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Asymptotic method of homogenization of two models of elastic shells 

T. LEWINSKI and J. J. TELEGA (WARSZAWA) 

THIS PAPER deals with homogenization of Koiter's linear shell and the geometrically nonlinear 
shallow shell. To derive the effective moduli, the method of two scale asymptotic expansions 
has been employed. In the case of Koiter's shell, the local problems are coupled. They become 
uncoupled for shallow shells. An example is also given. 

W pracy rozpatrzono homogenizacj~ liniowej powloki Koitera i geometrycznie nieliniowej 
powloki malowynioslej. W celu otrzymania modul6w efektywnych zastosowano dwuskalowll 
metod~ rozwini~ asymptotycznych. W przypadku powloki Koitera zagad.nienia lokalne ~ 
sprz~i:one . Staj'l si~ one rozsorz~i:one dla powlok malowynioslych. Podano r6wniez przyklad. 

B pa6o1'e paccMoTpeHa roMoreHHJaQWI .rnmeiiHoH o6oJioqHK Koih'epa H reoMeTplflleCKH HeJIH
HeiiHoii rroJioroii o6oJIO'tffiH. C ~eJibro rronyqeHHn 3<f><l>eKTHBHbiX Mo.zzyJieH npHMeHeH ,m3yx
MacrnTa6HbiH MeTO~ acHMIIToTWiecKHX pa3Jio>«eHHii. B cnyqae o6oJIOtn<H Koiirepa JIOI<a'
.JihHbie 3a~aqH corrpH>KeHbi. CTaHoBHTCH OHH pacnpn>KeHHbiMH rom IlOJIOrHX o6onoqeK. 
IlpHBe~eH Tome rrpHMep. 

1. Introduction 

SHELLS of periodically varying stiffness, e.g. shells with ribs, with openings or fibre-rein
forced, are often used in engineering practice. The aim of this paper is to provide an effective 
method for the statical analysis of such structures. 

The first part of the paper is devoted to the linear analysis of a Kirchhoff-Love shell 
(we use Koiter's version of this theory, [9]) being periodic with respect to assumed curvilin
ear parametrization. Under the assumption that a cell of periodicity has the shape of a 
shaJiow shell, using the method of asymptotic expansions [5, 8], formulae will be derived 
for effective stiffnesses (which are non-constant). Although homogenization methods are 
widely used for periodic composites (cf. [5, 30]), there is a limited number of papers in 
which they are applied to plates and arches [1-3, 7, 11-14, 16-19, 21, 22, 26-30, 32, 34, 
38, 39]. The problem of homogenization of shells has been dealt with in the papers [18, 20, 
31]. However, only the paper [31] concerns the homogenization of thin linear shells. 
Unfortunately, we recognize that the results of this paper are incorrect due to errors made 
in the passage to a limit (e-+ 0). Also the local problems, assumed as being uncoupled, 
seem to be incorrect. For the Budiansky-Sanders model studied in [31] these problems 
should be coupled, cf. [40] and Sect. 3 below. We shall not follow the energy proof employed 
in this paper. Instead we use here asymptotic expansions. The problem studied is not 
conventional since not only do the components of the stiffness tensors depend on periodically 
varying elastic moduli but they also vary non periodically according to variations of metric 
tensors and curvature tensors of the shell mid-surface. Thus we are faced with a non-
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706 T. LEWINSKI AND J. J. TELEGA 

uniform homogenization problem, cf. [8], pp. 71-87. The homogenized model of such 
a problem is still nonhomogeneous. The asymptotic method employed reveals that the 
constitutive equations of the homogenized shell model are coupled: tangent deformations 
contribute ·to moments while chang~· of curvature affect me~brane forces. This phenom
enon has been recently confirmed by the method of F-convergence [40]. It is worth 
noting here that the averaged constitutive equations for lattice shells found by Pshenichnov 
[36] are decoupled. In the light of our findings his results should thus be reexamined. 

The second part of the paper deals with moderately large deflections of shallow shells 
with periodic structure within the framework of the theory by Mushtari-Marguerre, cf. 
[24, 35]. Also for this case we obtain the homogenization formulae using the asymptotic 
expansion method. In this shallow shell theory the tangent displacements do not affect 
changes of curvature, what implies that the homogenized constitutive equations are 
uncoupled. 

The paper is illustrated by an example of a shallow shell periodic with respect to one 
curvilinear coordinate. In this case the basic cell problems can be analytically solved. Thus 
the explicit formulae for effective stiffnesses can be given. 

2. Basic relations 

A variety of mathematical models for linear and nonlinear shell behaviour have already 
been developed, see e.g. [6, 24, 25, 33, 35]. In the present contribution we study two prac
tically important models of thin shells under the Kirchhoff-Love hypothesis. The first 
model is sometimes called Koiter's linear model [9]. The second model will be the geometri
cally nonlinear shallow shell model [10, 35]. 

