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Some aspects of the mathematical modelling of long nonlinear wav.es 

8* 

A. JEFFREY (NEWCASTLE} 

THIS PAPER begins with a brief review of the notions of far fields and long waves, and indicates 
why the study of equations of KdV and KdVB type are important to the modelling of unidi
rectional long nonlinear waves. An asymptotic solution is then developed for the shock wave 
solution for the KdVB equation that applies when dissipative effects predominate over dispersive 
effects. The sensitivity of this solution to the matching condition used at the orig;n is demonstra
ted. Some numerical experiments are then described concerning the propagation of one or more 
KdV solitons in the presence of noise. It appears from these that noise retards the speed of 
propagation of the solutions and that the KdV equation introduces correlations into the noise 
that were not present initially, thereby modifying the noise spectrum. Finally, a new time regula
rised long wave (TRL W) equation is proposed which is conservative, possesses travelling wave 
solutions and conservation laws and is capable of characterising bidirectional wave propagation. 
It is shown that when the TRLWequation is modified to include dissipation, as in Burgers'equa
tion, a change of parameter in the KdVB shock wave asymptotic solution yields the new 
shock solution. 

Praca rozpoczyna si~ kr6tkim przegl(ldem oznaczen p61 dalekiego oddzialywania i d1ugich fal. 
Wskazano na znaczenie skalarnych fal typu KdV (Korteweg-de Vries} oraz KdVB (Korteweg-de 
Vries-Burgers} przy modelowaniu jednowymiarowych dlugich nieliniowych fal. Opracowano 
nast~pnie rozwi(lzanie asymptotyczne dla fali uderzeniowej opisanej przez r6wnanie KdVB 
sluszne w przypadku, kiedy efekty dysypacji dominuj(l nad efektami dyspersji. Zbadano stopien 
wrai:liwosci tego rozwi(lzania w ~lei:no8ci od warunk6w dopasowania rozwi(lzania na po~tku. 
Opisane S(l dalej pewne eksperymenty numeryczne dctycZ(\ce propaga.cji jednego lub wi~j 
rozwi(lzan KdV przy wyst~powaniu szumu. Z analizy tej wynika, i:e zakl6cenia zmniejszaj(l 
pr~dkosc propagacji fal oraz i:e r6wnanie KdV wprowadza nieistniej(\CC\ pocz(ltkowo poprawk~ 
na szum, zmieniaj(lc tym spektrum szwnu. Wreszcie, zaproponowano nowe r6wnanie (TRL W) 
opisuj(lce wygladzone przez czas dlugie fale. R6wnanie to jest zachowawcze, posiada rozwi(lzania 
w postaci biegn(lcej fali i jest w stanie scharakteryzowac propagacje dwuwymiarowych fal. Wy
kazano, i:e po dokonaniu modyfikacji r6wnania TRL W w celu wprowadzenia dysypacji, tak jak 
w r6wnaniu Burgersa, zmiana parametr6w w rozwi(lzaniu asyrnptotycznym fali uderzeniowej 
dla r6wnania KdVB prowadzi do nowego rozwi(lzania z fal(l uderzeniow(l. 

Pa6oTa HatiHH:aeTCH KpaTKHM o6o3peHHeM o6o3Hatlemm noJie:H .xtaJieKoro B3aHMO.xteHCTBIDI 
H ):lJIHHHbiX BOJIH. YKa3aHO Ha 3HatleHHe CKaJIHpHbiX BOJIH THna K):lB (KopTeBer-.xte BpH3), 
a TaK>Ke K):lBE (KopTeser-.xte BpH3-Eyprepc), npH Mo.xteJIHposaHHH O,ltHOMepHbiX AJIHHHbiX 
HeJIHHeHHbiX BOJIH. 3aTeM pa3pa6oT3HO aCHMnTOTHtleCKoe peiiieHHe ):lJIH y,l:lapHOH BOJIHl>I, 
OIIHC3HHOH ypaBHeHHeM K):lBE, crrpase):lJIHBo B CJiyqae, KOr):la 3<lJ<lJeKTbl ):llfCCHnaUI[H npeo6Jia
):l310T Ha):l 3<lJ<PeKTaMH ,l:lHcnepCHH. MccJieAOBaHa creneHb 'tJYBCTBHTeJibHOCTH 3Toro pemeHHH 
B 3aBHCHMOC'IH OT YCJIOBHH COrJiaCOBaHHH pemeHHH B H3t13JibHbiH MOMeHT. 0nHCaHbl ):laJiee 
HeKOTOpbie tiHCJieHHbie 3KcnepHMeHThi, K3CaiOIIUieCH pacrrpocrpaHeHIDI O,ltHOrO, HJIH 6oJib
IIIero KOJmtleCTBa pemeHHii K.xtB rrpH BbiCTyiiaHHH myMa. M3 3TOro aHaJIH3a cJie):lyeT, tiTO 
B03Myii.{eHIDI y.MeHbmaiOT CKOpOCTL pacnpoCTpaHeHHH BOJIH H tiTO ypaBHeHHe K):lB BBO):lHT 
Hecy~eCTByro~yiO BHaqaJie nonpaBKY Ha myM, H3MeHHH TaKHM o6pa30M cneKTp myMa. Ha
KOHe~, npe):lnOJIO>I<eHO HOBOe ypaBHeHHe (TP JIB), OnHCbiB3IO~ee BbirJI3>1<eHHbie BpeMeHeM 
):lJIHHHbJe BOJIHl>I. 3TO ypaBHeHHe KOHCepsaTHBHO, HMeeT pemeHHH B BH):le 6eryii.{eH BOJIHbi 
H B COCTOHHHH OnHC3TL pacrrpOCTpaHeHHe ):lByMepHbiX BOJIH. llOKa3aHO, tiTO eCIDI rrpoBeCTH 
MO,liU<lJHK~ ypaBHeHHH TP JIB C ~eJibiO BBe,l:leHIDI ):llfCCHIIIUUfH, TaK KaK B ypasHemm 
Eyprepca, TO H3MeHeHHe napaMeTpOB B 3CHMnTOTHtleCKOM pememm y):lapHOH BOJIHbl ):lJIH ypaB
HeHWI K):lBE rrpHBO):lHT K HOBOMY pememuo C y,l:lapHOH BOJIHOH. 

http://rcin.org.pl



560 A. JEFFREY 

1. Long waves and far fields 

T~ MODELLING of long nonlinear waves in a continuum is of considerable impopance 
and it arises in connection with topics as diverse as the study of gravity waves in fluias, 
plasma waves, anharmonic lattice waves, longitudinal dispersive waves in elastic rods 
and also in a variety of other circumstances. Accounts of the way in which these waves 
occur and of many of their properties, together with extensive bibliographies, are to be 
found in the review papers by JEFFREY and KAKUTANI [I] and Scorr, CHU and McLAu
GHLIN ·[2]. 

These seemingly different topics have_ as unifying features the facts that they each 
involve systems of partial differential equations, their long wave behaviour is determined 
as the result of a perturbation argument, and yet this behaviour of a system is in each 
case governed only by a scalar quasi-linear partial differential equation. Depending 
on the physical attributes of the problem involved, and to some extent on the mathemat
ical modelling philosophy that is adopted, so will depend the precise form of the scalar 
equation that occurs. Aside from the scalar equation derived from the Boussinesq equa
tions that was used first by PEREGRINE [3] to describe an undular bore, and studied later 
in great detail by BENJAMIN, BoNA and MAHONY [4], the prototype equation that usually 
results is a variant of the Korteweg-de Vries-Burgers' (KdVB) equation 

(1.1) 

This equation characterises unidirectional wave propagation since it contains only a first 
order time derivative, and it is so called because when p, = 0 it reduces to Burgers' equation, 
and when, = 0 to the Korteweg-de Vries (KdV) equation. The dissipative effect in the 
KdVB equation is provided by the term -'J1U~J" in which the condition, > 0 in Eq. (1.1) 
is required to ensure that "energy" is dissipated and not added. The dispersive effect is 
provided by the term p,u~xx' and for convenience we take p, > 0 in Eq. (1.1) to conform 
with the convention usually adopted when working with the KdV equation. 

Let us now outline the reason for the relevance of an equation such as Eq. (1.1) to 
the study of long nonlinear waves governed by a system of n quasi-linear equations with 
order not less than two. We consider a general system 

(1.2) 

8 p 

oU +A-oU + [ ~n{np!_ +Kp_!_ }] U = 0 P ~ 2, at OX L,; IX at IX ax ' 
P=O IX=l 

where U is an n element vector with the components u1 , u2 , ••• , u,. and A, H~, K~ are 
n x n matrices with arbitrarily differentiable elements that depend only on U. Then, follow
ing a method developed by TANIUTI and WEI [5], it has been shown [1] how, when the 
system (1.2) satisfies certain conditions, a general reductive perturbation method may be 
developed to find the behaviour of small but finite perturbations relative to some constant 
solution U0 of the system. 

In brief, we shall suppose that the first order system obtained from Eq. (1.2) by neglect-
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SoME ASPECTS OF THE MATHEMATICAL MODELLING OF LONG NONLiNEA.R WAVFS 561 

ing the terms in square brackets is hyperbolic (see JEFFREY [6]), that U-+ U0 as x-+ - oo, 
and that U may be expanded in the form 

00 

(1.3) U = ~ c!U1, 
}=0 

with corresponding expansions being valid for any other functions of U that arise. Then, 
for a disturbance wave associated with any one of then real eigenvalues A.<cx> of A, it can 
be shown [I] that the first order perturbation U1 has the form 

(1.4) 

where ,gx> = r<cx>(U0 ) is a suitably normalised eigenvector of the matrix A(U0 ) correspond
ing to the eigenvalue A.&cx> = A.<cx>(U0), and that the scalar u satisfies. an equation similar 
to Eq. (1.1). When deriving Eq. {1.4) a coordinate-stretching is involved of the form 

(1.5) ~ = e~(x- Abcx>t), T = ea+lt, a = 1/(p-1), 

which automatically directs attention to the stretched time e•+ 1 t, and hence to large times 
and correspondingly large distances from the origin. For this reason such solutions are 
often called far fields. Thus, in general, the system (I .2) will have associated with it n 
distinct far fields corresponding to each of then real eigenvalues of A, and each will be 
governed by a scalar equation similar to Eq. (1.1). These equations describe long waves 
in the sense that the wavelengths involved are large in relation to the magnitude of the 
class of perturbations that is to be considered. 

This situation is well illustrated by the KdV equation governing long waves in shallow 
water [1, 7] which can be written (see Fig. 1) 

(1.6) Vr+y'gho[l+ ~ (v{h0)]vx+! j1gh0 h~Vxxx = 0, 

with h0 the equilibrium depth, v(X, T) the local surface elevation relative to the equilibrium 
level, g the acceleration due to gravity, X the horizontal distance and T the time. If the 
maximum amplitude aad wavelength of the disturbances are ~ and A, respectively, then, 
setting 

'( 

--t-------1\-----

0 

FIG. 1. Long waves in shallow water. 
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562 A. ]EFFREY 

Eq. (1.6) will hold when 'YJ, t-t are small. In terms of the non-dimensional variables 

X= XJA, t = T}i gh~JA, 

the KdV equation (1.6) becomes 

(1.7) 

If desired, this may be expressed in terms of the same canonical form of the KdV equation 
that is implied by Eq. (1.1) with v = 0 by making the variable changes x--+ x-t and 
u--+ uf'YJ. 

For further discussion of long waves in the context of far fields and for an account of 
the relevance to their study of the so-called nonlinear Schrodinger equation 

(1.8) iut + ~ Uxx +alul 2u = 0, 

we refer to the papers by TANIUTI [8], JEFFREY [9] and DAVEY [10]. We mention here 
only the fact that the far fields of the purely hyperbolic system derived from Eq. (1.2) 
by neglecting the terms in square brackets are merely simple waves. As neither dispersive 
nor dissipative effects act to prevent the steepening of waves in the purely hyperbolic case, 
the simple wave far fields will only exist until such time as shocks form. 

It is important to recognise that while the hyperbolic equation derived from Eq. (1.1) 
by neglecting the dissipative and dispersive terms has simple wave solutions, it has no 
travelling wave solutions. Such solutions are, however, possessed by Burgers' equation, 
the KdV equation and the KdVB equation. This comes about because of a balance that 
occurs between the steepening effect due to the nonlinear term uux, and the smoothing 
effect produced by dissipation and dispersion. These travelling wave solutions are of 
considerable importance mathematically, and different aspects of them will concern us 
throughout the remainder of this paper. 

2. Travelling wave solutions 

In two dimensions, travelling wave solutions have the form 

(2.1) u(x, t) = u(C), C = x- A.t, ;. = const, 

and they must satisfy some appropriate boundary conditions at infinity. In general, these 
will determine the permissible range of vlues of ).. In the case of ,Burgers' equation and 
the KdV equation, for both of which all the derivatives of the solutions tend to zero as 
lxl --+ oo, these equations have the following well-known solutions [1, 7] satisfying the 
stated boundary conditions. 

Burgers' shock wave (Jt = 0) 

(2.2) 
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which satisfies the boundary conditions 

Iim uiCI = u: with u~ > u~, 
ICJ-+oo 

and has A.= ~ (u;;;+u~) (see Fig. 2.). 

u;;, 

0 

FIG. 2. Burgers' shock wave. 

KdV solitary wave (v = 0) 

(2.3) 

which satisfies the boundary conditions 

lim u(C) = Uoo 
ICJ-+oo 

and has A. = U 00 +a/3, (See Fig. 3). 

with U00 ~ 0, 

u 

0 

FIG. 3. KdV solitary wave. 

563 

The Burgers' shock wave, as the travelling wave (2.2) is called, is seen to propagate 
with a speed A. = (u;;; +u~)/2 that is uniquely determined by the boundary conditions, 
but to be invariant with respect to an arbitrary fixed spatial translation. This last result 
follows because if u(C) is a solution, then so is u(C+k) with k = const. More generally, 
all solutions u(x, t) of Burgers' equation are invariant with respect to a Galilean transfor
mation. This may be seen by observing that if u(x, t) is a solution, then u(x+st, t)-s 
with s = const is also a solution. 

The KdV solitary wave, or soliton, is a pulse shaped wave that, relative to the con
stant value U00 at infinity, tends to zero together with all its derivatives as ICI -+ oo. Its 
speed of propagation relative to u00 is proportional to the amplitude a, and its width is 
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564 A. JEFFREY 

inversely proportional to the square root of the amplitude. In this travelling wave the speed 
is not determined uniquely by the boundary conditions, but depends only on the amplitude 

, a > 0. Like Burgers' shock wave, the KdV solitary wave is also invariant with respect to 
a Galilean transformation. It is important to recognise that all solitary waves are similar 
in the sense that, relative to their respective yalues at infinity, a translation and scaling 
of amplitude of such a wave will transform it into any other one. 

While these analytical solutions exist for the travelling wave solutions for the Burgers' 
and KdV equations, no comparable analytical solution exists for the KdVB equation {1.1}, 
and yet this equation is important when modelling waves with a combination of dissipa
tive and dispersive effects. Numerical calculations for Eq. (1.1) carried out by GRAo and 
Hu [ll] show that when 112 < 4p, dispersive effects are the most significant ones and that 
the solution represents an oscillatory shock wave. For the case 112 ~ 4p, JoHNSON [12] 
matched a perturbed solitary wave with a cnoidal wave to obtain an asymptotic solution 
that exhibited oscillation. However, although the phase plane analysis described by 
JEFFREY and KAKuTANI [I] and the numerical results of GRAD and Hu [11] indicate that 
when dissipative effects predominate and 112 > 4~t the solution will behave like a Burgers' 
shock wave, no detailed analysis of this situation has yet been made. Accordingly, we now 
outline the details of an asymptotic solution for such a KdVB travelling wave, or shock 
wave, when 112 > 4p,. 

Let us consider a travelling wave solution u(C) to the KdVB equation (1.1) with the 
boundary conditions u(- 00) = u;, and u( 00) = u~ where, as before, u; > u~, c = 
= x- A.t. Then u must satisfy the equation 

(2.4) 
du _ du d2u d3u 

-A. d[ +.u d[ -" dC2 + IL dC3 = 0. 

Integrating and using the bound~ry conditions and the vanishing of derivatives at infinity 
shows that A. = (u; +u~)/2 and so 

(2.5) 

Making the variabe changes 

(2.6) 
u-u!, 

V=---
u;-u:' 

and 

reduces Eq. (2.5) to 

(2.7) 

with the boundary conditions 

(2.8) v(- oo) = 1 and v( + oo) = 0. 

To obtain an asymptotic solution of Eq. (2.7) in the form 

(2.9) v(~) = v1 (~)+ev2(~)+e2v3 (~)+ ... , 

it is necessary to match the asymptotic solution to some feature of the true solution that 
is important. The natural choice is to match to an appropriate order of e the value of v 
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at the point where the curvature of the KdVB shock wave changes sign. Because the 
KdVB shock wave, like the Burgers' shock wave, is invariant with respect to an arbitrary 
fixed translation, the origin of ~ may be chosen to be at this point. To determine v(O), 
and hence v 1 (0), v2 (0), ... , we proceed as follows. 

Introducing the (v, s)-phase plane with s = dvfd~ allows Eq. (2.7) to be written as 
the system 

(2.IO) 
ds 2 e d~ = s-v +v, 

(2.11) 
dv 
d~ = s. 

This system has critical points at the origin (0, 0) and at (I, 0), with the origin represent-:
ing a stable node and (I, 0) a saddle point. As these two points correspond to the two 
boundary conditions (2.8) to be satisfied by the solution to Eq. (2.7) we conclud~ that the 
solution corresponding to the trajectory joining these two critical points must be unique. 
Furthermore, the point P on this trajectory at which dsfdv = 0 will correspond to the 
point where the curvature of the KdVB shock wave changes sign. 

To find v(O) we now seek an expansion of s in the form 

(2.I2) 

Using this in the expression for dsfdv obtained by dividing Eq. (2.10) by Eq. {2.11), and 
equating terms with corresponding powers of e, shows that the functions fi are defined 
recursively and that to first order in e 

(2.13) 

Again, working to first order in e, it follows that dsfdv = 0 when 

(2.I4) 
I E 

v(O) = 2 +4, 

and comparison with Eq. (2.9) then gives as the conditions to be satisfied by v1 (~) and 
v2(~), 

(2.I5) and 

The substitution of Eq. (2.9) into Eq. (2.7) followed by a routine calculation, in-. 
volving equating terms with corresponding powers of e and integration using the conditions 
(2.I5), finally leads to the result 

(2.16) -('") = u~+u;!;e~ p.(u~-u;!;)2& [I ~-21 (~)] O( 2) 
u ~, I+& + 2v2(I-&)2 + og I+& + E , 

with 
~ = (u~ -u~)Cf2v, e = (u~ -u;!;)p.f2v2 and v2 > 4p.. 

It is instructive to compare the results in Eqs. (2.2) and (2.16) and to observe that 
to the first order in e the dispersion coefficient p, enters only as a linear factor in the se-
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566 A. JEFFREY 

cond term. Indeed, using Eqs. (2.11), {2.13) and (2.14) to calculate dvfd~ when 
E = 0 gives 

(2.17) or dii = (u; - u~)2 ( _ _!_ ~) 
dr, 2J~ 4 + 16 . 

This shows that the gradient of the KdVB shock wave at ~ = 0, or equivalently at r, = 0, 
is the same as that of Burgers' shock wave (2.2) to first order in e. 

Some indication of the sensitivity of this solution to the accuracy with which the match
ing of v(O) is carried out may be obtained by modifying the conditions used in Eq. 
(2.15). If, instead of Eq. (2.15) we require v1(;) and v2 (;) to satisfy the conditions 

1 1 
v1(0) = T (1 +a) and v2 (0) = 4-(1 +{J), 

where a and p are small, then corresponding to Eq. (2.16) we find the modified re
sult 

_ _ (1 + a)u;;; +(I- a)u~& p,(u; -u~)2& [ ( 2e' )] 2 
Um(C)- (1+a)+(1-a)ef + 2v2(1+&)2 1+P+~-2log 1+& +Oe ). 

Of the parameters a and fJ we see, as would be expected, that a is the more significant 
of the two in its effect on Um· To interpret this quantitatively let us set u! = 0 and, work
ing to an accuracy O(e), examine the ratio k(C) = umfu, where 

k('") = (1 +a) (1 + &) ' and I: '"/2 
"' (I+a)+(l-a)& s- = u;~,. v. 

Then k(-oo) = 1, but k(+oo) = (1+a)/(I-a) =? 1+2a, for small a. 
Thus, although u(C) -+ 0 as r,-+ + oo, the ratio u,.fu -+ 1 + 2a. This shows that when 

the factor multiplying the true value of v1 (0) is 1-f a, instead of unity, this causes Um to 
exceed u by a factor 1 + 2a for large positive r,. Indeed, this error is even significant close 
to the origin, for setting ; = 1 in the expression for k, which is equivalent to setting 
C = 2vfu;, shows that Um/u = 1 +2cxe/(1 +e), so that already Um = (1 + l.45a)u. 

This analytical demonstration of the sensitivity of the KdVB shock solution to a per
turbation at the origin reflects a similar result found computationally by G. I. BAREN
BLATT [13] for a certain initial valve problem for the KdV equation. Specifically he found, 
starting from a Burgers' shock wave as initial data, that a small perturbation at the origin 
caused a totally different solution to evolve from that which arises from the unperturbed 
initial data. 

3. KdV solitions with noise 

Interaction between KdV solitons was first studied in the early numerical work carried 
out by ZABUSKY and KRusKAL [14], accounts of which are also to be found in references 
[1, 2]. Since then the understanding of the mechanism of the generation of solitons and 
the reason for their persistence despite repeated interactions has been advanced by the 
work of many authors. Notable amongst these are GARDNER, GREENE, KRusKAL and 
~IURA [15), LAX [16], HIROTA [17] ZAKHAROV and SHABAT [18] and ABLOWITZ, KAUP, 
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NEWELL and SEGUR [19]. In all of this work smooth initial data was assumed, and only 
as recently as 1976 in a paper by LAX [20] was initial data considered that comprised a ran
dom disturbance superimposed on an otherwise smooth function. However, the result 
reported by Lax did not relate to soli tons but to a special class of periodic solutions of the 
KdV equation, and it was found by numerical computation that the periodicity of the 
solution appeared not to be disturbed by the superposed random disturbance. 

Just as a long wave is a mathematical idealisation of a physical situation, so also is 
the assumption that its initial data is smooth. Thus, since there is much general interest 
in the way solitons interact, and also in their stability, it is appropriate that these situations 
should be examined when the initial data comprises one or more solitons on which at the 
initial time a gaussian random disturbance has been superimposed. Accordingly, in the 
remainder of this section, we describe the results of some numerical experiments designed 
to examine and quantify the time evolution of soliton solutions to the KdV equation that 
arise from initial data of this type. Solitons that tend to zero at infinity have been chosen 
for study (uoo = 0), and for convenience we henceforth refer to the random disturbance 
involved as noise. 

The finite difference scheme employed by ZABUSKY and KR.usKAL [14] was used for 
the numerical integration, and the noise was generated by a gaussian random number 
subroutine designed to produce random numbers with zero mean and a specified stand
ard deviation a using the direct method suggested by Box and MuLLER [21]. A statistical 
examination of these random numbers confirmed that their mean and standard devia
tion had the desired properties to within the variisbility expected for the sample sizes of 
350 numbers that were actually used. The effect of noise on a single soliton was found 
to be a progressive retardation, or delay, of the disturbed soliton relative to the undisturb
ed soliton as they advanced with increasing time. This delay ~ as a function of time was 
found to increase as the standard deviation of the noise a was increased, and the deve
lopment of the delay is shown in Fig. 4 for different initial standard deviations. The 

8 -2 
6•10 -- aa09 

O•O.Q1 

---- a •0.3 

10 41-----+----+--7''------t--7""----7"1>"'-~~ 

>
CO 

Q) 

u 

0 2 4 6 8 10 
time 

FIG. 4. Single soJiton delay t5 as a function of soJiton amplitude a, initial standard~ deviation f1 

and time t. 
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magnitude of the delay at any given time was found by cross-correlating the soliton so
lution in the presence of noise with the corresponding steadily progressing smooth soli ton 
solution. The shift of the peak of the cross-correlation function from the origin was inter
preted as the spatial delay experienced by the noisy soliton at that time. 

The equation to be solved was taken in the form 

. (3.1) 

which in terms of the parameter . a > 0 has the soliton solution that vanishes at infinity 
(u00 = 0) 

(3.2) u(x, t) = asech2(kx-wt+ t}), 

with k = ~ y (af3p), w = ak/3 and t}anarbitraryconstant. Inallofthecalculationsdescrib

ed in this section the non-dimensional length and time steps used in the integration were, 
respectively, h = 0.01 and k = 0.0005. These were chosen so that the stability condition 
for the finite difference scheme was well satisfied. Mter selecting a value of the ampli
tude a, gaussian random numbers drawn from a distribution with zero mean and the 
desired initial standard deviation a·= 0.02, 0.03 and 0.04 were added at space-like inter
vals h to the initial data derived from Eq. (3.2) by setting t = t} = 0 and p, = 4.84 x 10-4

• 

The results corresponding to a = 0.3 are shown as dotted lines in Fig. 4 and those corres
ponding to a = 0.9 are shown as full lines. 

As the speed of a soliton is proportional to its amplitude; this retardation must corres
pond to a progressive reduction in amplitude. Furthermore, as the KdV equation is a con· 
servation equation with an infinite number of conservation laws [1, 2, 7, 14, 22], one of 
which corresponds to the conservation of energy, the retardation should be accompanied 
by an increase in the standard deviation of the noise. This was in fact observed, and through· 
out all calculations the energy invariant remained constant to within 0.3%. The invariant 
corresponding to the conservation of momentum remained constant to within 0.8%, 
thereby providing evidence both that the amplitude was changing slowly, and that the 
integration scheme was conserving the first two invariants satisfactorily in the presence 
of noise. Since the delays involved were all small, the actual reduction im amplitude of 
the soli tons in the presene of noise was not readily detectable from computer drawn graphs 
made during the propagation period involved (non-dimensional time interval of length 
t = 9). 

The effect of interaction between solitons in the presence of noise is shown in the 
redrawn computer graphs in Fig. 5. In these computations gaussian noise with zero mean 
and standard deviation a = 0.04 was added to the initial data 

(3.3) 

at space-like intervals h = 0.01, where the notation of Eq. (3.2) was adopted with ob
vious modifications, and 

(3.4) 

The time evolution of the noisy solitons is shown as the irregular line in Fig. 5. For 
purposes of comparison, the noise free analytical solution [7, 17] for the evolution is shown 

http://rcin.org.pl



8oMB ASPECTS OF THE MATHEMATicAL MODELLING OF LONG NONLINEAR WAVES 569 

1

LA o. -~ 
~;;; ~Q 4QVCf 

1 

t:O 

2 3 

l 
t•3 1 

- ·- • n·~t!J·" .D. 4 ·~ 
0 V ·~ v ~vwy f4 r o '<JQ • vvvp r41 

1 2 3 

11 t=6 

oA A ,, Jl,, .:::> A 0>~•'1 "' """ ' 0' 94{\J \j4;A'*QV V 9 u Q ';{ti vv WU1Vi V V V 

1 2 3 

11 . 1=9 

, , ,o o A A a A "" •• •• ~ " " • A 0; y 0 (>V\ CJT ., V p:s:> ""en i<J'(yY r~ ~ veo• VVc:> 
0 1 2 3 

FIG. 5. Interaction of two solitons in the presence of noise with initial standard deviation G = 0.04. 

t = 0 

FIG. 6. Autocorrelation functions of the noise associated with the results of FIG. 2. 

on the same graph as the smooth line. These graphical results should merely be inter
preted as being illustrative, since for practical purposes, due to the graphs being mechan
icalJy plotted at small intervals, only alternate points have been graphed. This has led 
to an apparent exaggeration of the noise and to a certain lack of smoothness in the graph 
of the theoretical solution, though these effects were not, of course, present in the data 
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actually analysed. Despite these limitations of the graphical display shown in Fig. 5 the 
soliton delay is seen quite clearly, as is the growth in the size. of the noise. When examining 
these results it should be remembered that in addition to the delay caused by the noise, 
there is also the phase shift that always accompanies soliton interaction [I, 7, 17]. 

Figure 6 shows autocorrelation functions of the noise associated with the solitons 
illustrated in Fig. 5 at the initial time t = 0 and the final time t = 9. These exhibit a 
definite change which thereby indicates that correlations have been introduced into the 
noise as a result of its interaction with the KdV equation during this period. The initial 
noise may be regarded as an approximation to band limited white noise, and the change 
in the autocorrelation function shows that the noise spectrum has been modified. The 
noise at times subsequent to the initial time was estimated by matching the smooth so
lution to the noisy solution using cross-correlation and then subtracting the determinate 
part from the soliton solution in the presence of noise. 

As these experiments were not related to any specific physical situation, no attempt 
was made to take account of any relaxation effects that might occur in connection with 
the noise. This would, of course, influence both the delay mechanism and the time de
pendence of the autocorrelation function, and through this the time dependence of the 
noise spectrum. 

In addition to the results just described, the evolution of solitons from initial data in 
the form of a gaussian-shaped positive pulse in the presence of noise was-examined. The 
number of solitons that emerged was still found to follow the asymptotic law derived by 
BEREZIN and KARPMAN [23], though the solitons experienced delays relative to the corres
ponding noise free solution. 

These results have once again confirmed experimentally the remarkable persistence 
of KdV solitons. They have, however, also indicated the need both for more accurate 
numerical experiments to confirm the delay process that has been reported here, and for 
a theoretical understanding of the precise way in which the noise spectrum is modified 
with time. A preliminary account of the work described in this Section, without any quanti
tative results, was first reported in the author's earlier paper [9], while a preliminary ver
sion of the present paper was presented at a Symposium in Tallinn [24]. 

4. The time regularised long wave equation 

There is no unique un}directional long wave equation that characterises nonlinear 
dispersive systems, and the asymptotic argument used to arrive at a particular long wave 
equation may also provide equal justification for an alternative equation. Naturally, differ
ent equations will have different mathematical properties, so that the choice between 
equations needs to be determined by the closeness with which their mathematical prop
erties correspond to those of the physical problem that is to be modelled. Since approxi
mations must always be made when modelling physical situations, it is to be expected 
that no one model is· likely to have every one of its mathematical properties in complete 
agreement with the desired physical criteria. 

An excellent illustration of this situation is provided by the work of PEREGRINE [3] 
who, starting from the Boussinesq equations, derived the following canonical form of 
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equation in connection with his description of the behaviour of an undular bore in water: 

(4.1) 

This should be compared with the equivalent canonical form of the KdV equation 

(4.2) 

·which might also be expected to provide a description of this same phenomenon. In both 
of these equations the additional term Ux may be removed by an elementary transforma
tion, just as a dispersive parameter p, may be introduced in front of the last term. 

Subsequently, as part of a general study of the modelling of long waves in nonlinear 
dispersive systems by BENJAMIN, BoNA and MAHONY [4], attention was focussed on Eq. (4.1) 
as an alternative to the KdV equation ( 4.2). In their paper they established the existence, 
uniqueness and stability of solutions to this equation which they called the regularised 
long wave equation, though it is now usually known as the BBM equation. As their reasons 
for preferring it to the KdV equation are directly relevant to what is to follow, we summa
rise them below. By means of an asymptotic argument they showed, to the same order 
of approximation involved when deriving the KdV equation ( 4.2) as a long wave 
approximation, that ofot = -ofox. When this result is applied once to the last term in 
Eq. (4.2) it yields the BBM equation (4.1), thereby establishing that the KdV and BBM 
equations have equal validity asymptotically when describing long waves, though their 
mathematical properties are somewhat different. Specifically it was argued in [4] that 
the BBM gives a better description of long waves than does the KdV equation because 
its linearised dispersion relation 

(4.3) 

has better properties than the equivalent dispersion relation 

(4.4) w = k-k3 

for the KdV equation. The basis of this argument was that the phase velocity wfk of the 
KdV equation becomes negative for lkl > 1, thereby contradicting the assumption of 
unidirectional propagation, while the group velocity dwfdk has no lower bound, so that 
there is no limit to the rate at which fine detail may be transmitted in the negative x di
rection. On the other hand, as the BBM dispersion relation ( 4.3) is not subject to these 
objections and also posse~ses solitary wave solutions, it was suggested that the BBM equa
tion should be preferred for the description of long waves to the asymptotically equivalent 
KdV equation. 

