Object structure


Współczesne wykorzystanie przez bobra europejskiego Castor fiber antropogenicznie przekształconych dolin rzecznych (przykłady z Równiny Opolskiej i Wyżyny Woźnicko-Wieluńskiej) = Contemporary adaptation of anthropogenically-transformed river valleys by European beavers Castor fiber (examples from Poland’s Opole Plain and Woźniki-Wieluń Upland)


Przegląd Geograficzny T. 89 z. 3 (2017)


Fajer, Maria ; Malik, Ireneusz ; Waga, Jan Maciej ; Wistuba, Małgorzata ; Woskowicz-Ślęzak, Beata



Place of publishing:


Date issued/created:



24 cm

Subject and Keywords:

beaver ; beaver dams ; former hydrotechnical objects ; Mała Panew River ; Liswarta river


Many of Poland’s valleys resemble those of the Mała Panew and Liswarta (and their tributaries) in featuring the remains of old hydrotechnical infrastructure formerly used by gristmills, steel plants and sawmills. As the importance of water as their main source of energy declined, such earlier industrial plants were gradually closed down, with a steady process of deterioration of hydrotechnical infrastructure then set in train. Beavers were reintroduced into the catchments of the Mała Panew and Liswarta in the 1990s, with the rodents immediately commencing with the adaptation of anthropogenically-transformed habitats to better meet their needs. Against this background, research was conducted to determine: • the number of beaver sites in the river valleys in question, and especially the number within or near disused items of hydrotechnical infrastructure, • the ways in which beavers have “managed“ the infrastructural items in question, • the impact beavers’ activities have had on the environment in the valleys studied. The locations and functions of old items of hydrotechnical infrastructure were determined by reference to archival maps. To assess beavers’ activities, 6 sections of watercourse of lengths 0.5-7 km were selected, with locations of beaver dams and ponds, as well as other traces of activity by the animals, documented and described. With a view to findings being summarized, distinctions were drawn between various methods of adaptation of former hydrotechnical objects by beavers , i.e. 1 – dams built in the channels of regulated rivers, 2 – dams built in culverts, 3 – former millrace/water channels (used by gristmills or ironworks) occupied and adapted, 4 – banks of retention ponds occupied, 5 – waters in river channels dammed and basins of old ponds flooded, 6 – banks of ponds serving fire-fighting purposes occupied, 7 – former pond dams restored. Beavers can adapt successfully to – and also themselves adapt – anthropogenically-transformed environments in river valleys. In this regard, the rodents were found to be more eager to occupy the tributaries of the Mała Panew and Liswarta than the rivers themselves. The valleys offer suitable conditions for beavers, given channels that are shallow (of 0.3-0.6 m), slightly sloping (2.2-6.7 m/km), with sandy or sandy-sludgy bottoms, as well as access to deciduous trees growing nearby. Along the Mała Panew and Liswarta themselves, beavers make use of side channels and millraces. Most numerous traces of beavers’ activity were to be observed along forested stretches of the Leńca and Olszynka Valleys, which are found to have been transformed by beavers along 28-35% of their lengths. The animals made instinctive use of relic items of hydrotechnical infrastructure, with an interesting case involving the “restoration” by beavers of old embankments of anthropogenic ponds on the Rów Kokocki and the Leńca. Above beaver ponds (on the Rów Kokocki) or between ponds (on the Olszynka and Leńca), reduced channel slope and increased channel sinuosity contribute to the creation of side channels. Along these sections, transport channels made by beavers are vulnerable to avulsion and the emergence of multi-channel sections of watercourses.