Before proceeding to the process of homogenization, we provide the indispensable 
information related to a description of such shells. 

Let Q c R 2 be a bounded sufficiently regular domain and l/J: Q ~ S a mapping 
of class C 3 (Q), see [9, 15]. Here S denotes the middle surface of the undeformed shell 
and Q stands for the closure of Q. The plane R 2 containing Q is referred to coordinates 
c;oc), whereas R3 is referred to (x1); IX = 1' 2; i = 1' 2, 3. Obviously we haves = l/J(Q) c 

c R 3 • The vectors tangent to the coordinate lines are !!.oc = (}l/J I a;oc = l/J,IX. The symmetric 
covariant metric tensor of the middle surface S is given as the scalar product 

(2.1) aoc{J = l/J,a. l/J,{J• 

If v is the unit normal to S, then the covariant components hap of the curvature tensor 
b = (hap) are 

(2.2) bafJ = v · aoc,fJ = -aoc · V,fJ· 

The contravariant metric tensor (aocf1) satisfying the relation aocf1apy = <5~ is used to raise the 
indices. The Christoffel symbols of the undeformed shell middle surface S are given by 

(2.3) 
1 

Fff,., = ~F;.p,.,, Fapy = -y(aocp,,+aocy,fJ-afJy,oc)· 

Throughout this paper the Lagrangean description of the deformation of the shell is 
consequently used. 
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By U = (u, w) = (ucx, w) we denote the displacement vector of the middle surface 
of the shell. Thus we may write 

(2.4) 

The linear Kirchhoff-Love shell model (in the version by Koiter) is described by the 
following strain-displacement relations: 

(2.5) 

(2.6) 

The nonlinear shallow shell model by Mushtari and Marguerre obeys the following kinema
tic relationships: 

(2.7) 

(2.8) 

1 
Ycxp(u, w) = Oap(u, w) + T w1cx w1p, 

Ucxp(w) = Wla.B· 

In the above relations the quantities not yet defined are 

(2.9) 

(2.10) 

(2.11) 

Ucx
1
p = Ucx,p-F~pU;., 

WlcxP = W,ap-F~pW,;., 

Cap= b~by{J• 

We note that only the strain tensor y is nonlinear. If(/) = identity, then Eqs. (2.7)-(2.8) 
reduce to the well-known von Karman plate equations. 

For both of the above models the stored energy function W is quadratic. Thus for 
Keiter's model we have 

(2.12) 

where 

(2.13) 

are membrane and bending stiffness tensors of a shell made from a material for which the 
surfaces z = const are surfaces of material symmetry; the coordinate z is perpendicular 
to the shell middle surface. We observe that the fourth order tensors, depending on ~' 

are not necessarily isotropic. 
A relation similar to Eq. (2.12) holds in the nonlinear case. 
The vector (fa ,f) stands for the loading distributed over the shell middle surface. 
We make the following assumptions: 

(2.14) 

(2.15) 

J«eL2 (!J), feL 2 (Q), Acx,8J.~EL00 (Q), ncxfJJ.JJEL00 (Q), 

Aa.{J).~ta,pl;.p;::::: Cotcxpta,p, na.{J).~ta.ptJ.p;::::: Ct la,plcxp, Vt E Ms(R); 

where c0 and c1 are positive constants while Ms (R) is the space of real symmetric 2 x 2 
matrices. 

15* 

http://rcin.org.pl



708 

For Koiter's shell model the constitutive relations are 

(2.16) 

(2.17) 

Na.fJ = a wJ aof:%{1 = Aa.fJJ.jJO;.f.l, 

Ma.B = aw;aea.p = nrx{JJ.jJ(!lp-

T. LEWINSKI AND J. J. TELEGA 

Here N, M denote the membrane force tensor and the bending moment tensor, respectively. 
In the case of the shallow shell we have 

(2.18) NrxfJ = ()Wjayrxp = Arxf1J.jJy;.f.l, 

(2.19) Mrx{J = aw;a"a.{J = nrxfJ).pX).w 

BERNADOU and CIARLET [9] solved the problem of existence and uniqueness of solutions 
for Koiter's shell. Similar problems for nonlinear shallow shells have been studied by 
BERNADOU and 0DEN [1 0]. 

