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Displacement description of dislocation lines
I. Cyclic functions

Z. MOSSAKOWSKA (WARSZAWA)

THE NoTION of cyclic functions is introduced. Construction of a certain class of cyclic functions
is presented in a n-dimensional metric space in which the second-order mixed derivatives do not
commute. Particular forms of cyclic functions are given in a three-dimensional metric space
and in a four-dimensional Minkowskian space.

Wprowadzono pojecie funkcji cyklicznych. Podano konstrukcjg pewnej klasy funkcji cyklicz-
nych w n-wymiarowej przestrzeni metrycznej spelniajgcej dany warunek komutacyjny dla drugich
pochodnych mieszanych. Podano wyrazenia na konkretne funkcje cykliczne w trojwymarowej
przestrzeni euklidesowej i czterowymiarowej przestrzeni Minkowskiego.

Beeneno momsTHe mmrUmdeckux ¢dyumamii. JaeTca mocrpoeHne HEKOTOPOro KJIACCa ITHHIIH-
qeckHX (QYHKUMII B n-MEPHOM METPHYECKOM MPOCTPAHCTBE, YAOBJIETBOPAIOUMX 3afaHHOMY
YCJIOBHIO KOMMYTAIMMH JUIA BTOPBIX CMEILAHHBIX NPOM3BOAHBIX. Jlalorcd BBIpDKEHHS A

KOHKPeTHBIX IMIIMUeckwX dyHKIMI B TPEXMEPHOM eBKIM/I0OBOM MPOCTPAHCTBE M B YEThIpEX-
MEPHOM TIIpocTpaHcTBe MHHKOBCKOrO.

1. Introduction

THE MATHEMATICAL theory of dislocations in a linear elastic medium is well developed,
although there exists a certain dualism within this theory. The dislocation is known to
be a linear. defect; in most of the papers, howevep, the surface model of a dislocation is
used. This is due to the impossibility of a direct application of the Burgers condition
defining the dislocation line. This condition states that the loop D is a dislocation line
if, for each closed curve called the Burgers circuit embracing only once the dislocation
line D, the total displacement increment equals the constant vector b called the Burgers
vector,

(L.1) fdu=b.
B

In the papers using the surface model of dislocation the starting point is usually either
the cond:tlon for the displacement jump at the dislocation surface [u]s = b, or the initial
distortion [3 defined as a singular distribution with a support at the dislocation surface
S(S = D).

The only consistent approach to a dislocation treated as a linear defect| may be found
in a paper by E. KosseckA [1]; however, no displacement field can be attributed to that
dislocation. The dislocation might be connected with a multivalued displacement field,
as it was demonstrated by RoGguLA [2], and such an approach is very close to that pro-
posed in the present paper.
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Let us analyse what difficulties are encountered in the displacement description of
dislocations treated as linear defects. To this end let us write, quite formally, the Burgers
condition
(1.2) { Viuds' = b,

B

The differential counterpart of that condition has the form

(1.3) IV,Vyuy = by f dP*3(x—Y).
D
This condition is not satisfied by any function or distribution since it assumes that the

mixed second derivatives are not equal to each other.
Let us, furthermore, make the purely formal assumption that

(1.4) u = bQ.

After substitution in Eq. (1.3) we obtain

(1.5) SUV,V,Q = § di*é(x—Y).
D

If we had at our disposal the pseudo-functions satisfying the condition (1.5), the displace-
ment description of a dislocation line would be possible. The construction of such
pseudo-functions, to be called cyclic functions, is the aim of the present paper. From Eq.
(1.3) it is evident that the first derivatives of cyclic functions must be distributions.

The applications of cyclic functions to the description of dislocations in a three-di-
mensional space, the time constituting a parameter, and to the four-dimensional descrip-
tion in the time-space will be given in [3].

