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Optimal shape design of loaded boundaries

K. DEMS (LODZ)

THe prOBLEM of optimal shape design of an elastic structure with unspecified loaded boundary
is discussed for the case of mean compliance constraint. The virtual displacement and stress
principles for simultaneous variation of the boundary are derived. Next, the optimality condi-
tions are generated for the case of conservative and nonconservative load systems. The opti-
mization of a circular disk with a circular hole is considered in order to illustrate these condi-
tions.

W pracy rozpatrzono problem optymalnego projektowania ksztaltu brzegébw obcigzonyeh
konstrukcji sprezystych z punktu widzenia minimalizacji podatnosci konstrukcji. Wyprowadzo-
no zasadg prac przygotowanych i zasade¢ uzupelniajgcych prac przygotowanych w przypadku,
gdy ksztalt brzegu ograniczajacego cialo moze podlega¢ zmianom. Nastepnie rozpatrzono wa-
runki optymalnosci ksztaltu brzegu obcigzonego zachowawczymi i niezachowawczymi ukiadami
sil. Jako ilustracje wykorzystania otrzymanych warunkéw rozpatrzono optymalizacje kolowej
tarczy z otworem obciazonej stalym ci$nieniem wewnetrznym i zewnetrznym.

B paGore paccmoTpeHa mpoGiemMa ONTHMANBHOTO NPOEKTHPOBAaHMA (HOpMBI I'DaHWI] Harpy-
FKEHHBIX YOPYTHX KOHCTPYKIMHA ¢ TOUKH 3peHHA MHHHMH3ALMH OOAATAMBOCTH KOHCTPYKIIHH.
BeiBefeH NpMHUMN BHPTYAIBHBIX paGoT ¥ NPHHINN [JONONHAIONIMX BHPTYAIBHBIX pabor
B ciyudae, Koraa Gopma rpaHuilbl, OrPaHHYMBAIONIEH TEN0, MOMKET MOAJIEHKATh H3MEHEHMAM.
3areM paccCMOTpeHBbI YCNOBHA ONTHMAILHOCTH (OPMBI I'DAHMIBI, HAPYHKEHHON KOHCepBa-
THBHBIMM H HEKOHCEPBATHBHBLIMH cHCTeMamu ciul. Kak WumocTpaums HCIONb30BAHMA MOMY-
YeHHBIX YCJIOBHMHl PacCMOTpEHa ONTHMH3ALMA KPYTOBOrO AMCKAa C OTBEPCTHEM, HATPY)KEHHOIO
MOCTOAHHBIMY BHYTPCHHHM H BHEIHHM NaBJICHUAMH.

1. Introdaction

THE PRESENT paper supplements the previous works [1, 2, 3] on optimal shape optimization
of structures with unspecified a priori external free boundary or the interfaces between
particular materials entering into the structure. Whereas in [1] the general optimality
conditions were derived for the case of mean compliance design of a nonlinear elastic
structure and some numerical examples of disk design were presented, in [2] the optimi-
zation of the shape of the interface between different materials entering into the structure
was considered. The optimization of cross-sectional shape of prismatic bars under torsion
was discussed in [3].

The present work provides first the virtual displacement and stress principles in the
case when the displacement or stress variation is accompanied by the variation of the loaded
boundary. Next, these principles are applied in generating optimality conditions in the
case of mean compliance design. Both the conservative and nonconservative load systems
are considered. The optimal design of radii of an elastic circular disk with a circular hole
is discussed in order to illustrate the applicability of the optimality conditions. Our analysis
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will apply to nonlinear elastic materials with stress and strain potentials W(o;;) and U(s;)),
so that

ow ou
(1.1) &y = 5_0”_' Oy = EI
Further, it is assumed that W(o;;) and U(e;;) are homogeneous functions of orders n+1

and k+1, so that

oW ou
(1.2) Oij€y = Ujj'ﬁ = (n+l)W(0iJ) = E!J_aw_u - (k+l]U(Su),

where k- n = 1. For the uniaxial stress state, the stress-strain curve is then described by

FiG. 1. Body B supported on S, and loaded on boundary S, subject to variation.

a power law ¢ = co" where ¢ and n are material parameters. For n = 1, the relations
(1.1) correspond to a linear elastic material whereas for n = oo the perfectly soft behav-
iour is obtained which is analogous to perfectly plastic behaviour.

2. Principle of virtual displacements for simultaneous variation of a loaded boundary

Consider an elastic body B contained in a domain ¥ and bounded by the boundary
§ = S,uUS,, Fig. 1. On the portion S, the surface tractions T = o;;n; are prescribed
whereas on the portion S, the displacements u; = u) are specified.

Consider an infinitesimal variation of configuration by prescribing a continuous and
differentiable vector field dg; = dg;(x), so that

(2-1) P—*P*:x;‘ =I|+€50‘p;.

Thus the domain V is transformed into the domain ¥* with the boundary S, transformed
into S¥. The function dg;(x) vanishes on S, so that the shape of the supported boundary
is not changed. Let the stresses, strains and displacements of the body B before variation
be 0y;, &; and u;. These fields satisfy equilibrium, compatibility and boundary conditions
on S, and S,. Consider now the variations of the static and kinematic flelds. For the
displacement field we can write, cf. Fig. 2a [4],

(2.2) up(e*) = u(x)-+ du,(9),
where the variation dy; is defined as follows:

(2.3) Ouy = uF(x) —u(x) +u;, (x) Oy = Ou;+uy, Oy
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FiG. 2. Variation and continuation of the static and kinematic fields; a) Variation and continuation of the
displacement field; b) Continuation of the stress field beyond S,.

and it satisfies the condition below:
(2.4) éu; =0 on §,.

