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Some aspects of the mathematical modelling of long nonlinear waves

g*

A. JEFFREY (NEWCASTLE)

THIS PAPER begins with a brief review of the notions of far fields and long waves, and indicates
why the study of equations of KdV and KdVB type are important to the modelling of unidi-
rectional long nonlinear waves. An asymptotic solution is then developed for the shock wave
solution for the KdVB equation that applies when dissipative effects predominate over dispersive
effects. The sensitivity of this solution to the matching condition used at the origin is demonstra-
ted. Some numerical experiments are then described concerning the propagation of one or more
KdV solitons in the presence of noise. It appears from these that noise retards the speed of
propagation of the solutions and that the KdV equation introduces correlations into the noise
that were not present initially, thereby modifying the noise spectrum. Finally, a new time regula-
rised long wave (TRLW) equation is proposed which is conservative, possesses travelling wave
solutions and conservation laws and is capable of characterising bidirectional wave propagation.
It is shown that when the TRLW equation is modified to include dissipation, as in Burgers'equa-
tion, a change of parameter in the KdVB shock wave asymptotic solution yields the new
shock solution.

Praca rozpoczyna si¢ krotkim przegladem oznaczen p6l dalekiego oddzialywania i dlugich fal.
Wskazano na znaczenie skalarnych fal typu KdV (Korteweg-de Vries) oraz KdVB (Korteweg-de
Vries-Burgers) przy modelowaniu jednowymiarowych dlugich nieliniowych fal. Opracowano
nastepnie rozwigzanie asymptotyczne dla fali uderzeniowej opisanej przez réwnanie KdVB
sluszne w przypadku, kiedy efekty dysypacji dominuja nad efektami dyspersy Zbadano stopiefi
wrazliwosci tego rozwigzania w zaleznoéci od warunkéw dopasowania rozw:a;ama na poczqtku
Opisane sa dalej pewne eksperymenty numeryczne dctyczace propagacji jednego lub wiecej
rozwigzafh KdV przy wystepowaniu szumu. Z analizy tej wynika, ze zakl6cenia zmniejszaja
predkos¢ propagacii fal oraz ze rownanie KdV wprowadza nieistniejaca poczatkowo poprawke
na szum, zmieniajac tym spektrum szumu. Wreszcie, zaproponowano nowe rownanie (TRLW)
opisujace wygladzone przez czas dlugie fale. ROwnanie to jest zachowawcze, posiada rozwigzania
w postaci biegnacej fali i jest w stanie scharakteryzowaé propagacje dwuwymiarowych fal. Wy-
kazano, Ze po dokonaniu modyfikacji réwnania TRLW w celu wprowadzenia dysypacji, tak jak
w réwnaniu Burgersa, zmiana parametrow w rozwigzaniu asymptotycznym fali uderzeniowej
dla réwnania KdVB prowadzi do nowego rozwiazania z falg uderzeniowa.

Pabora Haumnaerca KpaTKuM ofospeHweM OGC3HAUEHHH IONEH AANEKOro B3aHUMONEHCTBHA
H JUIMHHBIX BOJIH. YKa3aHO HA 3Ha4YeHHe cKalApHbIX BoyH THma KgB (Kopreser-me Bpus),
a raroxe KnBB (Kopreper-ne Bpus-Byprepc), npH MoAeNIHpPOBaHHH OJHOMEDHBLIX [THHHBIX
HeJMHeHHLIX BONH. 3areM pa3paboTaHO ACHMITTOTHUECKOE pelleHHe IAA YO2PHOH BOJHEI,
onucanHoil ypasHermem KaBB, cripaBeymeo B ciyuae, Koraa agdexrs! guccHnamn npeobna-
naor Han sbdexramu mucnepern. MccnenoBaHa CTeneHb YyBCTBHTENLHOCTH 3TOrO pelleHHsA
B 3aBHCHMOCTH OT YCJIOBHH COTJIACOBAHMA PEILUEHAS B HAYAIBHbLI momeHT. OmmcaHb! ganee
HEKOTOpble WHCJIEHHBIE SKCTIIEPHMEHTHI, KACAIOIIHECs PacIpOCTPaHEHHA OOHOro, WM Goib-
miero Kojmdecrsa pemrenwit KaB npr Bricrynmarmu 1myma. M3 sroro amammsa cnemyer, uro
BO3MYLUECHHA YMEHBIIAIOT CKOPOCTH PACTIPOCTPAHEHHA BONMH M uTo ypasHenwe KnB BeomuT
HeCYIIeCTBYIOIIYIO BHAYATE NMONPABKY Ha IYM, H3MeHAA TakuMm oGpaszoM cmexrp mryma. Ha-
KOHell, IpearnonoxeHo Hooe ypaBHenue (TPJIB), onmchiBarolliee BRITJIAXKEHHBIE BpeMeHeM
JUIHHHBIE BOJIHBI. DTO YpaBHEHMe KOHCEPBATHBHO, HMeeT pellleHHs B BHMe Geryiuei BOJHBI
H B COCTOAHMH ONMCATh PAaCHPOCTPaHEHHe ABYMEpPHBIX BonH. [lokasaHo, YTO ec/M MPOBECTH
momedurammio ypasHenus TPJIB ¢ nemsio BBemeHMs OUCCHMNALMM, TAK KaK B YPaBHEHHH
Byprepca, To H3MeHeHHe ITapamMeTPoB B ACHMIITOTHUECKOM PellleHHR YAAPHOM BOJHBI 1A ypaB-
Henuss KnBB OpwBOIMT K HOBOMY pEINCHMIO C YHapHOH BOJHOM.
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1. Long waves and far fields

