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Evolution model of the elastic domain by any loading 

N. DAHAN, P. LE NEVEZ and P. ROUGEE (CACHAN) 

IN THE FIELD of elastic-plastic and elastic-viscoplastic theories dealing with finite and small 
deformations, we offer a hardening model generalizing several current existing models (isotropic, 
kinematic, ... ) and adapted to the modelization of anisotropy which is related to the loading 
process. The model proposed uses a hardening variable which is an R-valued application (one 
more variable compared to kinematic and isotropic hardening). A particular aspect of the model 
has been used in an experiment on an aluminium alloy undergoing complex changes and small 
plastic strains. 

Sposr6d teorii sp~zystoplastycznosci i spr~:lystolepkospr~zystosci opisuj~cych stany malych 
i skonczonych odksztalcen proponuje si~ w pracy model wzmocnienia stanowi~cy uog6lnienie 
kilku istniej~cych modeli (izotropowego, kinematycznego itd.) i przystosowany do modelowania 
anizotropii zwi~nej z procesem obci~nia. W modelu tym stosuje si~ zmienn~ wzmocnienia, 
a wi~c zmienn~ dodatkowct w por6wnaniu z teoriami wzmocnienia kinematycznego i izotropo
wego. Szczeg6ln~ wlasnosc takiego modelu wykorzystano w doswiadczeniu przeprowadzonym 
na pr6bce ze stopu aluminium poddanej zlo:Zonym zmianom i malym odksztalceniom. 

Cpe~H TeopHif ynpyro-nJiaCTHtiHOCTH H ynpyro-BH3J<oynpyroCTH, OllHCbiBaiOII.UiX COCTOHHHH 
MaJihiX H J<oHetrnbiX ~ecpopMaiurn, npeMaraeTcH B pa6oTe Mo~e.m. ynpotmeHHH, cocraBJIH
IOI..UaH o6o6meHHe HeCJ<OJII>I<HX cymeCTBYIOI..UHX MO~eJieH (H30TpOllHOH, I<HHeMaTHtJeCJ<OH 
H T.~.) H npHcnoco6neHHaH 1< Mo~eJIHpoBaHHIO aHH3oTpoiiHH, cBH3aHHoH: c npoueccoM ua
rpy»<eHHH. B 3TOH Mo~eJIH npHMeHHeTcH nepeMeHHaH ynpotUieHHH, 3HatJHT . ~onoJIHHTeJIL
HaH uepeMeHHaH no cpaBeHHHIO C TeopHHMH I<HHeMaTHtJeCJ<OI'O H H30TpODHOI'O ynpolUieHHH. 
Oco6eHHoe CBOHCTBo TaJ<oH: Mo~eJIH HCDOJIL30BaHo B 3I<cnepHMeHTe, npoBe,neHHOM Ha o6-
pa3ue H3 CnJiaBa aJIIOMHHHH, llO):UleprHYTOro CJIO»<HbiM H3MeHeHHHM H MaJiblM ,ne¢>opMauHHM. 

1. Introduction 

MooELIZING the evolution of the elastic domain with an anisotropic effect is an important 
problem to solve. The part it plays in the shaping process regulates the instability conditions. 
It is therefore easy to understand the numerous attempts to solve this problem [I, 2, 4, 5]. 
Pre-strains have been taken into account by generalizing the Mises criterion. The hardening 
effects- kinematic-isotropic as well as the criterion rotation have been carefully described, 
on the contrary the distorsion effect has not. 

PHILLIPS [6] tackled the problem with his proposal for a model including the 
introduction of a graded distortion function describing the threshold surface. 

However, no evolution law exists for complex loadings. More general modelizations 
have been proposed, starting from a threshold isotropic function compared to a set of 
mathematical objects acting as variables in the function. This way of tackling the problem 
implies the use of representations theories [1, 3, 8]. But finally, if the domain displacements, 
rotations and dilatations are well described, there is little relevant information on the 
threshold function distortion. Finally attempts to tackle the problem from a microscopic 
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point of view using local inclusion mechanisms and following a statistical distribution 
can lead to macroscopic laws of behaviour [7, 11 , 17]. 

From this analysis along with our research, a study [15] has been undertaken, a part 
of which consisted in defining the distortion function more precisely. The latter has been 
modelized by means of a 2nd order tensor of the deviatoric type and has been introduced 
into the Mises criterion: the tensor reacts on the threshold surface radius and its evolution 
law is given under a differential form according to X, a conjugate variable of kinematic 
hardening. This study stresses the choice of a single variable (or function) which all the 
tensor components depend on. 

2. Thermodynamic formulation 

At present, the finite deformation theory offers several variants which all postulate 
the existence of a specific Euclidean space E in which the material behaviour is determined, 
thus allowing to encounter conditions usual in small displacements [16]. Hence the different 
variables can be determined by means of E tensorial space elements (T(E)), particularly 
the space of E symmetrical endomorphisms is denoted by !t' s(E) c T~ (E) 

Ee E !l'8 (E): elastic strain measure, 

(2.1) P E !l' s(E): stress measure, 

D E !t' s(E): strain rate measure. 

The latter is a dual variable of P, in the sense that the specific or volumic power of cohesion 
forces is such that: 

(2.2) Pc = -(P, D)= -Tr(P ·D) 

can be divided into two parts: a plastic part and an elastic part 

(2.3) 

Space E depends on the theory considered. The representation can be either of a pure 
Lagrangean type as in theories in which the loading trihedron is controlled by the evolution 
of internal parameters, or of a more Eulerian type in the Eulerian approach (in special 
coordinates related or not to the configuration where the elastic part is not taken into 
account or finally as in [12], of a Lagrangian type in a corotational space). In the case of 
small displacements, everything has to be written in the only Euclidean space E, P is Cauchy 
endomorphism, D is the derivative E of strain endomorphism E. In finite displacements, 
the definition of Ee, P, D, DP, thus the relations between them, depend on the theory 
considered, and particularly on the choice of E. 

We have chosen not to take the variety of theories into account, but to work within 
the frame of any that one of theses theories using the Euclidean space E. Let us suppose 
that the thermodynamic potential which is similar to the free energy "P (itself a state func
tion), for an isothermal process, . depends only on Ee and a pair of hardening variables 
(p, Cl) 

(2.4) 'P = f(Ee , P, Cl), 
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(p, ~). p and ex are two hardening variables: p is a positive scalar associated with the 
average isotropic hardening, and ex is a deviatoric tensor: 

(2.5) « E !l'~(E) = { u E !l' s(E)1 Tr(u) = 0} 

associated with a translation of the elastic domain as a whole (kinematic hardening). 
Traditionally, this potential is supposed to be uncoupled compared to its three variables 

(2.6) 

Dissipation is 

(2.7) 

where R and X are thermodynamic forces connected to the variables p and ex. For example, 
according to the choice of ¢ 2 and ¢ 3 , the evolution laws of R = R 0 + Kp" or R 0 + Klog(np + 
+I) and X= p.ex with R0 , K, n, p, are material-dependent parameters. 

In the elastic process, the dissipation is equal to zero (Dp = 0). Then we have the 
classical relation 

(2.8) 

the expression of dissipation is 

(2.9) gJ = Tr(P · D11)+R( -p)+X( -.-ci)~ 

The proposed model uses a supplementary hardening variable. The R-valued application 
is defined on a unit sphere of !l'~(E) such that 

(2.10) r: U~(E) ~ R 

With 

U~(E) = {u E !l'~(E); llull = Tr(u2
) 112 = 1} 

which are to be taken into account when defining the elastic Ce. The latter is defined by its 
cylindrical equations (s, /B): 

(2.1 I) Ce = {s e !l's(E),f(s, X, R, r) = llsn-XIl- p ~ 0} 

with 

d . . f Sn-X sn: evtatonc part o s; u = , 
llsn-XII 

p = R+h(X)+r(u). 

Thus the variable r is used to modulate the average hardening isotropic part R, using r(u) 
in every direction of the deviatoric stress space. It is not taken into account in free energy VJ, 
thus does not play a direct role in dissipation. 

Consequently, the dual scalar variables p and R can be considered to be the character
istics of the hardening energy associated to the elastic domain expansion around X; thus R 
and X are precisely determined in physical therms. 

The laws governing the evolution of the variables " = (D,, ~' p) are postulated to be 
normal laws associated with a pseudopotential of dissipation C/>(y) with y = (P, X, R) 
SUCh that X E ocf>(y). 
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Let us consider that, for every r: 

(2.12) Ce(r) = {y = (s, X, R), z = f(s, X, R, r) ~ 0}. 

We choose as the pseudo-potential function(/) indicator of the convex Ce(r) in elastoplastics 
and, in elasto-viscoplastics, a function of the following form; 

4>(y) = g(z), 

where g is a function of R in R, convex, positive, equal to zero if z ~ 0. The flow law can 
be thus written, with ua as the unit vector of loading P 

., '(P ) ., [ or(ua) I ] Dp = Aji ; X, R, r = A Ua- ----gp- r,X ' 

(2.13) ci = Af~(P, X, R, r) =A [ua- a~~a) I - h'(X)], 
r,aa 

p = Af~(P, X, R) ==A. 

A is equal to g' (z) in elasto-viscoplastics and a positive scalar in elasto-plastics. 
Finally, the speed evolution law for the supplementary hardening variable r is postulated 

as: 

(2.14) r = IIXII·/(B, X, R, r). 

More precisely, r is defined in terms of its value in each u 

(2.15) VuE U~(E)r(u) = !lXII · /(P, X, R, r(u) ). 

Along the evolution, Ce(r ), initially chosen as convex, will remain convex for a certain 
period o~time by continuity, but obviously the evolution of r must be carefully looked after 
from that point of view. In case of non-convexity, other means must be put into action, 
such as "convexification" of the result field. The type of anisotropy thus described is 
obviously determined by the choice of/. For I= 0 and h(x) (quadratic function), the 
classical models are encountered with isotropic and kinematic hardening [14, 13]. 

3. Model-experiment correspondences 

To analyse the first experiments carried out in the L. M. T. Cachan, the model used 
is non standard, of the type MARQUIS [9], CHABOCHE [10] with modifications. 

We have considered h = 0. The flow laws 

D = A [ _ or(ua) I ] 
p Ua oP ' 

r,X 

(3.1) . , [ or(ua) . A-( ] 
Cl = A Ua+ ----ax r,a -'1' p) ·X , 

p=A 

with 
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a first modelization of the function I: with a single parameter a such that 

(3.2) 

with 

llxW 
/{u;Px, R, r(u)) =a IIPD-xW {A+3/2(1-A)}{l-Tr(u· u0 )} 

A= Tr(Pa) 
liP II 

and 

9 

We have compared the model to experimental determina~ions of the elastic boundary 
evolution under complex loadings [15] (carried out on an aluminium alloy type 2024) 
and the comparison is valid. 

The elastic boundary seems to be well described qualitatively. The nature and magnitude 
of the loading play an important role, especially in complex loading. To modelize these 
effects, we have introduced the norm IIPD-XII associated to magnitude into the function 

Table 1. 

Hardening I K , I n I da:~, Ida :rom• I Co I Cw I w 

I a 
daNmm 

Isotropic 80 0.3 164 
-- - - ----

Kinematic 80.000 49 160 20 
------

Dis torsion 0.7 

... 
40 a'ttx101 

FIG. 1. 
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I. The quantity A describes. the nature of the loading by making a distinction between 
hydrostatic and non-hydrostatic effects. In the longer run, not only could we integrate 
induced anisotropy into "r but also those effects due to the texture. 

I I I I 
~ o.z 0."1 0.6 0.8 1.0 1.2 

E11 x 10-z 

FI0.2. 

cr1tK10 1 

F10. 3~ 
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Following a minimization, we find the parameters which modelize the material. They 
have been disposed according to their domain in the Table I. In the following figures, 
the curves continuous lines have been calculated using the parameters above, whereas 
experimental values have been drawn using various geometrical figures. The loading is 

FIG. 4. 

FIG. 5. 
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defined in terms of plane stress with two variables (a11 : tension and compression, a12 : 

torsion). 

FIG. 6. 

-.3() 

FIG. 7. 
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FIG. 8. 

Table 2. 

Figure I Loading type I O'u I 0'12 I Xu I xl2 I R 

no. 1 I Tension 280 63.7 176.6 
320 94.1 184.4 
350 119.2 188.4 

no. 3 Tension 317 94 184.3 
l -300 -79 185.2 

Compression - 350 -112 187.4 
-355 -124.8 189.2 

no. 5 Torsion 150 27.2 173.7 
165 39.2 177.8 

----
no. 6 Tension 275 

l 75 74.8 19.6 I 181 
Torsion 120 93 40.1 188 

----
no. 7 Torsion 150 

! 120 26.8 36.5 178.2 
Tension 150 56.6 45.4 184.9 

- - ---
no. 8 Tension 350 

! 
elastic 120 
tension 
unloading 

l 
Torsion 150 91.3 17.8 188.6 

165 68.2 35.4 188.7 

rt 3] 
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Three categories in loading: 
simple: tension (Fig. 1), torsion (Fig. 5), 
complex: tensi9n -+ compression (Fig. 3), 

tension -+ torsion (Fig. 6), 
torsion -+ tension (Fig. 7), 

complex with partial elastic unloading: 

N. DAHAN, P. LE NEVEZ AND P. ROUGEE 

tension -+ elastic unloading tension -+ torsion (Fig. 8). 
Figures 2 and 4 are, respectively, behaviour laws for tension and tension-compression 

experiments. The computed results are given in the Table 2. 

4. Conclusion 

The model we have presented includes a single distortion parameter to describe all 
distortion effects. Despite the fact that there is only one parameter, all distortion effects 
are correctly represented for the material studied. · 

Before improving the model itself, it would be more appropriate to standardize it as 
defined in Sect. 2. Moreover, further experiments on different types of material should 
be carried out and the results analysed so as to extend the domain of the model. The next 
step should be to extend the model for the plastic deformation process going as far as 
fracture and the effects of damage in the elastic domain. 
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