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In the present paper we propose the definition of the criticality for vector-
valued functions based on the concept of quasi-relative interior. This allows
to make the concept of criticality operational for vector optimization problems
where the interior of the order generating cone has empty interior. Basing
on the introduced concept we prove necessary optimality conditions for closed
convex pointed cones and cone-convex vector-valued functions as well as for
closed convex pointed generating cones and general directionally differentiable
vector-valued mappings.

O punktach krytycznych odwzorowan o wartosciach wektorowych

W pracy zaproponowana jest definicja punktéw krytycznych dla odwzorowan
o wartosciach wektorowych. Definicja ta wykorzystuje pojecie quasi relaty-
wnego wnetrza. Pozwala ona rozwazaé punkty krytyczne dla probleméw opty-
malizacji, w ktérych stozek generujacy porzadek ma puste wnetrze oraz nie-
puste quasi relatywne wnetrze. Wiasno§¢ te ma migdzy innymi stozek ele-
mentéw nieujemnych w przestrzeni funkeji catkowalnych z kwadratem.

Udowodnione sa warunki konieczne optymalnosci dla dwéch typéw zadan
optymalizacji wektorowej:

- ze stozkowo wypuklymi funkcjami o wartosciach wektorowych z porzadkiem
2definiowanym przez wypukly ostry stozek domkniety ,

- z kierunkowo rézniczkowalnymi funkcjami o wartosciach wektorowych z
porzadkiem zdefiniowanym przez wypukly ostry domkniety stozek generujacy
przestrzef.
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1 Introduction

The concept of criticality is central to the study of optimization problems. For a
directionally differentiable mapping f : X — Y defined on a normed space X and
taking values in a topological vector space Y ordered by a closed convex cone K C Y,
int K # 0 we say that zp € X is a critical point (c.f. Smale [18, 19, 20, 21]) of f if

f'(zo;d) @4nt X for any direction d € X,

where f/(zg;d) is a directional derivative at gy in the direction d € X,

. 1 td) — f(z0)

’ ) = f(zo )

f'(zo;d) ltll’g R E—

In the present paper we discuss the idea of replacing the existing concept of criticality

by the following one:
zq is & critical point of a mapping f: X — YV if

f(zo;d) & —qri(K), foranyde X.

where gri (K) is a quasi relative interior of K as defined by Borwein and Lewis ([11],
Def.2.3).

2 Quasi interiors

The definition of criticality cited above applies only to cones K with nonempty topo-
logical interiors. However, in many important cases this is too strong a requirement.
For instance, let p € (1, +00). In the space

P={z=0Elen|&eN, ieR Zlfilp < +o0}

=1
with the norm [lz}ler = (Xte, |&]7)*/" the natural ordering cone
Ky::{zeé”lf,-zo iEN}

has empty topological interior. Also, if for a nonempty subset {} C R™ we consider
the space LP(§)) of all p-th power Lebesgue integrable functions, i.e.

P)={f:Q-R]| /ﬂ |f(z)|? dzx < +oo)}

with the norm || fll oy = (fg 1f(2)[? dz) Y/? the natural ordering cone
Kpogay = {f € L? | f(z) > 0 almost everywhere on 0}

has empty topological interior.
First attempts to define quasi interiors of cones in Iocally convex topological

vector spaces Y are made by R.E.Fullerton and C.C.Braunschweiger [13]. Namely,
for a convex cone K C Y, a point z € K, z # 0, is a quasi- interior point of K if the
set P, = K N (z — K) generates the space Y, i.e. if Y = claff(&), where cl(-) is a
topological closure of a set in ¥ and aff(A) is the smallest linear subspace generated by
A. Ponstein [9] and Aliprantis & Tourky {1} introduced the concept of relative interior
to investigate duality theory for abstract optimization problems and Borwein and
Lewis (11] introduced the concept of quasi-relative interior to derive a generalization




of Fenchel duality theorem. This concept was also used by Jeyakumar and Wolkowicz
8], Bot,, Csetnek and Wanka (3] in the formulation of the generalized Slater constraint
qualification condition and regularity conditions. A survey of interiority notions is
given by Zalinescu [24] and by Borwein and Goebel [10]. The terminology is partially
set up in the book by Holmes [7]. Separation theorems involving sets with quasi-
relative interiors are proved in [4, 5, 3].

2.1 Algebraic concepts

Let X be a linear space and 4 C X be a nonempty subset of X. The algebraic
interior (core), (Holmes (7], p.7) of A with respect to a nonempty subset B of X,
cor g(A) is
CDIB(A) D= {a €A : Vg Jocscr V0<,\55 a+Abe A}
={a€ A4 : VYen Jze@p [2,2]C A}

where [a,z] :={z € X : z=Xa+(1—-X)z,0 <X < 1}. Two special cases are
distinguished. The algebraic interior of A with respect to X is called the algebraic
interior and is denoted cor (A), i.e. cor(A) := cor x (A4). Let B is the smallest affine
subspace containing A, i.e. B is the affine hull of A, B = aff (4), where aff (4) :=
z +span (A — A), for any fixed z € A. The set cor 45 4, (A) is called intrinsic core,

jer (A) = cor , 5 4)(4), ie.
icr(A): ={a€ A : V;eaff(A) Jocscr Vocrgs a+ Az € A}
= {a €A Vzeaff(A) a,e(w) [——:r,:l:] C A}.
In particular, when A C X is convex,
ier(A) ={a€ A :Viga\({a} Fzea @€ (2,2)}

For convex sets A C X the concept of intrinsic interior coincides with the concept of
pseudo relative interior, pri(A), where,

pri(A) :={z € A : cone(A —z) is a linear subspace of X}.

The following lemma. holds.

Lemma 2.1 (Borwein & Goebel [10]). Let X be a linear space. For any nonempty

and convez subset A of X
pri (A) = icr(4).

Proof. Let a € icr (A) and let a nonzero v € cone (A —a) be given, i.e. z =Av+a €
A\ {a} for some A > 0. Hence, there exists x> 0 such that

(1-p)(Mv+a)+pe=(p—1)A-v)+a €A,

and —v € cone (A — a) which proves that a € pri (A4).

Let a € pri (4). Take any x € A, = # a. Then z —a € cone(4A — a) and
a -z € cone (A —a). Hence, there is A > 0 such that e —z = Az ~ a), where z € A.
This gives (u—1){(a —z) +a € A, where p = 1+§ >lorpe+(l-pjzcd O

Let A C X be a nonempty convex subset of X. Then

span (A —a) = cone (A — A) for any a € A. (1)




To see this, let @ € A. Let 0 # z € cone(A — A). Then = = A(a; — ag), where
ay,a2 € A 01 # a2, A>0and z=XAay —a) — Alez —a), i.e. z € span (A4 —a).
Now, take any nonzero element z of span (A - a). It can be represented as
T = Zf 1 Aile; — ], where ay,az,...,0x € A and A1,..,Ax € R and not all \; are
zero’s. If all \; are nonnegative, we immediately get z € cone (A — A). Now, suppose

e.g. that A; < 0. Then

k
T = Z,\ (Z kAL - (a; —a)> +(=M)a—ar),

=2 i=2 Z2i=2 "M

which proves that x € cone (4 — A).
By (1), aff (A) = = +cone (A — A) for every z € A and cone (A — A) is a subspace
parallel to aff (4).

Lemma 2.2. For any convex subset A a a linear space X the following are eguivalent:

(i) a € pri(4),

(it) cone(A —a)+a = aff(A).

Proof. Let a € pri(A4). By (1), cone (A—a)-+a C aff (A). To see the inverse inclusion,
take any v € aff (4). Hence,

k

&
'U=Z)\iai, 0, €A, i=1,..,k ZA,—:L

i=1 =1

If all A\; > 0, we have v = a.-f—Z:'_l (ei ~a) and v € cone( —a} +a. If some
A; < 0, then (a —a;) € cone (A — a), a.nd consequently (—Xi)(a —a;) € cone (A —a)

and v € a + cone (4 — a).
If cone (A —a)+a = aff (A), then aff (4 —a) is a linear subspace, i.e. cone (4 —a)

is a subspace and a € pri(A4). ]
2.2 Topological concepts

Let X be a Hausdorff topological vector space (H.t.v.s, for short). By int (A),
rint (4), A, we denote the interior, the relative interior, i.e. the interior with respect
to aff (A4), the closure of A, respectively.

Definition 2.3 (Ponstein [9], def 3.3.4). The relative interior of a nonempty subset
A C X, denoted by ri(A) is the interior of A relative to its closed affine hull off{A),

ie.
o [ rint(A) if aff(A) is closed
ri(4) = {@ otherwise

Clearly, ri (4) C icr (A} and rint (4) = ri (A) if aff (4) is closed.

Lemma 2.4 (Borwein & Goebel (10], Lemma 2.5). Let X be a Banach space and let
A be a convez subset of X. If aff (A) 1s closed, then icr(A) = ri(4).

Definition 2.5 (Borwein & Lewis [11]}. The quasi relative interior gri(4) of a
conver subset A of a H.t.v.s. X, is defined as

qri(A) :={a € 4 : Tone(A— a) is a linear subspace}.
The quasi interior qi(A)} of a convex subset A of a Banach space X, is defined as

gi(A)={ac A : Tre(4d—a)=X}



Let us recall that the contingent cone Ta(a) of a subset A of a normed space X
at a € A is given as

dla+hv,A) 0}

where d(z,C) :=inf{ljz — c|| : ¢ € C} for any set C C X. If A C X is convex, then
(see e.g. Frankowska & Aubin [12]. Proposition 4.2.1, p.138)

Tafa) ={ve X : H;{zfoiff

Ty(a) =cone (A —a).
Hence,
qri(A) :={a € A : Ta(a) is a linear subspace}, qi(A):={ac A : Tale) =X}.
Let X be a Banach space and X* be its topological dual.

Definition 2.6 (Peressini [17]). A point a € A is called a nonsupport point of a »
conver subset A of X if every closed supporting hyperplane to A at a contains A.
Equivalently, for any z* € X*, if (A~ a,z*) >0, then (A —a,z*) =0.

Lemma 2.7 (Borwein & Goebel {10], Lemma 2.7, Borwein & Lewis {11], Proposition
2.16). Let A be a convez subset of a Banach space’ X. A point a € A is a nonsupport
point if and only if a € qri(A4).

Proof. Let a € A be a nonsupport point. If C = toiie (A — a) is not a subspace, then
y € C and —y & C for some y € X. By separation argument, for some z* € X* it
is {(z*,C) > (z*,~y). Since C' is a cone, {z*,C) > 0. In particular, (z*, 4 —a) > 0.
On the other hand, since (z*, ~y) < 0 and y € C there exists z € A and A > 0 such
that {z*, A(z — a)) > 0. This contradicts the assumption.

Now assume that a € qri(A). If, for some z* € X* we have (A —a,z") >
0, then also (cone(A — a),z*) > 0 and by the linearity of Tone(A ~ a) we get
(conig (A ~a),z*) = 0. In particular (A—ea,z*) =0, i.e., a is a nonsupport point. O

Let Na(a) C X* be the normal cone to 4 at a,
Nyla) ={¢p X" : ¢(x —a) <0 Vzea}.

Proposition 2.8 (Borwein & Lewis [11], Proposition 2.8). Let X be locally conver
and let A C X be a convez subset of X, a € A. Thena € gri(A) if and only if Na(a)
is a subspace of X*.

Proof. For any subset ' C X, the polar of C is given by
Co={peX"|d(z)<1VzeC}={pc X" |d(z)<0VzeC},
if C is a cone. Similarily, for a cone L € X*
°L={zeX|¢(z)<0Vpe L}

Clearly, if C' is a subspace, then C? is a subspace and if L is a subspace, then °L is
a subspace.

Now, for ¢ € X*, ¢(z —a) < 0 for all z € A if and only if ¢(u) < 0 for all
u € tone (4 — a) by the continuity of ¢. Thus, Ns(a) = (Tone (4 ~ a))°.

on the other hand, by Theorem 12C of Holmes 7]

*Na(a) = °((comE (A — 0))°) = one ({0} UTone (A — a)) = conie (A — a)

which proves the assertion.



A subset C C X is CS-closed (see Borwein and Lewis [11]) if for any A, > 0 with
S 1A =1 and any z, € C, n € N for which Z:I:l AnZn, — % we have £ € C.

Clearly, every CS-closed set is convex. In Banach spaces, all convex sets which are
closed, open, finite-dimensional or Gs are C'S - closed (see Borwein [2]).

Theorem 2.9 (Borwein & Lewis {11], Theorem 2.19). Suppose that (X,7) is a
topological vector space with either

(a) (X,T) is a separable Fréchet space, or
(b) X =Y* withY a separable normed space and 7 —o(Y*,Y).
If AC X s CS-closed, then gri(A) # 0.

The following theorem follows from Theorem 2.9.

Theorem 2.10 (Borwein & Goebel {10], Theorem 2.8,). Every nonempty conver
subset A of a separable Banach space X has nonempty quasi relative interior.

2.3 Examples
(i) X =LP(), p € [1,400)
qri(Kpe) = {f € L*(Q) | f(z) > 0 ae},

(i) X =, p € [1,+00)
qri (Ke) = {z € 7 | &, > 0 Vn € N},

3 Cone convex operators and their directional derivatives

Let Y be a topological vector space and let X C Y be a closed convex pointed cone
in Y. The cone I{ generates the ordering relation in Y as follows

<y & y—z €K for z,yeY.

A mapping f : X = Y is K-convez in a subset 8 C X if for any z,y € § and
0 <A <1 we have

Mz)+ (1= Nfly) - fOz+ (1 - Ay € K.
Proposition 3.1. Let f : X = Y be convez on X. Then, for anyzg € X, d € X,
te Ry andty € (0,t) we have

flzo + tad) ~ f(zo) <x flzo +1td) — f(z0)
t1 = t ’

Proof. Let to,t2 €ER, ¢y < iz, and to < t; < £5. Then

05,\=t—1‘—t°51 and Aty + (1 — Ao = 1.
ta —tg
Letg:R—=Y,
(1) := flzo +td).

It is immediate that ¢ is convex on R. Then

BBt + (1 - BT )0000) — g(tn) = 578 (6(02) ~ 6(t0) — (B(8) — #(10)
’ ’ =(t1—f0)(ﬂMt—uz——(—)——S—M‘_¢t">eK.

ta—~to ty—tp




Hence, for any t, € (5,12) we have

B(ta) — ¢(to)  d(t1) — o(to)
th—to  t1—to €K @

Choose t2 =t >0, t; € (0,2), £, = 0. By (2),

98 —9(0) _ ¢(t) ~¢(0) € K for any ¢>0.
T

1

[m]

The following result proved by Topchishvili, Maisuradze and Ehrgott [22] and
Valadier {23] establishes the existence of directional derivatives of cone convex vector-

valued mappings.

Theorem 3.2 ([22, 23]). Let X be a linear space and let Y be a weakly complete
Banach space which is partially ordered by a normal closed convez cone K CY. Let
f:X =Y be acone conver mapping. Then for an arbitrary element (zg,d) € X x X
the direction derivative f'(zo;d), i.e. the limit

fzo;d) = 1&51&’%

ezists in the strong topology of Y.

4 Criticality for convex operators

Definition 4.1. A point zg € X s a relative critical point of f if
f(zo;d) € —ri(K) forany de X.

Definition 4.2. 4 point zg € X is a local Pareto point of f if there ezists a
neighbourhood V of g such that

FX V)N (flao) - K) = {f(=0)}-

Theorem 4.3. Let X be a normed space and let Y be a Banach space ordered by
a closed conver pointed cone K C Y, K # 0. Let f : X = Y be a cone conver
directionally differentiable mapping. If 7y € X is a local Pareto point of f, then
zp € X 1is a critical point of f.

Proof. If 2 is not a critical point of f, there exists d € X such that
f(zo;d) € ~ri(K).

Let ¢(t) := MM- ‘We prove that for any decreasing sequence t, 4 0

$(ta) = f—("”"—“"t—d)—_ﬂ € aff (K) for all 7. 3)

Otherwise there exists no such that ¢(t.,) & aff (K). Since aff (K) is closed, there
exists z* € X* such that

(27, 8(tny)) < ¢ < (27, af (K)).



Since K is a cone it must be (z*,aff (K)) = 0. By K—convexity of f, ¢ is a non-
decreasing function of ¢, i.e.

d(t) —@(t1) € K for 0 <ty <t.
Hence,
(z°,¢(ta)) = (27, ¢(tns)) < c <0 for alin > no.
Consequently, (z*, f'(xo;d)) < ¢ < 0 contradictory to the fact that f'(zo,d) €
—ri (K). This proves (3). Clearly, there exists a neighbourhood V of f/(xg;d)
and N > 0 such that

VNnaff(K)C =K and ¢(tn) € VNaff(K) for n> N

which gives ¢(t,) € ~K for all n > N. This proves that zp is not a local Pareto
point. =]

Definition 4.4. A point zg € X is o quasi relative critical point of f if
f(zo;d) & qri(—K) for every d e X.

Theorem 4.5. Let X be ¢ normed space and let Y be a Banach space ordered by o
closed convez pointed cone X C Y, qri(K) # 8. Let f: X = Y be a cone conver
directionally differentiable mapping. If zg € X is a local Pareto point of f, then xq

is a quast relative critical point of f.
Proof. 1f zq is not a quasi relative critical point of f, there exists 0 # d € X such
that

f'(z0;d) € qri (—K).
Let ¢(t) = ﬂfﬂi‘?;ﬂﬂl and let ¢, | 0 be a decreasing sequence of positive real
numbers. Then

p(tn) = LE 0D 2 JE0) () foratinen (9)

To see this, suppose on the contrary that ¢(t,,) & (—K) for some ng € N. Since
K is closed and convex there exists «* € X* such that

(z*,—-K) 2 c> (g, ¢(tny)) =1, cc1 €ER
Since X is a cone, it must be (z*,~K) > 0,ie. ¢=0, ¢; <0 and (z*, f'(z0;d)) =
¢z > 0. Hence, (z*, =K — f/(z0;d)) > ¢y > 0 which means that —z* € Ng(f'(zo;d)),

where
Ng(@E) ={zxe X* : z*(k—2) <0 Viex}.

Since f'(zo;d) € qri (—K), by Proposition 2.8, the normal cone N_z (f'(zo;d)) is a
subspace, i.e., z* € N_g(f'(z0;d)) and consequently
0< (—2", =K — f'(z0;d)) <2 <0
which proves that it must be (z*, f/(z0; d)) = ¢z =0.
Since f(zo;d) € qri(—K), by Proposition 2.7, f(zo;d) is a nonsupport point of

—K, ie. since (z*, —K — f/(zp;d)) > 0, it must be (z*, -K) = 0.
On the other hand, by K ~convexity of f, ¢ is a non-decreasing function of ¢, i.e.

() ~ ¢(t1) € K for t; <t.



Hence,
(2%, ¢(tn)) = (z*, ¢(tn,)) < a1 <0 for n > ng.

Consequently, (z*, f'(zq;d)} < ¢ < 0 contradictory to the fact that {z*, f/(xe;d)) =
0. This proves (4) which implies that zq is not a local Pareto point. ]

As a corollary of Theorem 4.5 and Theorem 3.2 we obtain the following result.

Theorem 4.6. Let X be a normed space and let Y be a weakly complete Banach
space ordered by a closed conver normal cone K C YV, gri(K) # 0. Let f: X = Y
be a cone convezr mapping. If 2o € X is a local Pareto point of f, then zy is a quasi
relative critical point of f.

Proof. It is enough to observe that by Theorem 3.2, the mapping f is directionally
differntiable at any zo € X and any d € X. The conclusion follows from Theorem
4.5 ]
5 Generating cones

A cone K CY is generatingif ¥ = K — K.

