Object structure
Title:

Transformacja właściwości wody i osadów w profilu podłużnym zbiorników zaporowych Kaskady Górnej Wołgi* = Transformation of water and sediment properties along the longitudinal profile of the Upper Volga Cascade Reservoirs

Subtitle:

Przegląd Geograficzny T. 89 z. 3 (2017)

Creator:

Gierszewski, Piotr J. ; Zakonnov, Viktor V. ; Kaszubski, Michał ; Kordowski, Jarosław

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2017

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

reservoirs cascade ; discontinuity of river ; bed load ; upper Volga ; Russia

Abstract:

The operation of dams is the key cause of river discontinuity, with reduced flow velocity towards dams reflected in gradual change in the physicochemical properties of water, the concentration and characteristics of suspension matter, and the properties of bottom sediments. In the case of dam reservoirs operating in a cascade system, the most major transformations of river-water abiotic and biotic characteristics take place in the first reservoir of the cascade, with properties of the aqueous environment in consecutive bodies of water then affected markedly. Detailed here, research conducted in the Upper Volga Reservoirs in Russia sought to assess the size and nature of changes in the physicochemical properties of water and in characteristics of the suspended material and bottom sediments that take place along the longitudinal profile of this Cascade of reservoirs. Results were then used to determine the relationships pertaining between the separate reservoirs of the Cascade, and to recognise the capacity for the typical longitudinal zonation to be reproduced in consecutive reservoirs along the cascade. The reservoirs of the upper part of the Volga Cascade are located in an area of limited environmental contrast. In such a situation, variability to the physicochemical properties of water and characteristics of the bottom sediments along the longitudinal profile are conditioned primarily by hydrological factors. The study showed that the functioning of the reservoirs as part of a cascade system did not result in the disappearance of the characteristic three-section aquatic environment, expressed by the presence of riverine, transitional and lacustrine zones. The equivalent of the riverine zones in the second and subsequent reservoirs are backflow zones, which extend to the dam of the upstream reservoir. The high-energy, erosive force of water downstream from dams denotes hydrodynamic conditions similar to those in the upper, riverine sections of reservoirs operating independently. The presented three-section model for the reservoirs was preserved mainly in terms of diversified bottom-sediment properties. A regularity detected entailed decreasing mean grain size towards the dam, and a parallel increase in OM content in the sediment. A significant impact on bottom–sediment properties is also exerted by the velocity and direction of currents, by depth and bottom morphology, and by the properties of the clastic material supplied to the reservoir from various sources. Only to a lesser extent is the three-section model of the aquatic environment in reservoirs evident in physicochemical properties of the water. However, the intense turbulence present in water below dams ensures such strong mixing that vertical gradients in water temperature are realigned, and oxygenation of bottom layers of water improved. In this sense, these particular sections of reservoirs are similar to the riverine zones of reservoirs operating independently. The presence of less-mineralised water in the lower, deepest sections of the reservoirs and below dams indicates a hydrochemical connection between the consecutive bodies of water. Furthermore, a significant influence on changes in the course of analysed parameters must be ascribed to local conditions, with the impacts of tributaries, but also other local factors like depth, the presence of erosional banks and intensity of shipping, proving just as important as causes of disturbance to the river continuum as dams.

References:

1. Abraham J., Allen P.M., Dworkin S.I., 1999, Sediment type distribution in reservoirs: Sediment morphometry, Environmental Geology, 38, 2, s. 101-110.
https://doi.org/10.1007/s002540050406 -
2. Alexeevsky N.I., Chalov R.S., Berkovich K.M., Chalov S.R., 2013, Channel changes in largest Russian rivers: Natural and anthropogenic effects, International Journal of River Basin Management, 11, 2, s 175-191.
3. Babiński Z., 1992, Współczesne procesy korytowe dolnej Wisły, Prace Geograficzne, IGiPZ PAN, 157.
4. Bailey M.C., Hamilton D.P., 1997, Wind induced sediment resuspension: A lake-wide model, Ecological Modelling, 99, 2/3, s. 217-228.
https://doi.org/10.1016/S0304-3800(97)01955-8 -
5. Banach M., 1985, Osady denne – wskaźnik hydrodynamiki Zbiornika Włocławskiego, Przegląd Geograficzny, 57, 4, s. 487-497.
6. Barbosa F.A.R., Padisák J., Espíndola E.L.G., Borics G., Rocha O., 1999, The cascading reservoir continuum concept (CRCC) and its application to the River Tietê-basin, São Paulo State, Brazil, [w:] J.G. Tundisi, M. Straškraba (red.), Theorical Reservoir Ecology and its Application, Backhuys Publishers, Leiden, s. 425-437.
7. Bikbulatov E.S., Lebedev Yu.M., Litvinov A.S., Bikbulatova E.M., Roshchupko V.F., Ershov Yu V., Tsel'movich O.L., 2001, Hydrochemical characteristics of the Upper Volga Reservoirs in the low-water season of 1997, Water Resources, 28, 5, s. 553-561.
https://doi.org/10.1023/A:1012337324068 -
8. Blott S. J., Pye K., 2001, GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surface Process and Landforms, 26, s. 1237-1248.
https://doi.org/10.1002/esp.261 -
9. Butorin N.V. (red.), 1978, Ivankovskoe vodochranilišče i ego žizn, Nauka, Leningrad.
10. Callisto M., Goulart M., Barbosa F.A.R., Rocha O., 2005, Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil), Brazilian Journal of Biology, 65, 2, s. 229-240.
https://doi.org/10.1590/S1519-69842005000200006 -
11. Chick J.H., Pegg M.A., Koel T.M., 2006, Spatial patterns of fish communities in the upper Mississippi River system: Assessing fragmentation by low-head dams, River Research and Applications, 22, s. 413-427.
https://doi.org/10.1002/rra.912 -
12. Debolskij V.K., Grigorieva I.L., Komissarov A.B., 2014, Sovremennaja gidrochimičeskaja charakteristika vodochranilišč Volžskogo kaskada v period letnej mežen, [w:] D.B. Gelašvili G.V., Šurganova (red.), Ekologičeskij monitoring. VIII Sovremennyje problemy monitoringa presnovodnych ekosistem, Izd. Nižegorodskogo Gosuniversiteta, Nižnij Novgorod, s. 61-76.
13. Dubnyak S., Timchenko V., 2000, Ecological role of hydrodynamic processes in the Dnieper reservoirs, Ecological Engineering, 16, 1, s. 181-188.
https://doi.org/10.1016/S0925-8574(00)00103-8 -
14. Èdelštejn K.K., 1991, Vodnyje massy dolinnych vodochranilišč, Izd-vo MGU, Moskva.
15. Èdelštejn K.K., 1998, Vodochranilišča Rossii: Ekologičeskije problemy i puti ich rešenija, GEOS, Moskva.
16. Folk R.L., Ward W.C., 1957, Brazos River bar: A study in the significance of grain size parameters, Journal of Sedimentary Petrology, 27, s. 3-26.
https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D -
17. Frémion F., Bordas F., Mourier B., Lenain J.F., Kestens T., Courtin-Nomade A., 2016, Influence of dams on sediment continuity: A study case of a natural metallic contamination, Science of The Total Environment, 547, s. 282-294.
https://doi.org/10.1016/j.scitotenv.2016.01.023 -
18. Georgievskij V.Û., (red.), 2015, Naučno-prikladnoj spravočnik: Osnovnye gidrologičeskie charakteristiki rek bassejna Verchnej Volgi, (Èlektronnyj resurs), Ministerstvo Prirodnych Resursov i Èkologii Rossijskoj Federacii, Federal'naja Služba po Gidrometeorologii i Monitoringu Okružajuščej Sredy, Federalnoje gosudarstvennoje bûdžetnoje učreždenie Gosudarstvennyj Gidrologičeskij Institut, Izdatelstvo Muhametov G.V., Livny.
