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Resonant gas oscillations in open pipes(*) 

L. VAN WIJNGAARDEN AND J. H. M. DISSELHORST (ENSCHEDE) 

THis CONTRIBlJI'ION is concerned with oscillations of gas in a pipe in which a piston executes 
harmonic oscillations at one end, whereas the other end is open to the atmosphere. Emphasis 
is put on a range of frequencies near resonance when the wavelength is about four times the 
length of the pipe. Under those circumstances work is done by the piston on the gas. For a quasi
steady flow this work must be dissipated somehow. Dissipative mechanisms are: viscous and 
thermal dissipation in boundary layers, acoustic radiation from the open end and vortex shed
ding from the mouth of the pipe. The relative importance of these will be discussed for pipeS 
with sharp edges and for pipes with a smoothly rounded-off mouth. The discussion is based 

. on both experimental and theoretical results obtained in our laboratory. 

Praca dotyczy drgan gazu w rurze, w kt6rej tlok wykonuje drgania harmoniczne w jednym 
koncu, podczas gdy drugi koniec rury jest otwarty. Nacisk polomno na zakres ~to5ci rezo
nansowej w priypadku kiedy dlugosc fali r6wna jest okolo czterem dlugosciom rury. W proce
sach quasi-statycznych praca wykonywana w gazie przez tlok musi bye w pewien spos6b rozpra
szana. Jako mechanizmy dysypacyjne przyj~to: lepk~ i termiczn~ dysypacje w warstwach 
przy5ciennych, promieniowanie akustyczne otwartego kotica oraz wirowy wy'plyw z konca rury. 
Por6wnano wzgl~y wplyw tych czynnik6w dla rur z ostrymi oraz zaokr~lonymi kraw~dziami. 
Zbadano wyniki teoretyczne i doswiadczalne otrzymane w laboratorium. 

B pa6oTe paccMaTpHBaiOTCH o~ ra3a B Tpy6e c nopumeM Ha Ko:Hqe cosepwaro~ 
rapMOHl{tleCKHe KOJie6amm; BTOpOH KOHe~ Tpy6bi OTKpbiT, BHHMaHHe y~emleTCH rofana30HY 
OKOJiope30HaHCOBbiX tJaCTOT, KOr~a .z:tmma BOJIHbl pasHa OKOJIO tleTblpex W!HH Tpy6&I. flpH 
3THX ycnoBIDIX noprnem. npo~en&xsaeT pa6oTy H~ ra3oM. IlpH KBa3HCTa~oHapHoM npo~ecce 
3Ta pa60Ta ~oJDKHa KaKHM-To o6pa3oM pac~HBaTLCH. OcHoBH&Ie ~ccHIIaTHBHbie Me:xaHHaMbi 
cne~lQHe: BH3KaH H TepMHtJecKaH ~ccHna~HH a norpaHHtmoM cnoe, aKYCTHtleCKoe H3JIY
t~eHHe H BHXpesoe HCTetJeHHe t~epe3 OTKpbiTbiH KOHe~. 0THOCIITeJILHbiH BKJI~ 3TifX MeXaHH3-
MOB paCCMaTpHBaeTCH ~JIH Tpy6 C OCTpOH KpOMKOH H C 3aKpyrJieHHbiMH KpaHMH. Paccy>l<):teHIDI 
OCHOBaHbl KaK Ha TeOpeTHtleCKifX TaK H 3KCnepHMeHTaJILHbiX pe3yJILTaTax nOJiytJeHHbiX B Jia-
6opaTopHH aBTOpOB. 

1. Introduction 

WE CONSIDER in this paper oscillations of air- in pipes open to the atmosphere at one end. 
At the other end a piston executes harmonic oscillations of the form 

(1.1) x = ~cos!Jt, 

~ being the amplitude and Q the angular frequency of the motion. For small ~' the am
plitude of the oscillating air velocity will be small too, that is to say of the order ~. Nea~ 
the resonance frequencies, the lowest one of which is given by 

(1.2) Q na0 
0 = 2L' 

(*) Paper presented at the XIII Biennial Fluid Dynamics Symposium, Poland, September 5-10, 1977. 
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a0 being the velocity of sound and L the length of the pipe, the amplitude is of the order tl', 
N < 1, for not too small <5. The phenomena are .nonlinear. Since the pioneer work by 
LBTTAU (1939) much has been done to determine the resonant motion in the pipe for given 
a0 , L, R and t5, where in addition to the · quantities already mentioned R is the radius of 
the pipe. This problem is still unsolved. Our understanding of the phenomena under 
resonance in a closed pipe is, due to the work by CHU and YING (1963), CHESTER (1964) 
and others, fairly complete. The open pipe case is much more difficult due to the compli
cated interaction of the flow in the pipe with the · outside atmosphere. This interaction in
volves radiation of acoustic energy and convection of energy and momentum during in- and 
outflow. Inside the pipe· the flow can be accurately described by a one-dimensional, unsteady 
and inviscid gas flow separated from the walls by thin boundary layers of the Stokes type. 

