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A lattice model with soft repulsion followed by attraction is developed for a monolayer of hybrid 
 

core-shell particles self-assembling at an interface.  The model is solved exactly in one dimension. 

One, two or three periodic structures and variety of shapes of the pressure-density isotherms may 

occur in different versions of the model.  For strong interactions the isotherm consists of vertical 

segments separated by plateaus.  The range of order depends strongly on the strength of attraction 

and on the density.  Our results agree with experimental observations. 
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Hybrid hard-core soft-shell particles (HCSS) consisting of solid cores encapsulated in a 

cross-linked  hydrogel  network  can self-assemble  into ordered patterns on air-water or oil- 

water interfaces  [1–7]. Highly ordered arrays of particles with cores having desired proper- 

ties can find applications in various fields, e.g.  in surface patterning [8], photovoltaics [9], 

plasmonics [10], sensing [11] and emulsion stabilization [2], and the question how to obtain 

desired ordered patterns draws increasing attention. 

The patterns and the degree of order depend on the core and shell  properties,  as well 

as on the surface pressure.  For pure poly-N-isopropylacrylamide (PNIPAM) particles [12] 

and for hybrid Au@PNIPAM particles with small Au cores [1], similar patterns at the air- 

water interface and similar surface pressure - area isotherms were obtained.  In both systems 

the particles form a hexagonal lattice.  The surface pressure p increases with a moderate 

slope for a large range  of decreasing  area;  the  moderate  increase  of p is followed  by a 

rapid increase,  a plateau  and another  rapid increase  in a compressed  monolayer.   In the 

case of silica@PNIPAM particles with relatively large silica cores adsorbed at the water-oil 

interface  [6], more complex patterns  are formed  at large pressure.   Moreover,  the surface 

pressure  - area  isotherms  are  quite  different  than  in the  cases  of the  pure  PNIPAM and 

Au@PNIPAM particles.  The isotherms of the silica@PNIPAM particles have a characteristic 

shape of alternating segments  with very large and quite small slope.  The pressure range 

at  the  steep  parts  of p(η) depends  on the  shell  thickness.   Notably,  the  nearly  vertical 

segments of p occur for the area fraction of the particles,  η, corresponding to quite small 

area fraction of their cores.  A natural question arises why for a few values of η a very large 

increase of p is required to induce any increase of the area fraction, while for area fractions 

intermediate between these distinguished values the compressibility of the monolayer is very 

large. The fundamental question if the different patterns correspond to thermodynamically 

stable phases, and the plateaus indicate phase transitions remains open. 

To the best of our knowledge there have been no attempts to develop a theory for the 

self-assembly of the HCSS particles adsorbed at an interface that would guide experimental 

studies.   Here  we  construct  a coarse-grained  model  based on experimental  observations. 

Model systems with two dimensional (2D) patterns can be studied either by simulations or 

by approximate theoretical methods.  The simulations of self-assembling systems are strongly 

influenced by finite size effects, and in theoretical studies the approximations may lead to 

incorrect results.  In order to avoid possible inaccuracies resulting from approximations, we 
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introduce a one-dimensional (1D) lattice model that can be solved exactly. 
 

To construct a coarse-grained model for the HCSS particles adsorbed at an interface, we 

take into account that at low area fraction the particles form a hexagonal lattice, and when η 

further decreases, then the ordered structure remains unchanged, and coexists with voids [6]. 

This suggests an attractive potential with a well-defined minimum at the separation r = σa. 

One source of the attraction may be a water “cap” formed above the hydrophilic polymers 

grafted on the nanoparticle   [6]. The caps lead to undulated interface with increased area, 

and this area increase is larger for particles at large separations than for particles whose shells 

overlap.  The minimization of the surface-tension contribution to the free energy leads to 

effective attraction between the particles when their distance is larger than their diameter 

σa.  Attraction  might  result  from the  van der Waals interactions  between  the  monomers 

too [13]. On the other hand, when the shells of the two particles overlap, they repel each 

other.   The  repulsion  increases  with decreasing  distance  between  the  particles.   Because 

the polymeric  chains become compressed  near the hard cores,  the distance  of the closest 

approach of two core-shell  particles,  σ, is larger than the diameter  of the solid  core,  and 

depends on the number and length of the grafted polymeric chains, and on cross-linking. 

Based on the above facts, we conclude that the effective interaction between the particles 

consists of the steric repulsion at the distances r smaller than σ, next of a soft repulsion for 

σ < r < σa, and finally of an attraction for r > σa [6]. 

