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Threshold crossings in a linear oscillator due to a Poissonian train 
of general pulses(*) 

R. IWANKIEWICZ and Z. WOJCICKI (WROCLAW) 

THE DYNAMIC response of a linear oscillator to a Poisson distributed train of general pulses is 
considered. The complete expansion of the joint probability density of the response and its time 
derivative in the series of generalized Hermite polynomials is presented in explicit form. The 
cumulants of the response, its time derivative and the joint cumulants are evaluated for the 
stationary response and are discussed. The truncated series is used to evaluate approximately 
the expected rate of threshold upcrossings. The effect of the pulse duration and of the expected 
arrival rate of pulses on the mean upcrossing rate is investigated. The reliability estimation 
is also discussed. 

Rozwai.ane s~ drgania liniowego oscylatora pod wp}ywem poissonowskiej serii impuls6w rozloi:o
nych w czasie. Peine rozwini~ie l'lcznej g~stosci prawdopodobienstwa procesu odpowiedzi i jego 
pierwszej pochodnej w szereg uog6lnionych wielomian6w Hermite'a jest przedstawione w jawnej 
postaci. Kumulanty procesu odpowiedzi, jego pochodnej oraz l~czne kumulanty wyznaczono ora?: 
zanalizowano w przypadku stacjonarnego procesu odpowiedzi. Sredni~ licz~ przekroczen 
w jednostce czasu wyznaczono na podstawie S?:eregu o ograniczonej liczbie wyraz6w. Zbadano 
wp}yw czasu trwania impulsu oraz sredniego nat~i.enia pojawiania si~ impuls6w na sredni~ 
licz~ przekroczen. Om6wiono taki.e oszacowanie funkcji niezawodnosci ukladu. 

PaccMaTJJHBa:IOTCH JIHHeHHbie KoJie6aHWI octnmJIHTopa no,[( BJil{miHeM rryaccoHoBCKoii cepHH 
HMrryJibCOB pacrrpe,[(eJieHHbiX BO BpeMeHH. IloJIHoe pa:mo:;KeHHe COBMeCTHOH IlJIOTHOiTH Bepo• 
HTHOCTH rrpo~ecca OTBeTa H ero rrepBOH IIpOH3BO,[(HOH B pH,[( o6o6~eHHbiX 3pMHTOBbiX MHoroqne
HOB rrpe,qCTaBJieHo B HBHOM BH,[(e. KyMyJIHHTbl rrpo~ecca OTBeTa, ero IIpOH3BO,[(HOH H COBMe
CTHbie KYMYJIHHTbl orrpe,[(eJieHbi H aHaJIH3HpYJOTCH B CJiyqae CTa~HoHapHoro rrpo~ecca OTBeTa. 
Cpe,[(Hee KOJIHqecrBo rrpeBhnneHJlli B e,[(Hmr~e BpeMeHH orrpeJ(eJieHo Ha ocHoBe pH,[(a c 
orpaHHqeHHbiM KoJI~eCTBOM qneHoB. HccJie,[(oBaHo BJIHHHHe BpeMeHH rrpo,[(OJDI<HTeJibHO
cTH HMIIYJibCa H cpe,[(HeH HHTeHCHBHOCTH IIOHBJiemm HMIIYJibCOB Ha cpe,[(Hee I<OJIHqeCTBO 
rrpeBbillleHHH. 06cy>K,[(eHa TaiDKe o~eHKa <f>YHK~HH Ha,[(e>I<HOCTH CHCTeMbl. 

1. Introduction 

THE PROBLEM of vibration under excitations consisting of a train of events occurring at 
random times (e.g. random pulses) has attracted the attention of investigators for many 
years. Based on the theory of stochastic point processes [1, 2], the approach proved appro
priate to this problem. The papers by LIN [3], RoBERTS [4] and SRINIVASAN et at. [5] are 
some of the first dealing with the dynamic response to random trains of pulses. Later, 
many aspects of this problem were examined within the framework of the mean-square 
analysis [6-10]. 

(*) The work presented was supported by the Polish Academy of Sciences through the research 
programme C.P.B.P. 02.02./5.3. The results reported herein were presented at the Workshop on Struc
tural Reliability and Probabilistic Mechanics, Munich, 9.X.1986. 
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Nevertheless the evaluation of higher-order statistics of the response appears to be 
a much more difficult problem. For example, the equation governing the response one 
dimensional probability density has been given only in the case of Dirac delta impulses 
[11, 12]. The evaluation of the average rate of threshold crossings is not straightforward, 
either. An approach based on the approximate determination of the joint probability 
density of the response and its time derivative in the case of Dirac delta impulses was 
presented by ROBERTS [13]. 

The objective of the present paper is to evaluate approximately the average rate of 
threshold upcrossings in a linear oscillator subject to a Poisson distributed train of general 
pulses. The approach used is based on the series expansion of the joint probability density 
of the response and its time derivative in terms of the generalized Hermite polynomials. 
The series for the joint probability density is presented in systematic and explicit form. 
Then the truncated series is used to determine the average rate of threshold upcrossings. 
Various cumulants and joint cumulants up to the fourth order are evaluated for the sta
tionary response to square pulses and are shown in figures. The effect of the pulse duration 
and of the average rate of pulses occurrences on the average upcrossings rate is investi
gated. The estimation of the system reliability is also discussed. 

2. Statement of the problem 

Consider the dynamic response of a linear oscillator to a random train of pulses, gover
ned by the equation 

(2.1) 
N(t) 

q+2rxwq+w2q =}; F1s(t, t1), 

i=l 

where s(t, t1) is the pulse shape function vanishing for t < t; and t > t; + T and T denotes 
the pulse duration. The occurrences of pulses are assumed to be the Poisson events with 
the expected rate v(t); N(t) denotes the random number of the occurrences in the time 
interval (0, t]. The magnitudes of pulses are given by the random variables F;, mutually 
independent and independent of the counting process N(t). 

From the principle of linear superposition it follows that [14] 
N(l) 

(2.2) q(t) = _2; F1z(t, t1, T), 
i= 1 

where z(t, t;, T) is the response at time t to the pulse which originated at time t;. The 
equivalent integral form of the expression for the response is (cf. [5]) 

I 

(2.3) q(t) = J z(t, T, T)F(-r)dN(-r). 
0 

This representation is crucial for the evaluation of the response statistical moments. 
t 

Substituting in Eq. (2.3) z(t, -r, T) = J h(t-O)s(O- -r)d() and considering the domain 
l' 

of integration reveals, as was shown by KAWCZYNSKI [15], the splitting of the function 
z(t, -r, T) into two parts: 
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t 

z1 (t, r, T) = J h(t-fJ)s(fJ- r)dfJ, t- T < r < t, 

(2.4) z(t, r, T) = 
T+T 

z2 (t, r, T) = J h(t-fJ)s(fJ- r)dfJ, O<r~t-T, 
T 

and consequently 

t t-T 

(2.5) q(t) = J z1 (t, r, T)F(r)dN(r)+ J z2 (t, r, T)F(r)dN(r). 
t-T 0 

The cumulants of the response process (displacement response) can be evaluated by 
making use of the expressions given by LIN [14]. However, in order to determine the cumu
lants of the response process time derivative (velocity response) and joint cumulants of 
the response and its time derivative, it is expedient to follow the procedure due to ROBERTS 
[13]. Then the obvious relationship 

t 

(2.6) q(t) = I i(t, r, T)F( r)dN( r) 
0 

must be used (cf. [16]). 
Taking into account the splitting (2.4), the expressions for the cumulants become 

(cf. [13]) 

t-T t 

(2.7) X110(t) =I zHt, r, T)v(r)E[Fn(r)]dr+ J zHt, r, T)v(r)E[Fn(r)]dr. 
0 t-T 

t-T t 

(2.8) Xon(t) = J .ii(t, r, T)v( r)E[Fn( r)]dr + J zHt, r, T)v( r)E[Fn( r)]dr, 
0 1-:-T 

t-T 

(2.9) Xm11(t) = J z~(t, r, T)iHt, r, T)v(r)E[Fm+n(r)]dr 
0 

t 

+ J zT(t, i, T).iHt, i, T)v( r)E[Fm+n( r)]dr, 
t-T 

where Xn0 (t), x011(t) and Xmn(t) denote the n-th cumulant of the response process, the 
n-th cumulant of its time derivative and the m, n-th joint cumulant, respectively. 

LONGUET-HIGGINS [17] gave the series expansion for the joint probability density 
of the random process and its first time derivative. This is an expansion in terms of the 
joint cumulants and the generalized Hermite polynomials. Following the procedure 
due to LONGUET-HIGGINS, let us derive this expansion in a complete and explicit form 
allowing the systematic generating and truncating of the series. 

Expressing the joint probability density function p(x1 , x2) as the inverse two-fold 
Fourier transform of the characteristic function C/J(it1 , it2 ) 
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00 00 

(2.10) p(xi, x2) = (2~)2 J J <P(it1, it2)exp[- i(xl t1 +x2 t2)]dt1 dt2 
-oo -oo 

substituting 

(2.11) <P(it1 , it2) = exp { 

00 

2 
),k 

(}+k= 1.2. 3 .... ) 

and expanding the exponential in the series yields 

(2.12) 

where 

(2.13) 

1 
+2T 

00 

00 

2 
),k 

()+k=3,4,S, ... ) 

A.Jk (' )1(' )k -;y-k I lS 1 lS 2 
1· . 

2 
), k,l,m 

()+k=3,4,S, ... ) 

Ajk Atm (' )i+'(' )k+m } d d .1 kl /I I lS1 lS2 + ... s1 s2 , 
1· .. m. -

X2 -"o1 ---= ;2; 
Y "o2 

AJk = "JkfJI' "~o "~2 · 
Substituting into Eq. (2.12) the relationship 

00 00 

(2.14) 2~ J J exp{- i(~, s, +~2 s2)- ~ (si + 2A11 s1 s2 +s~)}(is1)m(is2)"dY1 dY2 
-00 -00 

= y' I 
2 

exp{- ~ (;i-2A.11;1;2+;~)/(1-A.it)}Hmn(;1, ;2), 
1-A.u 

where Hmn(;1 , ; 2) is the generalized, or bivariate, Hermite polynomial, gives the result 

(2.15) p(x,,x2)= 2 v' I 2 exp{_21(;i-2A.u;1;2+;i)/(1-A.ft)} 
'Tl "2o "o2- "11 

00 

1 ~ AjkAtmAnr ( } +-31 •1 kl /I I I I Hi+l+n,k+m+r .,b ~2)+ ... • • J • •• m. n.r. . 
),k,l,m,n,r 
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The generalized Hermite polynomial Hmn(~1 , ~2) satisfies the relationship 

(2.16) H,.,(l;.' l;,)exp [- ~ m- 2).111;11;2 HD/(1- ).~ ,) ] 

~ ( -l)m+• a:;;;~ exp[- -~m-ull 1;./;2+/;i)/(1- ,l.f,)]. 
The form (2.16) of the expansion is complete and general and allows the systematic 

generation of the series up to any order required and its truncation. 

3. Steady-state response to a Poissonian train of square pulses. Joint cumulants of the 
response and its time derivative 

Confining our attention to the steady-state response to the stationary train of square 
pulses, we have: s(t) = 1 forti < t < t1+ T, v(t) = v = const, E[F"(t)] = E[Fn] = const. 

After the change of variable u = t- T, the expressions (2.7), (2.8) and (2.9) for the 
cumulants take, respect vely, the forms · 

oo T 

(3.1) Xno = vE[F"] J zHu)du+vE[Fn] J z1(u)du, 
T 0 

oo T 

(3.2) x0 , = vE[F"] J ti(u)du+vE[Fn] J t1(u)du, 
T 0 

oo T 

(3.3) "mn = vE[Fm+n] f zT(u)t1(u)du+vE[Fm+n] f z";(u)t1(u)du, 

where 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

T 0 

Zt (u) = w-
2 

[ 1-e-""'"( y' I~ ex' sinCu+cos cu)]. 
z2 (u) = w- 2s(a, w, T)e-="sinCu+w- 2 c(a, w, T)e-a.wucosCu. 

s(a w T)-- a +( a cosCT+sinCT)ea.wr, ' ' - y 1 - a2 Jl 1 - a2 

c(a, w, T) = -1 + (- a sinCT+coscr) e=r 
Jll- a2 

' 

( ) 
Vs . Vc r z2 u = Te-a.w"smCu+Te-="cos~,u, 

vs = 1-ea.wrcosCT, 

(3.11) vc = sinCTe=r 

and C = w y 1 - a2 is damped natural frequency. 
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The same results for z1 (u) and z2 (u) are given in the reference [8]. 
It is interesting to note that in the case of the stationary response (steady-state response 

to the stationary train of pulses) the following cumulants vanish: "o1 = 0, x11 = 0~ 

"21 = 0, X31 = 0. 
The non-zero coefficients Aik corresponding to all the cumulants of the order up to 

j + k = 4 are expressed as 

X3o 16et Jf!X ,. /ro E[F3
] .., 

(3.12) A3o = (xzo)112 = 3(1 + 8a2) Jl v {E[F2]}3f2 A.3o' 

"12 Sa Jla ,. j7;; E[F3
] -

(3.13) ,{12 = (x2o)1/2"o2 = 3(1 + 8a2) Jl -; . {E[F2]}3/2 ,{12, 

, "o3 _ 32et2 Jt
1a ,. / w E[F3

] -
(3.14) AoJ= (xoz)3f2- 3(1+8a2) JI--;{E[F2]}3/2 Ao3, 

A. _ x40 _ 3et w E[F4
] -

(3.15) 40 - (xzo)2 - 2(1 + 3a2) Y {E[F2]}2 A4o' 

(3.16) 
a w E[F4

] -

2(1 + 3az) v {E[F2]}2 Az2' 

(3.17) 
et2 w E[F4

] -

1 + 3a2 v {E[F2]}2 ,{
13

' 

(3.18) 

It may be shown that as T--. 0 in such a way that T 2 E[F2] = const, T 3 E[F3
] = const, 

T 4E[F4
] = const, the expressions for the cumulants "ik and coefficients A.ik approach the 

respective expressions for Dirac delta impulses. The expressions (3.12)-(3.18) are nor
malized in such a way that lim ~ik = I. 

?..ij 
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FIG. 1. 
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FIG. 2. 

FIG. 3. 

The coefficients 11k evaluated for the damping ratio ex = 0.01, plotted against the 
pulse duration (wT) are shown in Figs. 1, 2 and 3. 

It is seen that the skewness coefficient i 30 of the response process (dashed line in Fig. 1) 
is always positive and greater than in the case of Dirac delta impulses (wT ~ 0). The 
behaviour of the skewness coefficient of the response time derivative is different (solid 
line in Fig. 1); it assumes positive values only at the values of wT in the neighbourhood 
of n · 2n (n = 1, 2, 3, ... ), otherwise it is negative. This means that while the marginal 
probability density curve of the response process has always positive skewness, the skew-
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ness of the distribution of the velocity process may be either positive or negative. At the 
value of w T = n · 2n both coefficients reveal very much pronounced maxima. 

The coefficients of excess 140 (for the response) and i 04 (for the response time deri
vative) shown in Fig. 2 are both positive. They also reveal high maxima at w T = n · 2n, 
moreover the coefficient l 40 assumes the minima at ( w T = (2n + 1 )n, n = 0 , 1 , 2, ... ) 
the values of which are lower than in the asymptotic case w T ~ 0. 

The coefficients 112 and 122 corresponding to the joint cumulants are again always 
positive. The coefficient 113 assumes, however, also negative values. Also these coefficients 
attain high maxima at w T = 2nn, n = 1 , 2, 3, .... 

It may be concluded that the departure of the joint probability density p(x 1 , x 2) from 
the Gaussian distribution is the largest when the pulse duration is equal to the natural 
period of the structure; wT = 2n. 

4. Analysis of the average upcrossings rate for the stationary response 

The series (2.12) for the Poisson distributed train of pulses can be shown to be the 
expansion in powers of (ro/v)1' 2 (cf. [13]). The approximate solution for p(x1 , x 2 ) is ob
tained herein by retaining the terms of the order (ro/v)1

'
2 and (ro/v)1only. It is worth noting 

that in the stationary case the series (2.12) simplifies because some cumulants vanish. 
In particular, .A.11 = 0 which implies that the generalized two-dimensional Hermite poly
nomials split into the product forms 

The expected rate of upcrossings (i.e. crossings with the positive slope) of a threshold 
x 1 = a is given by the formula due to RicE [18]: 

(4.1) 

00 

p,'t = J x2p(a, x2)dx2. 
0 

Substituting into Eq. (4.1) the truncated series obtained from Eq. (2.15) and integra
ting yields 

( 4.2) p.j = },. V ::: exp(-y 2 /2) { 1 + ! [A30 H 3 (y) + 3 A12 H1 (y)] 

+ 2~ [A.40H4(y)+6.A.22H2(y)-.A.o4Ji 

+ 7~ A~oH.(y)-! AizHz(y)+ 1~ A,oA,zH.(y)+ 2~ A5,}. 
where 

and 
~02 ~02 V- -.~--=w -
~20 "20 . • 
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In the subsequent analysis the pulses magnitudes are assumed to be Gaussian distri

buted with <1, f E[F] = I , hence {E0];L = y'2 and {:l~~2 2.5. The light damping 

is assumed, i.e. ex = 0.01. 
The non-dimensionalized expected rate of threshold upcrossings 2nfl"J fro is plotted 

against the pulse duration (roT) in Figs. 4 through 10 where the solid line represents the 
Gaussian asymptotic case (ro/v = 0, i.e. "'--.. oo ), the dotted line is for rofv = 2 and 
the dashed line-for ro fv = 5. 

It is of importance to notice ( cf. [19]) that when the pulse duration T approaches the 
multiple natural period, i.e. T--.. n · 2nfro (n = 1, 2, 3, ... ), then the response becomes 
quasi-static; the induced free vibrations are not essential. In the reference [19] it has also 
been pointed out that the first-order probability density curve reveals positive skewness. 
Both observations are helpful in explaining the behaviour of the expected upcrossings 
rate. 

When the response becomes quasi-static, there are small oscillations about the rela
tively high level. However, these oscillations do not frequently correspond with the crossings 
of the zero (Fig. 4), of the low positive level (y = 1, Fig. 5) or negative level close to zero, 

FIG. 4. 

(y = -1, Fig. 7). Therefore, as wT approaches n · 2n, the expected upcrossings rate P-"J 
decreases (Figs. 4, 5, 1). The behaviour of P-t is different in the case of the high positive 
threshold y = 3 (Fig. 6). Since in the quasi-static case the oscillations are about a certain 
relatively high positive level, the crossings of the high threshold become more frequent, 
hence the expected upcrossings rate increases as roT -+ n · 2n. 

The comparison made between Figs. 4, 5 and 6 shows that as the threshold height 
increases, the average rate of upcrossings decreases, what might have been intuitively 
expected, except for the value in the vicinity of wT = n · 2n. 
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The mean rate of upcrossings of a threshold y = - 3 (Fig. 8) is very low; unfortuna
tely in this case the results are poorly interpretable because the rate tt: assumes negative 
values in some regions. This should be regarded as the result of an insufficient number 
of terms of expansion. 

As the ratio wfv increases (the mean occurrence rate v decreases), so does the skewness 
of the probability distribution. This means that the probability of small positive values 

jJ;21T 
05 w 

JT 27T 37T 
47T 

FIG. 8. 

of the response (e.g. y = 1) decreases and the probability of large positive values increases 
(cf. [19]). These large positive values of the response may or may not correspond to the 
crossings of the zero or low positive threshold. Einally it appears that as w fv increases, 
the crossings become less frequent; the expected rate tt: for thresholds y = 0 (Fig. 4) 
andy= 1 (Fig. 5) decreases. On the other hand the large values of the response (displace
ments) correspond to the crossings of the high threshold; the rate tt:(y = 3 Fig. 6) 
increases. At the same time the probability of close to zero negative values of the response 
increases, consequently the average upcrossings rate of the negative level close to zero 
increases (Fig. 7). 

The comparison between the expected upcrossings rate of threshold y = 1 andy = -1 
made for wfv = 5 (Fig. 9) reveals that the upcrossings of a negative threshold are more 
frequent than the upcrossings of a symmetric positive threshold. This is in accordance 
with the type of probability distribution since the small negative values are more probable 
(more frequent) than small positive ones. On the other hand, in the case of barriers fairly 
distant from zero (y = 3 only y = - 3), the situation is different (Fig. 10). The upcrossings 
of a high positive barrier (y = 3) are much more frequent than those of an equally distant 
from zero negative barrier. The large positive values are more probable than large nega
tive ones, hence there are also more upcrossings. 

Knowledge of the expected rate of upcrossings would be sufficient to evaluate the 
reliability function of the system (defined as the probability of no upcrossing in the time 
interval (0, t)) if the upcrossings were Poisson (independent) events. However, the upcros
sings are only asymptotically Poissonian ( cf. e.g. [20]). 

For a highly reliable system the following rough estimate of the lower bound of the 
reliability function [20] can be made 

(4.3) R(t) > 1-E[M(t)], 

8 Arch. Mech. Stos. 5/87 
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where 
t 

E[M(t)] = f 11:( -r)d-r. 
0 

Otherwise a better estimation may be used [20]: 

(4.4) 
II I 

I--yE[M(t)]+E[M2(t)]- 6 E[M3 (t)] ~ R(t) 

~ I~ ~~ E[M(t)] + ~! E[(M2(t)]- -A-E[M3 (t)] + 2~ E[M4(t)]. 

The use of this estimation requires, however, knowledge of high-order statistics of the 
upcrossing process (two-point, three-point, e.t.c. time statistics). 
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