2. Cyclic functions

Let a closed smooth line D, without double points or loops, be given in E3. Denote
by &) the set of all smooth surfaces S based on the line D,

&p = {S:8S = D}.
Each pair of surfaces S;, S; € &p bounds a region V};
Viy = {xe E>:3V;; = S;u§;}.
Let X(D, a) denote the set of all functions
fs:E*> R
such that for each function f; there exists exactly one surface S € & at which the func-
tion f; suffers a jump a € R, [fs]s = 4, and at the remaining points the functions are

of class C2. Moreover, at the surface S the function fs assumes such values f5(§),E € S,
that

.

im )@ = |5
E3\ Saxa—§
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Within the set X(D, a) let us introduce the equivalence relation # defined by the formula

0 for xeENYV,
lal for xeVy,
a

2

It will be shown that the relation # introduced here is the equivalence relation, i.e.
it is reflexive, symmetric and transitive.
(a) Reflexivity;

f&afs: < |fs, —fSJJ o

for xedVy.

0 for xe(EX\\V)=E3,
laf for xeV,=09,
a

2 for anVu = 0;

since Vy; = 0, and | f5,—f5,| = O for x € E>.
(b) Symmetry; the proof is trivial,
(c) Transitivity

lfsl '_.,:s.fl =

ASSUMPTIONS
0 for xeENVy,
|a| for X Vu,
If-&‘i_j:i‘,fl = a
5-' for xedVy = SUS;
0 for xeEN\Vj,
l[a] for xeVp,
IfSJ"fStI = a
-f| for xedVyu = SuUs;.
THEOREM
0 for xeEN Va,
la] for xeVy,
’fsl_fstl = a
|—-2-| for xedVy = SusS;.
Proof
0 for xeEXN(VyuVuw),
la] for xe (VyuVid\(VynVi),
a
— for xeSuUS;,
[f&'l _ﬁs'zl — f(fs: _f-ﬁ‘j)+ US;—‘ng)l = 2
2|a| or 0 for xeVynVy,
25| or 0 for xes.

Thus it should be proved that

I(fs ~fs)+Usy=fs)l =0 for xeVynVy and for xe§;.
Let us confine our considerations to the case

(2.1) fs,=fss=a for xeVu.
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From the definition it follows that fs,, fs,, fs, satisfy the relation
2.2) fa=fy=fa for xeEN\(VyuVp.
Under the assumption (2.1), due to the jump properties of fs, and the relations

fS:Qf:ﬁ A fSJQfSl
we obtain

2.3) fs=fa=a for xeVynVj.
Equations (2.2) and (2.3) yield
Jsi—fsi =0 for  xe€ [Vpn(VynVi)l = VijnVy,
8y = [S;no(VynVi)lu[S;nd(Vy; nVu)l.

Let us consider the points
x € §;nd(ViynVi).

From the assumption (2.1) and the properties of f;, at the surfaces S, it follows that

i~

J5,(8)—fs(B) = =
for EeSina(VynVu),

Is,(8)—fs.(®) =

(TSI N

that is,
fa=fse=0 for EeSna(VynVu).

Consider now the remaining part of S, i.e.
X E Sjna(VunVu).
Here we have
a

fs®)—fs(8) = —
for EeS;nd(VynVu)

SIE NS

Ssi(®)—fsx(8) = —

whence
fs5®—fs() =0 for EeS;nd(Vi;nVy)
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or, finally,
fs(8)~fs.()=0 for EeS

what concludes the proof.

The equivalence relation % determines within the set X(D, a) the equivalence classes
X(D, a)/® which will be called cyclic functions. The cyclic functions will be denoted by
capital Greek letters, and their representants — by the corresponding small Greek letters.
The equivalence class is denoted by two vertical lines. In accordance with these notations,
the cyclic function 2 is denoted

Q = ||os|| = {ws € X(D, a): ©sR ws}.

From the above definition it is seen that, similar to the distribution which determines
the equivalence class of locally integrable functions differing, at the most, in sets of zero
measure, the cyclic function determines the equivalence class of distributions (characterized
by jumps at a certain surface) differing, at the most, by a constant in a closed set. Con-
versely, like a locally integrable function generates exactly one distribution, also each
distribution possessing a jump at a certain open surface generates exactly one cyclic func-
tion. It will be shown that once the operation of differentiation is introduced, this multi-
valuedness does not lead to any ambiguities, provided the differentiation algorithm is’
properly constructed.