3. Homogenization of Koiter's version of the Kirchhoff-Love shell model 

3.1. Formulation of the problem 

The objective of this part of the paper is a statical analysis of a shell of a structure 
periodic with respect to the fixed curvilinear coordinates ~ = (~rx), see Fig. 1. We assume 
that the reduced (according to the neglection of a 33 stresses) elastic moduli crxf3J.jJ(~, y0 ) 

or the shell thickness h(~, y 0 ) are slowly varying with respect to ~ and are e0 Y-periodic 
with respect to the second variable Yo = ~I c0 ; here Y is a rectangle (0, Y1) x (0, Y2 ), 

while c0 is a positive number. We aim at constructing the homogenized model for the 
considered periodic shell under the assumption that the periodicity segments <P(s0 Y) 
are of shapes of shallow shells. Modelling such a shell consists of two steps. Starting from 
the three-dimensional description, one should reduce the transverse dimension keeping c0 

constant. Thus one arrives at the c0 Y-periodic two-dimensional shell model. Then an 
e-family of cY-periodic shells is to be considered. Upon homogenizing the equations 
of such shells, one arrives at the effective model for the initially considered eo Y-periodic 
shell. The first step of the model construction is realized by substituting in Eq. (2.12) 
the tensors Ae and Dt for the tensors A and D; Ae and Dt being functions of two variables: 
~ and y = ~/c, cY- periodic in y. Thus we write 

(3.1) A~/JAJ.' = AafJAJ.'(~, y), D~fJJ.ts = na.f1Afl(~, y). 

The functions Aa.f1J.~-'(~, ·) and na.f1J.~-'(~, ·) are Y-periodic and are such that 

Aaf1AJ.'(~' ·) E L~c(R2), nrxf1J.p(~' ·) E L~c(R2). 

Further on we shall consider the shell being transversely homogeneous, hence 

Aa.f1A!S(~, y) = h(~, y)Ca.f1A!S(~, y), 

(3.2) 

The functions ca.f1J.''( · , y) describe c- independent variations of the metric of the shell 

middle surface. 
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FIG. 1. 

According to the relations (2.16) and (2.17) the constitutive equations for the BY
periodic shell have the form 

(3.3) Nr;fl = AcxflAil(~' y) 01,H M:fl = ncxfJJ.p(~' y) e11" 

where the deformation measures es, p' are associated with the unknown displacements U
6

, 

we according to the relations (2.5) and (2.6). As it is usually done in papers on homogeniza
tion, we assume that the shell is clamped along its boundary. The shell is subject to external 
forces of densities (/ex,/) independent of the parameter e. 

The virtual work of stresses associated with the displacement field (u', W
6

) E V on 
deformations associated with virtual displacement fields (V6

, v") E V reads 

(3.4) a8(ut, we; r, V6
) = f£N:P(v!lp-bapV6)+M~P(vicxfJ -CcxpV6 +2b~v~lfJ +b~lfJV~]Vade , 

!1 

where a = det[acxp] and V = [HJ(.Q)]2 x H5(.Q). 
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The virtual work of external forces has the form 

(3.5) f(v8
, V

8
) = J ifv~+/v8)yad;. 

D 

Our main problem consists in finding (u8
, W8

) E V such that 

(3.6) tf(ue, W
8

; ~' V8
) = /(V8

, V
8
), V (V8

, V8
) E V. 

The above problem will be referred to further as the (P8
) problem. According to the 

results of BERNADOU and CIARLET [9], this problem is well-posed; U8
, W

8 exist and are 

unique. 

3.2. Derivation of the homogenization form~e 

Similarly as in the case of nonuniform homogenization of the Dirichlet problem (cf. 
[8], pp. 71-87), we postulate that the solution (u8

, W
8

) of the (P8
) problem can be 

expanded in the form 

(3.7) 
u~ = u~0>(~)+eu~1 >(~,y)+ ... , y = ~/e, 
We = w<O>a) + e2W(2)(~' y) + e3W(3)(~' y) + .... 

In similar way we expand also the trial functions r, V 8
• We assume that 

(u<0 >, w<0 >) E V; u~l), v~l) E C(!Jx Y), 

(3.8) u~1 >(~, ·), v~1 >(~, ·) E H;er(Y), 

where, cf. [37] 

Hier(Y) = {v E H 1 (Y)l traces of v are equal at the opposite sides of Y}, 

Hi.,(Y) = {v E H2 (Y)I traces of v and ::. .are equal at the opposite sides of Y}. 
We set 

Wper = [Hp~r(Y))2 X H;er{Y). 

According to the relationships (3.3) and (2.5), (2.6), we can find stress and couple resultants 

associated with the displacement fields (3. 7) 

N:~ = N'tf + O( e), Ngp = Aa.B"'(~, y) [ 01',. + a;;~ ] , 
[ 

a2 w< 2> au<l) ] 
M:f1 = Mc/+O(e), MgP = n«P'-P(~, y) et,+ a a +2bA _au , 

Y.a Yp Y, 

(3.9) 

where 

O!p = Ol%p(u<0 l, w<0 >), e!tt = f!«{J(u<0 >, w<0 >). 

