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On numerical treatment of large 
elastic-viscoplastic deformations 

K. -D. KLEE and J. PAULUN (HANNOVER) 

MATERIAL equations for elastic-viscoplastic behaviour are discussed following the papers of 
Bingham, Hohenemser, Prager and Perzyna. For the numerical treatment the flow rule of Pe
rzyna is modified. It can be shown that the given rule leads to the well-known V on Mises flow 
rule as a limit case. For moderately large rotations and strains of a solid a special incremental 
form of principle of virtual work is given in Lagrangean description. Green's strain tensor and 
the second Piola-Kirchhoff stress tensor are used. The coupled physical and geometrical noo
liriearities are described and an incremental form foF the elastic-viscoplastic material equation. 
is formulated. Some critical remarks on the numerical solution for elastic-plastic deformations 
by an elastic-viscoplastic algorithm are given. Plane stress problems, e.g. a perforated strip, 
are calculated numerically using triangular finite elements with quadratic displacement functions. 

Na podstawie prac Binghama, Hohenemsera, Pragera i Perzyny om6wiono r6wnaoia konsty
tutywne dla cial spre(zysto-lepkoplastycznych. Dla .zastosowania metod oumerycznych zmody
fikowano prawo plynie(Cia Perzyny. Mozna wykazac, ze prawo to prowadzi w przypadku gra
nicznym do znanego prawa Von Misesa. Dla umiarkowanie duzych obrot6w i odksztalcen ciala 
stalego podano w opisie Lagrange'a zasade( prac wirtualnych w specjalnej postaci przyrostowej. 
Zastosowano tensor odksztalcenia Greena i drugi tensor napre(ienia Pioliego-Kirchhoffa. Opi
sano sprze(:ienie nieliniowoSc:i fizycznych i geometrycznych i sformulowano postac przyrostOWll 
r6wnan stanu dla material6w spre(zysto-lepkoplastycznych. Podaoo pewne uwagi krytyczne 
dotycZllce rozwi~n numerycznych dla cial spre(zysto-plastycznych na podstawie algorytmu dla 
cial spre(zysto-lepkoplastycznych. Przyklad obliczen numerycznych dotyczy plaskiego stanu na
pr~ienia dla perforowanego pasma rozwillzywanego za pomQCll tr6jklltnych element6w skon
czonych z kwadr~towymi funkcjami przemieszczen. 

Ha oCHoBe pa6oT EHHI'eMa, XoxeueMcepa, llparepa H ll3>KHHa o6cy~eHbi onpe~emuoll!Ule 
ypaBHeHWI ,IVVI ynpyro-BH3KOnJiacnt'leCKHX Ten. ,IlJm npHMeHeHWI 'll{cneHJibiX MeTO,D;OB 
Mo.zm4>1UUfpoBaH 3aKOH Te'leHWI ll3>KHHa. Mo>KHa noK83aTb, 1.ITO 3TOT 38KOH IlpllBOAHT 
B npe.o;em.uoM cnyqae K H:3BeCTHoMy 3aKOHY MH3eca. ,IlJm yMepeHHo 6om.IIlllX Bpal.l.{emdt 
H ~e4>oPMamrH mep.o;oro Tena npHBe~eu, B OnHCaHHH JlarpaiDf<a, npiUII.UUI BllPTY&JibHbiX 
pa60T B cnel.UlaJibHOM BH:,D;e B npapocrax. llpHMeHeH TeH30p ,o;e4>opM8l.UlH rpHH8 H BTOpoii 
Teuaop uanpH>KeHH:H llHona-KHpxro4>4>a. OnHcaHo conpH>KeHH:e 4>Haa1.1ecKH:X a reoMeTpH-
1.1ecKHX HeJilUieHHOCTeii H c4>opMynH:pOBaH Bll,D; B npapoCTBX ypaBHeHllH COCTOHHHH ,IVVI 

ynpyrO-BH3KonnaCTH1.1eCKHX MaTepaanoB. ,1l810TCH HeKOTOpbie RpHTlftleCKH:e aaMe'lauwi, 
KaC810I..l.{HecH '11\cneHHbiX pemeHHH MH ynpyro-nnaCTH'IeCKH:X Ten ua oCHoBe anropH:TMa 
,D;nH ynpyro-BH3Konnacra1.1eCKH:X Ten. llPHMep '11\cneHHbiX paC'IeToB KacaeTCH nnoCKoro 
uanpH>KemiOro coCTOHHH:H AJV1 nep4>opapoBaHHOH nonoc&I pemaiOI..l.{eH npH noMOIIUl Tpe
yrom.HbiX KOHe'IHbiX 3neMeHTOB C KBa,D;p&T1{1.1HbiMI{ 4>yHKIUlHMH: nepeMel.l.{eHHH. 