Despite these arguments objections may still be taised to the BBM equation since, 
although bounded, its group velocity becomes negative for lkl > 1. In addition, and per
haps more seriously, as the BBM equation, like the KdV equation, is first order in time, 
it is only possible to specify u as initial data, whereas in some problems governed by these 
equations it would be natural to expect to specify both u and oufot as initial data. This 
would necessitate the equation being second order in time, when it would also become able 
to characterise bidirectional wave propagation. Furthermore, in the KdV and BBM 
equations the effect of dispersion is so strong that it induces a stability of solution which 
precludes the possibility of any "wave breaking" type phenomena occurring. This is physi-
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cally unrealistic insofar that situations may arise, as with water waves, where both non
breaking and breaking of long waves may be expected to occur under different circum
stances. If a model equation is sought which is capable of describing both such phenomena 
within the one equation, it must obviously be different to the KdV and BBM equations 
and yet still retain many of their essential features. 

A model equation that fulfills some of these objectives is provided by the time regu
larised long wave (TRL W) equation proposed by the author in [9]. It has the same asympto
tic validity as the KdV and BBM equations, and is derived from the KdV equation by 
twice applying the result a;at = -a;ax to the last term in Eq. (4.2) to obtain 

(4.5) Ut+ux+Uux+Uxtt = 0. 

The TRL W equation has the linearised dispersion relation 

(4.6) w = [-l±(l+5k2)
112]/2k, 

a graph of which is shown in Fig. 7a. In Fig. 7b is shown a graph of the function kfw 
against w, since this is of interest in the linearised case as kfw is analogous to the refrac
tive index in an optically dispersive ·medium from which the notion of dispersion is de~ 
rived. Arrows have been used to indicate the direction of wave propagation that is associa
ted with the curves. 

0 

a b 

FIG. 7. a. · Dispersion relation. b. ,Refractive index" versus w. 

It can be seen that, in general, this equation has desirable properties. The wave mo
ving to the right has both phase and group velocities that are positive and remain finite, 
with each tending to zero as lkl-. oo. The wave moving to the left has a positive group ve
locity and a negative phase velocity that both tend to zero as lkj-.oo, though for small k 
the phase and group velocities are unbounded. 

Also in favour of the TRLW equation (4.5) is the fact that, like the KdV and BBM 
equations, it possesses solitary wave solutions. However, unlike the KdV and Burgers' 
equations, travelling wave solutions to the TRL W equation do not have the property of 
Galilean invariance. It may be the case that in the loss of Galilean invariance there lies 
the possibility of a wave breaking mechanism that can operate under certain circumstances, 
but this has still to be established. In addition, the TRLW equation is conservative in the 
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sense that it may be derived from a Lagrangian density as described by WmTHAM [7]. 
This density L has the form 

(4.7) 1 ()2 1 ()3 1 () () 1 ()2 
L=T x+6 .x+T .x t-2 .xn 

with u = O.x. The equation also possesses a Hamiltonian density 

(4.8) 

and has associated with it quantities which, when integrated over the spatial interval 
(- oo, oo) are time invariant. The first three of these are 

(4.9) C0 = u, C 1 2 
1 =-U-UUt 2 . .x ' 

and they may be combined to correspond to the conservation of some more familiar 
quantities. For example, conservation of energy corresponds to the result 

00 

(4.10) :t f (C1 +C2)dx = 0 
-oo 

that follows from Eq. (4.9). 
Although the BBM equation possesses classical solitary wave solutions, these do not 

retain their form after interaction, as do KdV solitons, since a slight change of shape 
results. It seems probable that a similar change of shape will occur after the interaction 
of TRL W solitary waves. 

An obvious extension of the TRL W equation ( 4.5) occurs when dissipation is present, 
as in Burgers' equation. Analogously to Eq. (1.1), we are thus led to consider the dissipa
tive time regularised long wave (DTRL W) equation 

(4.11) 

This may be expected to have properties similar to those discussed in Sect. 2 for the KdVB 
equation and, indeed, a simple calculation shows that the result (2.16) applies to Eq. (4.11) 
if p, is everywhere replaced by p,(u; + u!J214. 

Although other long wave equations may be derived from the KdV equation using the 
same operator equivalence a I at = -a 1 ax, none of them has properties that are as sat
isfactory as those of the TRLW equation. It remains for its properties to be explored sys
tematically, and for ideas like those of Sect. 3 to be extended to the BBM and TRLW 
equation. 

After the completion of this paper it was drawn to the author's attention by L. J. F. 
BROER [25] that a general paper has already appeared [26] discussing the determination 
of the pair of canonically conjugate variables that are necessary if Eq ... ( 4.8) is to be used 
as a proper Hamiltonian. It was also pointed out that Eq. (4.5) has been suggested by 
JosEPH and EGRI [27] in an attempt to allow for the specification of the Cauchy data u 

and aulat. However, tli.eir objective did not include, as here, the desire to introduce a possible 
wave breaking mechanism. 
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