In Ref.     [6] monolayers  of three  types  of HCSS particles  with the  same  silica  cores 
and diameters σa ∼ 450nm, 680nm for the smallest and the largest shell were investigated. 

 
Based on the histograms for the nearest-neighbor distance in monolayers under large pres- 
sure [14], we can expect that in each case σa/σ ∼ 2 − 3, and the potential has a shape shown 

 

schematically in Fig.1. 
 

We assume that the incompressible  cores of the particles occupy lattice sites with the 

lattice constant σ. The steric repulsion leads to forbidden multiple occupancy of the lattice 

sites.  We assume that the nearest-neighbors on the lattice repel each other with the strength 

Jr > 0 (soft shell).  In order to compare shells with different thicknesses,  we consider two 

variants  of the  model.   In the  first  one the  second neighbors  attract  each other  and the 

corresponding  potential  has the  strength  −Ja,  with Ja   > 0.  For larger  separations  the 
 

effective potential vanishes. On the 1D lattice the potential is given by 
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FIG. 1: Schematic illustration of the effective potential between the HCSS particles adsorbed at an 

interface.  In the lattice model only discrete values of r/σ, indicated by the symbols, are considered; 

dashed and solid lines correspond to models I and II respectively. 
 
 
 
 

 
 

Vn(∆x) = 

 

Jr for |∆x| = 

1, 
 

−Ja   for |∆x| = n, 
 
0 otherwise, 

 

 
 

(1) 

 

with n = 2 (model I). The positions and distances between the particles on the 1D lattice 

are denoted by x = r/σ and ∆x = ∆r/σ, and take integer values.  In the second variant of 

the model the potential changes sign for the second neighbors, and is given by Eq.(1) with 

n = 3 (model II). 

We consider an open system with fixed chemical potential of the particles, µp, and fixed 

temperature  T .  We  assume that  the lattice  consists  of L sites  labeled from 1 to  L, and 

consider periodic  boundary conditions  (L + 1 ≡ 1, 0 ≡  L).   We introduce  an 

occupation 
 

operator 
 

ρ̂(x)  which is equal  to  1 or 0 when the  site  x is occupied or not,  respectively. 

Hence, the configuration of the system is given by {ρ̂(x)} ≡ (ρ̂(1), ..., ρ̂(L)).  Since each 

site 

can be either occupied or empty, there are 2L  configurations, and each of them occurs with 

the probability 
 
 

 where 
P [{ρ̂(x)}] = 

https://pubs.rsc.org/en/content/articlelanding/2017/sm/c7sm00191f#!divAbstract
https://rcin.org.pl/


 

 

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Soft Matter, 

copyright © Royal Society of Chemistry after peer review. To access the final edited and published work see 

https://pubs.rsc.org/en/content/articlelanding/2017/sm/c7sm00191f#!divAbstract (DOI 10.1039/C7SM00191F) 

Soft Matter, issue 14, 2017 

 https://rcin.org.pl 
 

e−βH 

[{ρ̂(x)}]
 

Ξ 

 

, (2) 

 

Ξ =  
 

 

{ρ̂(x)} 

 

e−βH [{ρ̂(x)}] (3) 
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i 

is the Grand Partition function, β = (kB T )−1, kB  is the Boltzmann constant and H is the 
 

thermodynamic Hamiltonian which contains the energy and the chemical potential term, 
 

1  
L

 

H [{ρ̂}] = 
2 

L L 

ρ̂(x)V (x − x′)ρ̂(x′) − µ 

 
ρ̂(x). (4) 

x=1 x′ =1 x=1 
 

The energy of adsorption of a single particle at the interface, h, is included in µ = µp + h. 

The grand potential is given by 

Ω = −pL = −kB T ln Ξ (5) 
 

where p is the 1D pressure.  We also calculate the dimensionless number density ρ =  ρ̂(x)) 
 

(length fraction of the cores) and the correlation function, 
 
 

g(∆x) = 
 ρ̂(x)ρ̂(x + 

∆x)) 

 ρ̂(x)) ρ̂(x + 

∆x)) 

 

, (6) 

 

with the probability distribution (2). Because of translational invariance,  ρ̂(x)) is 

indepen- 
 

dent of x, and g depends only on ∆x. 
 

