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Optimal design of weakly curved comprelled bars 
with MaxweD type creep effects 

R. WOJDANOWSKA (KRAKOW) 

TJiE OPTIMAL shape of the clamped and two-hinged bars compressed by axial force, 
having an initial detlection line and subjected to creep buckling is determined. A linear 
Maxwell type creep is considered and as an optimization criterion the minim•un 
logarithmic rate of creep is assumed. The exact solution under the restriction to certain 
particular initial deflection lines of the bar is obtained. An analogy to elastic solutions 
is demonstrated. The optimal dimensionless section F(x) for the cases of bucklina 
from a conveqence plane, buckling in a convergence plane and aeometricaJly similar 
sections is presented graphically. 

1. Introductory remarks 

IN THE CASE of structures working at elevated temperatures or structures made of material~ 
exhibiting rheological properties already at room temperature it is required,· in optimal 
structural design, to take into account the rheological effects. Classification of the optimum 
design problems in rheology and some simple examples of such design are given in 
ZYCZKOWSKI's paper [16]. 

A certain group of auxiliary .conditions of optimal structural design in creep conditions 
is connected with creep buckling. Some problems of this type were considered in [12] 
and [15] in relation with the Rabotnov-Shesterikov creep buckling theory for a bar being 
originally straight. A different approach, based on the Kempner-Hoff'sbucklingtheory[5, 7] 
and an assumption of the small initial curvature of the compressed bars are found in the 
paper [11] concerning optimum design of simple lattice structures. A comparison of dif
ferent creep buckling theories may be found in the review papers of HULT [5], HoFF [4] 
and Zvcz:KowsKI [ 13]. 

In this paper we assume the buckling theory of weakly curved bars but we restrict our 
considerations to the linear Maxwell type creep. Such a problem for an axially compress
ed prismatic bar was formulated in 1946 by FREUDENTHAL [2] and RzANICYN [10]. They 
confirmed the fact that the growth of defiections with time has an exponential character. 
In our paper we deal with the optimization of the shape of such a bar (optimal distribu
tion of the cross-section along the axis). We are seeking a minimum volume of the bar at 
a fixed compressive force and fixed logarithmic creep rate. We restrict our considerations 
to the cases when a rate of creep is constant (independent of spatial and time variables) 
and therefore the choice of a corresponding norm for the rate of creep is meaningless. 
The optimum design problem considered belongs to the variational calculus problems; 
we obtain the exact solutions under the assumption of certain particular initial deflection 
lines of the bar. 
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We show that the problem formulated in close to the optimum design problem of 
straight elastic bars, originated by Lagrange and examined in detail by CLAUSEN, CENcov [I] 
and NIKOLAI [8]. KELLER [6] considered statically indeterminate cases of the bar and sup
ports. However, as OLHOFF 'dnd Rks1.rusEEN [9f have pointed out; l(dlys' solution was · 
erroneous since it did not take into account the ,-(}iffer~nt· Jlossible ;forms of the stability 
loss and they presented a correct solution based on the so-called "bimodal optimization". 
In our paper we deal with statically determined supports of bars only and in this case the
refore, the bimodal optimization does not appiy. 

2. Formulation of the problem 

Consider first a creep buckling problem for non-prismatic, two-hinged and· clamped 
at one end bars of small curvature subjected to the action of axial force. Next we formulate 
in detail the problem of optimization. In this problem we use the linear Maxwell type law 

(2.1) 
• (J (J 
e = -1-

E· A. 

in which e, u, E and A. denote, respectively, the strain, stress~ Young's modulus and material 
constant characterizing the viscous properties of the material. A dot above the variable 
denotes differentiation with respect to time. 

After introducing dimensionless time -r = ~ t, restricting to small deflections and 

assuming ~ = - w", M = Pw (P is compressing force), the differential equation for the 
deflection line of the bar obeying the linear creep law (2.1), borrowed from [14],,assumes 
the form 

(2.2) Pw+Pw = -w"EJ. 

In Eq. (2.2) M and x denote the bending moment and curvature, respectively, J = J(x) 

is the moment of inertia or the cross-section of the bar at a point x, M and k denote de
rivatives With respect tO dimension}ess time T. 

We have the following boundary conditions: for a bar clamped at one end, 

(2.3) w(/, T) = 0, w'{O, T) = 0, 

and for a two-hinged bar, 

(2.4) w(l, -r) = 0, w( -I, -r) = 9. 

The initial condition assumes the form 

(2.5) w(x, 0) = w+(x) 

in which the function w+(x) describes the instant (elastic) deflection of the bar. 
We confine our study to such solutio~ of the .partial differential equation (2.2) which 

we may obtain, using the method of separation of variables, 

(2.6) 
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i.e for creep buckling, retaining geometrical similarity of the deflection line in the particular 
moments of time. In this way we obtain a relatively simple exact solution: yet, it is restricted 
to the certain precisely determined initial deflection lines. After introducing Eq. (2.6) 
into Eq. (2.2) we obtain a system of two equations 

(2.7) p p w2 (r) = k 2 
+ . ( ) ' w2 r 

EJ(x) w~'(x) = -k2. 
wt(x) 

The first equation of this system allows, after integration, for the determination of the 
function w2 = w2 (r) with accuracy to the constant 

(2.8) 
p 

w2(r) = cl exp k2_p'l". 

Equations (2.8) and (2.6) make it possible to evaluate the strain rate at each point x and 
each moment of time r; the constant k 2 may be chosen correspondingly large so as to 
give the minimum strain rate. The quantity Pf(k2 -P) will be called a logarithmic creep 
rate: 

(2.9) 

The problem of optimization is formulated as follows: we are looking for a shape 
of the bar of the smallest volume which, for a given force P, will demonstrate a given 
logarithmic creep rate, i.e. a given value of k 2

• In dual formulation we .look for a minimal 

a b 

w 

Fro. 1. 

rate of creep at a given volume and force P. A construction of the formulae (2.8) and (2.9) 
shows that the maximal value of k 2 guarantees a minimum creep rate at each point x 
and each moment of the time r, so we obtain here the absolute minimum, constant in time 
and independent of the assumed norm of the creep rate expressed in terms of the variable 
x [16]. Thus we seek the minimum of the functional 

I I 

(2.10) V= J F(x)dx = J k 1 lq(x)dx 
0 0 

at fixed values of k 2 and P. 
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In the above formula k 1 is a cross-section coefficient, the exponent q determines the nature 
of the convergence of the bar. The formula (2AO) defines the volume of the clamped bar, 
in the case of a two-hinged bar the volume is.determined by means of an analogous integral 
in the limits of integration from (-I) to (I). 

The exponent q (Fig. 2) equals: q = 1 for a plane-convergent bar of a constant height 

of the cross-section (buckling from the convergence plane), q = ~ for a uniformly con-

vergent bar (sections geometrically similar), q = ! for a plane-convergent bar of a constant 

width of the cross-section (buckling in a plane of convergence). 
The function l(x) must satisfy the se9ond differential equation of the system (2.7); 

however, the minimization of the functional with an auxiliary condition is not necessary 

FIG. 2. 

here, we can simply evaluate l(x) from the second equation of the system (2.7) and insert 
it into Eq. (2.10) 

(2.11) 

. We then obtain the functional which is analogous to the functional describing the optimal 
shape of the compressed elastic bar. 

In quest of its minimum we use the CENcov ro'ethod [1]. The Euler-Lagrange equations 
conditioning the minimum of the functional (2.11) may then be written in the simple form 

(2.12) 

For conservative loads, as GAJEWSKI and ZvczK-owsKI have shown [3], the integral of 
Eq. (2.12) assumes the form 

(2.13) 

where C.denotes the:integration constant and v = k 1 (k2 /E)q. Depending on the manne~ 
of supporting the ends of the bar, the boundary conditions· (2.3) or (2.4) should be added 
to Eq. (2.13). 
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3. Particular solutions 

Integration of Eq. (2.13) with the boundary conditions (2.3fand the initial condition 
(2.5) leads to the solution 

(3.1) for q = 1 

in which/+ = w+(O) denotes an elastic deflection at the point x = {), 

(3.2) 

in which the parameter s equals 

(3.3) 

and 

(3.4) 

with 

(3.5) 

where B denotes the integration constant. 

1 
for q = --

2 

1 
for q =-

3 

For the above values of the exponent q, one may evaluate from the second equation 
of the system (2.7) the momentof inertia I(x). 

Using the relations occuring forT= 0, from Eq. (2.8) we have w2 (0) = C1 , and from 
Eqs. (2.6)and (3.l)(e.g. for q = 1) one may evaluate w(x, 0) = w1(x)w2(0) = C1 w1(x) = w+. 

Fcx) 

0.5 

0 

,. 
O.Sl 

FIG. 3. 

)( 

Introducing w1 (x) = w+ (x)jC1 into I(x) one may further determine F(x) = k 1/q(x) (for 
q = I : F(x) = k 1 J(x)) and introduce a dimensioilless cross-section F{x). 

The optimal magnitude of the dimensionless cross~section F(x) for the particular values 
of the exponent q is presented graphically in Fig. 3. 

11 Arch. Mech. Stos. nr 6!78 
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4. Determinatioas of the corresponding initial deflection line 

The initial deflection line and the line of the elastic deflection are related by the equation 

(4.1) 

The above equation results from the superposition of the elastic deflection on the initial 
shape. In this equation¥+ = Pw+, x_ = x_(x) = -w~(x) denotes an initial curvature 
of the bar before loading (-r = _0) which, after loading, becomes "+ = x+(x) (curvature 
resulting from elastic deflection of the bar). The magnitude of the deflection function at. the 
point x = 0 (elastic bending deflection) is denoted by f+ = w+(O) and initial deflection 
by f_ = w _ (0). The initial deflection f- is assumed to be known. The examplary diagrams 
of loading and deflection in terms of time are presented in Figs. 4 and 5. 

Integration ofEq. (4.1) using the relation I= - kE
2 

w+, evaluated from Eq. (2.7) after 
w+ 

loading~ leads to the solution w_ = [(k2 -P)/k2]w+ where, in the evaluation of the integ
ration constants, the boundary conditions for the clamped at one end bar (2.3) were 

p r 

t 

FIG. 4. FIG. 5. 

used, and the function w+ = w+(x) is the deflection line of the bar after loading under 
the initial condition (2.5). The deflection f+ is expressed in terms of the initial deflection 
f_ by means of the relation:/+ = f_k2 /(k2 -P). 

Below, as an example, we present the initial deflection line for a case q = 1: 

(4.2) 

The optimal solution obtained is restricted then to such an initial deflection line. 

S. Fiual remarks 

In this paper the optimal shape of an axially compressed bar of small initial curvature 
subjected to creep buckling is determined. The considerations were restricted to the certain 
particular function defining the initial deflection line. Under this assumption an analogy 
with the elastic solutions was demonstrated. Solutions for the elastic range are also optimal 
for linear creep·ofthe Maxwell type, economy of the material is identical. 

Assuming other initial deflection lines leads to numerical complications and the conclu
sions presente(i here are no longer valid. 
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