Let Nh and Mh be averaged stress and couple resultants 

(3.10) 
N~f1(~) = (Ngf1(~, y)), 

M~f1(~) = (Mg/J(~, y)). 
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The parentheses ( ·) imply averaging over Y: 

(3.11) (g)= l~l J gdy, IY) = meas(Y) = Y1 • Y2 • 

y 

Let us put v~ = v~0>, V13 = v< 0> into Eq. (3.6) and let e tend to zero. According to the well
known lemma (cf. [8], p. 86), the integrands tend to their averages over Y. Thus the (P') 
problem entails the homogenized problem (Ph): 

find (u<0 >, w<0 >) E V such that V (v<0 >, v<0 >) E V 

(3.12) J [N:11 (v~?J-ba.11 v<0>)+M:P(vf~J-ca.11 v<0 > +2b~v~?J 
D 

+ b~111 v~0>)] }Ia d' = J lfa.v~0 > + fv< 0 >) ya d;. 
{} 

Now, let us put v~ = v~0>(;)+ev~1>(;,y)+ ... and V13 = v<0>(;)+e2v< 2>(;,y)+ ... 
into (3.6), then pass to zero with e. Upon substraction from the equation thus obtained 
of Eq. (3.12), one arrives at 

(3.13) J[l NgtJ ov~l) \+I MgP( [)2v<2> +2b~ ov~o )\]{tid;= 0, 
\ oyp I \ oya.OYp oyp I 

{} 

Let 
V~ 1 > = Vcx(Y)<p(~), 
v< 1 > = v(y)"P(~), 

Substituting into Eq. (3.13), we get 

Va E HJer(Y), 

v E H;er(Y), 

v(v(l>(;, ·), v< 2>(;, ·)) E W.,er• 

<p E ~(Q), 

'ljJ E ~(Q). 

(3.14) Jmi(N"fJ+2b"MafJ) OVy \-. l a-d'l: = 0 R 1 (Y) 
D r \ o a. o OYp I J1 '> , Vva. E per , 

(3.15) f "P(Mro{J a 
02

; )Jflid; = o, 
n Ya Yp 

Vv E H~r(Y), 'ljJ E ~(Q). 

We eventually arrive at the local problem defined on the basic cell: 

such that 

I 
find 

{Pioc) 
a1 (u<1 >, w< 2 >; v, v) = ](v, v) V (v, v) E Wpeo 

provided that 8h(~) and ph(~) are given. 
We have introduced the following notations: 

(3.16) a 1 {u, w; v, v) = (Baf1.Y.ea.tJ(u) e.lp(v) + Eafl.lp( ea.p(u)k.lp(v) 

+ Bap(v)k.y,(w)) + Daf1.lpk.,_p(w)kA/A(v)), 

(3.17) j(v, v) = -(A•P"'( <I~Ot,+ h: b~et.) <yp(v)+D"P'Pet,k.p(v}), 

where 

(3.18) 

http://rcin.org.pl



712 T. LEWINSKI AND I. ]. TELEGA 

The tensors B, E and D are defined by 

BVP••(~, y) = [ ": "H h•(;, y) bi(E>b7W] A"P'"(~, y), 

(3.19) E,pAp(~, y) = (h2(!, y)) b~(~)Au.Pl~t(E, y), 

Da.PJ.p(E, y) = ~~ (h2 (~, y))At~PJ.p(~, y). 

The problem (P1oc:) can be written in the form of the variational equalities: 
find (a<l)(E, . ), w< 2> (E, . )) e Wper such that 

b(u<1 >, v)+e(v, w<2 >)+/(v) = 0 Vv e [Hi.,(Y)]2 , 

e(u<1>, v)+d(w<2 >, v)+g(v) = 0 Vv e Hie,(Y), (3.20) 

where 

(3.21) 

Note that the solutions u< 1 >, w< 2> are linear with respect to 611 and ph, hence there exist 
functions 'lf<a.P> (E, y), f~J<a.P>(E, y), E<a.P>(~, y), x<a.P>(', y), such that 

u<t> = 'I'<«P>(~, y)O!pa)+4-<«P>(~, y)e~(,), 
w<2> = E<t~P>(~' y) O!p(~) + x<«P> (~, y) e!p(~). 

(3.22) 

The functions ('l'<t~fl>(~,. ), E<«f1>(~,.) E Wper are solutions to the problem 

b('I'Ci·P> , v)+e(v, E<Ail>)+(Aocf1l~t ~Voc) = 0, 
(PI~c) uyp 

e('l'<)..u> , v)+d(E<lll>, v) = 0, V(v,"v) E Wper· 

Similarly the functions (.Z,<A~t>(~, . ), x<AJJ> (~, · )) E Wper are solutions to the problem 

b(<l>''•>, v)+e(v, z<'->)+( ~ A"P'-b: ~;;) = 0, 

I iJ2v \ 
e(.Z,<lP>, v)+d(x<Ail>, v)+ Da.PJ.p I= 0, V(v , v) E Wper· 

\ oyociJYp 

It is worth noting that the local problems (P1~c) and (P1!c) are coupled due to the influence 
of the geometry of the shell. . 
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3.3. Well·posedness of the basic cell problem 

Prior to analysing the homogenized problem, we shall prove that the problem (P1oc) 
is well-posed. Thus also the problems (Pi'oc) are well-posed. 

Let 

W = {(v, v) e Wperl(v) = 0 and (v) = 0}, 
and 

fA= {(v, v) e Wla1 (v, v; v, v) = 0}. 

We shall demonstrate that the form a1 (., • ; • , • ) is W-elliptic and 91 = {0, 0 }. 
According to our assumption concerning the mapping tP (see Sect. 2) there exists 

a constant J.0 > 0 such that 1~1 < A.0 • The bilinear form a1 (., • ; . ,. ) can be written 
in the form 

(3.23) 

where 

Ku,p = k«p(w)+b~e,p(u)+b~e11cx(u) and (u, w) e Wpcr· 

On account of the inequality (2.15)1 , we have 

(3.24) 

where c, li are positive constants. 
The condition a1 (u, w; u, w) = 0 implies e<«fJ> = 0 and K«fJ = 0. The first equation 

yields 

u1 = a-by2 , u2 = d+by1 , 

where a, b and d are constants. 
Taking account of the ¥-periodicity of the functions u« and the condition (~~ot) = 0, 

we obtain u« = 0. Hence (e«p(u)) = Vu = 0 and k«p(w) = 0. Thus w = c1y 1 + c2 y 2 + 
+c3 • Since we Bier and (w) = 0, therefore w = 0. We see that 91 = {0, 0}. 

Now we pass to proving the W- ellipticity of a1(.,.;., .). We set 11·11 = II · !l i.:<r>· 
An elementary inequality furnishes (see [9), Chapter 6) 

11Kull2 ~ t!fJ llkuW-4A.ofJ(IIeuW+IIe21ll2
), 

(3.25) IIK221l2 ~ t!p llk22112-4A.ofJ(lle12W+lle22112
), 

IIKt2ll2 ~ l!fJ llk12112-8Ao/J(IIeull2+1le2211 2+lle1211 2 +1le21W), 

where fJ > 0. 
Taking account of the inequalities (3.25) in the inequality (3.24), we arrive at 

(3.26) a1(u, w; u, w) ~ c1 {e(u)+k(w)-c2/JIIVull2), 

where 
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Bearing in mind that 91 = {0, 0}, we conclude that y s(u) and yk(w) are equivalent to 
llull8 1(fh llwll82<Y>' respectively, provided that {u, w) E W, see [16, 17]. Further we have 
11Voll2 ~ llullilcr>· 

For fJ > 0 sufficiently small, we finally obtain 

(3.27) a1 (u, w; u, w) ~ c(lluiiBl(Y> + llwiiH2<Y>), 

where 

(u, w) E W. 
On the other hand, the functions Arxf3;.p and nrxPA!J. are essentially bounded. Thus the 

linear formj(u, w) is continuous. By employing the Lax-Milgram theorem, we infer that 
the local problem {P10c) possesses a unique solution in W. . . 

3.4. Properties of the homogenized problem 

Now we pass to the study of the homogenized constitutive equations. Substitutiqn 
of Eqs. (3.22) into Eqs. (3.10) leads to 

(3.28) Ngfl = A~f3;.p(J~,_,+E~PJ.f.lei,, 

(3.29) M~P = F:f3Af.I(J~,_,+D~11,_,e~,.., 

where 

Erxfl~v = (Arxp;.,.. actJ~~v> \ 
" a I' y,.. 

( 
h2 ( aP<~v> a2 ~<dY> )' prxfJ~y = - ArxfJJ.f.l 2ba a .... 

" 12 " ay,.. + ay,.ay,.. I' 

(3.30) 

I h2 ( actJ<6V) a2x(~V) )' 
Drxfl~v= -ArxfJAf.l tl~"+2ba a +---=--'~-

h \12 A,.. ). ay,.. ay,.ay,_,l· 

The effective tensors satisfy the following symmetry conditions: 

(3.31) A~fl~v = A~vrxf3, D~f16y = Dt,vrxfJ, 

(3.32) pgvrxfJ = EgfJ~Y. 