19. Gierszewski P., 2004, Zmiany chemizmu wód w profilu podłużnym dolnej Wisły – wpływ zabudowy hydrotechnicznej, prognoza zmian, [w:] M. Błaszkiewicz, P. Gierszewski (red.), Rekonstrukcja i prognoza zmian środowiska przyrodniczego w badaniach geograficznych, Prace Geograficzne, IGiPZ PAN, 200, s. 69-99.
20. Gierszewski P., 2011, Impact of the Włocławek Reservoir on the conditions for the transport of suspended load, Geomorphologia Slovaca et Bohemica, 11, 1, s. 28-41.
21. Gierszewski P., Szmańda J.B., Luc M. 2006, Distribution of the bottom deposits and accumulation dynamics in the Włocławek Reservoir (central Poland), WSEAS Transactions on Environment and Development, 5, 2, s. 543-549.
22. Gierszewski P.J., Szmańda J.B., Luc M., 2015, Zmiany układu koryt Wisły spowodowane funkcjonowaniem stopnia wodnego "Włocławek" na podstawie analizy zdjęć lotniczych, Przegląd Geograficzny, 87, 3, s. 517-533.
https://doi.org/10.7163/PrzG.2015.3.6 -
23. Grigorieva I.L., 2012, Mnogoletnije tendencii izmenenija kačestva vody verchnevolžskich vodochranilišč, [w:] A.V. Krylov (red.), Bassejn Volgi v XX-m veke: Struktura i funkcionirovanie ekosistem vodochranilišč, IBVV RAN, Borok, s. 48-51.
24. Habel M., 2013, Dynamics of Vistula River channel deformation downstream of the Włocławek Reservoir, Wydawnictwo Uniwersytetu Kazimierza Wielkiego, Bydgoszcz.
25. Kawara O., Yura E., Fujii S., Matsumoto T., 1998, A study on the role of hydraulic retention time in eutrophication of the Asahi river dam reservoir, Water Science and Technology, 37, 2, s. 245-252.
26. Kim B.R., Higgins J.M., Bruggink D.J., 1983, Reservoir circulation patterns and water quality, Journal of Environmental Engineering, 109, s. 1284-1294.
https://doi.org/10.1061/(ASCE)0733-9372(1983)109:6(1284) -
27. Kimmel B.L., Groeger A.W., 1984, Factors controlling primary production in lakes and reservoirs: A perspective, Lake and Reservoir Management, 1, 1, s. 277-281.
https://doi.org/10.1080/07438148409354524 -
28. Kopylov A.I. (red.), 2001, Ekologičeskije problemy Verchnej Volgi: Kollektivnaja monografija, Izd. ÂGTU, Jaroslavl.
29. Koster E.H., 1978, Transverse rib: Their characteristics, origin and paleohydrologic significance [w:] A.D. Miall (red.), Fluvial Sedimentology, Canadian Society of Petrology Geologists Mem., 5, s. 161-186.
30. Lindim C., Pinho J.L., Vieira J.M.P., 2011, Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling, Ecological Modelling, 222, s. 2485-2494.
https://doi.org/10.1016/j.ecolmodel.2010.07.019 -
31. Litvinov A.S., Mineeva N.M., Papchenkov V.G., Korneva L.G., Lazareva V.I., Shcherbina G.Kh, Gerasimov Yu.V., Dvinskikh S.A., Noskov V.M., Kitaev A.B., Alexevnina M.S., Presnova E.V., Seletkova E.B., Zinov'ev E.A., Baklanov M.A., Okhapkin A.G., Shurganova G.V., 2009, Volga River Basin, [w:] K. Tockner, U. Uehlinger, C.T. Robinson (red.), Rivers of Europe, Elsevier, Academic Press, s. 23-57.
32. Magilligan F.J., Nislov K.H., 2005, Changes in hydrologic regime by dams, Geomorphology, 71, s. 61-78.
https://doi.org/10.1016/j.geomorph.2004.08.017 -
33. McCartney M.P., Sullivan C., Acreman M.C., 2001, Ecosystem Impaacts of Large Dams, Background Paper, 2, Prepared for IUCN/UNEP/WCD IUCN and UNEP, Switzerland.
34. McLaren P., 1981, An interpretation of trends in grain size measures, Journal of Sedimentary Petrology, 51, s. 611-624.