In the first step we determine the ground state (GS), i.e. the structure at T = 0. For 
T = 0, the grand potential reduces to the minimum of H [{ρ̂(x)}]/L.  We find the 
minimum of H [{ρ̂(x)}]/L by comparison of H [{ρ̂(x)}]/L for empty and fully occupied 
lattice, and for 

 

different periodic structures. 

In the second step we consider T > 0, using the transfer matrix method [15]. For the 

interaction range n 
 
 

Ξ = T rTL/n  = 

 
2n 

 
 
i=1 

 
 

λ
L/n

, (7) 

where T is the 2n × 2n transfer matrix, and λi  are the eigenvalues of T numbered such that 

|λi| ≥ |λi+1| [15]. In the thermodynamic limit 
 

kB T 
p = 

n  
ln λ1.  (8)

 
 

The matrix T is a finite matrix with positive elements, therefore λ1 is non-degenerate.  Thus, 

for given µ Eq.(8) yields a unique value of pressure, p(µ). The average density ρ(µ) can be 

expressed in terms of the matrix P transforming T to its eigenbasis [15]. By eliminating µ 

from p(µ) and ρ(µ), we obtain p(ρ). The correlation function can be expressed in terms of P 
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µ
 

µ
 

and λi  [15]. For large separations the correlations decay exponentially, with the correlation 
 

length ξ given by [15] 
  

 

ξ = n ln 
( λ1  

l
 

|λ2| 

 −1  
. (9) 

 

When λ2  is real and positive,  the decay is monotonic.  Because T is not symmetric,  pairs 

of complex-conjugate  eigenvalues  for i > 1 may occur.  The  pair of complex-conjugate 

eigenvalues for i = 2, 3 leads to oscillatory decay of correlations, with the asymptotic form 

for x ≫ 

1 
 

g(x) = Aie
−x/ξ cos 

 
xλ + θi 

  
+ 1,                                        (10) 

where the wave number λ is the phase of the complex eigenvalue λ2  = |λ2|eiλ, and Ai and 

θi  depend on P and on i = mod(x, n) [15]. 
 

Let us start by discussing the GS. It turns out that in model I only one periodic structure 
with alternating empty and occupied sites, •o•o•o..., and the unit cell (•o) may occur. 
By • 

 

we denote an occupied site, i.e. the uncompressible core of the particle.  The GS of model I 

is shown in Fig.2a in variables (µ = µ/Ja, J̄  = Jr /Ja).  In model II, three periodic structures 
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FIG. 2:   (a) GS of model I and (b) GS of model II. The coexistence lines are:  (a) µ = −1 for 

empty lattice - (•o) and µ = 2J̄  − 1 for (•o) - full occupancy; (b) µ = −1 for empty lattice - 

(•oo); 

µ = J̄ − 1 for (•oo) - (••o); µ = 2 for (•oo) -(•o); µ = 2J̄ − 4 for (•o) - (••o) and finally µ = 

2J̄ − 1 for (••o) - full occupancy. µ = µ/Ja  and J̄  = Jr /Ja. 
 

 
may occur (Fig.2b).  In the  structure  with ρ = 1/3,  an occupied site  is followed  by two 
empty sites, and the unit cell is (•oo). In the structure with ρ = 2/3, two occupied sites are 
followed by one empty site, and the unit cell is (••o).  The phase (•o) with ρ = 1/2 
occurs 
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only when J̄  ≥ 3. To distinguish the densities of the periodically ordered GS structures, we 
 

use the notation ρp, i.e. ρp = 1/3, 1/2, 2/3. 
 

The results for p(ρ) are shown in Figs.3,4.  In both models, nearly vertical segments for 

ρ ≈  ρp are separated by nearly horizontal segments for ρ /= ρp, when the interactions 

are 
 

sufficiently strong.  For model I, there exists only one segment of the p(ρ) curve with a very 
large slope (apart from ρ → 1), consistent with the single periodic phase at T = 0. 
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FIG. 3: The pressure-density isotherms in model I for J̄  = 2. 
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FIG. 4: The pressure-density isotherms in model II. (a) J̄  = 5 (b) Ja = 10kB T . 

 
In model II, the nearly vertical segments of p(ρ) are present for ρ ≈ 1/3, 2/3, consistent 

with the GS structures (•oo) and (••o).  When J̄  > 3, a third “step” at ρ = 1/2 
appears (Fig.4b).  For fixed J̄ , the pressure range for ρ ≈ ρp increases with increasing Ja  

(Fig.4a), 
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ξ
 

 

whereas for fixed Ja/(kB T ) and increasing J̄  the pressure range increases significantly only 
at the central step.  This behavior is consistent with the GS, where the (•o) phase is stable 

for the range of the chemical potential that increases for increasing J̄ . Quite surprisingly, 

when Ja/(kB T ) is fixed and J̄  > 3, p(ρ) is nearly independent of J̄  for ρ < 1/2. 