1. Introduction 

THE IDEA of describing plastic material behaviour by a viscoplastic flow rule is of recent 
date. It was created in search of new application domains for the method of finite elements. 
The first developments in the study of viscoplastic problems were laid by BINGHAM [1] 
and HOHENEMSER, PRAGER [2]. Further developments of the idea of Hohenemser, Prager 
were given by MALVERN [3] and PERZYNA [4]. The numerical treatment of viscoplastic 
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materials was carried out by ZIENKIEWICZ, CORMEAU (5], CORMEAU [6] and NAGARAJAN, 

Porov [7]. They showed that the viscoplastic model is physically reasonable and leads 
to a simple numerical algorithm for the finite element solution of plastic deformations. 
A theoretical proof. of the plastic solution as a viscoplastic limit case for a modified Perzyna 
flow-rule is giv~n in our paper. Till now the numerical applications were restricted to 
problems with small deformation gradients, i.e. only geometrical linear cases were cal
culated. Recently the influence of nonlinear effects has been investigated by KANCHI 

et al. [8]. In our paper the geometrical nonlinearity is treated by using Lagrangean descrip
tion. For this purpose a special principle of incremental virtual work is formulated, in 
which all nonlinear terms due to Green's strain tensor are included. -The application of 
the displacement approach in the finite element method leads to a system of nonlinear 
equations which can be solved by an implicite iteration algorithm. 

The external load-time-function can be approximated by a combination of load-time 
increments up to any desired degree of accuracy. For plastic deformations as a limit case 
the time iteration at each l'oad step is carried out until no further inealastic deformations 
take place. In connection with this a critical remark on the so-called "one shot solution" 
introduced by ZIENKIEWICZ, CORMEAU (5] is given. 

2. Constitutive equations 

The first flow rules in the developments of viscoplastic stress-strain relations were 
given by BINGHAM [1] and HOHENEMSER, PRAGER [2]. In 1922 Bingham postulated a flow 
rule for an ideal fluid: 

(2.1) 

In this rule the components eff of the viscoplastic strain rate tensor depend on a fluid 
constant 'YJ, a measure of overstress given by the second invariant J2 of the stress deviator 
components a;1 and a constant static yield stress T 0 • Later HOHENEMSER, PRAGER [2] 
formulated an extended stress strain relation including elastic strains and hardening effects, 
here given for deviatoric strain rates 

(2 2) ., . 1 . , 1 ( •1- 2 .. 1-1 ) a;J 
• _Etj =-ip C111 + 

211 
yJ2-To- CXy 2 JIJ

2 
• 

The hardening is described by the second invariant / 2 of the strain tensor and f.t denotes 
the shear modulus. PERZYNA [4] generalized this rule 

1

., 1 ., <n..(F)) oF 
E;j =-2 C1;j+. y 'P -~-, f.l UO't) 

(2.3) JO· for F ~ 0, 

((!J(F)) = \(!J(F) for F > 0, 

by introducing the flow function 

(2.4) F= y'J2 -1 

" 
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ON NUMEIUCAL TREATMENT OF LARGE ELASTIC·VISC:OPLASTIC DEFORMATIONS 335 

given for a isotropic hardening material with a hardening parameter "· With a function t/1 
and a viscosity parameter y it is possible to adapt this rule to experimental results. This 
rule can be treated as a generalized form of the rule by MALVERN [3], which was given 
for rate sensitive materials. 

