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Displacement description of dislocation lines 
I. Cyclic functions 

Z. MOSSAKOWSKA (WARSZAWA) 

THE NOTION of cyclic functions is introduced. Construction of a certain class of cyclic functions 
is presented in a n-dimensional metric space in which the second-order mixed derivatives do not 
commute. Particular forms of cyclic functions are given in a three-dimensional metric space 
and in a four-dimensional Minkowskian space. 

Wprgwadzono poj~e funkcji cyklicmych. Podano konstrukcj~ pewnej klasy funkcji cyklicz
nych w n-wymiarowej przestrzeni metrycmej spelniaj~cej dany warunek komutacyjny dla drugich 
pochodnych mieszanych. Podano wyra.Zenia na konkretne funkcje cyklicme w tr6jwymarowej 
przestrzeni euklidesowej i czterowymiarowej przestrzeni Minkowskiego.. 

Bse.neao nomrnre IUlJ(JIIAecKBX Q>~H:. ,UaeTcx nOCTpoeHHe HeKoToporo KJiacca ~
llecKHx Q>ymaurl{ B n-MepHOM MeTpiAeCKOM npOCTpaHCTBe, y,li;OBJieTBOpm<>IIUIX sa,naHHOMy 
YCJIOBHIO KOMMyramm' ,li;JIH BTOpbiX CMema:HHbiX JIPOH3BO,li;HbiX. ,llarorcH Bb:tpa>KeHHH ,li;JIH 

KOHKPeTHbiX l.lHKJ'IINeciOfX Q>ym<Itlrii B TpeXMepHOM eBKJIH,li;OBOM JIPOCTpllHCTBe H B 'leTblpCX
MepHOM JIPOCTpllHCTBe MmncOBCKOrO. 

1. Introduction 

THE MATHEMATICAL theory of dislocations in a linear elastic medium is well developed, 
although there exists a certain dualism within this theory. The dislocation is known to 
be a linear. defect; in most of the papers, howeveP, the surface model of a dislocation is 
used. This is due to the impossibility of a direct application _of the Burgers condition 
defining the dislocation line. This condition states that the loop D is a dislocation line 
if, for each closed curve called the Burgers circuit embracing only once the dislocation 
line D, the total displacement increment equals the constant vector b called the Burgers 
vector, 

(1.1) f du =b. 
B 

In the papers using the surface model of dislocation the starting point is usually either 
the conditi~n for the displacement jump at the dis!ocation surface [ u ]s = b, or the initial 
distortion ~ defined as a singular distribution with a support at the dislocation surface 
S(oS =D). 

The only consistent approach to a dislocation treated as a linear defect! may be found 
in a paper by E. KossECKA [I]; however, no displacement field can be attributed to that 
dislocation. The dislocation might be connected with a multivalued displacement field, 
as it was demonstrated by RoGULA [2], and such an approach is very close to that pro
posed in the present paper. 
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534 Z. MoSsubWRA 

Let us analyse what difficulties are encountered in the cJ.isplacement description of 
dislocations treated as linear defects. To this end let us write, quite formally, the Burgers 
condition 

(1.2) f V1u1dx1 = b1• 

B 

The differential counterpart of that condition has the form 

(1.3) f!ilV,V1u, = b, f dCt6(x-Q. 
D 

This condition is not satisfied by any function or distribution since it assumes that the 
mixed second derivatives are not equal to each other. 

Let us, furthermore, make the purely formal assumption that 

(1.4) u = b!J. 

After substitution in Eq. (1.3) we obtain 

(1.5) et•Jv,V1!J = f dCt6(x-Q~ 
D 

If we had at our disposal the pseudo-functions satisfying the condition (1.5), the displace
ment description of a dislocation line would be possible. The construction of such 
pseudo-functions, to be called cyclic functions, is the aim of the present paper. From Eq. 
(1.3) it is evident that the first derivatives of cyclic functions must be distributions. 

The applications of cyclic functions to the description of dislocations in a three-di
mensional space, the time constituting a parameter, and to the four-dimensional descrip
tion in the time-space will be given in [3]. 

2. Cyclic factions 

Let a closed . smooth line D, without double points or loops, be given in £ 3
, Denote 

by fl' D the set of all smooth surfaces S based on the line D, 

fi'D = {S:BS = D}. 

Each pair of surfaces S1, S1 e fl' D bounds a region Vil 

v,1 = {x e E3 :av,1 = s,us1}. 

Let X(D, a) denote the set of all functions 

fs:E3-+ R 

such that for each function Is there exists exactly one surface S e f/ D at which the func
tion Is suffers a jump a eR, [/s]s = a, and at the remaining points the functions are 
of class C2 • Moreover, at the surface S the function Is assumes such values Is(~), ~ e S, 
that 
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DISPLACEMENT DI!SCIUPTION OF DISLOCATI0N LINES. PART I . . ~35 

Within the set X(D, a) let us introduce the equivalence relation 91 defined by the formula 

for 
for 

for 

It will be shown that the relation ut introduced here is the equivalence relation, i.e. 
it is reflexive, symmetric and transitive. 

(a) Reflexivity; 

r for x e (£3'\. Vu) = £3' 

la I for x e Vu= 0, 
lfs,-fsA = I~ I 

for X E oVu = 0; 

since Vu= 0, and 1/s,-/s,l = 0 for x e E 3
• 

(b) Symmetry; the proof is trivial. 
(c) Transitivity 
AssUMPTIONS 

0 for X E E 3'\_VIJ, 
la I for X E V,1, 

1/s,-fsJI = 

I~ I for x e av,1 = s,us1; 

I 0 

for X E £
3
'\. J'.i1" 

la I for X E VJA:, 
1/s,-!s,l = I~ I 

for x e av1" = s1usa:. 

THEOREM 

r 
for x e E 3

'\. Vu:, 
la I for xeV1a:, 

1/s,-/s,l = I~ I 
for x e av,a: = s,usa:. 

Proof 

0 for x e E 3"-.:(V11u V1a:), 
la I for x e (VIJu V1a:) '\. (ViJ~ V1a:), 

'~' 
for xeS1uSa:, 

1/s,-fs"l = l({s,-fsJ)+ifsJ-fs")l = 
21al or 0 for X E VIJ~fJA:, 

2 1~1 or 0 fot xeS1 . 

Thus it should be proved that 

1(/s, -fsJ)+(fsJ-/s11)l = 0 for X E VIJ~VJ" and for X e Si. 

Let us confine our considerations to the case 

(2.1) lsJ-/s11 =a for x e fla:· 
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FIG. 1. 
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From the definition it follows thatfs,fsJ ,fs" satisfy the relation 

(2.2) Is, = fsJ = Is" for x e E 3
""-. (ViJ u J)A:). 

Z. MOSSAKOWSKA 

Under the assumption (2.1 ), due to the jump properties of !sa. and the relations 

fs,fllfsJ A fsJfllfs" 
we obtain 

(2.3) Is)-Is" = a for X E vij (1 vjk. 

Equations (2.2) and (2.3) yield 

!s,-fs" = 0 for x e [Vjkr.(Vt1r.V)k)] = Vur.~k' 
S1 = [S1r.a(Vi1r. VJt)]u [S1r.a(Vu r. vit)l. 

Let us consider the points 
x e s1r.a(vij r. VJt). 

From the assumption (2.1) and the properties of !sa. at the surfaces Sa. it follows ·that 

fsi;)-fs"(;) = a~ I 
for ; e s1 r.a(VlJ r. V1t), 

!si;)-Is,(;) = 2 
that is, 

fs,-fs" = 0 for ; e S1r.a(VtJr.JJ~:). 

Consider now the remaining part of Sb i.e. 

x e S1r.a(Vur.Vu). 
Here we have 

fsJ(;)-Is,(;) = - 2aa I 
for ; E SJ r.a(Vtjfl v,k) 

!si;)-Is"(;) = - 2 
whence 
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DISPLACEMENT DESCR.IPTION OF DISLOCATION LINES. PART I 537 

or, finally, 
fs,(F,)-fs .. (F,) = 0 for F, e S1 

what concludes the proof. 
The equivalence relation 9t determines within the set X(D, a) the equivalence classes 

X(D, a)/at which will be called cyclic functions. The cyclic functions will be denoted by 
capital Greek letters, and their representants- by the corresponding small Greek letters. 
The equivalence class is denoted by two vertical lines. In accordance with these notations, 
the cyclic function n is denoted 

n = llwsll = {rosE X(D, a): WsPA Ws}. 

From the above definition it is seen that, similar to the distribution which determines 
the equivalence class of locally integrable functions differing, at the most, in sets of zero 
measure, the cyclic function determines the equivalence class of distributions (characterized 
by jumps at a certai~ surface) differing, at the most, by a constant in a closed set. Con
versely, like a locally integrable function generates exactly one distribution, also each 
distribution possessing a jump at a certain open surface generates exactly one cyclic func
tion. It will be shown that once the operation of differentiation is introduced, this multi
valuedness does not lead to any ambiguities, provided the differentiation algorithm is · 
properly constructed. 

Differentiation of cyclic functions 

The derivative of a cyclic function n is the distribution n,, such that 

an aw n 1 = - 1 = - 1 when x~S. . ox ox 
This means that n.1 is equal to the distributional derivative of such a representant ms 
for which the point x does not lie on the corresponding jump surface S. Fr<?,m the de- . 
finition it follows that in order to determine the cyclic function derivative at a point x, 
the term resulting from the differentiation of the jump at the discontinuity surface must 
be subtracted from distributional derivative of its representant, i.e. 

(2.4) an - OWs 01 .i(.JII) {...J -·· ox1 - ox1 - -r, au u- E,u-' u- ). 

Here a1, a11 are coordinates on the surface S, E(a1, a0
) is the characteristic function of S, 

E(a', a")= { ~ for xeS, 

for x~ S; 

alii is the coordinate perpendicular to S, ·d11 the i-th component of the unit vector of the 
alii-axis in the Cartesian frame of reference x1• The derivative aws/ox1 in the formula 
(2.4) is the distributional derivative. 

Consider the cyclic function n possessing the property that the distributional deriva
tives of each of its representant ms(n = llwslD evaluated in the directions normal to 
as= D and tangent to S are continuous (in the usual sense). In other words, consider-
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ed are such functions ws which suffer no jumps in the process of "sliding down" the 
surface. Such cyclic functions will be shown to satisfy the equation 

(~.5) e1i"ViV1JJ = a~'(D) =a f dC'~(x-Q, 
D 

which is_equivalent (with accuracy up to the constant a) to Eq. (1.5). 

Let us select in the neighbourhood of the surface S such an orthogonal coordinate 
system ti-(L = I, 11, Ill) that one of the surfaces am = const coincides with S, while the 
coordinate lines a111 are orthogonal to the surface S. In addition, one of the coordinate 
lines a1 is assumed to coincide with the boundary as= D of the surface S. From these 
conditions and from the orthogonality of the coordinate system it follows that the coor
dinate lines al1 lying on the surfaceS are perpendicular to as= D (Fig. 2). 

FIG. 2. 

Let -tL denote the unit vectors tangent to the coordinate lines tl-. According to the 
differentiation algorithm (2.4) of cyclic functions, we have 

aD OWs lU .R(-IH ( 
()xi = ()xi -aTi u u-)E d'), ex = I, 11. 

Here E(d")'is the characteristic fun-ction of S, and a = [lwlls, 

()2 D - ()2ws L a lU .t(• ...Ill) (,11.)] - a~:waxsi -a I aa~r .R(aiii)E(A) ax"axi - ax"axi -aT" aaL [Ti u er E u ·- x- x- u u 

m 111£(dl\ ()~(aUI) u m~( Ill) oE(ti'")] + Tt Ti u J --aQiil + Tt Ti a --;}{ji1 . 

. Similarly, 

()2[} = ()2ws - [ aTiu .trin)E(d') _m IUE(,tl.) a~(a"l) 11 UI.R(-'") oE(d')] 
()xi()x" ()xi ox" a pxi u\u- + TJTt u ()alU + Ti Tt u u- ()aD . 

Taking into account the equality 

()2ws ()2ws 
ax"axi = ()xi()x" 

~nee these are distributional derivatives, we have 

(V t Vi- Vi V t)!J = - a(V" TJI'- Virl11
) ~(am)E(t~rt)-a(~ T}"- Tf Tl0) ~(D). 

http://rcin.org.pl



DISPLACEMENT DF.SCIUPTION OF DISLOCATION UNES. PART I 539 

On multiplying both sides by e'"i we obtain 

(2.6) e"'iV1 V1!J = -a[e1"1V1tJ0 <5(afii)E(a«)+e"'l-rr-rJ"]. 

Since 
rot r = 0 and -r" X .rn = 'rl 

we finally have 

(2.7) 
where 

EXAMPLE 

Consider the cyclic function !J = llc.os<a:>ll' where 

ms,., = J grad { ~) · dS 
S(t) 

and select a particular surface S1 based on a closed curveD, so that S1 is the surface of 
a serill-infinite cylinder with a directrix D and generator a k, k being an arbitrary, fixed 
unit vector; then 

m9 ,,, = J grad { ~) · dS,., = f d1 f eiJ•t1k• (- !! ) dcz, 
S~> D 0 

dS<"> = 0 x k)dlda, ~ e D, dl11 = dCi· 

(2.8) 

The function 

f (kxr)·dl 
c.os<t> = r(r-r·k) 

suffers a jump equal to 4n at the surface of the semi-infinite cylinder S"' and 

lim lc.os<a:,(x,.) -c.os<a:,(QI = 2n. 
Sa:~x,.-."(eSa: 

In the particular case of D being an infinite straight line parallel to the x3-axis and passing 
through the point (e, 1J, 0), and k = [k1 , k 2 , 0], k~+k~ = I, we obtain 
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540 Z. MOSSAKOWSKA 

The function ros<t> defined by the above formula sufferS a jump 4n at the half-plane 
k2X -k1Y = 0, k1X +k2Y > 0. 

Let us now calculate the mixed second distributional derivatives of the function ros<t> 

and the same derivatives of the cyclic function !J: 

oros<t> . ( Yk) kte2-X(p. k) (k k ) .i(k k X) -
0

- = -2stgn Xk2- 1 y -4nH 1X+ 2Y u 1 Y- 2 
xl e2 e2-(p ·k)2 

2Y 
= --2 -4nk2H(k1X+k2Y)<5(k1Y-k2X), e - - - - - - - -- - - - - -·- - -

a;::·' = ~_+~"!<!.I!.<~,! :1: ~,!)j{t._Y_-!~X)._ 

:
2
ro;<t> = 2X

2

~ y
2 

-d(X)<5(Y) f y~t -4~ki<5(k1X +k2Y)<5(ktY -k2X) 
x2 xl e r e 

X2-Y2 
+4nk1k2H(k1X +k2Y) <5'(k1 Y -k2X) = 2--4 - +2n<5(X) d(Y) 

e 
~ ~'!.k!<5~X]<5JY) ± ~n~ 1:_k ~ ~( ~ 1! ± ~ 2 _!)~' ik.! ~-:_ k~ ~), 

o2ros<t> = 2 X2 ~ :Y2 - 2n<5(X) d(Y) 
OX10X2 (! 

+4:n:k~ <5(X)<5(Y)+4nktk2H(ktX + k2 Y) <5'(kt Y -k2X), 

X= x1-E, Y = x2-1], e2 = X2+Y2; 

H(x) is the Heaviside function. 
The corresponding derivatives of the cyclic function differ from those written above 

by the underlined terms which are due to differentiation of the jumps of the distribution 
ros(t) at the surface s(lc)• 

an 2Y an 2X 

a2!J X2- Y2 
--= 2 4 - 2n<5(X) <5(Y). 

ax1ax2 e 
These formulae yield the conclusion 

(a2a1-ala2)!J = 4n<5(xt-E}<5(x2-1J)l(x3) = 4n<5(D) 

and so Eqs. (2.6) and (2. 7) are satisfied. 
In the case of k = [I, 0, 0], E = 0, 1J = 0 we have 

ros,., = 2(signx2) ( (arctg 1;~ 1 + ; ) . 
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3. Cyclic functions in n-dimeosional metric spaces 

Cyclic functions in n-dimensional spaces are defined like those in a three-dimensional 
space. The surfaces is a (n-1)-dimensional open surface with the boundary as= s(fl-2) 
Without going into general considerations let us give the formulae for certain definite 
cyclic functions. 

Let us consider the n-dimensional metric space with a natural topology determined 
by the metric tensor g. The cyclic function D<,.> is given by the formula (accOrding to the 
remark in Sect. 2 the function is identified with its representant) 

D<,.> = f dS<•-t>n"V,/P<•>' 
S<•-1> 

(3.1) 

where t/Jf,.> is a solution (belonging to the class of generalized. functions) of the differential 
equation 

(3.2) V"Va.tP<,.> ~:~~ g«PVa.VfJt/J<,.> = -c5<,.>(x-Q = -c5(x1 -C1)c5(x2-C'2) ••• c5(x"-C"). 

It may be shown that the cyclic function defined in this way satisfies identically the equa
tions 

(3 3) Efi1112···"-V V r\ - yfi.J •• • II•-2 (N ) (1 2 ) • a..-1 11•-l"'<"> - J , ""h «2, •.. , «,. = , , ... , n . 

Here 

(3.4) 

The surface element ds(~':22)·11•- 2 is given by the formula 

(3.5) 

m, n being the unit normal vectors of the surface Sc,.- 2> = 8Sc,.-u and dScr~-l>- the 
scalar element of the surface s(JI-2)• 

In the particular cases of Euclidean and Minkowskian metrics the solutions of Eq. 
(3.2) to be used later have the following forms: 

in Euclidean space 

1 
(3.6) tPc3> = 4-R , R~3> = (x'- C') (x,- C't). 

n .<3> 

in the Minkowskian space g" = I for i < n. g"" = -1, g11 = 0 for i #: j, 
3 

(3.7) t/J<4> = 2~ c5( -R~4>), Rt4> = -(x4-~)l+ 2 (x'-C')2. 
1 

Let us now pass to a more detailed analysis of the case of Minkowskian space which will 
make it possible to apply the cyclic functions to the description of moving dislocations. 

In compliance with Eqs. (3.1) and (3. 7) we have 

D<4> = ;n J dS<J>nmva.c5( -Rt4>). 
S(l) · 

(3.8) 

7 Arch. Mech. Stos. nr 4n9 

http://rcin.org.pl



542 Z. MOSSAKOWSICA 

In the case of S<3 > being a space-like surface, and taking from -the solution (3.7) only the 
retarded potential, we obtain from Eq. (3.8) (cf. Eq. (2.8) of paper [41) 

I 

(3.8a) .o,., = 4~ J do J dSf,,(v,+ c~ t,a,) ~(t-:-r/c). 
-00 S(2)(T) 

The surface S<3> is constructed in the following manner: consider a closed line D in £ 3 

and set it ipto "motiori" D(t) in E 3
• Let us construct a semi-infinite_ cylinder with a direc

trix D(t) and generators parallel to an arbitrary, fixed unit vector A (IAI 2 = ± 1). The 
"history of motion" of that cylinder is prescribed by the history of motion of the loop 
D(t). The three-dimensional surface constructed here is the considered characteristic 
surface of a representant of the cyclic function given by Eq. (3.8) under the assumption 
ihat x4 = et; c being a positive constant. For the sake of simplicity, the world surface 
generated by the line D(t) is assumed to be within the null cone. For such a surface S< 3 > 

the formula holds true<0 

(3.9) dS<3>n« = ert.f1Y
6/pJ.yA6dS(2>de, 

I = I (~(t)) being a unit vector tangent to the line D(t) in £ 3 , i.e. I = [Jh 0] ,A = 

=: (l-f>1 /c2)-•1> ( + t•, I) is the four-velocity vector ofthe world surface generated by 

D(t), '{) = lel, C' = ac'~, t)' e varies from zero to infinity, dS(2) is the scalar element 
t -

of the two-dimensional surface representing the history of motion of D(t). 
The position vector of the surface constructed in this manner may be written as 

(3) (2) 

~=~+eA. 
@ m 

Here ~ is the position vector of the surface S< 3h while ~-the corresponding vector of 
the surface s(2)• S_imilarly, for R = X-~ we have 

(3) (2) 

R = R-sA =R-eA, 
(3.10) 

(3) 

IRI 2 = e2 A2 -2e{A· R)+R2 • 

From now on the superscripts 2, 3 will be omitted. 
Inserting Eqs. (3.9) and (3.10) in (3.8) we obtain<2> 

00 

= 2~ fds<2>ert./JY6/pJ.7AdVoc f de<5(e2A 2 -2e(A · R)+R2
) 

S(2) 0 

::: _!_ fds ert.f1"~6l). A V [H(et)+H(e2)]H( -Rz) 
4n S<2> (2) {J Y .S a Y (A. R)2- A 2 R2 . 

(1) The range of Greek indices is 1, 2, 3, 4, and of Latin indices -1, 2, 3. 
(2) The integration procedure is discussed in the Appendix. 

http://rcin.org.pl



DISPLACEMENT DESCIUPTION OF DISLOCATION LINES. PART I 543 

Let us analyse the latter integral in the case of two particular forms of the vector A. 

(a) A = [0, 0, 0, 1]; A being the time-like vector, A2 = -1, and Eqs. (3.11) yield 
then 

Account has been taken of the fact that the line D(t) lies in £ 3 , and I = [/, 0]. Assum
ing x4 = ct,X4 = c(t--z') and using the retarded potential only, the formulae (3.12) 
and (3.13) may be written in the form 

t 

(3.14) tJ - 1 J d f d~ 'i"f;. V H(t-7:-r/c) <4> - 4n 7: E 1"" t , , 
-oo D(T) 

and 

(3.15) 

Appendix 

Formal evaluation of the integral 

00 

A =_f de~(e2A2 -2e(A·R)+R2), 
0 

A2 = IAI2 

occurring in Eq. (3.11) is simple. It may be written as follows: 

00 

(A.l) A = J de~[A2(e-e1)(e-e2)] 
0 

7* 
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e1, e2 being the roots of the equation 

(A.2) 

e2A 2 -2e(A · R)+R2 = 0, 

e1 = 12 ((A·R)-y(A·R)2-A2R2), 

e2 = 12 ((A·R)+J!'(A·R)2-A2R2). 

Z. MOSSAKOWS.KA 

The problem of integration in Eq. (A.1) is now reduced to the discussion, when 

L1 =(A· R)2 -A2R2 > 0 

. and e1, e2 are positive numbers. Since our interest is confined to causal relations, let us 

discuss the case 
-R2 > 0, 

or 

(a) Dlscullloa of the sign of .1 

Consider the sign of Li in two separate cases IAI2 = 1 and IAI2 = -1. 
(a1) IAI 2 = 1 
L1 = (A· R)2 - A 2 R2 > 0 always, since (A · R)2 > 0 and - R2 > 0 from the assum

ption. 

(a2) IAI 2 = -1 

(A.3) L1 =(A· R)2 +R2 = (A4 X4 +A1X1
)

2 -(X4
)

2 +r2 

= (A!-1)(X4
) 2 +2A4 X4(A1X1)+ [(A1X~2 +r2). 

This expression may be treated as a quadratic trinomial in X4 ; its discriminant 

(A.4) J = (A4 )
2(A1X1

) 2 - ( (A4) 2 -1) [(A1X 1
)

2 + r 2
] 

= (A1X1) 2 +(1-(A4) 2)r2 = -(A1A1)(X1X1)+(A1X')2 ~ 0 

use being made of the assumption IAI2 = -1; hence 

IAI 2 = - (A4)2 +(A, A') = -1, 1- (A4)2 = -(A, A') ~ 0. 

From the fact that Li ~ 0 and [(.A4) 2)-1] ~ 0, the inequality below follows: 

L1 =(A· R)2 +R2 ~ 0. 

Thus it is shown· that under the assumption R2 < 0 real-valued roots Ett £2 always exist. 

(b) Tbe slags of e1 , e2 • 

(b1) A 2 = 1 

e 1 = (A · R)- y' (A · R)2
- R2 < 0 

e2 =(A· R)+ y' (A· R)2-R2 > 0, because -R2 > 0 
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and hence for A2 = 1 the integral (A.l) assumes the value 

A= H(E2)H( -R2
) H( -R2

) 

2 Jl (A · R)2 ~ R2 2 J! (A · R)2 - R2 • 

R2 
Et· E2 = A2 = -R2 > 0 

and hence both roots are of the same sign, 

Et +E2 = -2(A · R). 

Both roots Et, E2 are positive when (A· R) < 0, 

A·R = A 4 X4 +A1X' = (signA4 )y1+A1AiX4 +A1Xt. 

Since, according to our assumption, IX41 > IX' I, the sign of the scalar product A· R de
pends on the sign of the product (signJ!4)X4

• For the retarded potential X 4 > 0, and 
hence we must obtain A4 < 0, that is A4 > 0. For an advanced potential X 4 < 0 => 

=> A4 < 0. This fact has a simple physical interpretation: assuming for S2 in Eq. (3.11) 
the surface describing the history of motion of the dislocation line, the assumption of 
A being directed towards the past (A4 < 0) would mean that already at time T = - oo 
the motion of the dislocation loop should be determined for the entire time-interval 
(- oo,t). 

The final conclusion is now the following: If IAI2 = -1, both roots Et, E2 are positive 
provided A4 > 0. In such a case the integr~! (A.l) assumes the value 

A= H(Et)H( -R2
) = H( -R2

) 

1Et-E21 2y(A·R)2 -A2R2 

since the term containing H(E2} corresponds to the advanced potential. 
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