Object structure
Title:

Recent trends on human thermal bioclimate conditions in Kyiv, Ukraine

Subtitle:

Geographia Polonica Vol. 93 No. 1 (2020)

Creator:

Shevchenko, Olga : Autor ORCID ; Snizhko, Sergiy : Autor ORCID ; Matzarakis, Andreas : Autor ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2020

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

physiologically equivalent temperature ; human thermal comfort ; Kyiv ; heat wave ; heat stress

Abstract:

The human-biometeorological conditions in Kyiv (Ukraine) and changes in the frequency of heat stress during the summer period due to recent climate trends were analyzed. The evaluation based on physiologically equivalent temperature (PET). The results revealed the highest probability of thermal comfortable conditions in Kyiv is from the last 10-day period of April to the end of June and from the last 10-day period of August to the end of September. The probability of heat stress reached nearly 90% during the second and third 10-day periods of July. A pronounced increase in thermal stress during the studied heat wave cases (HW), as well as increasing amount of days with heat stress in the period 1991-2015, were found.

References:

Abreu-Harbich, L.V., Labaki, L.C., Matzarakis, A. (2014). Thermal bioclimate as a factor in urban and architectural planning in tropical climates - The case of Campinas, Brazil. Urban Ecosystems, 17(2), 489-500. https://doi.org/10.1007/s11252-013-0339-7
Ali-Toudert, F., Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108. https://doi.org/10.1016/j.buildenv.2005.01.013
Andrade, H., Alcoforado, M.J. (2008). Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theoretical and Applied Climatology, 92(3-4), 225-237. https://doi.org/10.1007/s00704-007-0321-5
Balabukh, V., Lukianets, O. (2015). Climate change and its consequences in Rakhiv district of Transcarpathian region. Hydrolohiia, Hydrokhimiia i Hidroekolohiia, 37, 132-148.
Błażejczyk, K., Matzarakis, A. (2007). Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geographia Polonica, 80(1), 63-83.
Dole, R. (2011). Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters, 38(6), L06702. https://doi.org/10.1029/2010gl046582
Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guihenneuc-Jouyaux, C., Clavel, J., Jougla, E., Hémon, D. (2006). Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health, 80(1), 16-24. https://doi.org/10.1007/s00420-006-0089-4
Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A.M.G., Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193-212. https://doi.org/10.3354/cr019193
Gabriel, K.M.A., Endlicher, W.R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental Pollution, 159, 2044-2050. https://doi.org/10.1016/j.envpol.2011.01.016
Gulyás, Á., Matzarakis, A. (2009). Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Quarterly Journal of the Hungarian Meteorological Service, 113, 221-231.
Hassaan, A., Mahmoud, A. (2011). Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build Environment, 46(12), 2641-2656. https://doi.org/10.1016/j.buildenv.2011.06.025
Hirashima, S.Q.S., Assis, E.S., Nikolopoulou, M. (2016). Daytime thermal comfort in urban spaces: A field study in Brazil. Build Environment, 107, 245-253. https://doi.org/10.1016/j.buildenv.2016.08.006
Höppe, P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118 DOI
Idzikowska, D. (2010). Bioclimatic conditions of Paris, Rome and Budapest on the basis of the Universal Thermal Climate Index. Miscellanea Geographica, 14(1), 103-109. https://doi.org/10.2478/mgrsd-2010-0010
IPCC. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E.Hanson, (Eds.), Cambridge, UK: Cambridge University Press, 976 pp.
Katerusha, O., Matzarakis, A. (2015). Thermal bioclimate and climate tourism analysis for Odessa, Black Sea. Geografiska Annaler: Series A, Physical Geography, 97(4), 671-679. https://doi.org/10.1111/geoa.12107 DOI
Ketterer, C., Matzarakis, A. (2014). Human-biometeorological assessment of the urban heat island in a city with complex topography - The case of Stuttgart, Germany. Urban Climate, 10, pp. 573-584 https://doi.org/10.1016/j.uclim.2014.01.003
Konstantinov, P.I., Varentsov, M.I., Malinina, E.P. (2014). Modeling of thermal comfort conditions inside the urban boundary layer during Moscow's 2010 summer heat wave (case-study). Urban Climate, 10, 563-572. https://doi.org/10.1016/j.uclim.2014.05.002
Kovács, A., Németh, Á. (2012). Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica et Chorologica, 46, 115-124.
Krüger, E.L., Minella, F.O., Matzarakis, A., (2014). Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of Biometeorology, 58(8), 1727-1737. https://doi.org/10.1007/s00484-013-0777-1
Landsberg, H.E. (1981). The urban climate. New York: Academic Press.
Lee, H., Holst, J., Mayer, H. (2013). Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Advances in Meteorology, article ID 312572. https://doi.org/10.1155/2013/312572
Lee, H., Mayer, H. (2016). Validation of the mean radiant temperature simulated by the RayMan software in urban environments. International Journal of Biometeorology, 60(11), 1775-1785. https://doi.org/10.1007/s00484-016-1166-3
Lin, T.P., Matzarakis, A. (2011). Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tourism Management, 32(3), 492-500. https://doi.org/10.1016/j.tourman.2010.03.017
Lokoshchenko, M.A. (2014). Urban 'heat island' in Moscow. Urban Climate, 10, 550-562. https://doi.org/10.1016/j.uclim.2014.01.008
Matzarakis, A. (1999). Assessing urban climate - problems and solutions from the point of view of Human-Biometeorology. In Proceedings of the 15th International Congress of Biometeorology & International Conference on Urban Climatology, COMPM2.3 (Vol. 3, pp. 1-6).
Matzarakis, A. (2006). Weather and climate related information for tourism. Tourism and Hospitality Planning and Development, 3(2), 99-115. https://doi.org/10.1080/14790530600938279
Matzarakis, A. (2007). Climate, human comfort and tourism. In B. Amelung, K. Blazejczyk, A. Matzarakis (Eds.), Climate change and tourism: Assessment and coping strategies (pp. 139-154). Maastricht - Warsaw - Freiburg.
Matzarakis, A. (2010). Climate change and adaptation at regional and local scale. In C. Schott (Ed.), Tourism and the implications of climate change: Issues and actions (pp. 237-259). Bridging tourism theory and practice, 3, Bingley, UK: Emerald Group Publishing. https://doi.org/10.1108/s2042-1443(2010)0000003017
Matzarakis, A., Amelung, B., (2008). Physiologically equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In M.C. Thomson, R. Garcia-Herrera and M. Beniston Eds.), Seasonal Forecasts, Climatic Change and Human Health: Health and Climate (pp. 161-172). Advances in Global Change Research, 30, Berlin: Springer Scientis and Business Media. https://doi.org/10.1007/978-1-4020-6877-5_10
Matzarakis, A., De Rocco, M., Najjar, G. (2009). Thermal bioclimate in Strasbourg - the 2003 heat wave. Theoretical and Applied Climatology, 98(3-4), 209-220. https://doi.org/10.1007/s00704-009-0102-4
Matzarakis, A., Endler, C. (2010). Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. International Journal of Biometeorology, 54(4), 479-483. https://doi.org/10.1007/s00484-009-0296-2
Matzarakis, A., Mayer, H. (2003). Human-biometeorological assessment of urban structures. In Proceedings Vol. 2: Fifth International Conference on Urban Climate: 1-5 September, 2003 Łódź, Poland (pp. 83-86).
Matzarakis, A., Mayer, H., Iziomon, M.G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84. https://doi.org/10.1007/s004840050119 DOI
Matzarakis, A., Nastos, P. (2011)a. Analysis of tourism potential for Crete Island, Greece. Global NEST Journal, 13(2), 141-149. https://doi.org/10.30955/gnj.000774
Matzarakis, A., Nastos, P.T. (2011)b. Human-biometeorological assessment of heat waves in Athens. Theoretical and Applied Climatology, 105(1-2), 99-106. https://doi.org/10.1007/s00704-010-0379-3
Matzarakis, A., Rutz, F., Mayer, H. (2007). Modeling radiation fluxes in simple and complex environments-application of the RayMan model. International Journal of Biometeorology, 51(4), 323-334. https://doi.org/10.1007/s00484-006-0061-8
Matzarakis, A., Rutz, F., Mayer, H. (2010). Modelling Radiation fluxes in simple and complex environments - Basics of the RayMan model. International Journal of Biometeorology, 54(2), 131-139. https://doi.org/10.1007/s00484-009-0261-0
Mayer, H., Kuppe, S., Holst, J., Imbery, F., Matzarakis, A. (2009). Human thermal comfort below the canopy of street trees on a typical Central European summer day. In H. Mayer, A. Matzarakis (Eds), 5th Japanese-German Meeting on Urban Climatology (pp. 211-219). Freiburg: Albert-Ludwigs-University of Freiburg.
Németh, A., Kovács, A., Unger, J., Gulyás, A. (2012). Urban/rural thermal comfort changes over the past half-century in Budapest (Hungary). In Proceedings of 8th International Conference on Urban Climate. Dublin: International Association for Urban Climate.
Oke, T.R. (1978). Boundary layer climates. New York: Wiley and Sons.
Omonijo, A.G., Adeofun, C.O., Oguntoke, O., Matzarakis, A. (2013). Relevance of thermal environment to human health: A case study of Ondo State, Nigeria. Theoretical and Applied Climatology, 113(1-2), 205-212. https://doi.org/10.1007/s00704-012-0777-9
Osadchyi, V., Kosovets, O., Babichenko, V. (Eds). (2010). The climate of Kyiv. Kyiv: Nika-Tsentr.
Potchter, O., Cohen, P., Lin, T.P., Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631-632, 390-406. https://doi.org/10.1016/j.scitotenv.2018.02.276
Radinović, D., Curić, M. (2012). Criteria for heat and cold wave duration indexes. Theoretical and Applied Climatology, 107(3-4), 505-510. https://doi.org/10.1007/s00704-011-0495-8
Sharma, R., Joshi, P.K. (2014). Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data - An anomaly based approach. Urban Climate, 9, 19-34. https://doi.org/10.1016/j.uclim.2014.05.003
Shevchenko, O. (2017). Climate change manifestation on the territory of kyiv and main approaches to its adaptation. Chasopys Kartografii, 17, 108-122.
Shevchenko, O., Lee, H., Snizhko, S., Mayer, H. (2014). Long-term analysis of heat waves in Ukraine. International Journal of Climatology, 34, 1642-1650. https://doi.org/10.1002/joc.3792
Shevchenko, O.G., Samchuk, E.V., Snizhko, S.I. (2012). Characteristics of temperature conditions of atmospheric boundary layer in Kyiv city. People and the environment. Problems of Neoecology. Science Journal of V.N. Karazin Kharkiv National University, 3-4, 7-13.
Shevchenko, O.G., Samchuk, E.V., Snizhko, S.I. (2013). Characteristics of synoptic processes during heat wave in July-August 2010 in Ukraine. Proceedings of the Russian State Hydrometeorological University, 29, 85-94.
Staiger, H., Laschewski, G., Matzarakis, A. (2019). Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere, 10(1), 18. https://doi.org/10.3390/atmos10010018
Tam, B.Y., Gough, W.A., Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Climate, 12, 1-10. https://doi.org/10.1016/j.uclim.2014.12.004
Thorsson, S., Lindberg, F., Eliasson, I., Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology, 27, 1983-1993. https://doi.org/10.1002/joc.1537
Van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., van Driel, B.L., Holtslag, A.A.M. (2015). Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build Environment, 83, 91-103. https://doi.org/10.1016/j.buildenv.2014.08.029
VDI (Verein Deutscher Ingenieure). (1998). VDI 3787, Part I: Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level. Part I: Climate. VDI/DIN-Handbuch Reinhaltung der Luft; VDI, 3797, 29 Berlin: Beuth.
Wilks, D.S. (2006). Statistical methods in the atmospheric sciences. Oxford: Elsevir.
WMO-TD No. 1377. (2007). The role of climatological normals in a changing climate. Retrieved from http://www.wmo.int/pages/prog/wcp/wcdmp/documents/WCDMPNo61.pdf
Zahradníček, P., Žák, M., Skalák, P. (2014). Physiological equivalent temperature as an indicator of the UHI effect with the city of Prague as an example. In Proceedings of the Mendel and Bioclimatology International Conference, Brno.
Zaninović, K., Matzarakis, A. (2009). The bioclimatological leaflet as a means conveying climatological information to tourists and the tourism industry. International Journal of Biometeorology, 53, 369-374. https://doi.org/10.1007/s00484-009-0219-2

Relation:

Geographia Polonica

Volume:

93

Issue:

1

Start page:

89

End page:

106

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 0,8 MB

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0164

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: