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Stress-strain relation of integral type for deformation of brass 
along strain trajectories consisting of three normal straight 
branches 

Y. OHASHI (NAGOYA) M. TOKUDA (TSU CITY) T. MIYAKE, Y. KURITA 
and T. SUZUKI (NAGOYA) 

A MEmoo to formulate a stress-strain relation of the integral type for plastic deformations 
of metals is set up according to the concept of the intrinsic time scale proposed by Valanis 
in his endochronic theory. Since Dyushin's postulate of isotropy concerning the strain trajec
tory has been ascertained to hold in the vector space corresponding to the strain deviator after 
the effect of the third invariant has been modified, the method may be applied to strain tra· 
jectories of the same geometry independently of their orientation in the vector space. The 
propriety of this method is confirmed by applying it to the deformation of brass along trajec
tories consisting of three normal straight branches, as an example of complex history effects. 
Reasonable estimation of Dyushin's trace of delay is discussed also in this example. 

Opracowano metod~ formulowania zale:ino8ci calkowej pomi~zy odksztalceniem i napr~ze· 
niem dla plastycznej deformacji metali na podstawie koncepcji skali czasu wewn~trznego propo
nowanej przez Valanisa w jego teorii endochronicznej.' Poniewai: udowodniono, i:e postulat 
izotropii Diuszina dotyCZI\CY trajektorii odksztalcenia jest spelniony w prz:estrzeni wektorowej 
odpowiadaj(lcej dewiatorowi odk~ztalcenia pod warunkiem modyfikacji trzeciego niezmiennika, 
wi~ metoda ta moze bye zastosowana do trajektorii odksztalcen o tej samej geometrii nieza· 
lei:nie od ich orientacji w przestrzeni wektorowej. Poprawnosc metody zostala potwierdzona 
przez zastosowanie jej do problemu odksztalcenia mosi(ldzu wzdluz trajektorii zlozonych z trzech 
prostopadlych prostych gal~zi. jako przykladu efektu skomplikowanej historii. Jako przyklad 
przedyskutowano r6wniez oszacowanie sladu op6tnienia Diuszyna. 

Paapa60TaH MeTO~ $opMyJIHPOBKH mrrerpam.HOH 3aBilCilMOCTH Me>«,ey ~e<l>opM~eit H Ha
JIPIDKeHHeM MH WI8CTHtlecKOH ~e$op~ MeTaJIJIOB Ha OCHOBe IIOIUI'rM Macnrra6a BHYT· 
peHHero speMeHH, npeMo>KeHHoro BamnmcoM B ero 3~oxpoHHtlecKoii TeopHH. T. K. ~o
J<aaaHo, 'ITO IIOCTyJiaT H30TJ)OIDIH HJnoiiiHHa, KacaiOIIUdiCR -rpaeKJ>TOHH ~e<l>opM~, y~o
BJieTBopeH B BeKTOPHOM JIPOCTPaHCTBe, OTBeqaro~eM KOCOMY TeH30PY HanpiDKeHHit JIPH 
YCJIOBHH MO~$HKaJ.Um TJ)eTLero HHBapmurra, 3HaqaT 3TOT MeTO~ MO>KeT 6biTL npHMeHeH 
K TJ)aeKTOPilH ~e$opMaqHii, C TOil caMOH reoMeTPHeit, He3aBHCHMO OT HX opueHTupOBKH 
B BeKTOPHOM JIPOCTpaHCTBe. IlpaBHJI&HOCTL MeTO~ IIOATBep~eHa nyTeM JIPilMeHeHHR ero 
K JIPOOJieMe ~e<l>OPMrunm JI8TyHH B~OJIL TpaeKTopHii, COCTOR~ H3 Tpex nepne~JIRP
HbiX JIPRMbiX semeii, KaK IIPilMep 3<l><l>eKTa CJIO>KHoii HCTOPilH· B xapaKTepe npHMepa 
o6cy~e:u:a To.>Ke oqeHKa cne,t:(a aanaa~ma.HHR Hmoiii1Uia. 

l. Introduction 

THB DEFORMATION behaviour of metals varies according to the change of their micro
structure due to plastic deformation. The history dependence always appears in the plas
tic deformation of metallic materials. When the plastic behaviour is expressed by means 
of the stress-strain relation, the history dependence in this relation may be estimated by 
using the deformation history in the shape of a tensorial curve in the space of the strain 
tensor. 
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The stress-strain relation varies in accordance with the shape of the tensorial curve 
whenever the history dependence appears in the deformation behaviour, and thus the re
lation cannot be realized in the form of a definite function without assigning a definite 
geometry of the curve. As a mathematical expression of deformation history, lLYUSHIN [1] 
used a strain trajectory in the vector space of the strain deviator corresponding to the 
space of the strain tensor instead of the above mentioned tensorial curve. Relating to 
this strain trajectory, he proposed a postulate which states that the effect of deformation 
history of materials on their stress-strain relation depends only on the geometry of the 
strain trajectory independently of the orientation (rotation and mirror transformation) 
of the trajectory in the vector space. He called this postulate the "postulate of isotropy" [1]. 

The isotropic tensor space cannot always be transformed into the isotropic vector space 
because both the vector space and the corresponding tensor space are not necessarily equi
valent. Therefore, the postulate of isotropy does not always hold with sufficient accuracy 
on the basis of the experimental results obtained for real materials. However, if modified 
amounts are taken by considering the distribution of the third invariant of the deviatoric 
tensor in the vector space [2-5], the postulate can be ascertained to hold on the basis 
of real materials. 

By using the vector space, a geometrical concept of deformation history may be se
cured easily by drawing curves. Moreover, the postulate of isotropy which states that 
deformation history depends only on the geometry of the curve (sequence of applications 
and magnitudes of strain components and their variations in the history) independently 
of the orientation of the curve in the vector space (kinds of strain components) has a signif
icant meaning in systematizing the varieties of complicated deformation histories. 

When the curve expressing deformation history is assigned, the stress state at an arbi
trary instant in the deformation process may be expressed by a stress vector in a local 
vector space of the stress deviator established at the corresponding point on the c~e. 

If two points closely adjacent are taken arbitrarily on the curve, the stress increment 
between these two points depends on the corresponding strain increment what can be ex
pressed in the following form; 

(1.1) da = K'de. 

Here K' plays the role of the influence coefficient of the strain increment to the stress incre
ment. If the deformation property does not vary completely, K' may be expressed in 
terms of a matrix having constant elements and is independent of the geometry of the curve. 
This situation corresponds to the elastic deformation. When the history dependence appears, 
the influence coefficient varies at each point on the curve according to its geometry. The 
coefficient of de at the preceding point contributing to the stress increment da at a point 
considered on the curve may be a function of -arc length together with the geometric para
meters (curvature, torsion and others) of the curve. Accordingly, the stress state at a cer
tain point (s) on the curve may be expressed by an integral form 

(1.2) 
• 

a(s) = J K(u1; s, s')de(s'), 0 E:; s' ~ s 
0 
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of the stress increment taken at every preceding point (s'), where sands' denote the arc 
length of the curves= y (2/3)deiidei1 up to the corresponding points, and "i(s') are the· 
geometric parameters. Ilyushin proposed other integral forms, 

s 

(1.3) a(s) = J K(",: s, s')de(s'), s-h ~ s' ~ s, 
s-h 

restricting the range of integration to a definite arc length h(s-h ~ s' ~ s) preceding the 
point (s) instead of 0 ~ s' ~ s, by taking into account the fading memory which appears 
in real materials. The arc length h is called "trace of delay". This hypothesis is called 
ILYUSHIN'S "principle of delay" [1]. According to this principle, the expression of the his
tory effect may be remarkably simplified as the effect can be considered by taking account 
of the geometry of the curve only in a finite range preceding the point considered. 

In the linear viscoelastic theory, for the stress-strain relation of history-dependent 
materials, the stress components at a certain instant tin the real time scale during the de
formation process have been expressed in the following form: 

t 

(1.4) O'l}(t) = J Kijmn(t, -r)dEmn(T), 0 ~ 1: ~f. 
0 

In this form, since the stress-strain relation is expressed in terms of real time as a para
meter, the influence coefficient may be understood as a function of real time. That is, the 
deformation property may be understood to vary according to real time. However, since 
the deformation property of real materials depends not on time but essentially on deform
ation history, the concept expressed ·in the form (1.4) is not always accurate because it 
may express definite deformation phenomena only when a certain relation between deform-· 
ation history and time is given for the influence coefficient. 

In the linear viscoelastic theory, the form [6] 

t 

(1.5) 0',/t) = J Kijmn(t--r)demn(r:), 0 ~ T ~ t 
0 

is often used as a special case of Eq. (1.4) together with 

(1.6) K (t ) -i.(t-T) IJmn -T = fttJmne 

for convenience of calculation as well as for the consideration of fading memory. Such 
a coefficient of the differen~e type is a fairly strong limitation since it is effective only for 
the deformation in which the influence function may always be described using Eq. (1.6} 
for the arbitrary instant t. 

Recently, VALANIS [7] proposed an "endochronic theory" for materials with memory 
depending on deformation history. According to this theory, the relation between the: 
stress deviator si} and the strain deviator e,J is expressed in the following form: 

z ' 
(1.7) Sli = 2 J K(z, z') ~f dz' = 2 J K{z(~),z'(~)}4Jdfd~' 

0 0 
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with the use of an intrinsic time scale z, where an intrinsic time measure C is defined as 

{1.8) dC2 = k 2deudelJ• (k > 0: material parameter). 

The intrinsic time scale z, which expresses the sequence of variations of the deformation 
behaviour of materials and does not necessarily correspond to real time, is defined as a mo
notonously increasing positive function of the intrinsic time measure C as follows: 

(1.9) dz( C) = dC If( C) or 

c 

f dC' 
z(C) = f(C') ' 

0 

dzfdC > 0. 

It may be found from Eq. (1.8) that the intrinsic time measure C is a certain parameter 
-expressing the deformation behaviour in relation to the deformation history of materials, 
.and thus the measure is related with the form and intensity of deformation. As follows 
from Eq. (1.9), if a converted time scale reflecting the history dependence is used for 
establishing a stress-strain relation (taking into account the variation of the deformation 
property since this variation due to history may be reflected only in the functionf(C)), the 
formula (1.7) having the same form as Eq. (1.4) may be expressed in an analogous 
form as Eq. (1.5) together with Eq. (1.6). The corresponding influence coefficient of 
·the difference type K{z(C)-z(C')} is free from the above mentioned limitation for each 
value of z(C) according to which Eqs. (1.5) and (1.6) founded on the simple concept have 
been restricted. This is so because the value z( C)- z( C') is not constant but is always a func
tion of the corresponding value of C. Consequently, the stress-strain relation may be 
formulated reasonably for plastic behaviour under arbitrary deformation history if Va
lanis' endochronic theory is used together with Ilyushin's postulate of isotropy and prin
·ciple of delay. 

As an example of the application of his theory, V ALANIS calculated a plastic deforma
tion under tension after torsion [7]. He expressed Eq. (1.8) in the form dC2 = k 1 de2 + 
+ k2 dYJ 2

, used a linear function f( C) = I+ {JC of C, and established a stress-strain rela
·tion for tension after torsion, by using the parameter Co = k 2 'YJo showing torsional pre
·strain as well as a cross-hardening parameter {J. Moreover, in the tensile deformation the 
relation C = Co+k1e or dC = k 1 de is assumed, and a new parameter {31 = k 1 {J is deter
mined under the assumption that the stress-strain curve under uniaxial tension, starting 
.at the state where torsional prestrain has vanished after pre-torsion, would tend to a 
linear form 

:(1.10) 

for a sufficiently large value of the tensile strain e. 

However, his metho:l as quoted above was not found to be sufficient to approximate with 
:high accuracy the experimental results of plastic deformation of brass under a severe his
:tory effxt mentioned in the previous paper [8]. There, thin-walled tubular specimens are 
.deformed along strain trajectories of three straight branches intersecting normally in the 
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vector space of the strain deviator under combined load of torsion and axial force. This 
may be attributed to the fact that the influence coefficient and the intrinsic time scale z were 
not found in suitable forms to reflect reasonably a severe history effect. 

In the present paper a method is proposed to formulate the experimental results of 
plastic deformation of brass having a severe history effect in the forni of the integral type, 
by selecting the influence coefficient and the intrinsic time scale z so as to be able 
reflect reasonabiy the history effect. 

2. Fundamental equations 

The history of the strain deviator appearing in the thin-walled tubular specimen under 
torsion and axial force may be described as curves showing the strain trajectory in a vector 
plane of the strain deviator ( e1 = e11 , e3 = 2e12/}i3), where e11 and e12 denote the 
axial and shear components of the strain deviator calculated from the experimental results 
of the thin-walled tubular specimen, and the indices 1 and 2 co~espond to the axial and 
circumferential directions of the specimen, respectively. The states of the strain deviator 
and its increment at each point on the curve may be expressed by a strain vector e = 

= e11 n1 +(2/Jt13)e12 n2 (lel is equal to the effective strain Eeq) and de = de11 o1 +(2/ 
lv3) de12 o2 , respectively. Moreover, the state of the stress deviator may be expressed 
by a stress vector a = 0' 11o1 + y'30' u02 (la I is equal to the effective stress O'eq) in a local 
vector space of the stress deviator (S1.1 = (3/2)0'11 = (3/2)au S12 = au = a3 /JI3) where 
a 11 and a 12 denote the axial and shear stress components. These components appear 
in the specimen after modifying the effect of the third invariant in the vector space, as 
mentioned in the previous papers [2-5] in detail. o1 and o2 are the orthonormal base vector 
in the stress and the strain vector space in common. 

By using the components mentioned above, the formula (1.2) is expanded into the 
following forms: 

s s 

(2.1) 

a11 = J K11(s, s'; x1)deu + .. 7- J K12 (s, s'; x1)de12 , 

0 ., 3 0 

s s 

yJ a12 = J K21(s, s'; x,)de11 + .. 7- J K22 (s, s'; x1)de12 , 

0 ., 3 0 

where xi in the arguments of the influence functions in Eqs. (2.1) are the geometric pa
rameters of the strain trajectory expressing the deformation history of materials quanti
tatively. If the history effect including the effect appearing in the case of zero-curvature 
is reflected in the functional relation z(s) by putting C = s, and the influence coefficients 
are expressed as Ku {z(s), z(s')}, the above formula (2.1) may be transformed as follows: 

s s 

au = ~ S11 = J K11 {z(s), z(s')} ~;~1 ds' + .. 7
3 
J K12 {z(s), z(s')} d;;,

2 
ds', 

0 ., 0 
(2.2) 

s s 

Jl'3 al2 = y3 S12 = J K21 {z(s), z(s')} ~;,1 ds' + .. :J J K22 {z(s), z(s')} d;;,2 ds'. 
0 ., 0 

9 Arch. Mech. Stos. nr l/80 
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Valanis defined the intrinsic time measure C in relation to the features of strain state 
and the response of the material to that state in the material parameter kin Eq. (1.8). 
He also determined the influence coefficient in the form of the scalar function due to 
the proportional deformation by assuming a simple scalar relation between the intrinsic 
time measure and the intrinsic time scale. 

However, his method is not suitable to formulate reasonably deformation behaviour 
along the strain trajectory with a corner. On the other hand, in order to reflect the experi
mental fact in which the response of materials is affected essentially by the existence of 
corners, the influence coefficients and· the functions z(s) and z(s') in Eqs. (2.2) are assumed 
to have different characters before and after the corner. 

In the following, the experimental results [8] along the strain trajectories consisting of 
three straight branches intersecting normally, will be formulated by using Eqs. (2.2). As 
shown in Fig. 1, the experimental results have been obtained along the strain trajectory 
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FIG. 1. Strain trajectories consisting of three normal straight branches. 

consisting of the first branch (de 11 > 0, de 12 = 0, 0 ~ s ~ s0 ), the second branch (de 11 = 0, 
de12 > 0, s0 ~ s ~ sJ and the third branch (de 11 :1= 0, de12 = 0, s1 ~ s), and thus the 
stress-strain relation will be formulated in relation to each branch. 

2.1. First branda (0 ~ s ~ so) 

Since de 11 > 0, de 12 = 0 and there is no shear stress ( <112 = 0) in this branch, the 
stress-strain relation may be established from Eqs. (2.2) by using Ka and za(s) as the in
fluence coefficient K11 , and the intrinsic time scale z(s) as follows .: 

(2.3) 

s 

Su(s) = ~ J K,{za(s), z,(s')} ~1,1 ds'. 
0 

If a function of the difference type 

K, {za(s), z,(s')} = ftae-{za<s)-za<:l>l, fta- const, 
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is used as the influence coefficient, then the contribution of the strain increment . de at 
the preceding instant of the intrinsic time scale za(S1

) to the stress increment do at the instant 
Za(s) decreases from a constant amount do = Jtade exponentially in relation to the intrin
sic time interval between these two instants, and Eq. (2.3) is described as follows: 

8 

(2.4) S (s) = ~ u e-za(s) f eza<~'> deu dsl 0 u 3 ra ds 1 , ~ S
1 
~ s. 

0 

Since the variations of the deformation property are reflected in the functions za(s) and 
za(s1

), the coefficient of the difference type may be applied to arbitrary values of s and S
1

, 

and the above equation can formulate the experimental results with high accuracy. 

When a point under consideration (s) lies on the second branch, the contribution of 
de at the preceding point (s 1

) to the stress increment do at the point (s) is quite different 
from that in the previous Sect. 2.1. For example, de(de11 > 0, de12 = 0) on the first 
branch changes suddenly into de(de11 = 0, de12 > 0) at the corner point s = s0 , while 
ldejjdt( = s) is kept constant along the trajectory, and S11 decreases quickly at first and 
slowly afterwards along the second branch. This trend may be attributed to the relaxa
tion of Su. due to the sudden vanishing of de12 and a kind of instability of microstruc
ture of materials · at the corner s0 = eu.. The instability may correspond to a release of 
dislocations which have piled up during the deformation process along the first branch by 
a disturbance de12 applied after the corner in another direction (release of a locked po
tential energy) [5]. By taking into account these effects, the influence coefficient on the 
second branch is distinguished as Kb which is different from Ka on the first branch. More
over, for the same reasons the intrinsic time scale should also be different according to 
whether the preceding point (s1

) lies on the first or second branch. Therefore the influence 
coefficient at the point (s) on the second branch may be selected as 

Kb{zbct(s), z~~«(sl)} = /lbe-{zba.<s>-zba.<~'>>, 

for z(s0 ) ~ z(s) ~ z(s0 +s1), z(O) ~ z(s 1
) ~ z(s0), 

(2.5) Kb {zbp(s)' Zbp(sl)} =#be -{zbp<s>-zbp(s')}' 

for z(s0 ) ~ z(s) ~ z(s0 +s1), z(s0 ) ~ z(s1
) ~ z(s), 

and the stress-strain relations on the second branch are found from Eqs. (2.2) in the follow
ing form: 

s s 

S _ 2 f v { () (I)} deu d 1 _ 2 -zba.(s)f zba.(s') deu d 1 
11 - 3 n..b z~~« s, z~~« s ---;IT s - 3 /lbe . e ds 1 s, 

(2.6) 
0 0 

s 8 

S _ 2 f v { ( ) ( 1)} de1 2 d 1 _ 2 -zbp(s) f zbp(s') de12 dsl 
t2- 3 n..b zbp s , zbp s dsl s - 3/lbe e dsl • 

~ ~ 

9* 
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because de12 = 0(0 ~ s ~ s0 ) and deu = O(s0 ~ s). The influence coefficient K2t is equal 
to 0 because there is no shear stress S 12 on the first branch, and K12 is neglected for little 
contribution of torsional strain to S 11 on the second branch. 

By using the expression Su(s0) = 0'0 , 0'0 may be found from Eqs. (2.4) and the follow
ing relation is obtained from Eqs. (2.6) 

In this way we get 

Consequently, the stress-strain relations on the second branch may be established as follows: 

s 

(2.7) S . ( ) _ ,.. -{zbiX(s)-zb~s0)} 
11 s - voe ' S . ( ) _ -zba.(s) f zbp(s') deu d , 

12 s - !'be e ds' s . 
lo 

2.3. Third branch (so+sl ~ s) 

Since the method for deriving the stress-strain relation is almost the same as those 
in the previous section, only the results are described without detailed derivations. On 
the third branch there are de11 =/: 0 and de12 = 0, and thus the stress-strain relation may 
be expressed as follows: 

~ ~ 

s = 2 11. e -zca.(S) r eZea.(s') deu ds' + 2 ll e-Zey(S) f Zey(s') dell ds' 
11 3 re • ds' 3 re e ds' ' 

(2.8) 
0 ~+~ 

If the values of Su and Su at the second corners= s0 +s1 are denoted as a1 and -rv 
the following relations are obtained from Eqs. (2.8): 

Consequently, the stress-strain relation on the third branch may be established as follows: 

(2.9) 

s 

Su(s) = O'te-{zea.<s)-zca.(lo+st)}+ ~ flee-Zey(s) f ezcy(s') d;;: ds', 

Bo+lt 
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3. Determination of the intrinsic time scale z(za, Zba., zbfJ' Zca.' ZcfJ' Zcy) and the coefficient 

ft(fta' /Jb' ftc) 

3.1. First branch (Jta, Za) 

The following equation may be obtained by the Taylor expansion of Eqs. (2.4) in the 
vicinity of s = 0 and after disregarding the infinitesimal terms higher than the second 
order: 

(3.1) 
2 de11 2 .-~ 

LfSu = Su(Lfs)-S11 (0) = 3fta(JSiJs = 3ftaLJS, (Lfs = Lfe11). 

By using Eq. (3.1), fta may be determined from the tensile stress response in the early 
stage of deformation. 

The formula to find dza 

(3.2) 

may be obtained by transforming Eqs. (2.4) to a differential type. The values of za(s) 
and dza(s) may be calculated by using Eq. (3.2) from the experimental results obtained 
by uniaxial tension. 

The expression (2. 7h has the same form as Eqs. (2.4). Thus the following formula may 
befound in the same way as that for Eq. (3.1): 

(Lfs = Lfe12). 

By using Eq. (3.3), #b may be found from the relation between shear stress and shear 
strain measured just after the corner. After transforming Eq. (2.7h into a differential form, 
the following formula to find dzbfJ may be obtained: 

(3.4) dzbfJ = [(2/3)ftbde1.2 -dS12]/S12. 

In the sl\me manner the formula 

(3.5) dzba. = -dS11 (s)/S11 (s) 

may be found from Eq. (2.7)1 • By using these formulae the values of zba.(s) and zbfJ(s) 
as well as dzba.(s) and dzbfJ(s) may be found from the experimental results on the second 
branch. 

3.3. Tblrd bnmcb (so+s 1 ~ s) 

By tramferring the first term of the right hand side of Eq. (2.9h to the other side, 
and indicating the left hand side as X(s), the following formula may be obtained: 

11 

X(s) = s (s) -(J e-{zca.<s)-zca(llo+sl)} = 2 ll e-Zcy<s> f ezc,<s') deu ds' 
11 1 3 re ds' · 

So+Sl 
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Then the Taylor expansion of X(s) in the vicinity of s = s0 +s1. may derive 

(3.6) LIX = X(s0 +s1 +Lis)-X(so+s1) = S11 (s0 +s1 +L1s)-Su(s0 +sJ 

after disregarding infinitesimal terms higher than the second order. 
If the condition Zccx(s) = zcy(s) is assumed for simplicity, the formula 

(3.7) 

is found from Eq. (2.9)1 • The formula 

(3.8) dzcp = -dS12(s)/S12(s) 

is also obtained from Eq. (2.9h 
By using Eqs. (3.6), (3.7) and (3.8), the values of P,c, Zccx(s) ( =zc1(s)) and Zcp(s) as well 

as dzca.(s) ( = dzc1(s)) and dzcp(s) may be obtained from the · experimental results along 
the third branch. 

3.4. Values of p and z fo1111d from the experimental results 

The values of I' and z were determined by using the experimental results along the 
strain trajectories shown in Fig. 1. Since the stress-strain curves obtained from the experi
mental results did not tend to straight lines for large values of strain, the functional 
form /(C) = 1 + {JC used by V ALANIS [7] was not suitable to reproduce them. On the other 
hand, the functional formf(s) = a(s+c)6 was ascertained to be able to approximate every 
stress-strain curve with high accuracy. The corresponding values of a, b and c for each 
branch differ from each other. Since the amounts s0 = 1.5 per cent (= const) as well as 
s1 = 0, 0.25, 0.5, 1.0 and 20 per cent have been assigned, the values of a, b and con the 
third branch should be functions of s1 • Moreover, there are remarkable differences between 
the trends in the values of a, b, c and 1-'c along the third branches of the group D through G, 
in which the magnitude of the stress vector continuously increases along the branch, 
and those along the third branches of the group H through L, in which the magnitude 
of the stress vector decreases in the early period of the third branch shown in Fig. 1. 
The differences correspond to the experimental results in which a strain-anisotropy anal
ogous to the Bauschinger effect appears along the third branch in the latter group and 
decreases with an increase of s 1 • The functional relations of these characteristics relating 
to s1 were obtained as follows: 

Zcp: a(s1) = 5.26 x 10-3(1-0.6067e-u·455'), 

and for the group H through L 

P,c(sJ/3 = [1000(1-e-'31451)+ 1500] -3.17 x 105s1e-250sa; 

Zccx = Zc1 : a(s1) = (7.047e-s1 + 7.013) x 10- 3 , 

~(s1 ) = -0.4682s1 +2.611, 

c(s1) = -0.03414s1 +0.4297. 
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The values of p. and z obtained from the experimental results along the strain trajec
tories in the group D through G and the group H through L are summarized in the 
following tables (cf. Table I and Tables 2 and 3 from page 140). 

Table 1. Values of ft and z for the first and second branches 

p,(kgf/mm2
) I z I a b c 

fta = 14000 I~ 3.38x I0- 3 0.266 

I 
8.34x I0- 3 

P,b = 7500 

I 
Zb« 5.26x I0- 3 0 0 

ZbfJ I 5.98x I0- 3 0.246 I 7.03 X I0- 3 

These values have been determined from the experimental results with s0 = 1.5 percent. 
However, the values relating to the second and third branches may be functions of s0 in 
general. On the other hand, it has been/ ascertained that the experimental results along 
the second branch for s0 = l.I7, 2.2 and 3.2 per cent obtained in the previous experiment 
[9] are approximated with high accuracy by using the values shown in Table I. This ve
rifies the well-known property that the effect of pre..:strain s0 saturates for pre-strain of 
s0 ~ I per cent. 

4. Comparison of theoretical results with experimental ones 

By using the characteristic values determined above, after the saturation of pre-strain 
s0 , definite stress-strain relations may be realized for arbitrary deformations of brass along 
the above-mentioned strain trajectories for any amount of s1 • Moreover, since the modi-
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FIG. 2. Comparison of calculated results with experimental ones for group D- G ( a11). 
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fication of the effect of the third invariant has been conducted on the stress value, the 
stress-strain relation thus obtained may hold for any strain trajectory of the same geometry 
oriented in any direction in three-dimensional vector space (e1 u (2jy3) (e11./2+2e22), 

(2/Jf'3)e12) [5]. Corresponding stress values expected to be measured in the experiment 
may be obtained . by restoring the effect of the third invariant from the stress values calcu
lated by the above formulae. The stress-strain relations established above are compared 
with the corresponding experimental results by using the following figures. 

The relation between the value 0'11 = (3/2)Su. or y'3a12 = y'3Su and the arc length 
L1s = s- s0 relating to s0 ~ s for the group D through G is shown in Fig. 2 or Fig. 3. The 

0 
L1S (%) 

FIG . 3. Comparison of calculated results with experimental ones for group D- G(lal, yfoo12). 

thick solid curve corresponds to the calculated result, and the various kinds of points show 
the corresponding experimental ones along the trajectories indicated by the inserted small 
figure. The thin solid curves in Fig. 3 show the relation between the resultant modified 
stress intensity ICJ*I = y' a!f+3af2 and L1s found from the thick curves in Figs. 2 and 3. 
Figures 4 and 5 show analogous cUrves for the group H through L as compared with 
the corresponding experimental results. As found from these figures, the calculated results 
may approximate the corresponding experimental ones with high accuracy. 

The dashed curves in Figs. 2 and 3 show the results calculated by V ALANIS' method [7] 
briefly mentioned above. There are considerable differences between the solid and dashed 
curves. 
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FIG. 4. Comparison of calculated results with experimental ones for group H-L(r~11). 

S. Relation between fading memory and limit of integration 

131' 

As found from the experimental results, the stress-strain relations of materials just 
after the corner of the strain trajectory are subjected to a severe history effect and the effect 
decreases with an increase of deformation thereafter without severe history effects. By 
taking this trend into account, Ilyushin proposed Eq. (1.3) instead of Eq. (1.2). Since the 
suitable choice of the length h of the "trace of delay" included in Eq. (1.3) has a signif
icant meaning for effective use of the stress-strain relation obtained above in accurate· 
analyses of plastic deformation of structures, a reasonable estimation of the length lt 
will be discussed in the following. 

When the trend of fading memory is assumed in the form of the exponential type,. 
the effect of preceding disturbance to the instant considered, though it decreases with an 
increase of the interval between the relevant two instants, does not vanish completely 
for the finite interval. Thus the concept of the trace of delay is an approximation and 
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FIG. 5. Comparison of calculated results with experimental ones for group I-L(la/, YJo-12). 

the length h may be regarded to depend on the deformation history as well as on the 
materials. The length h should be determined in complying with the accuracy required 
for the calculated results. On the other hand, this concept is very effective for simplyfying 
~alculations for complicated history, and thus the necessity to discuss the relation between 
hand the accuracy of corresponding calculation should be emphasized for establishing 
the general plastic theory. 

In the following, the relation is discussed according to the examples mentioned above. 
r. 

5.1. Stress-strain relation within the length h along tbe strain trajectory consisting of three normal branches 

The stress-strain relation within the length h may be expressed in the following man
ners. 

Along the first branch: 

(5.1) 

Along the second branch: 

(5.2) I 
so 

2 -zba.(s) J zba.(s') de.u d , -pbe e --, s, 
S11(s) = 3 s-h ds 

0, 

(s-h ~so), 

- (s0 < s--h); 
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(5.2) 
(cont.) (s-h~s0), 

(so < s-h). 

When the value of S u concerning h at s = s0 is indicated by a symbol a~, a~ is known 
from Eq. (5.1), and the following expression 

(5.3) 

may be found from the relation 

obtained from Eq. (5.2)1 . By substituting Eq. (5.3) into Eq. (5.2), the following relations 
may be obtained: 

S11(s) = 

= l"~e-l• .. <•>-•bo'••>l [ 1- y• e••.J."> ~: ds'/l e• .. <•> ~: ds'], (s-h.;; s0), 

so-h so-h 

0 ~0 <s-~, 

(5.4) 

(s-h ~so), 

S12(s) = 

(s0 ~ s-h). 

In the same manner, the following relations are obtained along the third branch: 

•-h S11 ( s) = a; e -{z,.(•J-•,.<•o +'>l) [I - J e•,.(•l ~: ds' 
lo+.r1-h 

(s-h ~so), 

(5.5) 
s 

S ( ) ,, 2 -z (s) f ezc,..<~'> deu ds' 
11 S = 3Pce cy ds' , 

.ro+.r1 
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(5.5) 
(cont.) 

Y. OHASHI, M. TOKUDA, T. MIYAKB, Y. KURITA AND T. SUZUKI 

s 

Su.(s) = ~ P,ce-zc,<s> I ezcy<s'> d;~: ds', (s0 +s1 < s-h); 
s-h 

(s-h ~ s0), 

s12(s) = 0, (so+sl < s-h), 

where G~ and -r~ are expressed as follows: 

(5.6) 
so+.r1 

I •cp<s'> de 12 d ' 
e ds' s. 

So+S!-h 

The corresponding values of p, and z in the above formulae are the same as those 
shown in Tables 1 through 3. 

Table 2. Values of p, and z for tbe third brandl: Group D-G 

P,c(kgf/mm2
) I z I StC'/o) I a b c 

10010 Zca. = Zcy I 4.64x 10-3 0.259 8.12x 10- 3 

Zc(J 0.25 2.71 X 10- 3 0 0 
0.5 3.47x w- 3 0 0 
1.0 3.92x 10- 3 0 0 
2.0 4.76x w- 3 0 0 

Table 3. Values of p, and z for the third branch: Group H- L 

St I P,c(kgf/mm2
) I z a b c 

0 4500 Zca. = Zcy 13.92x to- 3 4.28x 10-2 2.59x to- 2 

ZcfJ 1.75 x w- 3 0 0 
--

0.25 4850 Zca, = Zcy 12.74x 10-3 4.20x to-2 2.s1 x to- 2 

ZcfJ 2.11 x w- 3 0 0 
--

0.5 5500 Zca. = Zcy 11.32x to- 3 4.1Sx to- 2 2.39x to- 2 

ZcfJ 3.47x w- 3 0 0 

1.0 6600 Zca, = Zcy 9.41 x w- 3 3.98x to- 2 2.14x to- 2 

Zc(J 3.92x 10- 3 0 0 
--

2.0 7500 Zca. = Zcy 8.03x to- 3 3.60x to- 2 1. 67x to- 2 

Zc(J 4.76x to- 3 0 0 
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5.2. Relation ~tween the range of integration and accuracy of calculation 

It is necessary to shorten the arc length h for simplyfying calculations whereas it is 
desirable to take h as long as possible for improving the accuracy of calculation. In 
order to determine the arc length h for general application by taking these two points of 
view in to account, stress components were calculated along the trajectories of the group D 
through G ir. relation to four values of h = 0.5, 1.0, 1.5 and 2.0 per cent, for example. 

N 

E 
E 

' -O'l 
.::L. 

20 

tf'O 

h=oo 

G 

F 
E 
D 

h=lO% 
h=0.5% 

~------~~------~-----------_1_--------~ 
0 2 3 4 

L1 s (%) 

FIG. 6. Relation between range of integration and accuracy of calculation (C111):h = oo, 1.0, 0.5%. 
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FIG. 7. Relation between range of integration and accuracy of calculation (C111):H = oo, 2.0, 1.5%. 
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As examples of the results obtained, Figs. 6 and 7 show the relations between o-11 = 
= (3/2)S11 and the arc length LJs after the first corner of the trajectories. Moreover, Fig. 8 
shows analogous relations between y3 o-12 and As. In these figures the results of calcula
tion without considering the trace of delay (h -+ oo) are shown with the solid curves, and 
the results for h = 2.0, 1.5, 1.0 and 0.5 per cent correspond to the dashed curve, dot and 
dashed curve, double dot and dashed curve and thin solid curve, respectively. In Fig. 8 

1:20 

s 
~ 

0 2 

LlS (%) 

3 

h=oo 
h=2.0% 
h= 1.5% 
h=l.O% 
h=0.5°/a 

4 

FIG. 8. Relation between range of integration and accuracy of calculation (YJCT12):h = oo, 1.5, 1.0,.0.5%. 

the results relating to h = 1.5 and 2.0 per cent almost coincided with those for h-+ oo 
along the trajectories D and E for s1 = 0.25 and 0.5 per cent, and these reS!llts are not 
entered in the figure. 

As found from Figs. 6 and 8, there is a considerable difference between the results 
relating to h = 0.5 or 1.0 per cent and h-+ oo. However, it is found from Figs. 7 and 8 
that the results relating to h = 1.5 and 2.0 per cent agree well with the reslllts relating 
to h -+ oo. Judging from these results it may be concluded that the accuracy of calculation 
is not sufficient for practical use and depends on the geometry of the trajectory for a length 
h less than 1.5 per cent, but it is sufficient for estimating stress value inde~ndently of 
the geometry of the strain trajectory for the length h longer than 1.5 per ce1t. 

6. Conclusion 

In order to formulate systematically the stress-strain relation for the plastic deforma
tion of metals with high accuracy by taking into account the history effect appearing 
in their deformation behaviour, a method having a logically clear foundation was estab
lished by selecting the methods with a reasonable foundation out of the methods which 
have been proposed up to the present. 
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Experimental results obtained on the plastic deformation of brass, in which a thin
-walled tubular specimen was deformed with a constant strain rate along the strain trajec
tory with three normal straight branches under combined loading of torsion and axial 
force, were formulated by using this method in the form of a stress-strain relation. 

The results calculated by the relation were confirmed to approximate the experimental 
results with high accuracy. Further, for simplifying the calculation, an effective range of 
trajectory to be taken into account for establishing the relation was discussed in a typical 
case of the above-mentioned trajectory. It was ascertained to be sufficient to consider the 
geometry of the trajectory preceding as far as 1.5 per cent to the point considered. 

Though the proposed method is effective for a material with a nonlinear continuous 
stress-strain curve such as brass, aluminium alloy and others, it may be applicable for 
every continuous part of a stress-strain curve of mild steel except the initial discrete yield 
range. 

The example of a strain trajectory mentioned is rather a special case in which a re-· 
markable history effect appears. The stress-strain relation which should be used for the 
accurate elastoplastic deformation analyses of engineering structures may also be formu
lated by taking into account the variations of geometric parameters in the range of the 
length h for various cases appearing in the process of deformation analyses. 
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