THE MODELLING of long nonlinear waves in a continuum is of considerable importance
and it arises in connection with topics as diverse as the study of gravity waves in fluids,
plasma waves, anharmonic lattice waves, longitudinal dispersive waves in elastic rods
and also in a variety of other circumstances. Accounts of the way in which these waves
occur and of many of their properties, together with extensive bibliographies, are to be
found in the review papers by JEFFREY and KAKUTANI [1] and Scott, CHU and McLau-
GHLIN [2].

These seemingly different topics have as unifying features the facts that they each
involve systems of partial differential equations, their long wave behaviour is determined
as the result of a perturbation argument, and yet this behaviour of a system is in each
case governed only by a scalar quasi-linear partial differential equation. Depending
on the physical attributes of the problem involved, and to some extent on the mathemat-
ical modelling philosophy that is adopted, so will depend the precise form of the scalar
equation that occurs. Aside from the scalar equation derived from the Boussinesq equa-
tions that was used first by PEREGRINE [3] to describe an undular bore, and studied later
in great detail by BENJAMIN, BoNA and MAHONY [4], the prototype equation that usually
results is a variant of the Korteweg-de Vries—Burgers’ (KdVB) equation

(1.1) Ut Ul — Vet il =0, 220, p2z20.

This equation characterises unidirectional wave propagation since it contains only a first
order time derivative, and it is so called because when u = 0 it reduces to Burgers’ equation,
and when » = 0 to the Korteweg-de Vries (KdV) equation. The dissipative effect in the
KdVB equation is provided by the term —wu,,, in which the condition » > 0 in Eq. (L.1)
is required to ensure that “energy” is dissipated and not added. The dispersive effect is
provided by the term pu,,,, and for convenience we take u > 0 in Eq. (1.1) to conform
with the convention usually adopted when working with the KdV equation.

Let us now outline the reason for the relevance of an equation such as Eq. (1.1) to
the study of long nonlinear waves governed by a system of n quasi-linear equations with
order not less than two. We consider a general system

3U /]
(1.2) A [Zniﬂﬁw”‘gi;}]””’ P2,

f=0 a=l1

where U is an n element vector with the components u,, u,, ..., u, and 4, H:, K¢ are
n xn matrices with arbitrarily differentiable elements that depend only on U. Then, follow-
ing a method developed by TANIUTI and W [5], it has been shown [1] how, when the
system (1.2) satisfies certain conditions, a general reductive perturbation method may be
developed to find the behaviour of small but finite perturbations relative to some constant
solution U, of the system.

In brief, we shall suppose that the first order system obtained from Eq. (1.2) by neglect-
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ing the terms in square brackets is hyperbolic (see JEFFREY [6]), that U - U, as x - —o0,
and that U may be expanded in the form

(13) U= ) U,
j=0

with corresponding expansions being valid for any other functions of U that arise. Then,
for a disturbance wave associated with any one of the n real eigenvalues A of A, it can
be shown [1] that the first order perturbation U; has the form

(1.4) Ui =r§u,

where r§? = r®(U,) is a suitably normalised eigenvector of the matrix 4(U,) correspond-
ing to the eigenvalue A§? = A®(U,), and that the scalar u satisfies an equation similar
to Eq. (1.1). When deriving Eq. (1.4) a coordinate-stretching is involved of the form
(1.5) §=e(x=25), v=¢*" a=1/(p-1),

which automatically directs attention to the stretched time £*+* ¢, and hence to large times
and correspondingly large distances from the origin. For this reason such solutions are
often called far fields. Thus, in general, the system (1.2) will have associated with it n
distinct far fields corresponding to each of the n real eigenvalues of A, and each will be
governed by a scalar equation similar to Eq. (1.1). These equations describe long waves
in the sense that the wavelengths involved are large in relation to the magnitude of the
class of perturbations that is to be considered.

This situation is well illustrated by the KdV equation governing long waves in shallow
water [1,7] which can be written (see Fig. 1)

_ 3 _
(1.6) Ur+ I/Sho [l +? ("/ko)] f’x"f“-é—l/ghoh%”xxx =0,

with h, the equilibrium depth, (X, T') the local surface elevation relative to the equilibrium
level, g the acceleration due to gravity, X the horizontal distance and 7 the time. If the
maximum amplitude and wavelength of the disturbances are 8 and A, respectively, then,
setting

1
="tk and u=(oldy,

Fic. 1. Long waves in shallow water.
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Eq. (1.6) will hold when 7, x4 are small. In terms of the non-dimensional variables

x= XA, 1=Tyghld, u=">v(nh),

the KdV equation (1.6) becomes
(17) Uy + Uy + QU+ Pl = 0.

If desired, this may be expressed in terms of the same canonical form of the KdV equation
that is implied by Eq. (1.1) with » = 0 by making the variable changes x - x—¢ and
u— ufn.

For further discussion of long waves in the context of far fields and for an account of
the relevance to their study of the so-called nonlinear Schridinger equation

(1.8) :’u‘+—;— Uge+alul*u = 0,

we refer to the papers by TaniuTi [8], JEFFREY [9] and DAvey [10]. We mention here
only the fact that the far fields of the purely hyperbolic system derived from Eq. (1.2)
by neglecting the terms in square brackets are merely simple waves. As neither dispersive
nor dissipative effects act to prevent the steepening of waves in the purely hyperbolic case,
the simple wave far fields will only exist until such time as shocks form.

It is important to recognise that while the hyperbolic equation derived from Eq. (1.1)
by neglecting the dissipative and dispersive terms has simple wave solutions, it has no
travelling wave solutions. Such solutions are, however, possessed by Burgers’ equation,
the KdV equation and the KdVB equation. This comes about because of a balance that
occurs between the steepening effect due to the nonlinear term uu,, and the smoothing
effect produced by dissipation and dispersion. These travelling wave solutions are of
considerable importance mathematically, and different aspects of them will concern us
throughout the remainder of this paper.

2. Travelling wave solutions

In two dimensions, travelling wave solutions have the form
2.1 u(x,t) =u(), ¢=x—At, A= const,

and they must satisfy some appropriate boundary conditions at infinity. In general, these
will determine the permissible range of vlues of A. In the case of Burgers’ equation and
the KdV equation, for both of which all the derivatives of the solutions tend to zero as
|x] = oo, these equations have the following well-known solutions [1, 7] satisfying the
stated boundary conditions.

Burgers’ shock wave (¢ = 0)

22) ©(0) = - (5 +ud) — - (v =) tanh [z w5 0],
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which satisfies the boundary conditions

lim 2|l| = uz with ug > ul,
1¢] =0

and has 4 = % (uz+ul) (see Fig. 2)).

(=4

—

0 4

Fic. 2. Burgers' shock wave.

KdV solitary wave (» = 0)
(23) #(0) = u,+asech?(¢ y/ a124),
which satisfies the boundary conditions

lim #({) = u, with u, >0,

|€] o0

and has A = u,+a/3, (See Fig. 3).

=4

0 g

FiGg. 3. KdV solitary wave.

The Burgers’ shock wave, as the travelling wave (2.2) is called, is seen to propagate
with a speed A = (uz+u})/2 that is uniquely determined by the boundary conditions,
but to be invariant with respect to an arbitrary fixed spatial translation. This last result
follows because if %({) is a solution, then so is #({+k) with k = const. More generally,
all solutions u(x, t) of Burgers’ equation are invariant with respect to a Galilean transfor-
mation. This may be seen by observing that if u(x, ¢) is a solution, then u(x+st, t)—s

with s = const is also a solution.