Differentiation of cyclic functions

The derivative of a cyclic function £ is the distribution 2 ; such that

2 o
i
This means that £ ; is equal to the distributional derivative of such a representant wg
for which the point x does not lie on the corresponding jump surface S. From the de-
finition it follows that in order to determine the cyclic function derivative at a point x,
the term resulting from the differentiation of the jump at the discontinuity surface must
be subtracted from distributional derivative of its representant, i.e.

2,= when x¢8.

2.4) %?r = _‘;‘% — a3 E(d, oV,

Here d', a" are coordinates on the surface S, E(a', a") is the characteristic function of S,

for xeS,
for x¢8S;

a" is the coordinate perpendicular to S, 7}" the i-th component of the unit vector of the
a-axis in the Cartesian frame of reference x;. The derivative dws/0x' in the formula
(2.4) is the distributional derivative.

Consider the cyclic function £2 possessing the property that the distributional deriva-
tives of each of its representant ws(f2 = [|ws||) evaluated in the directions normal to
dS = D and tangent to S are continuous (in the usual sense). In other words, consider-

E@, " = {{1}
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ed are such functions ws which suffer no jumps in the process of “sliding down” the
surface. Such cyclic functions will be shown to satisfy the equation

2.5) MV, V,Q = ad'(D) = a § dt*5(x—7)
D

which is equivalent (with accuracy up to the constant a) to Eq. (1.5).

Let us select in the neighbourhood of the surface S such an orthogonal coordinate
system a“(L = I, II, III) that one of the surfaces a™ = const coincides with S, while the
coordinate lines a™ are orthogonal to the surface S. In addition, one of the coordinate
lines a'is assumed to coincide with the boundary 4S5 = D of the surface S. From these
conditions and from the orthogonality of the coordinate system it follows that the coor-
dinate lines a" lying on the surface S are perpendicular to 45 = D (Fig. 2).

FiG. 2.

Let t* denote the unit vectors tangent to the coordinate lines a*. According to the
differentiation algorithm (2.4) of cyclic functions, we have

39 aﬂ'.?s " _
-3;1_ = Tl 6(am)E(ﬂ¢)= @ = Is II'
Here E(a%)'is the characteristic function of S, and a = [|w]]s,
3"9 &zﬂ’s u I - 32603 31‘1 1
350 = Bad O™ Gt o e @) = oo S@E)
aé JOE
P 2@ 4 g amy 2EE |
Similarly,
70 s Bé(a'“) BE(a‘)
axlaxt — axiaxt | ax! )
Taking into account the equality
32(:)3 azws

x| 0x0ox*
since these are distributional derivatives, we have

ViV, =V, VQ = —a(Vi 7" - V,7}") 6(a™) E(a) —a(7} ) — 7} ") (D).
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On multiplying both sides by "%/ we obtain
2.6) MY, V,2 = —afeV, 7l 8(am) B(a®) + % riel.
Since
rot vt =0 and A'xt" =4
we finally have
@1 MY,V Q = —att,
where

1= §dtd(x-7Y).

EXAMPLE
Consider the cyclic function Q = Ilws(.,ll, where

Wgyy = g'l' ad (—-'-) ds

Sik)
and select a particular surface S; based on a closed curve D, so that S, is the surface of
a semi-infinite cylinder with a directrix D and generator a k, k being an arbitrary, fixed
unit vector; then

X,
s = f grad( )ds(.,— f d f ”%( ) da,

dSg, = a xK)dlde, YeD, dll;=de.

(28) - (x, Cl_aki)da

Osq, = f dle Ik f
© Y V=t —ak,) (P— P —ak?)