1. Bagniewski Z., 1990, Obozowisko mezolityczne z doliny Baryczy, Pobiel 10, woj. leszczyńskie, Studia Archeologiczne, 19, PWN, Warszawa.
2. Bejenaru L., Stanc S., Popovici M., Balasescu A., 2015, Beavers (Castor fiber) in the past: Holocene archaeological evidence for beavers in Romania, International Journal of Osteoarchaeology, 25, 4, s. 375-391.
3. Bereszyński A., Homan E., 2007, Występowanie bobra europejskiego (Castor fiber Linnaeus, 1758) w Poznaniu, Nauka Przyroda Technologie, 1, 2, #38; http://www.npt.up-poznan.net/tom1/zeszyt2/art_38.pdf.
4. Błędzki L.A., Bubier J.L., Moulton L.A., Kyker-Snowman T.D., 2011, Downstream effects of beaver ponds on the water quality of New England first- and second-order streams, Ecohydrology, 4 (5), s. 698-707.
5. Burchsted D., Daniels M., Thorson R., Vokoun J., 2010, The river discontinuum: Applying beaver modifications to baseline conditions for restoration of forested headwaters, BioScience, 60, 11, s. 908-922.
6. Butler D.R., Malanson G.P., 1995, Sedimentation rates and patterns in beaver ponds in a mountain environment, Geomorphology, 13, s. 255-269.
7. Butler D.R., Malanson G.P., 2005, The geomorphic influences of beaver dams and failures of beaver dams, Geomorphology, 71, s. 48-60.
8. Cech B., 2004, Water power in 16th century precious metal production in the Gastein district of the Austrian Alps, Mining History: The Bulletin of the Peak District Mines Historical Society, 15, 4/5, s. 77-82.
9. Cirmo C.P., Driscoll C.T., 1993, Beaver pond biogeochemistry: acid neutralizing capacity generation in a headwater wetland, Wetlands, 13, s. 277-292.
11. Coles J.M., Orme B.J., 1983, Homo sapiens or Castor fiber?, Antiquity, 57, s. 95-102.
12. Czech A., 2005, Analiza dotychczasowych rodzajów i rozmiaru szkód wyrządzanych przez bobry (Castor fiber) oraz stosowanie metod rozwiązywania sytuacji konfliktowych, Instytut Ochrony Przyrody PAN, Kraków; http://www.bobry.pl/docs/szkody_bobry.pdf (16.04.2016 r.).
13. Czech A., 2010, Bóbr – budowniczy i inżynier. Fundacja Wspierania Inicjatyw Ekologicznych, Kraków; http://bobry.pl/docs/bobr-budowniczy-i-inzynier.pdf (16.04.2016 r.).
14. Czerepko J., Wróbel M., Boczoń A., Sokołowski K., 2009, The response of ash-alder swamp forest to increasing stream water level caused by damming by the European beaver (Castor fiber L.), Journal of Water and Land Development, 13A, s. 249-262.
15. Dalbeck L., Weinberg K., 2009, Artificial ponds: a substitute for natural Beaver ponds in a Central European Highland (Eifel, Germany), Hydrobiologia, 630, s. 49-62.
16. Downward S., Skinner K., 2005, Working rivers: the geomorphological legacy of English freshwater mills, Area, 37, 2, s. 138-147.
17. Dynowska I., 1971, Typy reżimów rzecznych w Polsce. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Geograficzne, 28, Kraków.
18. Dzięciołowski R., 2004, Bóbr europejski, [w:] P. Adamski, R. Bartel, A. Bereszyński, A. Kepel, Z. Witkowski (red.), Gatunki zwierząt (z wyjątkiem ptaków). Poradniki ochrony siedlisk i gatunków Natura 2000 – podręcznik metodyczny, T. 6, Ministerstwo Środowiska, Warszawa. s. 457-462.
19. Dzięciołowski R., Gozdziewski J., 1999, The reintroduction of European beaver, Castor fiber, in Poland, [w:] P.E. Busher, R.M. Dzięciołowski (red.), Beaver Protection, Management, and Utilization in Europe and North America, Kluwer Academic/Plenum Publishers, New York, s. 31-37.
20. Fajer M., 2003, Budowle wodne jako element krajobrazu w dorzeczu Liswarty, Prace Komisji Krajobrazu Kulturowego PTG, 2, s. 78-86.
21. Fajer M., 2004, Morfologiczne i geologiczne uwarunkowania rozwoju doliny Liswarty w holocenie, Prace Wydziału Nauk o Ziemi UŚ, 32, Sosnowiec.
22. Fajer M., 2014, Watermills – a forgotten river valley heritage – selected examples from the Silesian voivodeship, Poland, Environmental & Socio-economic Studies, 2, 2, s. 1-9.
23. Gibson P.P., Olden J.D., 2014, Ecology, management, and conservation implications of North American beaver (Castor canadensis) in dryland streams, Aquatic Conservation: Marine and Freshwater Ecosystems, 24, s. 391-409.
24. Gilewska S., 1972, Wyżyny Śląsko-Małopolskie, [w:] M. Klimaszewski (red.), Geomorfologia Polski, t. 1, Polska południowa – góry i wyżyny, PWN, Warszawa, s. 232-340.