To prove it, let us take v = .Z,<~V) and v = x<dv> in (PI~c) and v = qt<J.f.l>' v = E<J.f.l> 
in (P1~c). Then we obtain 

I actJ<Iv> \ 
(3.33) bCF<Af.l>, .Z,<4Y>)+e(.Z.<~Y>, E<Af.I>)+\ArxfJ},f.l a(% I= 0, 

Yp 

(3.34) 

(3.35) 

(3.36) 

ecP<Af.l>, x<~Y>) = -d(E<Af.l>, x<dv>), 

b(ot<"', 'l'<"'>)+e('l'<"''· z<'")+( h: A«il''b! a~;>)= 0, 

I a2 ~<J.p') 
e( .Z,<dY), E<.lll>) + d(x<~Y>' E<Af.l>) + \ nrx{J~y a .... a = 0. 

Ycx Yp 
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Equation (3.33) implies 

(3.37) 

On adding Eqs. (3.35) and (3.36) and taking into account Eq. (3.30)3 , one obtains 

(3.38) FgYA!J + b(f!t<~Y), 'I'(A!J)) + e(qt<A!J>, x<~Y>) + e(f!t<~Y), E<AII>) + d(x<~Y), E<AII>) = 0. 

Substituting Eq. (3.34) into Eq. (3.38), we arrive at 

(3.39) FiJ'J(#f = -b(f!t<~Y>, 'I'<Ap>)-e(4t<6Y>,E<AII>). 

Now we see that Eqs. ' (3.37) and (3.39) imply the symmetry property (3.32) since the form 
b(., . ) is symmetric. 

In order to prove the conditions (3.31), let us define new symmetric matrices: 

A!X(My =I A"I!Ap (~y ~6 + a'P?Y>) ( '~(X~+ a'P~rx{J) )> 
h \ A "' ay"' , 11 ay(] , 

D~f16y = (D"IlA~~ (~~~~+ a2x<6r> )(~:~+ a2x(a.f1> )\. 
ay). ayJJ . ay, ay(] 1 

(3.40) 

Let us take v = '1'<a.f1> in the first equation of {P1~c) and v = E<rxf1> in the second equation 
of {P1~c). On combining these equations, one obtains 

(3.41) 

where 

( ) -I h
2 

bYbaAa.{JAp aua avy \ 
gu,v -,-3. (X A -a--a /' 

. YJJ Yp 

which proves the relation (3.31 )1 since the forms g(., . ) and d(. , . ) are symmetric. 
Similarly it can readily be shown that 

(3.42) 

which proves the condition (3.31)2 due to the symmetry of the bilinear form b(., . ). 
The elastic potential of the homogenized shell is given by 

(3.43) 

or 

(3.44) 

where 

{3.45) 

(3.46) 

and 
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The formula (3.44) can be verified by employing the equations describing the local problems 

(PI!,c)• 
By using Eq. (3.44) and the inequalities (2.15) we readily get 

(3.47) W ,. lo- -o h2 - - ) 
~ c\ a.{J a.{J+ u~a.{J~a.{J ' 

where c > 0 is a constant. Hence we infer that W" is non-negative. Now we shall prove 
that W" = 0 implies 811 = 0 and p11 = 0. Let W 11 = 0. Then G11 = 0 and p = 0, hence (8) = 0, 
and (p) = 0. Bearing in mind the periodicity properties of the functions 'l'<rlP>(~, • ), 
4t<rlP> (E, . ), S<rlP> (E, · ) and x<a.fJ> (E, · ) we conclude that (0~) = O!p = 0 and similarly 
e~ = 0. Thus we eventually infer that there exists a constant C > 0 such that 

(3.48) W" (&", p11
) ~ C(O!p O!p + e!p e~), 

for each 

&" E Ms(R), p" E M,(R). 

By applying the results due to BERNADOU and CIARLET [9], we infer that a solution (u<0 >, w<0 >) 
of the homogenized problem exists and is unique. 
REMARK 3.1 

The presented method of constructing the effective model for the e0 Y-periodic shell 
described in Sect. 3.1 is a generalization of the method by CAILLERIE [11, 12] and KoHN 
and VoGELIUS [21, 22] to the case of shells. Note here that the model obtained applies 
neither to shells whose periodicity segments if>(e0 Y) are of shapes of curvilinear prisms nor 
to the case when these segments are slender. To describe the former shells, one should 
apply the simultaneous passage to a limit (h--. 0, e--. 0). For the latter, one should carry 
out the process of a reduction of the transverse dimension after homogenization. 

4. Homogenization of a nonlinear shallow shell model 

Similarly as in Sect. 3 we are to analyse a shell of eY-periodic stiffnesses A6 , o. with 
respect to curvilinear parametrization (~a.). The behaviour of the shell will be analysed 
within the framework of the Mushtari-Marguerre shell model. The constitutive relations 
are assumed here in accordance with the relations (2.18) and (2.19) 

(4.1) N:P = Aa.P~a, y)y~~, M:P = na.P~(~, y)x~, y = ~Je. 
The deformation measures y and K 6 are associated with the displacement fields U

6
, W

6 

according to the relationships (2.7), (2.8). As in Sect. 3, we assume that the shell is clamped 
along its boundary. The loads (fX.,f) are assumed to be e-independent. 

The variational formulation of the considered boundary value problem reads: 

(4.2) (PN) lfind (u•, w£) E V such that 
a~(ut, wt; V6

, V 6
) = f(v 6

, V 6
) V(r, V 6

) E v, 
where 

(4.3) ~(u, w; v, v) = J [N:PrJcxp(w, v, v)+M~11xap(v)]yad~, 
D 
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(4.4) 

The linear form f(.,.) is defined by Eq. (3.5) while Xcxp(.) by the relationship (2.8). 
Sufficient conditions for the existence and independent conditions for the uniqueness 

of solutions of the (Pfv) problem have been put forward in the paper [10] by BERNADOU 

and 0DEN. 

The solution (u8
, W 8

) to the (Pfv) problem is sought in the form (3.7). Similarly, we 
expand the trial functions (r, V 8

). Then we infer that the nonlinear terms in the strain
displacement relations do not influence the asymptotic process. This process runs similarly 
as it has been described in the previous section. Thus we shall not go here into details in 
order to avoid repetitions. We shall report below only the main results of the asymptotic 
homogenization procedure. 

The homogenized problem reads: 

( 4.S) (P~) I find (u<0 >, w<
0

>) E V such that 
a~(u0 , w0

, v, v) = f(v, v) V(v, v) E V, 

where 

(4.6) a~(u , w; v, v) = J [N: jSrJcx.o'(w, v, v)+M:"xcxp(v)]Vad~, 
!} 

(4.7) 

Here the deformation measures yh, xh are associated with the displacement fields (u<0 >, w<0 >) 
according to the relations (2. 7) and (2.8). The effective tensors Ah, Dh are determined 
by the auxiliary functions '1'<,6> (~, y), x<Y8>(~, y). The latter are now solutions of the fol
lowing independent basic cell problems: 

find 'I'<Y8>(~, ·) E [H;or(Y)]2 such that 

(A•P••(~. y)[ J~J!+ a~:•>] ~;:) = 0, Vv E [H~.,(Y)F, 
find x<Yc5)(~, ·) E H;cr(Y) such that 

I DcxfJ).p(~' y) [£5" £58+ a2x(Yc5) l a2v ) = 0 
\ J. ~-' 8y).8y~' 8ycx8Yp ' 

(4.9) 
V V E H;cr{Y) · 

The above local problems are similar to the basic cell problems occurring in the theory 
of homogenization of von Karman plates, cf. [17]. Hence we infer that the problems 
(Pfoc) possess solutions determined up to an additive constant, now depending additionally 
on~. 

The effective stiffnesses are given by 

(4.10) Agi'''W = (A•P••(~. y)[ J~ J;+ a~:'']>. 

(4.11) W''W = (D.,.""(~.y)[J~J;+ ;;~;;.]). 
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It is easy to ascertain that the above formulae can be rearranged to the form (3.40), hence 
the symmetry conditions (3.31) are preserved. Moreover, one can prove that the homo
genized potential 

(4.12) 

possesses the property (3.48). 

Let us emphasize that the homogenized relations ( 4. 7) are decoupled, similarly as the 
original relations (4.1). Homogenization does not change here the form of the constitutive 
relations. We conclude that the geometric von Karman-type nonlinearity does not entail 
the coupling of the constitutive relations. 

The functions '1'<Y15> and xcY"> make it possible to determine higher order terms of the 
asymptotic expansions, namely 

(4.13) 
u~t> = tp~YA>(~' ~/e)'}'~;., 

w<2) = x<YA>(~, ~je)'Jt~).· 

The above formulae are in a certain sense particular cases of Eq. (3.22). 

S. Example: homogenized stifl'nesses for the Mushtari-Marguerre shell with elastic 
characteristics periodic in one coordinate 

Consider a Mushtari-Marguerre shell with stiffnesses A~PA11(~, ~/e), n:PAt' (~, ~/e) 

being ea-periodic in the ~~ direction with respect to the second variable. Thus 

A.=A{~,yt), D.=D(~,Yt), Yt=~1 /e, 

where A(~, ·) and D(~, ·) are a-periodic. 

