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Bifurcation of stationary solutions for the quasi-geostrophic 
equation with nonlinear boundary conditions 

H. TRUE (LYNGBY) 

THE BOUNDARY value problem with nonlinear boundary conditions is transformed into an inte
gral equation with nonlinear boundary terms in it. It is shown that under certain conditions, 
which are satisfied in the applications, the nonlinear integral operator is a completely continuous 
operator in the space of continuous functions, and its Frechet derivative exists. This ·permits 
the application of a theorem by Krasnoselski which gives criteria for the existence of bifurca
ting solutions. The proof can be applied to other problems where an integral formulation is 
possible. 

Problem brzegowy z nieliniowymi warunkami brzegowymi zostal sprowadzony do r6wnania 
calkowego z czlonami nieliniowymi. Wykazano, ze przy pewnych warunkach, kt6re zwykle 
w zastosowaniach praktycznych SC\ spelnione, nieliniowy operator calkowy jest operatorem 
pelnoci(\glym i istnieje jego pochodna Frecheta. Fakt ten pozwala na zastosowanie twierdzenia 
Krasnosielskiego, kt6re dostarcza kryteri6w na istnienie rozwi(\zan bifurkacyjnych. Niniejsze 
podejscie moi:e bye wykorzystane r6wniez w innych zagadnieniach, w kt6rych mozliwe jest 
sformulowanie calkowe. 

KpaeaaH 32J{a'!a c Hemme:UHbiMil rpamNHbiMll ycnoBWL>ttll cae~eHa K mrrerpaJihHOMY orrepa
Topy c HeJIHHeHHbiMH rpaHH'tiHbiMH tiJieHaMH. lloKa3aHo, tfl'o rrpa orrpe~eJieHHbiX ycuoa~UIX, 
KOTOpbie BbiiiOJIHRIOTCH a npllJio>KeHHHX, Hemme:UHhm mrrerpaJihHbiH orrepaTop Hero rrpo
H3Bo~ <l>pewa, HBJIHIOTCH BIIOJIHC HerrpepbiBHbiMH OIIepaTOpaMH B llpOCTpaHCTBe Herrpe
pbiBHbiX <i>yHKlU(i{. 3To 1103BaJIHeT IIpllMeHHTb TeopeMy KpaCHOCCJibCKOro, KOTOpaH ycra
HaBJIHBaeT KpHTepHH Cyn:(CCTBOBaHHH pa3BeTBJieHHbiX peweHil:U. ,IloKa3aTeJibCTBO MO>KeT 
6biTb llpllMCHCHO H K ~pyrHM ~aqaM, ~orrycKaiOJ.IU{M llHTerpaJihHYIO IIOCTaHOBKy. 

WE SHALL examine CHARNEY'S formulation [I] of the quasi-geostrophic problem describing 
the large scale atmospheric flow in middle latitudes. It will be shown that if a linear problem 
to be defined later does have eigenvalues of odd multiplicity, then bifurcation will occur 
at these eigenvalues in the nonlinear problem. 

In order to simplify the calculations, the nonlinear boundary conditions will be extend
ed to the entire boundary, but the proof can be modified in such a way that it carries over 
to Charney's boundary conditions. The problem will be reformulated as an integral equa
tion, whereby the domain of the unknown streamfunction will be extended from the usual 
set of infinitely often differentiable functions. The result derived concern the integral 
equation. 

Given two strictly positive and infinitely often differentiable functions k 1 (z) and k2 (z) 
(z is the vertical coordinate) on 0 ~ z ~ 1. 

Let tp(x, y, z) be an infinitely often differentiable function defined on the domain 

D: 0 <X< I, 0 < y < 1' 0 < z < 1. 

We denote the boundary of D by aD. 
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On aD the stream function "P must satisfy prescribed conditions of the form 

(1) 

where B i= 0 is a uniformly bounded function defined on an, n is the direction of the ex
terior unit normal vector to D on an. h is a function of "P and the coordinates of the bound
ary. It has Frechet derivatives of up to and including second order with h(O) = h'(O) = 0 
and h" (0) i= 0. From Charney's problem the following nonlinear elliptic differential equa
tion on D for the unknown stationary streamfunction "P can easily be derived. 

(2) 

where the Frechet derivatives of/ofup to and including second order exist ·with/(0, z) = 
= () = 0. It is easily seen that 1p = () = 0 is a solution of the problem under these conditions. 

In this paper we shall consider the related problem 

u(P) = J k 1 Gf(u(Q), Q)dQ- J k 1 Gh(u(Q), Q)dQ- J k 2Gh(u(Q}, Q)dQ, 

(3) for 
D oD, oD8 

u = Gu = Fu+H 1 u+H2u, 

where Q is a point in D, and G is the Green's function that is a solution of the boundary 
value problem 

(4) k1(o2fox 2 +o2foy 2)G+ofoz(k2oGfoz) = b(x-~)b(y-rJ)b(z-C) 

and 

(5) aGJan-BG = 0 on aD. 

anf) denotes the vertical boundaries and anH the horizontal boundaries. The function u 
is continuous (u e C(D)), and the operators G, F, H 1 and H 2 map Cx i5 and Cx aD re
spectively into C. 

We make the following assumptions: 
H.l. F, H 1 and H 2 have Frechet derivatives F', H~ and H~, respectively, at u = () = 0, 

and the operators G, F, H 1 and H 2 satisfy the conditions GO = 0, FO = 0, H1 () = () and 
H2 () = (), respectively. 

H.2. For every fixed u e C(D} f and hare continuous functions of Q, and they are unifor
mly bounded. 

It is not difficult to show that these assumptions are satisfied for a large number of 
quasi-geostrophic flow topographies. 

We want to prove that the operator G is completely continuous. In qrder to do so we 
shall first prove the complete continuity-of the operator H 2 

(6) H2u = - f k 2G(P, Q)h(u(Q), Q)dQ. 
oD8 

Let us also consider the linear operator 

(7) Lu = - f k2G(P, Q)4J(Q)dQ, 4> E C(aDH) 
oD

8 

for an arbitrary fixed P e D. 
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We now define the distance between the points P and Q 

r = IP-QI 

and split up the kernel G in the following way: 

G
1
(P, Q) = {G(: Q) 

G2(P, Q) = {G(: Q) 

for r ;?; 'YJ,., 

for r < 'YJ,., 

for r;?; rJ,., 

forr < fJ,..· · 

659 

We denote the domain D,. = oDn {PE i5, Q E oDHir > rJ,.}, where 'Y/n is a positive 
real number. We can write 

(8) - j k2G(P,Q)c/>(Q)dQ =- j k2G1(P,Q)c/>(Q)dQ- f k2G2(P,Q)c/>(Q)dQ 
aD8 aD8 8D8 

= G1 u+G2 u. 

We start out to prove that the operator Lis completely continuous as an operator from 
C(D,.) -+ C(D,.) . . 

Proof. Let {cf>,.(Q)} be a set of uniformly bounded functions defined on a set of do
mains {D,.}, llc/>,.11 ~ k. 

Since G has a simple pole at r = 0, and is a uniformly continuous function everywhere 
else, the function 

u,.{P) = j k2G(P, Q) cf>,.(Q)dQ 
o, 

is uniformly bounded. If, for example, the area of the domain of integration is S,. then 

llu,.{P)II ~ M· k · S,., 

where M= max G(P, Q) ·k2, P, Q e D,.. 
Since G(P, Q) is uniformly continuous in ii x Q,., then a (j > 0 exists such that for any 

prescribed e > 0 

for IP1 -P2I < CJ and every Q e D,.. S is the area of oD8 • 

Then we have 

(9) llu,.(P2)-u,.(Pt)ll ~ j llk2ll 11 G(Pt, Q)-G(P2, Q)ll llc/>,.(Q)IIdQ < e 
D, 

for all functions u,.(P) when only IP2 -P1 I < b. 

Arzela's theorem then shows that the set {u,.(P)} is compact. Since the operator G1 

maps every bounded set {c/>,.(Q)} into a compact set in C{D,.), then G1 is completely con- · 
tinuous. 
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As the next step . we choose a sequence of operators {G1,.} which converges towards 
G- i.e. a sequence of radii {fJ,.} in which fJn ~ 0 for n ~ oo. 

In the neighbourhood of r = 0 we can express the kernel a· in the following way: 

G(P, Q) = <P(P, Q) +R(P, Q), 
r 

where as well f/J(P, Q) as R(P, Q) are uniformly bounded for r ~ 0 (i.e. P ~ Q); 

(k2iP(P, Q) ~ C1 , k2R(P, Q) ~ C2). 

We now have 

(10) IILl/>-G.,.l/>11 = max(J (k2G(P,Q)lj>(Q)dQ- J k2G1,.(P,Q)lj>(Q)dQ) 
oDH Dn 

~ max{ J k2G2(P, Q)lj>(Q)dQ) = max{ J k2 f/J(~, Q) 4>(Q)dQ 
r<TJn r<f}n 

TJn TJn 

+ j~ k2R(P, Q)lj>(Q)dQ) ~ C1 • 2n J lj>(Q)dr+{:2 ·2n J lj>(Q)rdr 
r<f}n 0 0 

if only 

e 
'fln < ( ) < 1. ., 2n C1 +C2 k 

We have now shown that 

IIL4>-Gln4>11 ~ 0 for n ~ oo, 

and since all G1,. are completely continuous in the norm of the space C, so is L according 
to Theorem 2 on page 146 in LYUSTERNIK and SOBOLEV [2]. 

Since the linear operator L ( C(oD8 ) ~ C(oD8 )) is completely continuous and the 

operator h (hl/> = h(4>, Q}) acts from C(oD8 ) to C(oD8 ) and is both continuous and bound
ed according to the assumption H.2., then the operator H = Lh acts in C(oD8 ) and is 
completely continuous according to the argument on page 46 in KRAsNOSIELSKI [3]. 

The proof of complete continuity of the operators H 1 and F is analogous. Since the 
sum ofF, H 1 and H 2 is the operator G and the sum of three completely continuous oper
ators is itself a completely continuous operator, then G is completely continuous. Now, 
Theorem (2.1) on page 196 in KRAsNOSIELSKI [3] applies to the operator G. Thus the ex
istence of bifurcating solutions is proven provided the linearized integral operator defined 
in the theorem has eigenvalues of odd multiplicity. 
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