25. Gołąbek D., 2004, Dawne hutnictwo i górnictwo w okolicy Boronowa, Rada Gminy Boronów, Boronów.
26. Grygoruk M., 2008, Metodyka szacowania objętości retencyjnej stawów bobrowych oraz ich oddziaływania na stosunki wodne zlewni leśnych, Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, 10, 2 (18), s. 162-172.
27. Grygoruk M., Nowak M., 2014, Spatial and temporal variability of channel retention in a lowland temperate forest stream settled by european beaver (Castor fiber), Forests, 5, s. 2276-2288.
28. Gurnell A.M., 1998, The hydrogeomorphological effects of beaver dam-building activity, Progress in Physical Geography, 22, s. 167-189.
29. Halley D.J., Rosell F., Saveliev A., 2012, Population and Distribution of Eurasian Beaver (Castor fiber), Baltic Forestry, 18 (1), s. 168-175.
30. Janiszewski P., Misiukiewicz W., 2012, Bóbr europejski, Castor fiber, BTL, Warszawa, http://www.bobrowniczy.pl/bobrowy.pdf (16.04.2016 r.).
31. John S., Klein A., 2004, Hydrogeomorphic effects of beaver dams on floodplain morphology: avulsion processes and sediment fluxes in upland valley floors (Spessart, Germany), Quaternaire, 15, 1-2, s. 219-231.
32. Kesminas V., Steponėnas A., Pliūraitė V.,Virbickas T., 2013, Ecological impact of eurasian beaver (Castor fiber) activity on fish communities in Lithuanian trout streams, Annual Set The Environment Protection, 15, s. 59-80.
33. Kobojek E., 2005, Środowiskowe skutki reintrodukcji bobra (Castor fiber) w dolinie Rawki Przegląd Geograficzny, 77, 3, s. 383-396.
34. Kobojek E., 2013, Wpływ działalności bobrów na lokalne procesy fluwialne w wybranych rzekach Równiny Łowicko-Błońskiej, Acta Universitatis Lodziensis, Folia Geographica Physica, 12, s. 17-32.
35. Kukulak J., 2000, Origin of laminated sediments in alluvium of the upper San valley in the Bieszczady Mountains, Eastern Carpathians, Geochronometria, 18, s. 47-52.
36. Levine R., Meyer G.A., 2014, Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA, Geomorphology, 205, s. 51-64.
37. Makaske B., 2001, Anastomosing rivers: a review of their classification, origin and sedimentary products, Earth-Science Reviews, 53, s. 149-196.
38. Malik I., 2004, Rola kłód w kształtowaniu dna koryta rzeki meandrującej na przykładzie Małej Panwi (Równina Opolska), Czasopismo Geograficzne, 75, 4, s. 255-274.
39. Malik I., 2006, Contribution to understanding the historical evolution of meandering rivers using dendrochronological methods: example of the Mala Panew River in southern Poland, Earth Surface Processes and Landforms, 31, s. 1227-1245.
40. Malik I., 2008, Dendrochronologiczny zapis współczesnych procesów rzeźbotwórczych kształtujących stoki i doliny rzeczne wybranych stref krajobrazowych Europy Środkowej, Wydawnictwo Uniwersytetu Śląskiego, Katowice.
41. Malik I., Wistuba M., Opała M., Franek M., Woskowicz-Ślęzak B., Mańczyk G., Tyrol C., 2015, Historical water-powered ferrous metallurgy reconstructed from tree-rings and lacustrine deposits (Mała Panew Basin, Southern Poland), Geochronometria, 42, s. 79-90.
42. McComb W.C., Sedell J.R., Buchholz T.D., 1990, Dam-site selection by beavers in an eastern Oregon basin, Great Basin Naturalist, 50, 3, s. 273-281.
43. Musioł L., Płuszczewski S., 1960, Wykaz zakładów dawnego hutnictwa żelaza na Górnym Śląsku od XIV do połowy XIX w., Studia z Dziejów Górnictwa i Hutnictwa, 5.
44. Pizzuto J., O'Neal M., 2009, Increased mid-twentieth century riverbank erosion rates related to the demise of mill dams, South River, Virginia, Geology, 37, s. 19-22.
45. Plan ochrony Parku Krajobrazowego "Lasy nad Górną Liswartą", Załącznik do uchwały nr 278/XXII/2013 Rady Miejskiej w Woźnikach z dnia 25 marca 2013 r., Woźniki, http://www.bip.wozniki.pl/files/sites/3137/wiadomosci/198748/files/plan_ochrony_parku_krajobrazowego__lasy_nad_gorna_liswarta.pdf (16.01.2016 r.).
46. Plan urządzenia lasu dla nadleśnictwa Koszęcin, Obręby: Boronów, Koszęcin, Zielona na okres gospodarczy od 1 stycznia 2010 r. do 31 grudnia 2019 r. Ogólny opis lasów nadleśnictwa. Biuro Urządzania Lasu i Geodezji Leśnej Oddział w Krakowie.