We can find now the exact solutions to the local problems (P~c) formulated in Sect. 
4. This is a rather simple exercise of homogenization, thus only the final results will be 
reported. Let us define the auxiliary functions of the argument~ (to shorten notations this 
dependence is suppressed in the expressions below) 

fJ = f -A1u2 dy1 , lex] a [ A12121 

"/_ o Auu_ A 

a 

<5 = I [A1212A1122_A1112A2212] ~~ ' 
0 

a 

(! = f [Atut A2212_Au12 Au22] ~~ , 
0 

d = cxy-{32
, e = y<52 +cx(/-2{J<5(!, 

c = 2A1u2 Au22 A22t2 _ A12t2(A1122)2 _ A1u1 (A22t2)2. 
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The effective membrane stiffnesses are 

A 1112 _ A 1211 _ - af3 
h - h --d-' 

A1122 _ A2211 _ y6-f3e 
h - h - d 

A I212 _ A2121 _ arx 
h . - h -d, 

a 

A2222 = _!_ f [A2222+ s;_]dy + ~. 
" a A 1 ad 

0 

Obviously the stiffnesses Al:fJJ.u depend on ; but this dependence has been suppressed. 
Prior to reporting the effective bending stiffnesses, let us define auxiliary quantities: 

1 fa [ (D1122)2] 
D6 =a D2222- nuu dyt. 

0 

The effective bending stiffnesses are 

ntllt a 
" = Dt' 

D
t112 _ D1211 _ D3 
h.! - "~ - Dt ' D

1122 _ D2211 _ D2 
h; - h ---, 
·' Dt 

DFl2 = Ds + (D3)2' 
aD1 

D2222 = D + (D2)
2 

h 6 aDt . 

We recall that the above effective stiffnesses depend on ; since the homogenized model 
is nonhomogeneous. The above formulae are shorter in the orthotropic case for which 
A1u2 = At222 = O and Du12 = n2221 = O. 

Because of its practical importance, it is worth displaying the corresponding results 
explicitly. 

The membrane effective stiffnesses are now given by 

Allll =[_!_fa ~1-l 
" a Auu , 

0 
f'. 
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a 1 

At2t2 _ [_!_ f dy1 ]-
h - a A12u ' 

0 

A~m = ~ j [A 2m- (~',',:?'] dy, + ~ u ~:::: dy, r u A~;:, r, 
0 0 0 

AP22 = Ailll = 0. 

The bending effective stiffnesses are 

a 1 

n•t•• - [_!_f dy1 ]-
h - a nuu , 

0 

a 

DF12 = ! f D1212dy1, 
0 

Dp22 = (j 
0 

a a 

D2222 - _!_ f [n2222- (D1122)2] dy + _!_ ( f 
h - a nuu 1 a 

0 0 

D~222 = D~u1 = o. 
The difference between the formulae for At212 and Dk212 (the other formulae are of iden
tical form) follows from the fact that the flexural behaviour of the shell is constrained 
by the Kirchhoff-Love assumptions. If we start from a shallow shell model with transverse 
shear deformations allowed, then the effective stiffness Dk212 will be defined by the formula 

a -1 

jj1212 = (__!_ f dy1 ) 
h _, a n1212 

0 

This fact has been recognized in the paper [29] concerning Reissner-like plates. 
It is worth noting that the formulae derived in this section are applicable only when 

the cell of periodicity is a shallow shell itself. 

6. Concluding remarks 

The asymptotic method applied in this paper was efficient by virtue of the fact that 
we have worked with variational formulations. Working with strong formulations would 
be a formidable task because of a great complexity of shell equations. 

Let us call attention to the fact that our results are very "sensitive" to the definition 
of the changes of the curvature tensor. As it is known from the ample literature on the 
theory of shells, there exists a great number of alternative versions of the Kirchhoff-Love 
theory which differ in the definition of this deformation measure, cf. [6, 23], see also [25]. 
For instance, in the model by KolTER (1960, cf. [23]) we have 

- I be I be 3 be 3 bP b;. erx{J- Wlrx.B- 4 .xUtJie- 4 pUrx:e+ 4 rxUei.B+ 4 pUelcc+ rx lfJ U,a. 
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Homogenization of this model by Koiter will result in quite different effective stiffnesses. 
Speaking more precisely, the form e(., . ), which couples the variational equations in local 
problems, will be different. Moreover, the form b( ·, ·) will also change. According to the 
analysis by KolTER [23], the error of the shell theory is not sensitive to addition or sub
traction of terms of the type b~a.u"IP> in the definition of f.!cr.tJ· Our results are, we hope, 
correct, at least within the framework of the considered version of the Kirchhoff-Love 
shell model. Thus the effective stiffnesses characterize the properties of the shell as well 
as they characterize the model of the shell. 

This paper does not close the problems but, we hope, opens the field for further research. 
For instance, it is a challenging task to examine the effect of coupling of the constitutive 
relations (3.28) and (3.29) on the errors induced by the homogenized model of the shell. 

The asymptotic method of homogenization is not so readily applicable to more com
plicated shell models of not necessarily the Kirchhoff-Love type. On the other hand, the 
method ofF-convergence, and particularly of epi-convergence [4], is applicable to a broad 
class of linear and nonlinear shells, not necessarily elastic or obeying the Kirchhoff-Love 
hypothesis, see [40]. 
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