In the following we focus our attention on materials with isotropic hardening, where 
the influence of hydrostatic stresses· on the inelastic behaviour can be neglected. For F we 
introduce the Huber-Mises flow condition. This leads to 

(2.5) •pp *<"'""(·;-]. )> O'fj 
e11 = y "" r 2 -" . ..;- , 

t' J2 
from · which we derive · the invariant form 

(2.6) 

According to HOHENEMSBR, PRAGER [2], we introduce a more generalized linear relation 
for the rate of hardening 

(2.7) 

With Eq. (2.6) this leads to 

(2.8) ;e = P<ll>(l/)2-")>, p := cxy. 
With a constant p and V 12 as a time-dependent control value, which can be evaluated 
as a polynomial time function of finite degree, we get for Eq. (2.8) in the case of a linear 
function t/1 a linear differential equation. For this the solution can be given in the follow
ing form: 

(2.9) "(t) = cexp( -Pt)+ v 12- ~ v i2+ :. vi~-+ .... 
It can be shown that theory of plasticity for isotropic hardening is achieved as a limit 
case of viscoplasticity. In this limit case IX in Eq. (2. 7) is finite, and y (and so p) in Eq. (2. 8) 
tends to infinity and we derive 

(2.10) tX<oo, P-+oo=>"=Vl2, ~=JIJ2 

which for the linear case is an obvious result of Eq. (2.9). With Eq. (2.6) into Eq. (2.5) 
and Eq. (2. 7) it follows that 

(2.11) ""l' - .Jl·"P uiJ - ~ u;J 
e,J - t' 2 --=-- ---=-· v 12 ex v 12 

Using the limit case (2.10) the viscoplastic flow rule can be compared with the well .. known 
plastic flow rule for isotropic hardening material: 

(2.12) 
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336 K.D. Kl.EE AND J. PAULUN 

As a result the two flow rules are identical and the parameter a is proportional to the 
plastic tangent modulus C derived from the static yield curve. For a nonlinear function f;P 

the derivation of the limit case is more complicated but leads to the same results. 
For large deformations we introduce a linear and isotropic relation between stress

and elastic strain-rates in Lagrangean description 

(2.13) 

with the Green strain tensor EMN and the second Piola-Kirchhoff stress tensor SxL· In 
the elasticity tensor 

(2;14) 

* " denotes the Poisson ratio and with the assumption , = const, the Young's modulus C 
can be determined by the given transformation formula (see Fig. 1), where the first Piola
Kirchhoff comparative stress cJ0 and the comparative displacement gradient E0 are used. 

t~st 

Ev 

• F1o. 1. Transformation . of stress-strain curve and Young's modulus C. 

* The modulus C can be assumed as constant or variable with E0 , (see Fig. 1). For our 
flow rule we also choose Lagrangean description 

· * 1- s~L EZ. = y((J J2 -x)) .. ;- , 
y J2 

(2.15) 

In this case the hardening parameter is to be determined by the transformed static stress
strain curve. 

3. Principle of incremental virtual work for large displacements 

For a material and spatial description Cartesian coordinates with coinciding base 
vectors are used. 
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Conf. at time t 

dA,dV, p0 

FIG. 2. Configurations of a body. 

u denotes the displacement vector and L1u its (finite) increment. For the current con
figuration at time t the principle of virtual work is stated as 

(3.1) J SKL~EKLdV- J ~t}uKdA = 0. 
(Vo) (Ap) 

In this equation the interior body forces and the inertia body forces are neglected. ~ is 
the vector of the given surface tractions on A, and with ~EKL we denote the virtual Green 
strain tensor derived from the virtual displacement field ~uK. The same principle holds 

. + 
at timet 

(3.2) 

+ 
Time t corresponds to a neighbouring configuration which was reached after a finite 
time and deformation step from the current configuration. The increments of the displace
ments, stresses, strains and surface tractions are defined as follows: 

+ + 
L1tK = tK -tK, 

1 
(3.3) AEKL: = 2 (LtuK.L +L1uL,K+L1uM,KuM,L +uM,KL1uM,L +L1uM.KL1uM,L). 

The virtual displacement field ~tK in Eq. (3.2) can be reduced to a virtual field 6L1uK of 
displacement increments: 

(3.4) 

because the neighbouring configuration is reached by the known current configuration. 
+ 

Then it can be shown that the variation of EKL is equal to the variation of the incremental . 
+ 

strain tensor. Therefore the principle at time t is simplified to 

(3.5) J (SKL+L1SKL)~L1EKLdV- J (~+L1tK)~L1uKdA = 0. 
(~ ~~ 

In order to avoid small differences of large numbers in the above expression, we replace 
in the principle at time t, Eq. (3.1), 6uK by 6L1uK and so 6EKL by 

(3.6) 
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(see PAULUN [9]). Taking this into account and by subtracting Eq. (3.1) from Eq. (3.5), 
.a simplified principle of incremental virtual work 

(3.7) J L1SxL"L1ExLdV+ J SxLL1uM,x,L1uM,LdV- J L1tx,L1uxdA = 0 
(~) (~) ~~ 

is achieved. 
In the following the proof of the substitution of ~ux by dL1ux in the principle at time t 

is given. 

at time t 

at time; 

EK 

FIG. 3. do, dt dLfu as the ·admissible virtual displacement field in all configurations. 

In Fig. 3 the configurations at time t with an admissible virtual displacement field Chi 

and time 1 with~ are defined. 
With the mappings 

tp(X) = ~' tp -E et, tp-tex., 
+ + + ++ t tp(x) = ,o, tp(x) = ~u. 'I' : = 1p o tp-

(3.8) 

the following theorem is given: 

The set of all mappings +,p constructed by admissible 1p is equal to the set of all ad

missible~' 

(3.9) 

That means +,p delivers an admissible virtual displacement field at time i. 
Proof: 

(i) +,; (~) small: 

+,p (i) = 1p (tp-: 1 (~)) = 1p(x) small (presumption), 

(ii) +,p satisfies homogeneous boundary conditions: 
+ . 

A., = tp(A.,) (presumption) 

+tP(~)Ilu = 1p(tp-t(~)llu) = 1J'(X)IAu = 0, 
(iii) -;,+ e et: 

1p, tp-t e et (presumption) 
++ => 1p := 1p 0 tp-t e et. 

In the proof (ii) the additional presumption was used which claims that the set of material 
points with geometrical boundary conditions does not change in time. 
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As a conclusion ~ and ()~ are admissible virtual displacement fields at any time. Thus 
it follows that the di1ference ()L1u is also an admissible virtual displacement field at any 
time. 

4. Finite element formulation and solution algorithm 

4.1. Finite element description 

For the finite element formulation an incremental form of the constitutive equations has 
to be evaluated: 

t+.dt 

(4.1) EKL : = f EKLdT ~ EKL.dt. 

In Lagrangean representation the additive decomposition of elastic and viscoplastic 
parts of ,strain increments are used. With these assumptions the incremental stress-strain 
relation becomes 

.dSKL = CKLMN(L1EMN -L1t'Y]S;.,N), 

* ~1- 1 
'Y/ : = r<v J2 -">---;-=-. 

JfJ2 

(4.2) 

Introducing this equation into the principle of incremental virtual work, Eq. (3.7), we 
get the basic equation for the numerical process: 

(4.3) f ~L1EKLCKLMN,d£ltfNdV -Jt f 'Y]~L1EKLCKLMNS~fNdV 
(~ (~ 

+ J SKL~L1uM,KJuM,LdV- J L1t~~JuKdA = 0. 
(~) ~~ 

In the finite element formulation the displacements u are described by a shape function 
matrix n and by the vector V of nodal displacements 

(4.4) u = nv. 
By additive splitting of the column matrix L1E of incremental strains, evaluated from 
Eqs. (3.3)2 and (4.4), 

(4.5) L1E = [H+ U(V)N+L(L1V)N]L1V, 

it is possible to calculate geometrically linear or nonlinear cases. In the linear case only 
the product HJV remains. The matrices H and N contain derivation terms of the shape 
function matrix n, the matrices U and L depend on the nodal displacement vector V 
and, respectively, its increment L1V. Introducing Eqs. (4.4) and (4.5) into Eq. (4.3), a system 
of algebraic equations for the incremental displacements is achieved: 

(4.6) £Ker+KGu(V)+KGs(S)+KGP(S, L1t, 'Y])]L1V 

= Rer+Rp{S, L1t, rJ)+RGP(V, S, L1t, rJ)+RG(V, L1V). 
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340 K. D. KLEE AND J. PAULUN 

4.2. Numerical lteradon proc;ess 

In Eq. (4.6) the matrix of coefficients is decomposed- due to Eq. (4.5)- into an 
elastic-geometric linear part Ke1 and additional parts including geometrical nonlinearities 
(subscript G) and inelastic nonlinearities (subscript P). The same ·notation is used on 
the right side of Eq. (4.6). The coefficients depend on the values of the beginning and 
the end of a time-load step and on the chosen value of a time-load increment. 

In order to get a good convergence the nonlinear terms of L1V are integrated into Ra 
on the right side of Eq. (4.6). This system of nonlinear equations can be solved by a nu
merical iteration process. Such a process can base on the Euler extrapolation rule as an 
explicit time integration rule. For this rule and in the case of geometrical linearity 
CORMEAU [6] has developed a condition of stability for the time step 

A < 4(1 +'V) 
(4.7) LJt = y

3
Cy . 

By using such a rule, the coefficient matrices in the algebraic equation ( 4.6), which depend 
on the current stresses and strains, are constant during a time step interval. This leads 
to errors in the iteration process. Therefore we introduce the following implicit iteration 
scheme: 

(4.8) 
L1EPP} - [E. OP(1-0)+EPP} O]L1t 

- n n+l ' 

j = 1 : F::~ 1 = E:P, 0 e [0, 1], 

n denotes the number of time increments and j the iteration index. For 0 = 0 the explicit 
iteration scheme follows. The first iteration step (j = 1) is carried out explicitly according 
to the predictor-corrector method. In the case of geometrical nonlinearity and the explicit 
iteration scheme, stability is only reached for the half value of Cormeau's time step in 
Eq. (4.7). The numerical results show us that the implicit scheme is more stable. 

In the numerical process the important case of elastic-plastic material is realized by 
an iteration process with constant load until a state with " = V J2 (see Eq. (2.10)) is re
ached. The external load can be applied immediately- a so-called "one shot solution" 
- or in a finite number of load increments as shown in Fig. 4. 

effective strain 

FIG. · 4. Iteration processes: for elastic-viscoplastic and elastic-plastic deformations. 
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4.3. Critical remarks on "one shot solution" 

In plasticity the final strains depend on the load history. In the "one shot solution". 
the production of inelastic strains takes place when the external load has been fully applied 
and so the influence of loading history is excluded. As shown in the example (Fig. 5), the 

7{- plane 

initial yield surface 

FIG. 5. Different inelastic strain tensor for plastic and "one ·shot" viscoplastic solution. 

final viscoplastic strain tensor has the same direction as the final stress tensor. For the · 
given stress history the final plastic strains which are calculated as the sums of plastic strain 
increments normal to the current yield surface differ from the viscoplastic strains of "one 
shot solution". If the affinity in load history is not given, the external load has to be applied 
in a finite number of increments. 

5. Example 

A perforated strip under uniaxial tension is investigated using triangular elements 
with quadratic displacement shape functions (Fig. 6). 

The strip consists of an aluminium alloy . with strain hardening, idealized by a linear 
hardening function. For the calculation of the stress distribution a "one shot solution" 
was used. In Fig. 7 the distribution of nominal stress a, in the minimum section B-A 
in dependence of time is given. The steady state can be compared with the measured 
values of THEOCARIS, MARKETOS [10]. A good agreement of the numerical results with 
the experimental one can be seen (Fig. 8). In Fig. 9 the final plastic zones for the loads 
IV (t-= 0.4Y0 ) and VI (i = 0.53Y0 ) achieved by the finite element process are compared 
with the experimental ones. 

In the upper part the curves differ more than in the lower one. The reason for that is 
the relatively rough element subdivision in this region. In Fig. 10 the development of 
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--- Theocaris a. Marketos 

- .. - .. Zienkiewicz a.Cormeau 

FEM geom. nonlinear 

FEM geom. linear 

CEy 

Yo 
FIG. 10. Measured and calculated maximum displacement gradients s, for different loads. 

the maximum displacement gradient e, given as a function of the applied external load, 
measured by THEOCARIS, MARKF.TOS [1 0], is compared with the given finite element cal
-culations based on an implicit and explicit integration rule, respectively. The latter one 
was achieved by ZIENKIEWICZ, CoRMEAu [5] using a geometrically linear calculation. 

6. Conclusion 

In the given example the inftuence of geometrical nonlinearity is not remarkable 
because the displacement gradients are comparatively small. The influence of a geometrical 
nonlinear calculation increases with growing displacements. The proof that the results 
<>f the nonlinear theory are more accurate than those of the linear theory is given by KLEB 
[11] by using equilibrium conditions. 

An advantage of the presented numerical viscoplastic solution algorithm is the flexibility 
in material description. It is possible to calculate viscoplastic, plastic or creep behaviour 
with one program. By using this algorithm for plastic material it is not necessary as in 
the method of initial stress, for example, to fulfill the flow condition after each incremental 
step. Hence the simulation of an elastic-plastic deformation process by an elastic-viscoplastic 
solution algorithm is logically simple and numerically most effective. 
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