35. Miranda L.E., Habrat M.D., Miyazono S., 2008, Longitudinal gradients along a reservoir cascade, Transactions of the American Fisheries Society, 137, s. 1851-1865.
https://doi.org/10.1577/T07-262.1 -
36. Morris G.L., Fan J., 1998, Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watershed for Sustainable Use, McGraw-Hill, New York.
37. Mycielska-Dowgiałło E., Ludwikowska-Kędzia M., 2011, Alternative interpretations of grain-size data from Quaternary deposits, Geologos, 17, 4, s. 189-203.
https://doi.org/10.2478/v10118-011-0010-9 -
38. Palmer R.W., O'Keeffe J.H., 1990, Downstream effects of impoundments on the water chemistry of the Buffalo River (Eastern Cape), South Africa, Hydrobiologia, 202, 1, s. 71-83.
https://doi.org/10.1007/BF02208128 -
39. Poff N.L., Zimmerman J.K.H., 2010, Ecological response to altered flow regimes: A literature review to inform science and management of environmental flows, Freshwater Biology, 55, s. 194-205
https://doi.org/10.1111/j.1365-2427.2009.02272.x -
40. Schumm S.A., 1977, The Fluvial System, John Wiley &Sons, New York.
41. Štefan V.N., 1980, Vodoobmen vodochranilišč volžsko-kamskogo kaskada, Kompleksnyje issledovanija vodochranilišč, Vyp. V, Izd. MGU, Moskva, s. 46-55.
42. Silva C.A., Train S., Rodrigues L.C., 2005, Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system, Hydrobiologia, 537, s. 99-109.
https://doi.org/10.1007/s10750-004-2552-0 -
43. Smith W.S., Espíndola E.L.G., Rocha O., 2014, Environmental gradient in reservoirs of the medium and low Tietê River: Limnological differences through the habitat sequence, Acta Limnologica Brasiliensia, 26, 1, s. 73-88.
https://doi.org/10.1590/S2179-975X2014000100009 -
44. Straškraba M., 1990, Limnological particularities of multiple reservoir series, Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie, 33, s. 677-678.
45. Straškraba M., 1994, Vlatava cascade as teaching grounds for reservoir limnology, Water Science and Technology, 30, s. 289-297.
46. Straškraba M., 1999, Retention time as a key variable of reservoir limnology, [w:] M. Straškraba, J.G. Tundisi (red.), Theoretical Reservoir Ecology and its Applications, International Institute of Ecology, Kraków, s. 385-410.
47. Ward J.V., Stanford J.A., 1995, The serial discontinuity concept: Extending the model to floodplain rivers, Regulated Rivers – Research and Management, 10, s. 159-168.
https://doi.org/10.1002/rrr.3450100211 -
48. Waterloo Hydrogeologic, AQUACHEM®, Kitchener, ON, Canada.
49. Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R., Cushing C.E., 1980, The river continuum concept, Canadian Journal of Fisheries and Aquatic Sciences, 37, s. 130-137.
https://doi.org/10.1139/f80-017 -
50. Velichko A.A., Faustova M.A., Gribchenko Yu.N., Pisareva V.V, Sudakova N.G., 2004, Glaciations of the East European Plain – distribution and chronology, [w:] J. Ehlers, P.L. Gibbard (red.), Quaternary Glaciations Extent and Chronology Part I: Europe, Developments in Quaternary Sciences, 2, 1, s. 337-354.
https://doi.org/10.1016/S1571-0866(04)80083-6 -
51. Zakonnov V.V., 1995, Space and time heterogeneity in the distribution and accumulation of bottom sediments in the Upper Volga Reservoirs, Vodnyje Resursy, 22, 3, s. 362-371.
52. Zakonnov V.V., Poddubnyj S.A., 2002, Structural variations of bottom sediments in the Rybinsk Reservoir, Water Resources, 29, 2, s. 181-190.
https://doi.org/10.1023/A:1014905321467 -

Relation:

Przegląd Geograficzny

Volume:

89

Issue:

3

Start page:

391

End page:

412

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1,5 MB ; application/pdf

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2017.3.3

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: