$3 / 2003$

Raport Badawczy

RB/77/2003

Research Report

Well posedness

 and lipschitzness of solutions in vector optimizationE. Bednarczuk

Instytut Badań Systemowych Polska Akademia Nauk

Systems Research Institute

Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6
01-447 Warszawa
tel.: $\quad(+48)(22) 8373578$
fax: $\quad(+48)(22) 8372772$

Kierownik Pracowni zgłaszajacy pracę: Prof. dr hab. inż. Kazimierz Malanowski

Well-posedness and Lipschitzness of solutions in vector optimization

Ewa M. Bednarczuk

1 Introduction

The role of well-posedness in scalar optimization problems is widely recognized. The notion of a well-posed problem and its generalizations play an important role in model building, in numerical problem solving, and in investigating stability of solutions.
Nowadays, vector optimization (or multiple objective optimization) is gaining momentum in the development of its theory and applications. It has its origin primarily in economics. Recently, multiple objective techniques enter also in solving engiseering design problems.
Different approaches to well-posedness in vector optimization are scattered in the literature. Since the belaviour of minimizing sequences seems to be crucial from the point of view of applications we choose the approach to well posedness in vector optimization via convergence of minimizing sequences so as to encompass the non-uniqueness and noncompactness of solution sets.
In the present paper we investigate the concept of strict and strong solutions to vector optimization problems. When applied to scalar optimization problems, these concepts both reduce to the concept of weak sharp minima due to Polyak [12] and investigated by many authors, eg. Studniarski and Ward [16], Burke and Deng [10], Burke and Ferris [9]. It is known that strict solutions play an important role in deriving conditions for Hölder calmness in scalar optimization (see e.g. [8]). In Theorem 6.1 we prove calmness of solutions to parametric vector optimization problems at points which are striel and strong.
In the class of well-posed problems we study conditions ensuring Lipschitz and/or Hőlder continuity of efficient solutions to parametric vector optinnization problems. We prove that in the case where calmness of the solution set-valued mapping \mathcal{S} at some solution x_{0} is of interest it is enough to assume that the solution set is simnltaneously strict and strong around x_{0}.

2 Preliminaries

Let $Y=(Y,\|\cdot\|)$ be a normed linear space with the open unit ball B_{Y} and let $K \subset Y$ be a closed convex convex pointed cone in Y. Let $A \subset Y$ be a snbset of Y. An element $y \in A$ is minimal, $y \in \operatorname{Min}(A, \mathcal{K})$ iff $(A-y) \cap(-\mathcal{K})=\{0\}$. An clement $y \in A$ is a local minimum, $y \in \operatorname{LMin}(A, \mathcal{K})$ iff there is a neighbourloorl V of $y(A-y) \cap(-\kappa) \cap V=\{y\}$.
Let $U=(U,\|\cdot\|)$ be at normed space with the open unit ball B_{U}. A set-valued mapping $\Gamma: U \rightrightarrows Y$, is
locally upper Lipschitz at u_{0} (see Robinson [15], Aubin, Ekeland [1]) if there are positive numbers L and r such that $\Gamma(u) \subset \Gamma\left(u_{0}\right)+L\left\|u-u_{0}\right\| B_{v}$ for $u \in u_{n}+r B_{U}$
locally Lipschitz at u_{0} if there are positive numbers L and r such that $\Gamma\left(u_{1}\right) \subset \Gamma\left(u_{2}\right)+L\left\|u_{1}-u_{2}\right\| B_{U}$ for $u_{1}, u_{2} \in u_{0}+r B_{U}$
locally upper Hölder of order m at u_{0} if there are positive numbers L and r such that $\Gamma(u) \subset \Gamma\left(u_{0}\right)+L\left\|u-u_{0}\right\|^{m} B_{U}$ for $u \in u_{0}+r B_{U}$
locally Hölder of arder m at u_{0} if there are positive numbers L and r such that $\Gamma\left(u_{1}\right) \subset \Gamma\left(u_{2}\right)+L\left\|u_{1}-u_{2}\right\|^{\boldsymbol{m}} B_{U}$ for $u_{1}, u_{2} \in u_{0}+r B_{U}$
calm of order q or Hölder calm of order q at $\left(u_{0}, y_{0}\right) \in \operatorname{graph} \Gamma$ if there exist constants $L>0, r>0$, and $t>0$ such that $\Gamma(u) \cap\left(x_{0}+r B_{Y}\right) \subset$ $\Gamma\left(u_{0}\right)+L\left\|u-u_{0}\right\|$ for $\left\|u-u_{0}\right\|<t$.
lower Lipschitz at $\left(u_{0}, y_{0}\right) \in \operatorname{graph} \Gamma$, if there exist constants $L>0$ and $t>0$ such that $\left(y_{0}+L\left\|u-u_{0}\right\| B_{Y}\right) \cap \Gamma(u) \neq \emptyset$ for $\left\|u-u_{0}\right\|<t$.

3 Well-posedness of vector optimization problems

Lef $X=(X,\|\cdot\|)$ be a normed space with the open unit ball B_{X}. Vector optinization problem

$$
\begin{equation*}
\mathcal{K}-\min f_{0}(x) \tag{0}
\end{equation*}
$$

$$
\text { subject to } x \in A_{0},
$$

consists in finding the set $\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)=\operatorname{Min}\left(f_{0}\left(A_{0}\right) \mid \mathcal{X}\right)$ called the minimal (or efficient) point set of $\left(P_{0}\right)$, and the solution set $S\left(f_{0}, A_{0}, \mathcal{K}\right)=\{x \in$ $A_{0}\left\{f_{0}(x) \in \operatorname{Min}\left(f_{0}, A_{0}, \mathcal{X}\right)\right\}$, where $f_{0}: X \rightarrow Y$ is a mapping and $A_{0} \subset X$ is a subset of X.

The point $x_{0} \in A_{0}$ is called a local minamal solution of $\left(P_{0}\right), x_{0} \in \operatorname{LS}\left(A_{0}, f_{0}, \mathcal{K}\right)$, iff there is a neighbourhood V of x_{0} such that $\left(f_{0}\left(A_{0} \cap V\right)-f_{0}\left(x_{0}\right)\right) \cap(-\mathcal{K})=\{0\}$. In other words, $x_{0} \in \operatorname{LS}\left(A_{0}, f_{0}, \mathcal{K}\right)$ iff there is no $x \in A_{0} \cap V, x \neq x_{0}$, such that $f_{0}(x)-f_{0}\left(x_{0}\right) \in-\mathcal{K}$.
In the sequel we often refer to problem $\left(P_{0}\right)$ as the original problem or the unperturbed problem. The space X is called the decision space and Y is called the outcome space.

Definition 3.1 Let $\varepsilon \in Y$. The problem (P_{0}) is upper Lipschitz well posed if

$$
\begin{aligned}
& \Pi(\varepsilon)=A_{0} \cap f_{0}^{-1}\left(\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\varepsilon-\mathcal{K}\right) \\
& \Pi(\varepsilon)=\bigcup_{\left.\eta \in \operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)\right)} A_{0} \cap f_{0}^{-1}(\eta+\varepsilon-\mathcal{K})
\end{aligned}
$$

is locally upper Lipschitz at 0 .
Definition 3.2 Let $\eta \in \operatorname{Min}\left(f_{\mathbf{0}}, A_{\mathbf{0}}, \mathcal{K}\right)$. Let $\varepsilon \in Y$. The problem $\left(P_{0}\right)$ is η upper Lipschitz well posed if

$$
\Pi^{\eta}(\varepsilon)=A_{0} \cap f_{0}^{-3}(\eta+\varepsilon-\mathcal{K})
$$

is lacally upper Lipschitz at 0 .
Note that $\Pi(\varepsilon)=\emptyset$ for $\varepsilon \in-\mathcal{K}$. Π is locally upper Lipschitz at 0 if

$$
\Pi(\varepsilon)=A_{0} \cap f_{0}^{-1}\left(\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\varepsilon-\mathcal{K}\right) \subset M i n\left(f_{0}, A_{0}, \mathcal{K}\right)+\|\varepsilon\| B_{X}
$$

for $\|\varepsilon\| \leq r_{0}$.

4 Lipschitzness of solutions to perturbed vector optimization problems

Let U be the space of parameters. In the sequel we assume that U is a normed space. We embed the problem $\left(P_{0}\right)$ into a family $\left(P_{u}\right)$ of vector optimization problems parametrised by a parameter $u \in U$,

$$
\begin{aligned}
& \mathcal{K}-\min f(u, x) \\
& \text { subject to } x \in A(u), \quad\left(P_{u}\right)
\end{aligned}
$$

where $f: U \times X \rightarrow Y$ is the parametrised objective function and $A: U \rightarrow X$, is the feasible set multifunction. The problem $\left(P_{0}\right)$ corresponds to a parameter vahe $u_{0}, f_{0}=f\left(u_{0}, \cdot\right), \mathcal{A}\left(u_{0}\right)=A_{0}$. The performance multifunction $\mathcal{P}: U 马 Y$ is defined as $\mathcal{P}(u)=\operatorname{Min}(f(u, \cdot), \mathcal{A}(u), \mathcal{K})$ and the solution multifunction S : $U \rightrightarrows Y$ is defined as $S(u)=S(f(u, \cdot), \mathcal{A}(u), \mathcal{K})$.

In the theorem below we prove local upper lipschitzness of the solution setvalued mapping S at a given u_{0} for a family of parannetric problems of the form

$$
\begin{align*}
& \mathcal{K}-\min f_{0}(x) \\
& \text { subject to } x \in A(u) \tag{u}
\end{align*}
$$

in the class of the original problems (P_{0}) being upper Lipschitz well posed.
Theorem 4.1 Let X, Y and U be normed spaces. Let $\mathcal{K} \subset Y$ be a closed convex pointed cone in Y, intK $\neq \emptyset$. If
(i) $\left(P_{0}\right)$ is upper Lipschitz well posed,
(ii) f_{0} is Lipschitz on X, \mathcal{A} is locally upper Lipschitz at u_{0},
(iii) \mathcal{P} is locally upper Lipschitz at u_{0},
then \mathcal{S} is locally upper Lipschitz at u_{0}.
Proof. Therc cxists L_{1} such that

$$
\begin{equation*}
\mathcal{A}(u) \subset \mathcal{A}\left(u_{0}\right)+L_{1}\left\|u-u_{0}\right\| B_{X}=A_{0}+L_{1}\left\|u-u_{0}\right\| B_{X} \tag{1}
\end{equation*}
$$

for $u \in u_{0}+r_{1} B_{U}$. By Lipschitz well-posedness of (P_{0}), we have

$$
A_{0} \cap f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\varepsilon-\mathcal{K}\right\} \subset \mathcal{S}\left(u_{0}\right)+L\|\varepsilon\| B_{X}
$$

for any $\varepsilon \in r_{0} B_{Y}$. Assuming that $\varepsilon=O\left(\left\|u-u_{0}\right\|\right)$, i.c., $\|\varepsilon\| \leq \alpha\left\|u-u_{0}\right\|$ and

$$
A_{0} \cap f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right\} \subset \mathcal{S}\left(u_{0}\right)+L \alpha\left\|u-u_{0}\right\| B_{X} . \text { (2) }
$$

By (1), and (2),
$A_{0} \subset\left\{\mathcal{S}\left(u_{0}\right)+L \alpha\left\|u-u_{0}\right\| B_{X}\right] \cup\left[X \backslash f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right\}\right\}$,
and

$$
\begin{align*}
\mathcal{A}(u) & \subset A_{0}+L_{1}\left\|u-u_{0}\right\| B_{X} \\
& \subset\left[\mathcal{A}\left(u_{0}\right)+L \alpha\left\|u-u_{0}\right\| B_{X}+L_{1}\left\|u-u_{0}\right\| B_{X}\right\} \\
& \cup\left[X \backslash f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right\}+L_{1}\left\|u-u_{0}\right\| B_{X}\right] \tag{3}
\end{align*}
$$

Since f_{0} is Lipschitz on X, there exists L_{3} such that for any $x_{1}, x_{2} \in X$

$$
f_{0}\left(x_{1}\right) \subset f_{0}\left(x_{2}\right)+L_{3}\left\|x_{1}-x_{2}\right\| B_{Y}
$$

Hence,

$$
\begin{aligned}
& f_{0}\left[X \backslash f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right\}+L\left\|_{u}-u_{0}\right\| B_{X}\right\} \\
& \subset f_{0}\left[X \backslash f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right\}\right]+L_{3} L\left\|u-u_{0}\right\| B_{Y}
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{0}\left[X \backslash f_{0}^{-1}\left\{\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right\}\right]+L_{3} L\left\|u-u_{0}\right\| B_{Y} \\
& \subset Y \backslash\left[\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right]+L_{3} L\left\|u-u_{0}\right\| B_{Y}
\end{aligned}
$$

Assuming that $L L_{3}<\alpha$ we get

$$
\begin{aligned}
& Y \backslash\left[\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+\alpha\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right]+L_{3} L\left\|u-u_{0}\right\| B_{Y} \\
& \subset Y \backslash\left[\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+L_{3} L\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right]
\end{aligned}
$$

and
$f_{0}^{-1}\left[Y \backslash \operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+L_{3} L\left\|u-u_{0}\right\| B_{Y}-\mathcal{K}\right] \subset X \backslash f_{0}^{-1}\left[\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+L_{3} L\left\|u-u_{0}\right\| B B_{Y}-\mathcal{K}\right]$
Hence, by (3),

$$
\begin{aligned}
\mathcal{A}(u) & \subset A_{0}+L\left\|u-u_{0}\right\| B_{X} \\
& \subset\left[\mathcal{S}\left(u_{0}\right)+L \alpha\left\|u-u_{0}\right\| B_{X}+L\left\|u-u_{0}\right\| B_{X}\right] \cup\left[X \backslash f_{0}^{-1}\left[\operatorname{Min}\left(f_{0}, A_{0}, \mathcal{K}\right)+L_{3} L\left\|u-u_{0}\right\| B_{Y}-K\right]\right]
\end{aligned}
$$

By (iii), for any $x \in \mathcal{S}(u), u \in u_{0}+r_{1} B_{U}$

$$
f(x) \subset \operatorname{Min}\left(f_{0}, A_{0}, K\right)+L_{2}\left\|u-u_{0}\right\| B_{Y}
$$

and under the assumption that $L_{2} \leq L L_{3}$ we get

$$
\mathcal{S}(u) \subset \mathcal{S}\left(u_{0}\right)+\left(L \alpha+L L_{3}\right)\left\|u-u_{0}\right\| B_{X}
$$

5 Strict and strong solutions to vector optimization problems

In this section we recall the notions of strict and strong solutions to vector optimization problern (P_{0}).

We say that $\phi: R_{+} \rightarrow R_{+}$is an admissible function if ϕ is nondecreasing and $\lim _{t \rightarrow 0} \phi(t)=0$.

Definition 5.1 [2] We say that $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is ϕ-strict if thene is an $r>0$ such that for each $x \in A_{0} \cap\left(x_{0}+r B\right), x \neq x_{0}$,

$$
\left(f_{0}(x)-f_{0}\left(x_{0}\right)\right) \cap\left(\phi\left(\left\|x-x_{0}\right\|\right) B_{Y}-\mathcal{K}\right)=\emptyset
$$

where ϕ is an admissible function.
Definition 5.2 We say that $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strict of order m if there is an $r>0$ such that for each $x \in A_{0} \cap\left(x_{0}+r B\right), x \neq x_{0}$,

$$
\left(f_{0}(x)-f_{0}\left(x_{0}\right)\right) \cap\left(\alpha\left\|x-x_{0}\right\|^{m} B_{Y}-\mathcal{K}\right)=\emptyset
$$

Definition $5.3[2]$ Let intK $\neq 0$. We say that a solution $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is ϕ-strong if there is an $r>0$ such that for each $x \in A_{0} \cap\left(x_{0}+r B_{X}\right)$ there exists $s_{x} \in S\left(f_{0}, A_{0}, \mathcal{K}\right) \cap\left(x_{0}+r B_{X}\right)$

$$
f_{0}(x)-f_{0}\left(s_{x}\right)-\phi\left(\left\|x-s_{x}\right\|\right) B_{Y} \subset \mathcal{K}
$$

wherc ϕ is an admissible function.
Definition 5.4 [2, 13, 14$]$ Let int $\mathcal{K} \neq \emptyset$. We say that a solution $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strong of order m if there are constants $r>0$ and $\alpha>0$ such that for each $x \in A_{0} \cap\left(x_{0}+r B_{X}\right)$ there exists $s_{x} \in S\left(f_{0}, A_{0}, \mathcal{K}\right) \cap\left(x_{0}+r B_{X}\right)$

$$
f_{0}(x)-f_{0}\left(s_{x}\right)-\alpha\left\|x-s_{x}\right\|^{m} B_{Y} \subset \mathcal{K}
$$

If $m=1$ we say that the solution set is strong.

6 Hőlder calmness of solutions to parametric vector optimization problems

In this section we prove calmness of order $1 / 2$ of solutions to parametric vector optimization problems at points which are simultaneously strict of order 2 and strong. Similar results for scalar optimization problems were obtained by Bonnans and Shapiro [8], sec-4.4.2. In finite dimensional spaces, weak sharp minima of order 2 were investigated by Ioffe and Shapiro [11].
To prove our theorem we need one more definition.
Definition 6.1 We say that the set $\bar{S} \subset S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is a set of strict minima of order m of the problem $\left(P_{0}\right)$ if there is $\alpha>0$ and $r>0$ such that for any $\bar{x} \in \bar{S}$ and any $x \in A_{0} \cap\left(\bar{S}+r B_{X}\right), x \notin \bar{S}$, we have

$$
\left[f_{0}(x)-f_{0}(\bar{x})\right] \cap\left[\alpha \operatorname{dist}(x, \bar{S})^{m} B_{Y}-\mathcal{K}\right]=\emptyset
$$

where, for any subset $C \subset X$, we put $\operatorname{dist}(x, C)=\inf \{\|x-c\| \mid c \in C\}$. If $m=1$ we say that the solution set \bar{S} is strong.
Now we are in a position to prove our main result. To fix notations let us recall that any function $f_{0}: X \rightarrow Y$ is locally Lipschitz around x_{0} if there exist constants $L_{1}>0$ and $r_{2}>0$ such that for any $x_{1}, x_{2},\left\|x_{1}-x_{0}\right\|<r_{2}$, $\left\|x_{2}-x_{0}\right\|<r_{2}$, we have

$$
\left\|f_{0}\left(x_{1}\right)-f_{0}\left(x_{2}\right)\right\| \leq L_{1}\left\|x_{1}-x_{2}\right\| .
$$

Theorem 6.1 Let $X=(X,\|\cdot\|\rangle, Y=\langle Y,\|\cdot\|)$ and $U=(U,\|\cdot\|)$ be normed spaces and let $\mathcal{K} \subset Y$ be a closed convex pointed cone in Y, in $\mathcal{K} \neq \emptyset$. Assume that there exists $r_{1}>0$ such that $\vec{S}=S\left(f_{0}, A_{0}, \mathcal{K}\right) \cap\left(x_{0}+r_{1} B_{X}\right)$ is a set of strict minimal solutions of order 2 to $\left(P_{0}\right)$. If
(i) $f_{0}: X \rightarrow Y$ is Lipschitz locally at x_{0},
(ii) $\mathcal{A}: U \rightarrow X$ is calm and Lipschitz lower semicontinuous at $\left(u_{0}, x_{0}\right) \in$ graphiA,
(iii) $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strong with constants $\alpha>0$ and $r_{2}>0$,
then \mathcal{S} is Hölder calm at ($u_{0}, \boldsymbol{x}_{0}$) of order $\frac{1}{2}$ in the sense that for a constant $L>0$, a neighbourhood V of x_{0} und any $x(u) \in \mathcal{S}(u) \cap V$ we have

$$
\operatorname{dist}\left(x(u), \mathcal{S}\left(u_{0}\right)\right) \leq L\left\|u-u_{0}\right\|^{\frac{1}{2}}
$$

for all u in some neighbourhood U_{0} of u_{0}.
Proof. By the calmness of \mathcal{A}, at $\left(u_{0}, x_{0}\right) \in$ graph \mathcal{A} there is an $L_{0}, r_{0}>0$ and $t_{0}>0$ satisfying

$$
\mathcal{A}(u) \cap\left(x_{0}+r_{0} B_{X}\right) \subset \mathcal{A}\left(u_{0}\right)+L_{0}\left\|u-u_{0}\right\| B_{X}
$$

for $\left\|u-u_{0}\right\|<t_{0}$. Without losing generality we can assume that $r_{0}+t_{0}<r_{1}$. Put $r=\min \left\{r_{0}, r_{2}\right\}$. For each $x(u) \in \mathcal{A}(u) \cap\left(x_{0}+r B_{X}\right)$ there is $z(u) \in \mathcal{A}\left(u_{0}\right)$ such that

$$
\|x(u)-x(u)\| \leq L_{0}\left\|u-u_{0}\right\| .
$$

Without loss of generality we can assume that $\mathcal{S}(u) \cap\left(x_{0}+r B_{X}\right) \neq 0$ for all $u,\left\|u-u_{0}\right\|<t, t>0$. Take any $x(u) \in \mathcal{S}(u) \cap\left(x_{0}+r B_{X}\right)$. There exists $z(u) \in \mathcal{A}\left(u_{0}\right)$ such that

$$
\|x(u)-z(u)\| \leq L_{0}\left\|u-u_{0}\right\| .
$$

By the local lipschitzness of f_{0} around x_{0},

$$
\left\|f_{0}(z(u))-f_{0}(x(u))\right\| \leq L_{1}\|z(u)-x(u)\| \leq L_{1} L_{0}\left\|u-u_{0}\right\| .
$$

Since by (iiii), $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strong, and $z(u) \in A_{0} \cap\left(x_{0}+r B_{X}\right)$ there exists $\bar{z}(u) \in S\left(f_{0}, A_{0}, \mathcal{K}\right) \cap\left(x_{0}+r B_{X}\right)$ such that

$$
f_{0}(\bar{z}(u))=f_{0}(z(u))-k_{u}, \quad k_{u} \in \mathcal{K} \quad k_{u}+\alpha\|z(u)-\bar{z}(u)\| B Y \subset \mathcal{K} .
$$

By the lower Lipschitz continuity of \mathcal{A} there exist $L_{3}>0, t_{1}>0$, and $\bar{x}(u) \in$ $\mathcal{A}(u)$ such that

$$
\|\bar{x}(u)-\bar{z}(u)\| \leq L_{3}\left\|u-u_{0}\right\|,
$$

for $\left\|u-u_{0}\right\| \leq t_{1}$. Now we show that

$$
\left\|f_{0}(\bar{z}(u))-f_{0}(z(u))\right\|<\frac{L_{0}\left(L_{1}+L_{3}\right)}{\alpha}\left\|u-u_{0}\right\| .
$$

Indoed, by the local lipsehitzness of f_{0} around x_{0},

$$
\left\|f_{0}(\bar{x}(u))-f_{0}(\bar{z}(u L))\right\| \leq L_{1}\|\bar{x}(u)-\bar{z}(u)\| \leq L_{1} L_{3}\left\|u-u_{0}\right\|
$$

and hence,
$f_{0}(\bar{x}(u))-f_{0}(x(u))=\left[f_{0}\left(\bar{x}(u)-f_{0}(\bar{z}(u))\right]+\left[f_{0}(\bar{z}(u))-f_{0}(z(u))\right]+\left[f_{0}(z(u))-f_{0}(x(u))\right]\right.$

$$
=-k_{t u}+w(u)
$$

where
$w(u)=\left[f_{0}\left(\bar{x}(u)-f_{0}(\bar{z}(u))\right]+\left[f_{0}(z(u))-f_{0}(x(u))\right]\right.$ and $\|w(u)\| \leq L_{1}\left(L_{3}+L_{0}\right)\left\|u-u_{0}\right\|$.
If it were

$$
\left\|k_{u}\right\|>\frac{L_{1}^{2}\left(L_{3}+L_{0}\right)}{\alpha}\left\|u-u_{0}\right\|
$$

then

$$
L_{1}\|\bar{z}(u)-z(u)\|>\frac{L_{1}^{2}\left(L_{3}+L_{1}\right)}{\alpha}\left\|u-u_{0}\right\|
$$

and

$$
\alpha\|\bar{z}(u)-z(u)\|>L_{1}\left(L_{3}+L_{1}\right)\left\|u-u_{0}\right\| .
$$

Then it would be $w(u) \in \alpha\|\bar{z}(u)-z(u)\| B_{X}$ which would contradict the minimality of $x(u)$, since it would imply that

$$
k_{u}+w(u) \in \mathcal{K} .
$$

This proves that

$$
\left\|f_{0}(\bar{z}(u))-f_{0}(z(u))\right\| \leq \frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha}\left\|u-u_{0}\right\|
$$

or

$$
f_{0}(z(u))-f_{0}(\bar{z}(u)) \in \frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha}\left\|u-u_{0}\right\| B_{Y} .
$$

Observe now that $\left\|\bar{z}(u)-x_{0}\right\|<r$ and hence $\bar{z}(u) \in \bar{S}$. By the strict local minimality of \bar{S}

$$
f_{0}(z(u))-f_{0}(\bar{z}(u)) \notin L_{2} \operatorname{dist}(z(u), \bar{S})^{2} B_{\mathbf{Y}}-\mathcal{K} .
$$

Finally,

$$
\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha}\left\|u-u_{0}\right\| B_{Y} \not \subset L_{2} \operatorname{dist}(z(u), \bar{S})^{2} B_{Y}-\mathcal{K}
$$

and consectentily

$$
\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha}\left\|u-u_{0}\right\| B_{Y} \not \subset L_{2} \operatorname{dist}(z(u), \bar{S})^{2} B_{Y}
$$

which means that

$$
\operatorname{dist}(z(u), \bar{s})^{2} \leq \frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha L_{2}}\left\|u-u_{0}\right\|
$$

or

$$
\operatorname{dist}(z(\dot{u}), \bar{S}) \leq \sqrt{\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha L_{2}}}\left\|u-u_{0}\right\|^{\frac{1}{2}}
$$

Finally,
$\operatorname{dist}(x(u), \bar{S}) \leq\|x(u)-z(u)\|+\operatorname{dist}(z(u), \bar{S}) \leq\left(L_{0}+\sqrt{\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\alpha L_{2}}}\right)\left\|u-u_{0}\right\|^{\frac{1}{2}}$.

In the theorem below we prove general Hoblder calmness of the solution setvalued mapping S of order $\min \left\{p, \frac{p}{2 m}\right\}$, around (u_{0}, x_{0}), whenever the order of continuity of the set-valued mapping \mathcal{A} is $p \geq 1, x_{0}$ is strong of order $m \geq 1$ and the solution set $S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strict of order 2 in some neighbourhood of x_{0}.

Theorem 6.2 Let $X=(X,\|\cdot\|), Y=(Y,\|\cdot\|)$ and $U=(U,\|\cdot\|)$ be normed spaces and let $\mathcal{K} \subset Y$ be a closed convex pointed cone in Y, int $\mathcal{K} \neq \emptyset$. Assume that there exists $r_{1}>0$ such that $\bar{S}=S\left(f_{0}, A_{0}, \mathcal{X}\right) \cap\left(x_{\sigma}+r_{1} B_{X}\right)$ is a set of strict minimal solutions of order 2 to $\left(P_{0}\right)$. If
(i) $f_{0}: X \rightarrow Y$ is Lipschitz locally at x_{0},
(ii) $\mathcal{A}: U \rightarrow X$ is calm of order $p>1$ and Lipschitz lower scmicontinuous of order $p \geq 1$ at $\left(u_{0}, x_{0}\right) \in$ graph \mathcal{A},
(iii) $x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strontg of order $m \geq 1$ with cotustants $\alpha>0$ and $r_{2}>0$,
then S is Hoflder calm at $\left(u_{0}, x_{0}\right)$ of order $\min \left\{p, \frac{p}{2 m}\right\}$ in the scrise that for a constant $L>0$, a neighbourhood V of x_{0} and any $x(u) \in \mathcal{S}(u) \cap V$ we have

$$
\operatorname{dist}\left(x(u), \mathcal{S}\left(u_{0}\right)\right) \leq L\left\|u-u_{0}\right\|^{\min \left\{p, \frac{p}{2 m}\right.}
$$

for all u in some neighbourhood U_{0} of u_{0}.
Proof. By the calmness of \mathcal{A}, at $\left(u_{0}, x_{0}\right) \in \operatorname{graph} \mathcal{A}$ there is an $L_{0}, r_{0}>0$ and $t_{0}>0$ satisfying

$$
\mathcal{A}(u) \cap\left(x_{0}+r_{0} B_{X}\right) \subset \mathcal{A}\left(u_{0}\right)+L_{0}\left\|u-u_{0}\right\|^{p} B_{X}
$$

for $\left\|u-u_{0}\right\|<t_{0}$. Without losing generality we can assume that $r_{0}+t_{0}<r_{1}$. Put $r=\min \left\{r_{0}, r_{2}\right\}$. For each $x(u) \in \mathcal{A}(u) \cap\left(x_{0}+r B_{X}\right)$ there is $z(u) \in \mathcal{A}\left(u_{0}\right)$ sucls that

$$
\|z(u)-x(u)\| \leq L_{0}\left\|u-u_{0}\right\|^{p}
$$

Without loss of generality we can assume that $S(u) \cap\left(x_{0}+r B_{X}\right) \neq \emptyset$ for all $u,\left\|u-u_{0}\right\|<t, t>0$. Take any $x(u) \in S(u) \cap\left(x_{0}+r B_{X}\right)$. There exists $z(u) \in \mathcal{A}\left(u_{0}\right)$ such that

$$
\|x(u)-z(u)\| \leq L_{0}\left\|u-u_{0}\right\|^{p}
$$

By the local lipschitzness of f_{0} around x_{0},

$$
\left\|f_{0}(z(u))-f_{0}(x(u))\right\| \leq L_{1}\|z(u)-x(u)\| \leq L_{1} L_{0}\left\|u-u_{0}\right\|^{\boldsymbol{p}}
$$

Since by $(i i i), x_{0} \in S\left(f_{0}, A_{0}, \mathcal{K}\right)$ is strong of order m, and $z(u) \in A_{0} \cap\left(x_{0}+r B_{X}\right)$ there exists $\bar{z}(u) \in S\left(f_{0}, A_{0}, \mathcal{K}\right) \cap\left(x_{0}+r B_{X}\right)$ such that

$$
f_{0}(\bar{z}(u))=f_{0}(z(u))-k_{u}, \quad k_{u} \in \mathcal{K} \quad k_{u}+\alpha\|z(u)-\bar{z}(u)\|^{m} B_{Y} \subset \mathcal{K}
$$

By the lower Lipschitz continuity of \mathcal{A} there exist $L_{3}>0, t_{1}>0$, and $\bar{x}(u) \in$ $\mathcal{A}(u)$ such that

$$
\|\bar{x}(u)-\bar{z}(u)\| \leq L_{3}\left\|u-u_{0}\right\|^{p}
$$

for $\left\|u-u_{0}\right\| \leq t_{1}$. Now we show that

$$
\left\|f_{0}(\bar{z}(u))-f_{0}(z(u))\right\|<\frac{L_{0}\left(L_{1}+L_{3}\right)}{\sqrt[m]{\alpha}}\left\|u-u_{0}\right\|^{p / m}
$$

Indeed, by the local lipschitzness of f_{0} around x_{0},

$$
\left\|f_{0}(\tilde{x}(u))-f_{0}(\bar{z}(u))\right\| \leq L_{1}\|\bar{x}(u)-\bar{z}(u)\| \leq L_{1} L_{3}\left\|u-u_{0}\right\|^{p}
$$

and hence,

$$
\begin{aligned}
f_{0}(\bar{x}(u))-f_{0}(x(u)) & =\left[f_{0}\left(\bar{x}(u)-f_{0}(\bar{z}(u))\right]+\left[f_{0}(\bar{z}(u))-f_{0}(z(u))\right]+\left[f_{0}(z(u))-f_{0}(x(u))\right]\right. \\
& =-k_{u}+w(u)
\end{aligned}
$$

where
$w(u)=\left[f_{0}\left(\bar{x}(u)-f_{0}(\bar{z}(u))\right]+\left[f_{0}(z(u))-f_{0}(x(u))\right]\right.$ and $\|w(u)\| \leq L_{1}\left(L_{3}+L_{0}\right)\left\|u-u_{0}\right\|^{p}$.
Assume that $L_{1}\left(L_{3}+L_{0}\right) \leq\left(L_{1}\left(L_{0}+L_{3}\right)\right)^{m t}$. If it were

$$
\left\|k_{u}\right\|>\frac{L_{1}^{2}\left(L_{3}+L_{0}\right)}{\sqrt[m]{a}}\left\|u-u_{0}\right\|^{p / m}
$$

then

$$
L_{1}\|\bar{z}(u)-z(u)\|>\frac{L_{1}^{2}\left(L_{3}+L_{1}\right)}{\sqrt[m]{\alpha}}\left\|u-u_{0}\right\|^{\mu / m}
$$

and

$$
\alpha\|\bar{z}(u)-z(u)\|^{m}>\left(L_{1}\left(L_{3}+L_{1}\right)\right)^{m}\left\|u-u_{0}\right\|^{p}
$$

Then it would be $w(u) \in \alpha\|\bar{z}(u)-z(u)\|^{m} B_{X}$ which would contradict the minimality of $x(u)$, since it would imply that

$$
k_{u}+w(u) \in \mathcal{K}
$$

This proves that

$$
\left\|f_{0}(\bar{z}(u))-f_{0}(z(u))\right\| \leq \frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[n]{\alpha}}\left\|u-u_{0}\right\|^{p / m}
$$

or

$$
f_{0}(z(u))-f_{0}(\tilde{z}(u)) \in \frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[m]{\alpha}}\left\|u-u_{0}\right\|^{p / m} B_{Y}
$$

Observe now that $\left\|\bar{z}(u)-x_{0}\right\|<r$ and hence $\bar{z}(u) \in \bar{S}$. By the strict local minimality of \bar{S}

$$
f_{0}(z(u))-f_{0}(\bar{z}(u)) \notin L_{2} \operatorname{dist}(z(u), \bar{S})^{2} B_{Y}-\mathcal{K} .
$$

Finally,

$$
\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[m]{\alpha}}\left\|u-u_{0}\right\|^{p^{\prime / m}} B_{Y} \not \subset L_{2} \operatorname{dist}(z(u), \bar{S})^{2} B_{Y}-\mathcal{K}
$$

and consequently

$$
\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[m]{\alpha}}\left\|u-u_{0}\right\|^{p / m} B_{Y} \not \subset L_{2} \operatorname{dist}(z(u), \bar{S})^{2} B_{Y}
$$

which means that

$$
\operatorname{dist}(z(u\rangle, \bar{S})^{2} \leq \frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[m]{\alpha} L_{2}}\left\|u-u_{0}\right\|^{p / m}
$$

or

$$
\operatorname{dist}(z(u), \bar{S}) \leq \sqrt{\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[w]{\alpha} L_{2}}}\left\|u-u_{0}\right\|^{\frac{p}{2 m}}
$$

Finally,
$\left.\operatorname{dist}(x(u), \bar{S}) \leq\|x(u)-z(u)\|+\operatorname{dist}(z(u), \bar{S}) \leq\left(L_{0}+\sqrt{\frac{L_{1}^{2}\left(L_{0}+L_{3}\right)}{\sqrt[m]{\alpha} L_{2}}}\right)\left\|u-u_{0}\right\|^{\min \left(p_{+} \frac{p}{2_{m}^{m}}\right.}\right\}$.

Note, in particular that in the case when the solution set is strict of order 2 around x_{0} and x_{0} is strong of order 2, then the solution set-valued mapping is calm at (u_{0}, x_{0}) of order $1 / 4$ which differs from the scalar case.

References

[1] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Wiley, New York 1984
[2] Bednarczuk E.M., Stability Analysis for Parametric Vector Optimization Problems, submitted do Disertationes Mathemaiticae
[3] Bednarczuk E., On lower Lipschitz continuity of minimal points Discussiones Mathematicae, Differential Inclusion, Control and Optimization, 20(2000), 245-255
[4] Bednarczuk E., Upper Hőlder continuity of minimal points, Journal on Convex Analysis vol.9(2002),no.2 327-338
[5] Bednarczuk E., Hőlder-like properties of minimal points in vector optimization, Control and Cybernetics vol.31(2002) no. 3 423-438
[6] Bednarczuk E., Some stability results for vector optimization problems in partially ordered topological vector spaces, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, August 19-26 1992, 2371 2382, ed V.Lakshimikantham, Walter de Gruyter, Berlin, New York 1996
[7] Bednarczuk E., An approach to well-posedness in vector optimization: consequences to stability, Control and Cybernetics 23(1994), 107-122
[8] Bonnans J.F., Shapiro A., Pertnrbation Analysis of Optimization Problems, Springer, New York, 2000
[9] Burke J.V., Ferris M.C., Weak sharp minima in mathematical programming, SIAM J. on Control and Optimization, vol.71(1995), 179-194
[10] Burke J.V., Deng S., Weak sharp minima revisited, PartI: Basic theory, Control and Cybernetics
[11] Ioffe A.D., Bonnans F., Quadratic growth and stability in convex programming problems with multiple solutions,, Journal on Convex Analysis, vol.2(1995), 41-57
[12] Polyak B.T., Sharp minima. Institute of Control Sciences. Lecture Notes, Moscow 1979, presented at the IIASA Workshop on Generalized Lagrangians and Their Applications, IIASA, Laxenburg, Austria, 1979
[13] Jiménez B., Strict efficiency in vector optimization, Journal of Mathematical Analysis and Applications, vol.264(2002), 264-284
[14] Jiménez B., Strict minimality conditions in nondifferentiable multiobjective programming, JOTA, vol.116(2003), 99-116
[15] Robinson S.M., Some continuity properties of polyhedral multifunctions, Mathematical Programming Study, vol.14(1981), 206-214
[16] Studniarski M., Ward D.E., Weak sharp minima: characterization and sufficient conditions, SIAM J. on Control and Optimization, vol.38(1999), 219-236

