated issues that must be resolved if the more general cases 
of the spatial problems (identified) are to be solved. 
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