1= (x—)lda eV Lk,r (kxr)-dl
§die”".ﬁk,f ]/u’-—2u(k D+ § r(r—Jr-kk‘) = J rr—r-k) '

The function
(kxr)-dl

@50 = § 1ok
suffers a jump equal to 4= at the surface of the semi-infinite cylinder S, and
hm ‘G’S(l)(xn)_wstnml =27
SiPxa-+EeSk
In the particular case of D being an infinite straight line parallel to the x;-axis and passing
through the point (&, 5, 0), and k = [k, k2, 0], k3 +k3% = 1, we obtain

—-p'k n
@ 2 s' ,Yk —Yk —'Pﬁ - ¥
. fa‘z Yk~ Xk, L ')(mm;/e*—(p-k)’ 2)
Sk~ r(r—r-k)  |for x # (§+aky,n+ak;,0), «>0,

0 for x=(+0k,,n+0k,,0), a>0
with the notations X = x,—&,Y = x,—9, r? = p2+(?, o> = X?+Y2%
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The function ws,,, defined by the above formula suffers a jump 4z at the half-plane

ko X=k,Y=0, k, X+k,Y > 0.
Let us now calculate the mixed second distributional derivatives of the function ws,,

and the same derivatives of the cyclic function 2:
aws(., . klgz _X(p * k)
%, gn(Xk, ) 2 ]/92'(9']‘)3 (k4 2Y)d(k, 2 X)
2Y
= ———92 —4nsz(k1X+k3Y)5(k1Y—kzX),

—a;';“_) L 29_‘5‘ +4ﬂk1H(k1X+ng)d(xly—k2X),
PR i

*wsy, e 2.Y2 f Ydx! , B

R A 4nk30(ky X+, Y) 3(ky Y~ . X)
X2_Yy?

+ank, k, H(k, X+k,Y)0'(k, Y-k, X) =2 & +278(X) 8(Y)

—4nk28(X)O(Y) +4nk ky H(k, X + K, Y)&'(k, Y —k, X),

2
) WSy
dx,0x,

Xz_yz
=2 o —2m0(X) 8(Y)
+4nk? 8(X) 8(Y) +4nk, k H(k X+ k, Y) 8 (ky Y=k, X),
X=x-§ Y=x,—-1, ¢ =X+Y%

H(x) is the Heaviside function.
The corresponding derivatives of the cyclic function differ from those written above

by the underlined terms which are due to differentiation of the jumps of the distribution

s, at the surface Sg,.
o 2y a2 22X

Bxl = ? ’ 3x2 _95“ ’
220 X2-Y?

7%, 9%, =2 o +278(X) &(Y),
%02 X*-Y?

0x,0x%, =2 — —2n4(X) 8(Y).

These formulae yield the conclusion
(220, —3,0,)2 = 4nd(x, — £)8(x2—m)1(xs) = 4 8(D)

and so Egs. (2.6) and (2.7) are satisfied.
In the case of k = [1,0,0], £ = 0, = 0 we have

: x T
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3. Cyclic functions in n-dimensional metric spaces

Cyclic functions in n-dimensional spaces are defined like those in a three-dimensional
space. The surface S is a (n— 1)-dimensional open surface with the boundary 3§ = S,
Without going into general considerations let us give the formulae for certain definite
cyclic functions.

Let us consider the n-dimensional metric space with a natural topology determined
by the metric tensor g. The cyclic function £, is given by the formula (according to the
remark in Sect. 2 the function is identified with its representant)

(3.1) Qw = f dSu-1y1n"VaPay,

S-1)

where @, is a solution (belonging to the class of generalized functions) of the differential
equation '

(32) VD = gV Vs Py = — 8y (x—8) = —8(x' =) 8(x*—L?) ... 8(x"—T").

It may be shown that the cyclic function defined in this way satisfies identically the equa-
tions

(3.3) euta-tV, Ve Q=" (1,8 s 0) = (1,2, ...,0).
Here
(3.4) Juts-taz =

The surface element (;i’;ij'“'" is given by the formula

d5m—1)=5(n-2)

(35) dsﬁi:'z) - e““’"'“’“n—lmnds(u—zp
m,n being the unit normal vectors of the surface S,y = 9S(-3, and dS,-z) — the
scalar element of the surface S,_,).

In the particular cases of Euclidean and Minkowskian metrics the solutions of Eq.
(3.2) to be used later have the following forms:
in Euclidean space

(3.6) ¢(3) = ﬁg); -R%:g) - (x"—C’) (xi—=00),

in the Minkowskian space g¥ =1 fori<n, g = —1, g” =0 for i # j,

(3.7 Gy = 5 B~Ri). Rl = —(x* =)'+ Z(x‘ .

Let us now pass to a more detailed analysis of the case of Minkowskian space which will
make it possible to apply the cyclic functions to the description of moving dislocations.
In compliance with Eqs. (3.1) and (3.7) we have

(3.8) Q4= Esfds(,,n'v 3(— R%y,)-
(3)

7 Arch. Mech. Stos. nr 4/79
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In the case of S(s, being a space-like surface, and taking from the solution (3.7) only the
retarded potential, we obtain from Eq. (3.8) (cf. Eq. (2.8) of paper [4])
t
1 1 ;. \dt—7—r/c
(3.82) Q4 = y fdr f dS(‘z, (V¢+? Ciax) ( r_/) .

— Sg2)(x)

The surface S, is constructed in the following manner: consider a closed line D in E?
and set it into “motion” D(¢) in E3. Let us construct a semi-infinite cylinder with a direc-
trix D(t) and generators parallel to an arbitrary, fixed unit vector A (JA]> = +1). The
“history of motion” of that cylinder is prescribed by the history of motion of the loop
D(t). The three-dimensional surface constructed here is the considered characteristic
surface of a representant of the cyclic function given by Eq. (3.8) under the assumption
that x* = ct, ¢ being a positive constant. For the sake of simplicity, the world surface
generated by the line D(f) is assumed to be within the null cone. For such a surface S,
the formula holds truet™

(3.9) ) dS(g)nu = e“ay"fgﬂ,./l,dsu,ds,
1=1(%(r)) being a unit vector tangent to the line D(¢) in E3, ie. 1= [/,0]A =

= (l—vzlc’j“‘f‘ (—i— (;*‘,1) is the four-velocity vector of the world surface gcnerated by

ati(l, 1) . st .
—5 st varies from zero to infinity, dS;,, is the scalar element

D(l‘),ﬂ = Igls ‘:.‘ =

of the two-dimensional surface representing the history of motion of D(z).

The position vector of the surface constructed in this manner may be written as
@

¢ =C+eA.
3 @
Here (?,) is the position vector of the surface S3), while £ — the corresponding vector of
the surface S(,). Similarly, for R = x—& we have '
@ @
R=R-s =R—eA,
(3.10 o~
IR|? = e242—2¢(A- R)+R?.
From now on the superscripts 2, 3 will be omitted.
Inserting Eqs. (3.9) and (3.10) in (3.8) we obtain(®

) 3)
GBI Qu =5 [ dSeyrVed(~RY
LTEN

= é f dSme‘ﬁ"’l‘,A,Aﬂv“f ded(e24% —2¢(A - R) + R?)
0

S¢2)

1 [H(e,) + H(e,)]H(— R?)
= e ds, Eﬂﬂl A Va F——— e L .
4n s{!; (2y by s ]/(A R)?—A2R?

(*) The range of Greek indices is 1, 2, 3, 4, and of Latin indices — 1, 2, 3.
(%) The integration procedure is discussed in the Appendix.
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Let us analyse the latter integral in the case of two particular forms of the vector A.
(a) A = [0,0,0,1]; A being the time-like vector, A2 = —1, and Eqs. (3.11) yield
then

(=) 2 — R2
(3.12) Q4 = = de(Z,E“""lp 2y Va H( = ) :: deme”“{,ﬂ.*VI H(-X )-
3(2) S(2)
(b) A = [ky, k,, ks, 0]; A being the space-like vector, A% = 1, and then
+) 1 o H( Rz)
(3 13) 9(4) = —4—‘ dS(z)Eﬂ f_;i?kgv ]/(k l')z
Sy
H(-R?)

)
= — dSQ)EU"{fkg(ﬂ..V;;—).,,Vt) "
4 Sc2) '/(k'r)z -1

Account has been taken of the fact that the line D(¢) lies in E3, and 1 = [/, 0]. Assum-
ing x* = ¢t, X* = ¢(t— 1) and using the retarded potential only, the formulae (3.12)
and (3.13) may be written in the form
4
(=) o —_—
(.14) 3 - le? f dx f dfe’f‘ljﬁ';v;fi(t—t‘ﬂi),
. )

and

H(t—7—rfc)
A(t—1)? —r? + (r-k)? !

(+) c : ik 1 -
3.15) Q(4,=4—n_£drm;{dle gk,;(vw;;cia,)'/

r=x-¢(1).

Appendix
Formal evaluation of the integral
4= _f de 8(e* A* —2¢(A R) + R?),
A2 = A2

occurring in Eq. (3.11) is simple. It may be written as follows:

Al) 4= f ded[A%(s— &) (e~ €,)]
0

»

_ f [a(e—eo p Aoy Mot

é ley—eal [e2—&l ley—éal

7+
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&, £, being the roots of the equation
242-2¢(A-R)+R* =0,

A2 e =z [(A- By B RF— R,

& = —/—:,m A -®R)+y @A RI-A2R

The problem of integration in Eq. (A.1) is now reduced to the discussion, when
4=([AR?-A?R2>0
and &, , &, are positive numbers. Since our interest is confined to causal relations, let us
discuss the case
-R*>0,
or
(X4? > (X)?+ (X2 +(X3)? = X, X' = r2,

(a) Discussion of the sign of 4
Consider the sign of 4 in two separate cases [A|> = 1 and |A]? = —1.
(a) 1A =1
4 =(A-R)P—-A2R? > 0 always, since (A-R)?> > 0 and —R? > 0 from the assum-

ption.
(a) 1A = —1

(A3) A=A R>?+R? = (A X4+ 4,X)—(X*)?+r?
= (A3 -DX)? +24, XA X) + [(AX)* +r2).
This expression may be treated as a quadratic trinomial in X*; its discriminant
(Ad) A = (AP (AX')Y - (A -1)[(AX)+r?)
= (AX'Y+(1=(A)H)r? = —(4LA)XX)+(4X) <0
use being made of the assumption |A|> = —1; hence
A2 = —(A)*+(44Y) = =1, 1—=(4)* = —(4,4) < 0.
From the fact that 4 < 0 and [(AJ’)— 1] 2 0, the inequality below follows:
4={A-RP+R2>0.
Thus it is shown- that under the assumption R?> < 0 real-valued roots ¢,, &, always exist.

(b) The sings of ¢,, ;.

(b)) A2 =1
& =0 R-yYA R*-R <0
&2=A R)+)/A-R?-R2>0, because —R*>0
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and hence for 4% = 1 the integral (A.1) assumes the value
__H(e)H(-RY) - H(-R?)
2/ A-R?—R2 2 J(A-RP-R*

(b)) 47 = —1
2
s,-sz=—%= -R*>0
and hence both roots are of the same sign,
e +e = —2(A-R).
Both roots &,, &, are positive when (A-R) < 0,
AR = AX*+4,X = (signdy) YT+ L, AX*+ A, X,

Since, according to our assumption, |[X*| > |X"|, the sign of the scalar product A+ R de-
pends on the sign of the product (sign4,)X*. For the retarded potential X* > 0, and
hence we must obtain 4, < 0, that is A* > 0. For an advanced potential X* < 0 =
= A* < 0. This fact has a simple physical interpretation: assuming for S, in Eq. (3.11)
the surface describing the history of motion of the dislocation line, the assumption of
A being directed towards the past (4* < 0) would mean that already at time 7 = —
the motion of the dislocation loop should be determined for the entire time-interval
(— oo, 1).

The final conclusion is now the following: If [A|*> = —1, both roots ¢, , &, are positive
provided A% > 0. In such a case the integral (A.1) assumes the value

_ HE)H(-R) _  H(-R)
ler —é2] 2/ (A-R)*—A’R?
since the term containing H(e,) corresponds to the advanced potential.

A
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