The KdV solitary wave, or soliton, is a pulse shaped wave that, relative to the con-
stant value u,, at infinity, tends to zero together with all its derivatives as |{] — oo. Its
speed of propagation relative to u,, is proportional to the amplitude a4, and its width is
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inversely proportional to the square root of the amplitude. In this travelling wave the speed
is not determined uniquely by the boundary conditions, but depends only on the amplitude
«a > 0. Like Burgers’ shock wave, the KdV solitary wave is also invariant with respect to
a Galilean transformation. It is important to recognise that all solitary waves are similar
in the sense that, relative to their respective values at infinity, a translation and scaling
of amplitude of such a wave will transform it into any other one.

While these analytical solutions exist for the travelling wave solutions for the Burgers’
and KdV equations, no comparable analytical solution exists for the KdVB equation (1.1),
and yet this equation is important when modelling waves with a combination of dissipa-
tive and dispersive effects. Numerical calculations for Eq. (1.1) carried out by Grap and
Hu [11] show that when »? < 4u dispersive effects are the most significant ones and that
the solution represents an oscillatory shock wave. For the case »* < 4u JounsoN [12]
matched a perturbed solitary wave with a cnoidal wave to obtain an asymptotic solution
that exhibited oscillation. However, although the phase plane analysis described by
JerFrey and KakuTtani [1] and the numerical results of GRap and Hu [11] indicate that
when dissipative effects predominate and »* > 4y the solution will behave like a Burgers’
shock wave, no detailed analysis of this situation has yet been made. Accordingly, we now
outline the details of an asymptotic solution for such a KdVB travelling wave, or shock
wave, when »2 > 4u.

Let us consider a travelling wave solution #({) to the KdVB equation (1.1) with the
boundary conditions #(— ) = u; and #(o0) = u} where, as before, uZ > ul, { =
= x—At. Then # must satisfy the equation
du . di d*u d*u

—&E +u ?C- —y —dzi- +u d—c:,
Integrating and using the boundary conditions and the vanishing of derivatives at infinity
shows that 1 = (u;+u})/2 and so

24 -2 = 0.

dd a8 N ey 1o e b
(25) ,ud—&_z-—vd—c+—2—u ——z—-(uw+u¢,)‘u+7~umum = 0.
Making the variabe changes

_a-uwh, (up-ui)  pluz—u)
(2.6) U= H;—u; ) E e 21; aﬂd 8= 2.’2
reduces Eq. (2.5) to
dv do . .,

(2-7) sd_fz_Ef--l-ﬂhg_O
with the boundary conditions
(2.8) 9(—w)=1 and 9o(+00)=0.
To obtain an asymptotic solution of Eq. (2.7) in the form
(2.9) v(§) = v,(§)+ev, () + 05O+ ...,

it is necessary to match the asymptotic solution to some feature of the true solution that
is important. The natural choice is to match to an appropriate order of & the value of v
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at the point where the curvature of the KdVB shock wave changes sign. Because the
KdVB shock wave, like the Burgers’ shock wave, is invariant with respect to an arbitrary
fixed translation, the origin of £ may be chosen to be at this point. To determine v(0),
and hence v,(0), ©,(0), ..., we proceed as follows.

Introducing the (v, s)-phase plane with s = dv/d¢ allows Eq. (2.7) to be written as
the system

(2.10) e?g = s—v2+v,
dv
@.11) F=°

This system has critical points at the origin (0, 0) and at (1, 0), with the origin represent-
ing a stable node and (1,0) a saddle point. As these two points correspond to the ‘two
boundary conditions (2.8) to be satisfied by the solution to Eq. (2.7) we conclude that the
solution corresponding to the trajectory joining these two critical points must be unique.
Furthermore, the point P on this trajectory at which ds/dv = 0 will correspond to the
point where the curvature of the KdVB shock wave changes sign.

To find ©(0) we now seek an expansion of s in the form

(2.12) s@) = fi(@)+efs(@)+H50)+ ...

Using this in the expression for ds/dv obtained by dividing Eq. (2.10) by Eq. (2.11), and
equating terms with corresponding powers of &, shows that the functions f; are defined
recursively and that to first order in ¢

(2.13) 5= (2—v)+e(2v? -3 +0)+ ....

Again, working to first order in &, it follows that ds/dv = 0 when

1 £
(2.14) 2(0) = >t
and comparison with Eq. (2.9) then gives as the conditions to be satisfied by v,(£) and
92(&!

(2.15) 2,(0) = 1 and 9,(0) = -1—
2 4
The substitution of Eq. (2.9) into Eq. (2.7) followed by a routine calculation, in-.

volving equating terms with corresponding powers of ¢ and integration using the conditions
(2.15), finally leads to the result

v Untuié  p(ug—ul)’e 2e5)
Q16) WO ="+ ey [1+$—2log(m +0(e?),

with

E = (uz—ul)lf2v, &= (uz—ut)u/»? and > 4u.