47. Podgórski Z., 2004, Wpływ budowy i funkcjonowania młynów wodnych na rzeźbę terenu i wody powierzchniowe Pojezierza Chełmińskiego i przyległych części dolin Wisły i Drwęcy, Wydawnictwo UMK, Toruń.
48. Pollock M.M., Heim M., Werner D., 2003, Hydrologic and geomorphic effects of beaver dams and their influence on fishes, [w:] S.V. Gregory, K. Boyer, A. Gurnell (red.), The Ecology and Management of Wood in World Rivers, American Fisheries Society Symposium 37, s. 213-233.
49. Pollock M.M., Beechie T.J., Jordan C.E., 2007, Geomorphic changes upstream of beaver dams in Bridge Creek, an incised stream in the interior Columbia River basin, Earth Surface Processes and Landforms, 32, s. 1174-1185.
50. Pollock M.M., Beechie T.J., Wheaton J.M., Jordan C.E., Bouwes N., Weber N., Volk C., 2014, Using beaver dams to restore incised stream ecosystems, BioScience, 64, 4, s. 279-290.
51. Polvi L.E., Wohl E., 2012, The beaver meadow complex revisited – the role of beavers in post-glacial floodplain development, Earth Surface Processes and Landforms, 37, s. 332-346.
52. Polvi L.E., Wohl E., 2013, Biotic Drivers of Stream Planform: Implications for Understanding the Past and Restoring the Future, BioScience, 63, 6, s. 439-452.
53. Popiołek K., 1965, Górnośląski przemysł górniczo-hutniczy w drugiej połowie XIX w., Śląski Instytut Naukowy, Katowice-Kraków.
54. Rocznik Statystyczny Rzeczpospolitej Polskiej 2015, GUS, Warszawa.
55. Rosell F., Bozsér O., Collen P., Parker H., 2005, Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems, Mammal Review, 35, 3-4, s. 248-276.
56. Statystyczne Vademecum Samorządowca 2015, http://stat.gov.pl/statystyka-regionalna/statystyczne-vademecum-samorzadowca/ (16.01.2016 r.).
57. Suzuki N., McComb W.C., 1998, Habitat classification models for beaver (Castor canadensis) in the streams of the Central Oregon coast range, Northwest Science, 72, 2, s. 102-110.
58. Szczypek T., 1977, Utwory i procesy eoliczne w północnej części Wyżyny Śląskiej, Prace Naukowe UŚ, 190.
59. Szpikowska G., Szpikowski J., 2012, Właściwości fizykochemiczne wód rozlewisk bobrowych w Dolinie Kłudy (górna Parsęta), Monitoring Środowiska Przyrodniczego, 13, s. 95-102.
60. Ulevičius A., Jasiulionis M., Jakštienė N., Žilys V., 2009, Morphological alteration of land reclamation canals by beavers (Castor fiber) in Lithuania, Estonian Journal of Ecology, 58, 2, s. 126-140.
61. Ulevičius A., Kisielytė N., Jasiulionis M., 2011, Habitat use and selectivity by beavers (Castor fiber) in anthropogenic landscape, Ekologija, 57, 2, s. 47-54.
62. Walter R.C., Merritts D.J., 2008, Natural streams and the legacy of water-powered mills, Science, 319, s. 299-304.
63. Witek M., 2012, Wpływ zabudowy hydrotechnicznej na współczesne kształtowanie rzeźby koryt rzek ziemi kłodzkiej, Landform Analysis, 19, s. 91-102.
64. Wright J.P., Jones C.G., Flecker A.S., 2002, An ecosystem engineer, the beaver, increases species richness at the landscape scale, Oecologia, 132, s. 96-101.
65. Żurowski W., 1992, Building activity of beavers, Acta Theriologica, 37, 4, s. 403-411.
66. Special-Karte von Südpreussen, D. Gilly, skala 1:150 000, 1802-1803 r., Berlin; http://igrek.amzp.pl/ (7.01.2016 r.).
67. Topographische Spezialkarte von Mitteleuropa, G.D. Reymann, skala 1:200 000, 1832-1870 r., Berlin; http://igrek.amzp.pl/ (7.01.2016 r.).
68. Topograficzna karta Królestwa Polskiego, skala 1:126 000, 1839-[1843] r., Kwatermistrzostwo Generalne Wojska Polskiego, Warszawa; http://igrek.amzp.pl/ (7.01.2016 r.).
69. Topographische Karte (Messtischblatt), skala 1:25 000, 1870-1889 r., Berlin; http://igrek.amzp.pl/ (7.01.2016 r.).
70. Mapa Szczegółowa Polski, skala 1:25 000, 1929-1939 r., WIG, Warszawa; http://igrek.amzp.pl/ (7.01.2016 r.).
71. Mapy topograficzne, skala 1:10 000, CODGiK, Warszawa; http://www.geoportal.gov.pl/dane/skany-map-topograficznych (5.01.2016 r.).
72. Ortofotomapy z lat 1996, 2003 i 2009; http://mapy.orsip.pl/imap (5.01.2016 r.).
73. Ortofotomapa z 2012 roku; http://geoportal.gov.pl/ (5.01.2016 r.).


Przegląd Geograficzny





Start page:


End page:


Resource Type:



File size 1,7 MB ; application/pdf

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2017.3.7


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund