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In the present paper we propose the definition of the criticality for vector­
valued functions based on the concept of quasi-relative interior. This a!lows 
to make the concept of criticality operational for vector optimization problems 
where the interior of the order generating cone has empty interior. Basing 
on the introduced concept we próve necessary optimality conditions for closed 

· convex pointed cones and cone-convex vector-valued functions as well as for 
closed convex pointed generating cones and generał directionally differentiable 
vector-valued mappings. 

O punktach krytycznych odwzorowań o wartościach wektorowych 
W pracy zaproponowana jest definicja punktów krytycznych dla odwzorowań 

o wartościach wektorowych. Definicja ta wykorzystuje pojęcie quasi relaty­
wnego wnętrza. Pozwala ona rozważać punkty krytyczne dla problemów opty­
malizacji, w których stożek generujący porządek ma puste wnętrze oraz nie­
puste quasi relatywne wnętrze. Własność tę ma między innymi stożek ele­
mentów nieujemnych w przestrzeni funkcji całkowalnych z kwadratem. 

Udowodnione są warunki konieczne optymalności dla dwóch typów zadań 
optymalizacji wektorowej: 

- ze stożkowo wypukłymi funkcjami o wartościach wektorowych z porządkiem 
zdefiniowanym przez wypukły ostry stożek domknięty , 

- z kierunkowo różniczkowalnymi funkcjami o wartościach wektorowych z 
porządkiem zdefiniowanym przez wypukły ostry domknięty stożek generujący 
przestrzeń. 

•System Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, 
Poland, <Ewa.Bednarczuk@ibspan.waw.pl> 
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1 Introduction 

The concept of criticality is central to the study of optimization problems. For a 
directionally differentiable mapping f : X • Y defined on a normed space X and 
taking values in a topological vector space Y ordered by a closed convex cone I{ C Y, 
int K # 0 we say that x0 EX is a critical point (c.f. Smale [18, 19, 20, 21]) off if 

J' ( x0 ; d) ~nt I{ for any direction d E X, 

where J'(xo;d) is a directional derivative at xo in the direction d EX, 

!'( . d) __ r f(xo + td) - f(xo) 
Xo, .- f~ t . 

In the present paper we discuss the idea of replacing the existing concept of criticality 
by the following one: 

Xo is a critical point of a mapping f : X • Y if 

J'(x 0 ; d) (t -qri (K), for any d EX. 

where qri (K) is a quasi relative interior of I{ as defined by Borwein and Lewis ([11], 
Def.2.3). 

2 Quasi interiors 

The definition of criticality cited above applies only to cones J{ with nonempty topo­
logical interiors. However, in many important cases this is tao strong a requirement. 
For instance, Jet p E [1, +oo). In the space 

tP = {x = (OieN I Ęi EN, i E IR L lfilP < +oo} 
i=l 

with the norm llxllt, = (I::::1 l(ilp/lP the natura! ordering cone 

has empty topological interior. Also, if for a nonempty subset n C !Rn we consider 
the space LP(fl) of all p-th power Lebesgue integrable functions, i.e. 

LP(D) = {f: n --t IR I fn l!(x)IP dx < +oo} 

with the norm llflbcn) = Un lf(x)IP dx) 11P, the natura! ordering cone 

KL,(n) = {f E LP I f(x) ;;:: O almost everywhere on ll} 

has empty topological interior. 
First attempts to define quasi interiors of cones in locally convex topological 

vector spaces Y are made by R.E.Fullerton and C.C.Braunschweiger [13). Namely, 
for a convex cone J{ CY, a point x E K, x # O, is a quasi- interior point of J{ if the 
set Px = K n ( x - K) generates the space Y, i.e. if Y = claff( K), w here cl ( ·) is a 
topological closure of a set in Y and aff(A) is the smallest linear subspace generated by 
A. Ponstein [9] and Aliprantis & Tourky [1] introduced the concept of relative interior 
to investigate duality theory for abstract optimization problems and Borwein and 
Lewis [11] introduced the concept of quasi-relative interior to derive a generalization 
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of Fenchel duality theorem. This concept was also used by Jeyakumar and Wołkowicz 
[8], Bot, Csetnek and Wanka [3] in the formulation of the generalized S!ater constraint 
qualification condition and regularity conditions. A survey of interiority notions is 
given by Zalinescu [24] and by Borwein and Goebel [10]. The terminology is partially 
set up in the book by Holmes [7]. Separation theorems involving sets with quasi­
relative interiors a.re proved in [4, 5, 3]. 

2.1 Algebraic concepts 

Let X be a linear space and A C X be a nonempty subset of X. The algebraic 
interior {core), (Holmes [7], p.7) of A with respect to a nonempty subset B of X, 
car s(A) is 

car s(A): = {a EA : VbeB 3o<,!<1 Vo<»9 a+ >.b EA} 
= {a EA : VbeB 3xe(a,b) [a, x] CA}, 

where [a,x] := {z EX : z= >.a+ (1 - >.)x,0:::; >.:::; l}. Two special cases are 
distinguished. The algebraic interior of A with respect to X is called the algebraic 
interior and is denoted car (A), i.e. cor(A) := car x(A). Let Bis the small~st affine 
subspace containing A, i.e. Bis the affine hull of A, B = aff(A), where aff(A) := 
x + span ( A - A), for any fixed x E A. The set car aff (A/ A) is ca.Ued intrinsic core, 

icr (A):= car aff(A)(A), i.e. 

icr (A) : = { a E A 
= {a EA 

V,eaff(A) 3o<ó<l Vo<»9 a+>.z EA} 
V,eaff(A) 3xe(a,z) [-x,x] CA}. 

In particular, when AC X is convex, 

icr (A)= {a EA : V,eA\{a) 3xeA a E (z, x)}. 

For convex sets A C X the concept of intrinsic interior coincides with the concept of 
pseudo relative interior, pri (A), where, 

pri (A) := {x EA : cone (A - x) is a linear subspace of X}. 

The following lemma holds. 

Lemma 2.1 (Borwein & Goebel [10]). Let X be a linear space. For any nonempty 
and convex subset A of X 

pri (A)= icr(A). 

Proof. Let a E icr (A) and !et a nonzero v E cone (A - a) be given, i.e. x = >.v + a E 
A\ {a} for same >. > O. Hence, there exists µ > O such that 

(1 - µ)(>.v +a)+ µa=(µ - l)>.(-v) + a EA, 

and -v E cone (A - a) which proves that a E pri (A). 
Let a E pri (A). Take any x E A, x f- a. Then x - a E cone (A - a) and 

a - x E cone (A- a). Hence, there is>.> Osuch that a - x = >.(z - a), where z EA. 
This gives (µ - l)(a - x) + a EA, where µ = 1 + ½ > 1, or µa+ (1 - µ)x EA. • 

Let Ac X be a nonempty convex subset of X. Then 

spa.n (A - a) = cone (A - A) for a.ny a E A. (1) 
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To see this, !et a E A. Let O # x E cone (A - A). Then x = >.(a1 - a2), where 
a,,a2 EA, a,# a2, >.>O and x = >.(a1 -a)->-(a2 -a), i.e. x E span(A- a). 

Now, take any nonzero element x of span (A - a). It can be represented as 
x = L~, >.i[a, - al, where a1 , a2, .. . , ak E A and >.1 , ... , Ak E llł and not all >-, are 
zero's. If all>-, are nonnegative, we immediately get x E cone(A-A). Naw, suppose 
e.g. that >.1 < O. Then 

x = L >., L ~(a, - a) + (->.1)(a - a1), . k ( k ) 

i:::::2 i=2 I:1:::::2 >-1 

which proves that x E cone (A - A). 
By (1), aff(A) = x+cone(A-A) for every x EA and cone(A-A) is asubspace 

par allel to aff (A). 

Lemma 2.2. For any convex subset A a a linear space X the following are equivalent: 

(i) aEpri(A), 

{ii) cone(A - a)+ a= aff(A). 

Proof. Let a E pri (A). By (1), cone (A-a)+a C aff(A). To see the inverse inclusion, 
take any v E aff(A). Hence, 

k 

v=I:>-1ai, aiEA, i=l 1 ... ,k, 
i=l 

k 

I:>-,= 1. 
i=l 

If all >., 2". O, we have v =a+ L~=l >.,(a, - a) and v E cone (A - a)+ a. If some 
>.,<O, then (a - a,) E cone (A - a), and consequently (->.,)(a - a,) E cone (A - a) 
and v Ea+ cone(A- a). 

If cone (A- a)+ a = alf (A), then aff (A- a) is a linear subspace, i.e. cone (A- a) 
is a subspace and a E pri (A). O 

2.2 Topological concepts 

Let X be a Hausdorff topological vector space (H.t.v.s., for short). By int (A), 
rint (A), A, we denote the interior, the relative interior, i.e. the interior with respect 
to aff(A), the closure of A, respectively. 

Definition 2.3 (Ponstein [9], def 3.3.4). The relative interior of a nonempty subset 
AC X, denoted by ri(A) is the interior of A relative to its closed affine hull aff(A), 
i.e. 

ri(A) := {rint(A) if aff(A) is closed 
0 othe'T'W1.se 

Clearly, ri (A) C icr (A) and rint (A) = ri (A) if aff (A) is closed. 

Lemma 2.4 (Borwein & Goebel [10], Lemma 2.5). Let X be a Banach space and let 
A be a convex subset of X. lf aff(A) is closed, then icr(A) = ri(A). 

Definition 2.5 (Borwein & Lewis [11]). The quasi relative interior qri (A) of a 
conuex subset A of a H.t.v.s. X, is defined as 

qri(A) := {a EA : cone(A- a) is a linear subspace}. 

The quasi interior qi (A) of a convex subset A of a Banach space X, is defined as 

qi(A) := {a EA : cone(A- a)= X}. 

4 



Let us recall that the contingent cone TA(a) of a subset A of a normed space X 
at a E A is given as 

d(a + hv,A) 
TA(a):={vEX: liminf h =0}, 

hj.O+ 

where d(x, C) := inf{llx - cll : c E C} for any set CC X. If A C X is convex, then 
(see e.g. Frankowska & Aubin (12]. Proposition 4.2.1, p.138) 

TA(a) = cone (A - a). 

Hence, 

qri (A):= {a EA TA(a) is a linear subspace}, qi (A):= {a EA TA(a) = X}. 

Let X be a Banach space and X* be its topological dual. 

Definition 2.6 (Peressini (17]). A point a E A is called a nonsupport point of a 
convex subset A of X if every closed supporting hyperplane to A at a contains A. 
Equivalently, for any x• EX', if (A - a, x') ~ O, then (A - a, x') = O. 

Lemma 2.7 (Borwein & Goebel (10], Lemma 2.7, Borwein & Lewis (11], Proposition 
2.16). Let A be a convex subset of a Banach space X. A point a EA is a nonsupport 
point if and only if a E ąri(A). 

Proof. Let a E A be a nonsupport point. If C = cone (A- a) is not a subspace, then 
y E C and -y rf. C for some y E X. By separation argument, for some x' E X' it 
is (x', C) > (x', -y). Since C is a cone, (x', C) ~ O. In particular, (x*, A - a) ~ O. 
On the other hand, since (x•, -y) < O and y E C there exists x E A and .,\ ~ O such 
that (x', .,\(x - a)) > O. This contradicts the assumption. 

Now assume that a E qri (A). If, for some x• E X' we have (A - a, x') ~ 
O, then also (cone (A - a), x*) ~ O and by the linearity of cone (A - a) we get 
(cone(A-a),x') = O. In particular (A-a,x*) = O, i.e., a is a nonsupport point. O 

Let NA(a) C X' be the norma! cone to A at a, 

NA(a) := {cf, EX* : cf,(x - a) SO \{xEA}, 

Proposition 2.8 (Borwein & Lewis (11], Proposition 2.8). Let X be locally convex 
and Zet AC X be a convex subset of X, a EA. Then a E qri(A) if and only if NA(a) 
is a subspace of X•. 

Proof. For any subset CC X, the polar of Cis given by 

C 0 = {cf, Ex· I cf,(x) S 1 Vx EC}= {cf, Ex· I cf,(x) SO \{x EC}, 

if C is a cone. Similarily, for a cone L E X' 

OL = { X E X I cf,( X) ::; o \{ cf, E L} 

Clearly, if C is a subspace, then C 0 is a subspace and if L is a subspace, then ° L is 
a subspace. 

Now, for ą, E X*, cf,(x - a) ::; O for all x E A if and only if ą,(u) S O for all 
u E cone (A- a) by the continuity of cf,. Thus, NA(a) = (cone (A- a)) 0 • 

on the other hand, by Theorem 12C of Holmes (7] 

0 NA(a) = 0 ((cone(A - a))°)= cone ( {O} U cone (A - a)) = cone (A - a) 

w hich proves the assertion. o 
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A subset CC X is CS-closed (see Borwein and Lewis [11]) if for any An c". O with 
I:;:"=1 An = 1 and any Xn E C, n E N for which I::=l AnXn --+ x we have x E C. 
Clearly, every CS-closed set is convex. In Banach spaces, all convex sets which are 
closed, open, finite-dimensional or G5 are CS - closed (see Borwein [2]). 

Theorem 2.9 (Borwein & Lewis [ll), Theorem 2.19). Suppose that (X, T) is a 
topological vector space with either 

(a) (X, T) is a separable Frechet space, or 

(b) X = Y' with Y a separable normed space and T - a(Y', Y). 

ff Ac X is CS-closed, then qri(A) -f 0. 

The following theorem follows from Theorem 2.9. 

Theorem 2.10 (Borwein & Goebel [10], Theorem 2.8,). Every nonempty convex 
subset A of a separable Banach space X has nonempty quasi relative interior. 

2.3 Examples 

(i) X= V'(f!), p E [l,+oo) 

qri (KL,) = {f E LP(r!) I f(x) > O a.e }, 

(ii) X= fP, p E [l, +oo) 

qri (I<tv) = { X E EP I (n > O Vn E N}, 

3 Cone convex operators and their directional derivatives 

Let Y be a topological vector space and Jet I< C Y be a closed convex pointed cone 
in Y. The cone J( generates the ordering relation in Y as fellows 

X '.'Ó,K y {c} y - x EJ< for x, y E Y. 

A mapping f : X --+ Y is I<-convex in a subset n c X if for any x, y E n and 
O <;, ,\ <;, 1 we have 

>.f(x) + (1 - >.)f(y) - f(>.x + (1 - >.)y) E K. 

Proposition 3.1. Let f: X--+ Y be convex on X. Then, for any xo EX, d EX, 
t E IR+ and t, E (O, t) we have 

f(xo + t,d) - f(xo) f(xo + td) - f(xo) 
t1 '.'Ó,K t . 

Proof. Let to, t2 E JR, to < t2, and to < t1 < t2. Then 

O < >. = t, - to < 1 and >.t2 + (1 - >.)to = t,. 
- t2 - to -

Let ą,: JR--+ Y, 
ą,(t) := f(xo + td). 

It is immediate that q, is convex on JR. Then 

t1 - t0 t 1 - to t t 
--ą,(t2) + (1 - --)ą,(to) - ą,(t,) = ~(ą,(t2) - ą,(to)) - (ą,(t,) - ą,(to)) 
t2 - to t2 - to ' 0 = (t _ t ) (4>(t,)-\6(to) _ ef,(t 1 )-4>(t0 )) EJ<. 

1 O t 2-t0 t1-to 
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Hence, for any t 1 E (to, t 2 ) we· have 

cf,(t2) - cf,(to) _ q,(t1 ) - cf,(to) E K. 
t2 - to t 1 - to 

(2) 

Choose t2 = t > O, t 1 E (O, t), t0 = O. By (2), 

cf,(t) - cf,(O) - q,(t,) - q,(O) E K for any t > O. 
t t1 

o 
The following result proved by Topchishvili, Maisuradze and Ehrgott [22) and 

Valadier [23) establishes the existence of directional derivatives of cone convex vector­
valued mappings. 

Theorem 3.2 ([22, 23)). Let X be a linear space and let Y be a weakly complete 
Banach space which is partially ordered by a normal closed convex cone K C Y. Let 
/ : X -+ Y be a cone convex mapping. Then for an arbitrary element (xo, d)· EX x X 
the direction derivative f' ( x 0 ; d), i. e. the limit 

f '(xo· d) := lim f(xo + td) - f(xo) 
' t.J.O t 

exists in the strong topology of Y. 

4 Criticality for convex operators 

Definition 4.1. A point x 0 EX is a relative critical point off if 

f'(xo;d)rJ-ri(K) Jarany dEX. 

Definition 4.2. A point x 0 E X is a !ocal Pareto point off if there exists a 
neighbourhood V of x0 such that 

f(X n V) n (f(x0 ) - K) = {f (x0 ) }. 

Theorem 4.3. Let X be a normed space and let Y be a Banach space ordered by 
a closed convex pointed cone K C Y, riK # 0. Let f : X -+ Y be a cone convex 
directionally differentiable mapping. ff x 0 E X is a local Pareto point off, then 
Xo EX is a critical point off. 

Proof. If x 0 is not a critical point of/, there exists d EX such that 

f(xo; d) E -ri (K). 

Let cf,(t) := /(xo+t~)-/(xo). We prove that for any decreasing sequence tn .j, O 

cf,(tn) = f(xo + tnd) - f(xo) E alf (K) for all n. 
tn 

(3) 

Otherwise there exists n0 such that q,(tn0 ) rJ aff (K). Since aff (K) is closed, there 
exists x• E x• such that 

(x',c/>(tn0 )) < c < (x',aff(K)). 
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Since K is a cone it must be (x*,aff(K)) = O. By K-convexity off, ą, is a 11011-

decreasing function of t, i.e. 

ą,(t) - ą,(t1) E K for O < t1 < t . 

Hence, 
(x*,</J(tn)) = (x*,ą,(tn0 )) < c < O for all n 2: no, 

Consequently, (x• ,J'(x0 ; d)) ::; c < O contradictory to the fact that f'(x 0 , d) E 
-ri (K). This proves (3). Clearly, there exists a neighbourhood V of f'(x 0 ; d) 
and N > O such that 

V n aff(K) c -K and ą,(tn) EV n aff(K) for n~ N 

which gives </J(tn) E -K for all n 2: N. This proves that x0 is not a !ocal Pareto 
point. O 

Definition 4.4. A point x 0 E X is a quasi relative critical point off if 

f'(xo;d) fi qri(-K) for every d EX. 

Theorem 4.5. Let X be a normed space and Zet Y be a Banach space ordered by a 
closed convex pointed cone K C Y, qri (K) c/ 0. Let f : X -+ Y be a cone convex 
directionally differentiable mapping. ff x0 E X is a local Pareto point off, then x 0 

is a quasi relative critical point off.. 

Proof. If xo is not a quasi relative critical point off, there exists O c/ d E X such 
that 

J'(x0 ;d) Eqri(-K). 

Let ą,(t) := /(•o+•~)-/(xo) and let tn .). O be a decreasing sequence of positive real 
numbers. Then 

ą,(tn) = f(xo + tnd) - f(xo) E (-K) for all n EN. 
tn 

(4) 

To see this, suppose on the contrary that </J(tn,) fi (-K) for some n 0 E N. Since 
K is closed and convex there exists x• E x• such that 

(x*,-K) 2: c > (x*,</J(tn0 )) = c1, c,ci E IR. 

Since K is a cone, it must be (x•, -K) 2: O, i.e. c = O, c1 < O and (x•, f'(x 0 ; d)) = 
c2 ~ O. Hence, (x•, -K -f'(xo; d)) ~ c2 ~ O which means that -x• E N1<(f'(xo; d)), 
where 

Nx(x)={x•EX*: x*(k-x)$0 l;/kEK}, 

Since f'(x 0 ; d) E qri (-K), by Proposition 2.8, the norma! cone N_1<(J'(x 0 ; d)) is a 
subspace, i.e., x• E N_x(J'(xo; d)) and consequently 

O$ (-x*,-K-J'(xo;d)) $ c2 $ O 

which proves that it must be (x•, f'(x 0 ; d)) = c2 = O. 
Since f(xo;d) E qri(-K), by Proposition 2.7, f(xo;d) is a nonsupport point of 

-K, i.e. since (x*,-K-f'(x0 ;d)) ~ O, it must be (x*,-K) =0. 
On the other hand, by K -convexity off, ą, is a non-decreasing function of t, i.e. 

ą,(t) - ą,(ti) E K for t1 < t. 
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Hence, 
(x', </;(tn)) = (x', </;(tn0)) < c, < O for n ~ no. 

Consequently, (x', f'(xo; d)) $ c1 < O contradictory to the fact that (x', f'(xo; d)) = 
O. This proves ( 4) which implies that x 0 is not a loca] Pareto point. O 

As a corollary of Theorem 4.5 and Theorem 3.2 we obtain the following result. 

Theorem 4 .6. Let X be a normed space and let Y be a weakly complete Banach 
space ordered by a closed convex norma/ cone K C Y, qri (K) cf 0. Let f : X -f Y 
be a cone convex mapping. ff x 0 EX is a /ocal Pareto point off, then Xo is a quasi 
relative critical point off. 

Proof. It is enough to observe that by Theorem 3.2, the mapping f is directionally 
differntiable at any x 0 EX and any d E X. The conclusion follows from Theorem 
~5 O 

5 Generating cones 

A cone K C Y is generating if Y = K - K. 

Theorem 5.1. Let X be a normed space and let Y be a Banach space ordered by 
a closed convex pointed cone K . Assume that K is a generating cone in Y. Let 
f : X -f Y be a directionally differentiable mapping. ff xo E X is a loca/ Pareto 
point, then 

f'(xo; d) 1/. qri (-K) for any d EX. 

Proof. On the contrary, suppose that there exists a direction O cf d E X such that 

f'(xo;d) E qri(-K). 

Take a sequence of real positive numbers (tn), tn .j. O and put 

</;(t) = f(xo + td) for t ER 

For any n E N we have 

</;(tn+i) - </;(O) = </;(tn) - </;(O) + l>n, 

łn+l tn 

where 
tn</;(tn+i) - tn+l </;(tn + (tn+l - tn)<P(O) 

Ck'n := tn+l in · 

Since K is generating, there exist a~ , a~ E K such that 

an = a! - a~ for n E N. 

Hence, for n E N 

</;(tn+1) - </;(O) = </;(tn) - </;(O) +(>~_a!. 
łn+l tn 

We show that 

</;(tn) = f(xo + tnd) - f(xo) E (-K) for all n EN. 
tn 

g 

(5) 

(6) 



To see this, suppose on the contrary that ef,(tn0 ) ~ (-K) for same n 0 E J\I. Since 
K is closed and convex there exists x' E X' such that 

(x',-K) ~ c > (x',q,(tn0 )) = c1, c,c1 ER 

Since K is a cone, it must be (x', -K) ~ O, i.e. c = O, c1 < O and (x', f'(x 0 ; d)) = 
c2 ~ O. Hence, (x',-K-J'(x0 ;d)) ~ c2 ~ 0whichmeansthat-x' E NK(J'(xo;d)), 
where 

NK(x) = {x• EX' : x'(k- x) $ o 'v'kEK}- . 

Since f'(xo; d) E qri (-K), by Proposition 2.8, the norma! cone N_x(J'(xo; d)) is a 
subspace, i.e., x' E N_K(J'(x0 ; d)) and consequently 

O$ (-x',-K-J'(xo;d)) $ c2 $ O 

which proves that it must be (x', J'(x0 ; d)) = c2 = O. 
Since f(x 0 ;d) E qri(-K), by Proposition 2.7, f(xo;d) is a nonsupport point of 

-K, i.e. since (x',-K-f'(x0 ;d)) ~ O, it must be (x',-K) = O. 
On the other hand, by (5), 

(x', q,(tn+1) - q,(O)) = (x', q,(tn) - q,(O)) = c1 < O for n ~ no. 
tn+l tn 

Consequently, (x' ,J'(x0 ; d)) = c1 < O contradictory to the fact that (x', J'(x 0 ; d)) = 
O. This proves (6) which immediately gives that x 0 is not a !ocal Pareto point. 

o 

6 Other classes of functions 

Definition 6.1. A Junction f : X -+ Y is K-lower semicontinuous at x (see /6, 
15, 16/}if for each sequence (xn) converging to x there exists a sequence (bn) C Y 
converging to J(x) such that 

Below we strenghten Definition 6.1 by introducing monotonically K-lower semi­
continuous functions 

Definition 6.2. A Junction f : X -+ Y is directionally monotone K-lower semicon­
tinuous at x E X if for every direction d E X there exist a decreasing sequence of 
real positive numbers tn .j. O and a sequence (bn) C Y converging to J(x) such that 

Definition 6.3. A Junction f : X -+ Y is directionally decreasing at x E X if for 
every direction d E X there exist a decreasing sequence of real positive numbers tn .j. O 
such that 

Proposition 6.4. For a Junction f : X -+ Y which is directionally monotone K 
lower semicontinuous at x E X, for any direction d E X, the respective difference 
quotients are nondecreasing, i.e., 

q,(tn+1) $ q,(tn) for a decreasing sequence of positive numberstn .j. O. 
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Proof. By the directional monotonicity of f at x E X, for every direction d E X 
there exist a decreasing sequence of real positive numbers tn .j. O 

Hence, tn+l < tn for n E N and 

o 
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