Theorem 5.1. Let X be a normed space and let Y be a Banach space ordered by
a closed conver pointed cone K. Assume that K is a generating cone in Y. Let
f: X = Y be a directionally differentiable mapping. If zo € X s a local Pareto

point, then
f'(zo;d) & qri(~K) forany deX.

Proof. On the contrary, suppose that there exists a direction 0 # d € X such that
f'(wo; d) € ari (—K).
Take a sequence of real positive numbers (£,), t, | 0 and put
B(t) = flzo+1td) for t€R.

For any n € N we have

¢(tn+1) — ¢(0) ¢(tn) - ¢(0)

= + .
tn—‘\—l tn ™

where
a, = tn¢(tn+1) — tn+1¢(tn + (tn+1 — tn)¢(0)
e tni1ln ‘

Since K is generating, there exist o, o € K such that
_ 1 2 g
an=a, ~o, for neN.

Hence, for n € N

¢(tn+1) - ¢(0) _ ¢(tn) - ¢(O)
T T af (s)
‘We show that
b(tn) = iﬂﬁ’;—dt&"—) € (-K) forallne N, (6)



To see this, suppose on the contrary that ¢(t.,) & (~K) for some ng € N. Since
K is closed and convex there exists z* € X* such that

(z*,—K) 2 c> (z*,¢(tny)) =1, c,c1 €R.
Since K is a cone, it must be (z*,—K) > 0,ie. ¢ =0, ¢; <0 and (z*, f'(z0;d)) =
¢z > 0. Hence, (z*, —K — f'(zo; d)) > ¢g > 0 which means that —z* € Ny (f'(zo; d)),
where

Neg@)={zx € X* : z*(k—2) <0 VYiex}
Since f!(zo;d) € gri(—K), by Proposition 2.8, the normal cone N_g(f'(zo;d)) is a
subspace, i.e., z* € N_g(f'(z¢; d)) and consequently

0<({~=z*,~K ~ f'(z0;d)) <2 <0

which proves that it must be (z*, f'(zo; d)) = ¢z = 0.

Since f(zo;d) € qri(—K), by Proposition 2.7, f(zo;d) is a nonsupport point of
—K, ie. since (z*,—K — f'(zq;d)} > 0, it must be {z*,—K) = 0.

On the other hand, by (5),

{z* Pltnts) = ¢(0)) = (z* 9(ta) = ¢(0)) =¢; <0 for n >ng.
’ tn+1 ’ tn -
Consequently, {(z*, f'(zo; d)) = ¢; < 0 contradictory to the fact that (z*, f'(zo; d)) =

0. This proves (6) which immediately gives that zg is not a local Pareto point.
]

6 Other classes of functions
Definition 6.1. A function f : X = Y is K-lower semicontinuous at & (sece [6,
15, 16})if for each sequence (z,) converging to T there ezists a sequence (b,) C Y
converging to f(&) such that
b <k f(zn)

Below we strenghten Definition 6.1 by introducing monotonically K-lower semi-
continuous functions
Definition 6.2. A function f: X = Y s directionally monotone K -lower semicon-

tinuous at & € X if for every direction d € X there exist a decreasing sequence of
real positive numbers i, | 0 and a sequence (b,) C Y converging to f(Z) such that

bn Sk fE+tad) and  f(Z+tagid) 2k f(T +tad).

Definition 6.3. A function f: X — Y is directionally decreasing at z € X if for
every direction d € X there exist e decreasing sequence of real positive numberst, | 0
such that

in (f(f + tn+1d) - t-n.+1f(:E + tnd)) 2K (tn - tn+1)f(1_:)-
Proposition 6.4. For a function f : X — Y which is directionally monotone K
lower semicontinuous at & € X, for any direction d € X, the respective difference

quotients are nondecreasing, i.e.,

@(tnt1) € ¢(tn) for a decreasing sequence of positive numberst, | 0.

10



Proof. By the directional monotonicity of f at £ € X, for every direction d € X
there exist a decreasing sequence of real positive numbers ¢, | 0

F(Z +tag1) Sk f(E A+ tad).
Hence, thyy < t, for n € N and

fEFtnad) = 1E)  SE+td) = fE) b
< 5 S

tn+ 1 [28
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