The main problem is to formulate a boundary condition for this one-dimensonal 
gas flow at the open end. Two proposals have been made. Although motivated in different 
ways, both SEYMOUR and MoR.TELL (1973) and JIMENEz (1973) assumed between the 
pressure, relative to the atmospheric pressure p0 , and the velocity Ue at the exit, a relation 
of the kind 

(1.3) Pe-Po = jue · 

The parameter j is zero in the completely linear case and, therefore, in the nonlinear case 
small. Experiments by STURTEVANT (1974) and VAN WIJNGAAR.DEN and WOR.MGOOR (1974) 
give little or no support to Eq. (1.3) neither as to the local behaviour of p and u, nor as 
to the predicted peak values of Pe and Ue at the exit. 

The other suggested boundary condition (VAN WIJNGAAR.DEN 1968) is 

OUe 2 Pe-Po = cTt +eue, Ue > 0. 
(4.1) 

Ue < 0. 

The physical picture behind Eq. (1.4) is that during inflow itis as if a sink were located in 
the exit of the pipe. Conservation of momentum of the fluid within the surface E in Fig. 1 
then leads to the first line in Eq. (1.4). Here the term couefot represents the pressure that 
is needed to increase the kinetic energy within the surface. This pressure is proportional to 
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FIG. 1. Inflow in a pipe with a sharp edge. There is separation at the edge. The first line in Eq. (1.4) results 
from a momentum balance of the fluid within 1:. 
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REsoNANT GAS OSCILLATIONS IN OPEN PIPES 117 

ouef ot, so c is a constant. During outflow the air is assumed to issue in the form of a jet, 
at ambient pressure. 

Experiments (vAN WUNGAARDEN (1968)) showed that a theory using Eq. (1.4) fairly 
well predicts the peak value p11 -p0 of the pressure PP at the piston or ue, but that (vAN 
WIJNGAARDEN and WoRMGOOR (1974)) the behaviour of the pressure in the exit is not 
like that assumed in Eq. (1.4). Very recently KELLIDt (1977) used the computational and 
experimental results by STURTEVANT (1974) to compare the relative validity of Eqs. (1.3) 
and ( 1.4). His conclusion is that although Eq~ ( 1.4) gives results which agree much better 
with observation than Eq. (1.3), further improvement is needed because the gap between 
the theory and observation is still too wide. In the work of VAN WUNGAARDEN and WoRM
GOOR (1974) it is suggested that the deviation of the observed flow from Eq. (1.4) is for 
a large part due to the formation at inflow and shedding at outflow of ring vortices. These 
result from boundary layer separation at the sharp edge during inflow. It may be expected 
therefore that Eq. (1.4) holds good for round edges when only jet formation occurs and 
there is no separation at inflow. An experimental study was therefore cauied out on oscilla
tions in pipes with round edges. 

2. Resonant oscillations in pipes with a round edge 

In order to assess the importance of bou1;1dary layer dissipation, it was anticipated that 
at low enough values of lJfR no jet formation takes place and that boundary layer dissi
pation· together with acoustic radiation completely control the flow. More specifically this 
means that for low lJ I R the work done by the piston (we recall that at resonance the pressure 
at the piston is in phase with the piston velocity) is radiated away as acoustic energy and 
dissipated by viscosity and thermal conduction in the boundary la.yer at the wall. The for
mer can be obtained from the results of LEVINE and SCHWINGER (1948), the latter from a 
straightforward calculation based on the velocity and temperature distribution in the Sto
kes' boundary layer separating the wall from a linear acoustic standing~wave in the pipe 
(see e.g. TEMKIN 1968). 

The result is presented here for the ·impedance (p11 -p0)fDlJ a~ the piston, rendered 
dimensionless with '(yp0)fa0 , y being the ratio of specific heats, 

1 1 

(2.1) Q= (P;;:;;~ao =\(:)\(~)'(:.R}'(1 +Y~{W' 
In this expression " is the kinematic viscosity of the employed gas and Pr its Prandtl num
ber. If the oscillation were an acoustic standing wave, Q would be equal to uefDlJ. 

The first term which stems from radiation becomes rapidly small with respect to the 
second one with increasing LfR. In Fig. 2 Q obtained from experiments is plotted against 
lJfD(D = 2R) for various pipe lengths. 

The solid lines on the left represent the· value for Q given for each length by Eq. (2.1). 
The difference between the measured values and these solid liJ;tes is about 5%. 

We shall return to this in Sect. 3. 
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Whereas up to ll/D ,_ 10-2 the phenomena are linear, for larger values Q depends 
on ~. as follows from Fig. 2. Asymptotically one expects that the velocity · in the pipe be
comes so large that boundary layer dis$ipation is negligible and the magnitude of the signal 
in the pipe is completely dependent on the conditions at the exit. For round edges jet for
mation can be expected at outflow and smooth flow without boundary layer separation 
at inflow. 

Pe,Ue~--------

FIG. 3. Inflow m a pipe with a round edge. There is no separation at the edge. A momentum balance for 
the fluid enclosed in E gives the first line in Eq. (2.3). 
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RESONANT GAS OSCILLATIONS IN OPEN PIPES 119 

The conditions (1.4) would then be applicable. However, when the flow around the 
edge is smooth, there is a net· suction force at the edge, ·indicated with F in Fig. 3. The 
magnitude of this force is 

(2.2) 

which follows from making up, e.g. for steady flow, the balance of momentum for the 
material within the surface .E in Fig. 3 and comparing the results with the outcome of 
Bernoulli's Theorem, 

1 2 
P(X;) =Pe+l(!Ue. 

With no separation at inflow we should have instead of Eq. (1.4) 

OUe 1 2 Pe - Po = C 7ft + 2 (!Ue , Ue > 0, 
(2.3) 

Pe-Po=O, Ue < 0. 

In VAN WIJNGAARDEN (1968) it was calculated that under resonance, and with Eq. (1.4), 
the pressure PP at the piston is 

1 

- (/))2 .!. 
(2.4) PP p:o = y L nl sin.Q0 t 12 sgn.Qo t, 

neglecting boundary layer dissipation. For round edges we should have Eq. (2.3) instead 
of Eq. (1.4). (the lack of a factor 1/2 in Eq. (1.4) was noticed also by KELLER (1977)). 
The result is that the right hand side of Eq. (2.4) becomes larger by a factor 21

' 2 giving 
for the peak value 

(2.5) 

or 

(2.6) Q2 = 4a0 D 
.QD lJ. 

Equation (2.6) is plotted for resonant frequencies .00 in the various pipes in Fig. 2. In all 
cases, but for the longest pipe (L = 6.32 m), ·the observed values approach asymptotically 
the lines representing Eq. (2.6). In the case of the pipe of the lengthL = 6.32m the measure
ments should extend to larger values of lJ ID than given in the figure so as to judge whether 
eventually the line representing Eq. (2.6) is approached. 

3. Dissipation at round edge 

To account for the small but systematic difference between the calculated and measured 
values for low values of dfD, we studied the additional dissipation produced in the flow 
around the edge. While a detailed· calculation of this dissipation will be given in the junior 
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author's forthcoming thesis, an outline for a fairly accurate approach will be given here. 
The calculations was made for the case of zero wall thickness, but it can be expected that 
it gives a good approximation in the case the wall thickness is small as compared with the 
tube diameter. Additional dissipation occurs because of the high velocities in the flow 
near the edge. 

The basis for the ealculation are the unsteady two-dimensional boundary layer 
equations with the convective terms neglected. This is justified by noting that Cl/ D is a small 

quantity. This means that the convective acceleration term u :~in the equation of motion 

is ne glibly small with respect to ouf ot. 
The best way to calculate the vorticity (the square of which is the viscous dissipation) 

is to employ parabolic coordinates ~ and 17, see Fig. 4. 

X 
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ei 

Fm. 4. Parabolic coordinate,s in a boundary layer along the edge. The domain of integration for the calcula
tion of the dissipation is bounded by the vertical broken line. 

The inviscid flow at the outer edge of the boundary layer has the form 

1 

(3.1) u = u,c( :r cos.Qt, 

where c is a constant. The problem is to determine from the three-dimensional flow as 
in Fig. 3 the constant c in the effectively two-dimensional flow (3.1) around the edge. 

We determined cas follows: according to the potential flow theory the suction force 
exerted in the velocity field whose potential is· 

1 

(3.2) 
w = 2uec(Rz)2 coslJt, 

z = x+iy, 

and which gives the flow (3.1) along the edges is, at t = 0, 

On the other hand we know that F is also given by Eq. (2.2), from which it follows that 
1 

c = (4nf2, whence 
1 

(3.3) 1 ( R )2 u = 2Ue nx coslJt. 
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REsONANT GAS OSCILLATIONS IN OPEN PIPES 121 

In calculating the dissipation in a boundary layer having Eq. (3.3) as the inviscid outer 
flow, an improper integral can be avoided by extending the integration a little bit in the 
right half of the x, y plane or, in other words, by integrating~ from 0 to ro and 'YJ from 0 

1 

to (~2 +e2)2 (see Fig. 4) in the ~' 'Y) plane. 
The result of the viscous dissipation at the edge, </>edge, relative to the dissipation in the 

wall boundary la,yer, </>walb is found to be 

(3.4) 
</>edge 

</>wall - = 

aoR2 
Rlog8"nPL 

( y-1) . 
2Ln 1 + --.c · 

Pr2 

For tesonant air oscillations with R = 0.055 m, as used in the experiments, this is 0.04 
at a length of 1 m and 0.02 for a pipe of a 2 m length. This "edge" dissipation therefore 
partly explains the small difference between calculated and observed values in Fig. 2. 

4. Resonant oscillations in open pipes with a sharp edge 

In Fig. 5 correspondi?g results for a sharp edge are given. For comparison the results 
for a round edge and almost the same value of L are given as well. 

It is evident that for a sharp edge there is no linear regime where Q does not depend 
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results for a pipe with a smooth edge are also shown. 
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on b/D as it the case of the :round edge at low values of bjD. The solid lines represent Eq. 
(2. 6) for the round edge, and 

(4.1) 

for the sharp edge. As explained in Sect. 2 this is based on the result (2.4) obtained by 
VAN WnNGAARDEN (1968) using of the boundary condition (2.3). Previous experiments 
(VAN WIJNGMRDEN 1968, VAN WnNGAARDEN and WoRMGOOR 1974) showed good agree
ment with Eq. (4.1) but these experiments where for fairly large values of bjD. It appears 
now that for smaller b/D than in those experiments Eq. (4.1) is not satisfied. The reason 
for this is most likely to be found in the dynamics of vortices in and near the mouth of the 
pipe. With this in mind we tried to visualize the flow in the mouth during a cycle in a two
dimensional model of the flow around the sharp edge. 

This was achieved by' heating the airflow, using the density differences which are pro
duced by temperature differences for making the flow visible with the Schlieren method 
(see Fig. 6a). Vortices were observed very clearly as exemplified in the series of pictures 
in Fig. 6. This series gives an idea of the formation and shedding of vortices during a full 
cycle. 

To account for the behaviour of Q in Fig. 5 as a function of parameters such as bjD, 
the following analytic model is being developed, see Fig. 7. 

A two-dimensional flow consists of a uniform flow Ue far down the pipe and two vortices 
of strength T(s, t) located in the mouth, s being the distance from the centre of a vortex 
to ~he nearest edge. For given Ue' rand s the pressure difference between the flow down 
in the tube and far away from the mouth can be calculated. This provides a boundary 
condition for the flow in the tube, provided we can express rand s in terms of Ue and other 
overall variables such as diameter D, frequency Q0 etc. One relation between r, ue and s 
is given by the ·Kutta condition on the sharp edges. The nex~ problem then is to calculate 

· the path s(t) of the vortices in the presence of the plates. The velocity of a votrex dsjdt 
is given by the velocity induced in its centre. Integration of this relation gives the path 
s(t) as a function of r and ue. An example of such a calculation has been given :recently 
by SHEFFIELD (1977), but without mean flow ue and without application of a Kutta con
dition. Nevertheless, such calculations can b~ carried out as a rule for cases like those 
described above. 

a pl ate , heated from 3hove hy radi at ion from infrareu 1amp 

2 2 2 
~ ,----------~ fr.une~<ork f or Schlierenpictures 2222 2 2/~: I 

t l ~ 
L------'"--~treakline , o:r.i::ginating from watm plate 

10 cm 

Oe = 2. :i m/s ; T = :,s msec 
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FIG. 6. Schlieren pictures of the formation and shedding of vortices during one cycle. (The hot wire probes. 
that can be seen in some of the pictures are not important for this experiment). 

[12l] 
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js 

FIG. 7. Flow in the mouth of a pipe with a sharp edge. At the mouth vortices are formed during inflow 
and shedded during outflow. 
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