It is instructive to compare the results in Egs. (2.2) and (2.16) and to observe that
to the first order in & the dispersion coefficient x4 enters only as a linear factor in the se-
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cond term. Indeed, using Egs. (2.11), (2.13) and (2.14) to calculate do/dé when
& = 0 gives
dv 1 ¢ dil (uz—ut)? ( 1 s‘)

&l eyt Y T -
This shows that the gradient of the KdVB shock wave at & = 0, or equivaleritly at £ = 0,
is the same as that of Burgers’ shock wave (2.2) to first order in e&.

Some indication of the sensitivity of this solution to the accuracy with which the match-
ing of v(0) is carried out may be obtained by modifying the conditions used in Eq.
(2.15). If, instead of Eq. (2.15) we require v,(¢) and v,(£) to satisfy the conditions

00) =5 (140 and  0,00) = 5 (145),

where o and B are small, then corresponding to Eq. (2.16) we find the modified re-
sult

Un(l) =

(I+aug+(1- oute u(uz—uk)2e 268
Grori—ae T 2A@+rer || TAHE-20oe (,—J,ge)] +0e2).

Of the parameters « and f we see, as would be expected, that « is the more significant
of the two in its effect on #%,. To interpret this quantitatively let us set #} = 0 and, work-
ing to an accuracy 0(e), examine the ratio k() = un/u, where

(4o (1+€)
k()= (1+a)+(1—a)’
Then k(—o) = 1, but k(+ ) = (1+a)/(1—a) = 1+2a, for small a.

Thus, although #({) — 0 as { — + 0, the ratio #,,/z — 1+2a«. This shows that when
the factor multiplying the true value of v,(0) is 1+ a, instead of unity, this causes ,, to
exceed # by a factor 1+2a« for large positive {. Indeed, this error is even significant close
to the origin, for setting £ = 1 in the expression for k, which is equivalent to setting
{ = 2v[ug, shows that @,/ = 1+2ae/(1+e), so that already #, = (1+1.45a)u.

This analytical demonstration of the sensitivity of the KdVB shock solution to a per-
turbation at the origin reflects a similar result found computationally by G.I. BAREN-
BLATT [13] for a certain initial valve problem for the KdV equation. Specifically he found,
starting from a Burgers’ shock wave as initial data, that a small perturbation at the origin
caused a totally different solution to evolve from that which arises from the unperturbed
initial data,

and & = uzl[.

3. KdV solitions with noise

Interaction between KdV solitons was first studied in the early numerical work carried
out by ZaBusky and KRrUSKAL [14], accounts of which are also to be found in references
[1, 2]. Since then the understanding of the mechanism of the generation of solitons and
the reason for their persistence despite repeated interactions has been advanced by the
work of many authors. Notable amongst these are GARDNER, GREENE, KRUSKAL and
Miura [15], Lax [16], HiroTA [17] ZAxHAROV and SHABAT [18] and ABLowiTZ, KAUP,
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NeweLL and SEGUR [19]. In all of this work smooth initial data was assumed, and only
as recently as 1976 in a paper by LAx [20] was initial data considered that comprised a ran-
dom disturbance superimposed on an otherwise smooth function. However, the result
reported by Lax did not relate to solitons but to a special class of periodic solutions of the
KdV equation, and it was found by numerical computation that the periodicity of the
solution appeared not to be disturbed by the superposed random disturbance.

Just as a long wave is a mathematical idealisation of a physical situation, so also is
the assumption that its initial data is smooth. Thus, since there is much general interest
in the way solitons interact, and also in their stability, it is appropriate that these situations
should be examined when the initial data comprises one or more solitons on which at the
initial time a gaussian random disturbance has been superimposed. Accordingly, in the
remainder of this section, we describe the results of some numerical experiments designed
to examine and quantify the time evolution of soliton solutions to the KdV equation that
arise from initial data of this type. Solitons that tend to zero at infinity have been chosen
for study (u, = 0), and for convenience we henceforth refer to the random disturbance
involved as noise.

The finite difference scheme employed by Zasusky and KRuskAL [14] was used for
the numerical integration, and the noise was generated by a gaussian random number
subroutine designed to produce random numbers with zero mean and a specified stand-
ard deviation ¢ using the direct method suggested by Box and MULLER [21]. A statistical
examination of these random numbers confirmed that their mean and standard devia-
tion had the desired properties to within the varigbility expected for the sample sizes of
350 numbers that were actually used. The effect of noise on a single soliton was found
to be a progressive retardation, or delay, of the disturbed soliton relative to the undisturb-
ed soliton as they advanced with increasing time. This delay 4 as a function of time was
found to increase as the standard deviation of the noise o was increased, and the deve-
lopment of the delay is shown in Fig. 4 for different initial standard deviations. The
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Fic. 4. Single soliton delay & as a function of soliton amplitude a, initial standard, deviation ¢
and time r.
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magnitude of the delay at any given time was found by cross-correlating the soliton so-
lution in the presence of noise with the corresponding steadily progressing smooth soliton
solution. The shift of the peak of the cross-correlation function from the origin was inter-
preted as the spatial delay experienced by the noisy soliton at that time.

The equation to be solved was taken in the form

(3.1) Ut Ut + plleey = 0,

which in terms of the parameter @ > 0 has the soliton solution that vanishes at infinity
("w - 0)

(3.2) u(x, t) = asech?(kx—awt+9),

with k = ;— V/ (a]3u), @ = ak/3 and d an arbitrary constant. In all of the calculations describ-

ed in this section the non-dimensional length and time steps used in the integration were,
respectively, # = 0.01 and k& = 0.0005. These were chosen so that the stability condition
for the finite difference scheme was well satisfied. After selecting a value of the ampli-
tude a, gaussian random numbers drawn from a distribution with zero mean and the
desired initial standard deviation o = 0.02, 0.03 and 0.04 were added at space-like inter-
vals h to the initial data derived from Eq. (3.2) by setting f = 6 = 0O and u = 4.84x10~*.
The results corresponding to a = 0.3 are shown as dotted lines in Fig. 4 and those corres-
ponding to a = 0.9 are shown as full lines.

As the speed of a soliton is proportional to its amplitude, this retardation must corres-
pond to a progressive reduction in amplitude. Furthermore, as the KdV equation is a con-
servation equation with an infinite number of conservation laws [l, 2, 7, 14, 22], one of
which corresponds to the conservation of energy, the retardation should be accompanied
by an increase in the standard deviation of the noise. This was in fact observed, and through-
out all calculations the energy invariant remained constant to within 0.3%. The invariant
corresponding to the conservation of momentum remained constant to within 0.8%,
thereby providing evidence both that the amplitude was changing slowly, and that the
integration scheme was conserving the first two invariants satisfactorily in the presence
of noise. Since the delays involved were all small, the actual reduction im amplitude of
the solitons in the presene of noise was not readily detectable from computer drawn graphs
made during the propagation period involved (non-dimensional time interval of length
t=09).

The effect of interaction between solitons in the presence of noise is shown in the
redrawn computer graphs in Fig. 5. In these computations gaussian noise with zero mean
and standard deviation ¢ = 0.04 was added to the initial data

3.3) u(x, 0) = a,sech?(k, x—8,)+a, sech?(k, x—4,),

at space-like intervals & = 0.01, where the notation of Eq. (3.2) was adopted with ob-
vious modifications, and

(34) a=09 d6=5 and g, =03, 6 =10

The time evolution of the noisy solitons is shown as the irregular line in Fig. 5. For
purposes of comparison, the noise free analytical solution [7, 17] for the evolution is shown



SOME ASPECTS OF THE MATHEMATICAL MODELLING OF LONG NONLINEAR WAVES 569

t=0

t=6

t=0
= N NN o i
\.—/_03 0 T o1 h
1
t=9

f"‘-__rf_"‘_"- . . 4
“ -0 N/ 0 \_/ o A~

FiG. 6. Autocorrelation functions of the noise associated with the results of FiG. 2.

on the same graph as the smooth line. These graphical results should merely be inter-
preted as being illustrative, since for practical purposes, due to the graphs being mechan-
ically plotted at small intervals, only alternate points have been graphed. This has led
to an apparent exaggeration of the noise and to a certain lack of smoothness in the graph
of the theoretical solution, though these effects were not, of course, present in the data
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actually analysed. Despite these limitations of the graphical display shown in Fig. 5 the
soliton delay is seen quite clearly, as is the growth in the size of the noise. When examining
these results it should be remembered that in addition to the delay caused by the noise,
there is also the phase shift that always accompanies soliton interaction [1, 7, 17].

Figure 6 shows autocorrelation functions of the noise associated with the solitons
illustrated in Fig. 5 at the initial time ¢ = 0 and the final time ¢ = 9. These exhibit a
definite change which thereby indicates that correlations have been introduced into the
noise as a result of its interaction with the KdV equation during this period. The initial
noise may be regarded as an approximation to band limited white noise, and the change
in the autocorrelation function shows that the noise spectrum has been modified. The
noise at times subsequent to the initial time was estimated by matching the smooth so-
lution to the noisy solution using cross-correlation and then subtracting the determinate
part from the soliton solution in the presence of noise.

As these experiments were not related to any specific physical situation, no attempt
was made to take account of any relaxation effects that might occur in connection with
the noise. This would, of course, influence both the delay mechanism and the time de-
pendence of the autocorrelation function, and through this the time dependence of the
noise spectrum.

In addition to the results just described, the evolution of solitons from initial data in
the form of a gaussian-shaped positive pulse in the presence of noise was-examined. The
number of solitons that emerged was still found to follow the asymptotic law derived by
BerezIN and KARPMAN [23], though the solitons experienced delays relative to the corres-
ponding noise free solution.

These results have once again confirmed experimentally the remarkable persistence
of KdV solitons. They have, however, also indicated the need both for more accurate
numerical experiments to confirm the delay process that has been reported here, and for
a theoretical understanding of the precise way in which the noise spectrum is modified
with time. A preliminary account of the work described in this Section, without any quanti-
tative results, was first reported in the author’s earlier paper [9], while a preliminary ver-
sion of the present paper was presented at a Symposium in Tallinn [24].

4, The time regularised long wave equation

There is no unique unidirectional long wave equation that characterises nonlinear
dispersive systems, and the asymptotic argument used to arrive at a particular long wave
equation may also provide equal justification for an alternative equation. Naturally, differ-
ent equations will have different mathematical properties, so that the choice between
equations needs to be determined by the closeness with which their mathematical prop-
erties correspond to those of the physical problem that is to be modelled. Since approxi-
mations must always be made when modelling physical situations, it is to be expected
that no one model is-likely to have every one of its mathematical properties in complete
agreement with the desired physical criteria.

An excellent illustration of this situation is provided by the work of PEREGRINE [3]
who, starting from the Boussinesq equations, derived the following canonical form of
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equation in connection with his description of the behaviour of an undular bore in water:

4.1 wFuFuu —tg, = 0.
This should be compared with the equivalent canonical form of the KdV equation
(4.2) Uttt Uttt i, =0

which might also be expected to provide a description of this same phenomenon. In both
of these equations the additional term u, may be removed by an elementary transforma-
tion, just as a dispersive parameter 4 may be introduced in front of the last term.

Subsequently, as part of a general study of the modelling of long waves in nonlinear
dispersive systems by BENJAMIN, BoNA and MAHONY [4], attention was focussed on Eq. (4.1)
as an alternative to the KdV equation (4.2). In their paper they established the existence,
uniqueness and stability of solutions to this equation which they called the regularised
long wave equation, though it is now usually known as the BBM equation. As their reasons
for preferring it to the KdV equation are directly relevant to what is to follow, we summa-
rise them below. By means of an asymptotic argument they showed, to the same order
of approximation involved when deriving the KdV equation (4.2) as a long wave
approximation, that d/dt = —d[dx. When this result is applied once to the last term in
Eq. (4.2) it yields the BBM equation (4.1), thereby establishing that the KdV and BBM
equations have equal validity asymptotically when describing long waves, though their
mathematical properties are somewhat different. Specifically it was argued in [4] that
the BBM gives a better description of long waves than does the KdV equation because
its linearised dispersion relation

4.3) w = k[(1+k?),
has better properties than the equivalent dispersion relation
4.4 o = k—k3

for the KdV equation. The basis of this argument was that the phase velocity w/k of the
KdV equation becomes negative for |k| > 1, thereby contradicting the assumption of
unidirectional propagation, while the group velocity dw/dk has no lower bound, so that
there is no limit to the rate at which fine detail may be transmitted in the negative x di-
rection. On the other hand, as the BBM dispersion relation (4.3) is not subject to these
objections and also possesses solitary wave solutions, it was suggested that the BBM equa-
tion should be preferred for the description of long waves to the asymptotically equivalent
KdV equation.

Despite these arguments objections may still be raised to the BBM equation since,
although bounded, its group velocity becomes negative for |k| > 1. In addition, and per-
haps more seriously, as the BBM equation, like the KdV equation, is first order in time,
it is only possible to specify u as initial data, whereas in some problems governed by these
equations it would be natural to expect to specify both # and du/dt as initial data. This
would necessitate the equation being second order in time, when it would also become able
to characterise bidirectional wave propagation. Furthermore, in the KdV and BBM
equations the effect of dispersion is so strong that it induces a stability of solution which
precludes the possibility of any “wave breaking” type phenomena occurring. This is physi-
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cally unrealistic insofar that situations may arise, as with water waves, where both non-
breaking and breaking of long waves may be expected to occur under different circum-
stances. If a model equation is sought which is capable of describing both such phenomena
within the one equation, it must obviously be different to the KdV and BBM equations
and yet still retain many of their essential features.

A model equation that fulfills some of these objectives is provided by the time regu-
larised long wave (TRLW) equation proposed by the author in [9]. It has the same asympto-
tic validity as the KdV and BBM equations, and is derived from the KdV equation by
twice applying the result d/dt = —2/dx to the last term in Eq. (4.2) to obtain

(4.5) u|+ux+“ux+ux" =0
The TRLW equation has the linearised dispersion relation
(4.6) w = [-1+(1+5k?)"2])2k,

a graph of which is shown in Fig. 7a. In Fig. 7b is shown a graph of the function k/w
against w, since this is of interest in the linearised case as k/w is analogous to the refrac-
tive index in an optically dispersive medium from which the notion of dispersion is de-
rived. Arrows have been used to indicate the direction of wave propagation that is associa-
ted with the curves.

w rk/w
_— B |
| 1
w
0 k =1 0 1
— - 1—*"7‘/—7—
a b

Fic. 7. a. Dispersion relation. b. ,,Refractive index” versus w.

It can be seen that, in general, this equation has desirable properties. The wave mo-
ving to the right has both phase and group velocities that are positive and remain finite,
with each tending to zero as |k|- 0. The wave moving to the left has a positive group ve-
locity and a negative phase velocity that both tend to zero as |k|— co, though for small k&
the phase and group velocities are unbounded.

Also in favour of the TRLW equation (4.5) is the fact that, like the KdV and BBM
equations, it possesses solitary wave solutions. However, unlike the KdV and Burgers’
equations, travelling wave solutions to the TRLW equation do not have the property of
Galilean invariance. It may be the case that in the loss of Galilean invariance there lies
the possibility of a wave breaking mechanism that can operate under certain circumstances,
but this has still to be established. In addition, the TRLW equation is conservative in the
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sense that it may be derived from a Lagrangian density as described by WHITHAM [7].
This density L has the form

1 1 1

4.7 L=—_0i+—03+0.0,— 0,,,

with u = 0,. The equation also possesses a Hamiltonian density

L ST SO
(4.8) H—-2—u+6u+2ug,
and has associated with it quantities which, when integrated over the spatial interval

(—oo, o) are time invariant. The first three of these are

1 1 1
(4.9) Co=1u C; =Tu2—:_:,u,, C;=?u3+u,u,+—2—u,’,
and they may be combined to correspond to the conservation of some more familiar
quantities. For example, conservation of energy corresponds to the result

o
(4.10) ~a%- f (C;+C)dx =0

that follows from Eq. (4.9).

Although the BBM equation possesses classical solitary wave solutions, these do not
retain their form after interaction, as do KdV solitons, since a slight change of shape
results, It seems probable that a similar change of shape will occur after the interaction
of TRLW solitary waves.

An obvious extension of the TRLW equation (4.5) occurs when dissipation is present
as in Burgers’ equation. Analogously to Eq. (1.1), we are thus led to consider the dissipa-
tive time regularised long wave (DTRLW) equation

(4.11) Uy + Ully — Vb + iy = 0.

This may be expected to have properties similar to those discussed in Sect. 2 for the KdVB
equation and, indeed, a simple calculation shows that the result (2.16) applies to Eq. (4.11)
if p is everywhere replaced by u(uz+ul)?/4.

Although other long wave equations may be derived from the KdV equation using the
same operator equivalence d/dt = —d[dx, none of them has properties that are as sat-
isfactory as those of the TRLW equation. It remains for its properties to be explored sys-
tematically, and for ideas like those of Sect. 3 to be extended to the BBM and TRLW
equation.

After the completion of this paper it was drawn to the author’s attention by L. J. F.
BRrOER [25] that a general paper has already appeared [26] discussing the determination
of the pair of canonically conjugate variables that are necessary if Eq. (4.8) is to be used
as a proper Hamiltonian. It was also pointed out that Eq. (4.5) has been suggested by
JosepH and EGRi1 [27] in an attempt to allow for the specification of the Cauchy data u
and du/dt. However, their objective did not include, as here, the desire to introduce a possible
wave breaking mechanism.
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