We have found that g(x) is given by (10), with the period of oscillations 2π/λ ≈  2 for 

ρ ≈  1/2 and 2π/λ ≈  3 otherwise,  in agreement with the GS structures.  The 

correlation 
 

length is very large for ρ = ρp, and increases rapidly for increasing Ja (Fig.5). However, when 

ρ departs slightly from ρp, ξ decreases by orders of magnitude and becomes independent of 

Ja  for 1/3 < ρ < 2/3.  Slight deviations from ρp lead to dramatic decrease of order in this 

range of density.  For ρ < 1/3 or ρ > 2/3, ξ decreases much more slowly for ρ departing form 

ρp. Moreover, ξ depends very strongly on Ja  and very weakly on J̄  for ρ < 1/3 or ρ > 2/3. 
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FIG. 5: The correlation length ξ (in σ units) in model II for J̄  = 5 (left panel) and for J̄  = 2 (right 

panel) with Ja = 5kB T (black solid line) and Ja = 10kB T (red dashed line).  The number density 

ρ is dimensionless. 

 
We have obtained remarkably rich behavior from the very simple model (1).  One, two 

or three  periodic  structures  with the  corresponding  vertical  segments  of p(ρ) can occur, 

depending on the ranges and strengths of the repulsive and attractive parts of the potential. 

Phase transitions and long-range order are absent for T > 0 in 1D models with finite range 

of interactions.  Our results obtained in such a model show that the plateaus in the p(ρ) 

curve  can be present  even in the absence of true thermodynamic  phase transitions.   The 

short-range order in the disordered phase mimics the long-range order of the phase stable 
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at lower T (at T = 0 in 1D), and the range of this order can be orders of magnitude larger 

than σ. 

The strength of attraction plays a key role in formation of ordered patterns and in the 

shape of the pressure-area isotherm for small densities.  In contrast, for densities larger than 

the close packing density of the soft particles,  the repulsion determines the shape of p(ρ) 

and the range of order. 

Our results agree surprisingly well with experiments.  The isotherm obtained in Ref.[1] for 

small Au cores has the shape that agrees with the isotherm shown in Fig.4a for Ja = 2.5kB T . 

For increasing density, the sequence of very small, moderate, very large, very small, and again 

very large slope of the pressure is found in both cases.  The alternating steep and shallow 

segments  obtained  in Ref.[6] for larger  silica  cores  agree with the curves  obtained  in our 

model for stronger attraction.  In Ref. [6] and in our model (Fig.5), the samples with density 

larger than the density of close packing are less ordered. Increase of the particle diameter σa 

leads to increase of both, the range of order for small area fractions, and the pressure range 

at the corresponding vertical  segment  of the isotherm  [6].  In our model such behavior is 

found for increasing Ja  (Figs.5,4a).  This observation indicates that the attraction increases 

with increasing σa, and supports the conjecture that the attraction in Ref.  [6] results from 

the surface-tension contribution to the free energy. 

Our results  indicate  that  if ordered structures  are  desired,  one should  try to  increase 

the strength of the attractive part of the interactions, and choose area fraction of particles 

approaching the close-packing density from below.  For denser systems the density should 

be fixed with extremely high precision to achieve large correlation length. 

Models with repulsive shoulder followed by attractive well were studied before in different 

contexts [16–19]. In particular, multiple phase transitions[16, 17] and water anomalies were 

obtained  [18, 19].  Our results  show that  a potential  of this  kind (Fig.1) is also able to 

reproduce the main features of the HCSS particles self-assembling at interfaces. 

The  isotherms  very  similar  to  Fig.3 were  obtained  for the  1D model  with short-range 

attraction and long-range repulsion (SALR) [15], and for the 1D model of aqueous solution 

of amphiphilic molecules [20]. In model I and in Ref. [15, 20] a single phase with periodic 

arrangement of the particles, clusters or micelles was found in the GS. The periodic order is 

reflected in a very large slope of the pressure for the density or concentration optimal for the 

periodic structure, independently of the kind of ordering objects and the source of competing 
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interactions.  Such universal properties can be correctly predicted by generic models, and 

models like the one introduced in this work can guide future experiments. 
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