Here du; denotes the variation of u, at the initial positions of material elements and du;
is the total variation of ;. The variation of strain is expressed analogously to Eq. (2.3),
thus,

(2.5) deyy = 08+ &5, 5 O

and

(2.6) ef(x*) = &,(x)+dey(x).

Consider now a static continuation of the stress field defined by the relation, cf. Fig. 2b,
(2.7) ofi(x*) = 0y,(x)+ 04y, 4(x) 0.

Therefore this stress field is also defined beyond S, and satisfies the equilibrium equations
since [4]

(28} U?}_j(x*} = au‘_’(x)'f‘ﬂ'u.u(x) 5% = 0.
The surface tractions on S¥ are
@9) TH(x*) = af(x*)nf,

where n¥ denotes the external unit normal vector on S¥.
For the conﬁguration V* we can write

(2.10) a* efdv* = f tru9dS,+ [Trupdsy.

s;
Now let us transform the integrals over the domains ¥* and S¥ to the integrals over the
initial domains ¥ and S,. Neglecting higher order terms of 8¢, in the Jacobian of the
transformation (2.1), we find (cf. [4]).

(2.11) dV* = (140, )dV

and the surface element n¥dS¥ is transformed as follows (cf. [5]):

6 Arch. Mech. Stos. nr 2/81
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(2.12) nfdSE = (ny+n;0py, x—n 0y, )dS;,

where n; denotes the external unit normal vector on the initial boundary S,.
Using Egs. (2.2) +(2.9), (2.11) and (2.12), Eq. (2.10) can thus be written in the form

(2.13) f (0154 01,k 090) (15 + 02,5+ &1, @) (1 + g )V
v

= f tupds, + f (015 + 015, 1 0P Uy + Ott + 1y 1 O (ny+ 1y 09y — 1y Oy, S, .
S S,

Neglecting higher order terms of dgy, d&;; and du; and using the equality

(2.14) [oyeydv = [ 1ufds,+ [ TPuds,.
1% Su S

Equation (2.13) can be presented in the form
2.15) [oyde,av = [TPoudS+ [ [(owdp,—0,dpIul mdS,.
v S 5

Equation (2.15) represents the required virtual displacement principle. Applying now the
Stokes theorem to the last term of Eq. (2.15), we can retransform it to a line integral along
the curve I" bounding the surface S,, thus,

(2.16) [oyo8,dv = [ TPoudS,— § emayutldohdr,

V 5 r

where #!' denotes the unit vector tangential to the curve I, d¢f is the variation of S, on
I' and ey, denotes the permutation symbol. When the variation d¢f = 0 on I, then the
last term of Eq. (2.16) vanishes and the principle of virtual work takes now the form

2.17) [oy68,av = [ TP 6u,ds,.
v S,

3. Principle of virtual stress with simultaneous variation of the loaded boundary S,

Using the notation included in the preceding Section, let us assume that the transforma-
tion ¥ — V* is accompanied by the stress variation and the stress field o is statically
admissible and satisfies the boundary conditions., We thus have

(3.1 o} (x*) = 0y(x) + 00y4(x) = 01,4+ 07+ 0y, x 09y,
where

(32) 85y = ot(x)—oy(x)

and static admissibility requires that

(3.3) Gﬁ_? —_— O.U-.f+ 65{J'J+G‘JJJ&?“ — 0.
Hence

(3.4) 6o,;,,;,=0 in V,

and the surface tractions on S¥* are

(3:9) T#(x*) = of(x*)n}.
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Denote now the total variation of the surface tractions by

(3.6) OT? = T*(x*)—T°(x) = dayyn;+ayy0m,.

Using Eq. (3.1) and the equality [5]

(3.7) 6”} = ﬂ; —h; = nngn 6993.1 —hy 69?&.;,

we obtain from Eq. (3.6)

(3.8) dayn; = 0T — TPnyny dqpy,; — 0y, 41y 0P+ 0y 0.,  On S,.

Continuing analytically the displacement and strain fields from V into V*, we can write
uF(x*) = uy(x)+u;, 1 (x) oy,
efi(x*) = &,(x)+ &15,1(x) Oy

Thus, for the configuration V* we can write

(3.10) [oteyave = [rputas,+ [ Trupdss.
4 Sy s

(3.9

Following in a similar way as in the previous section, we can transform integration within
the domains V'* and S;* to the domains ¥ and S,. Using Egs. (2.11), (2.12) and (3.1 +3.9),
we can obtain after deleting higher order terms with respect to dg, and da;

@A) [ (oy+85)eudV = [truPdS,+ [ [Tou+ 8T u,
v 5, s

+ TPu(0qpy, x —neny 09y, 1) + (o Oy — 0y Op ) uy, i }dS,.
Substracting Eq. (2.14) from Eq. (3.11), we obtain the required principle of virtual stress

(3.12) [ a,e,aV = [otupdS+ [ [T0u,+ TOu,(dgs.
v Sy S¢

—meny 8y, 1) + (0 69y — 01509y, il dS, .
Let the surface S, be parametrized by an orthogonal, curvilinear coordinate system a, £,
Fig. 3, coinciding with the lines of principal curvatures of S; and let a;, b, denote the
unit vectors tangent to the «-and f-lines, whereas dg,, dgp, and dg, denote the components
of variation of a typical point on S, in the directions «, § and n. Thus the following equali-
ties hold on S;:

(3.13) 0pa = a,dp, 0@y = by Oy,  Op, = N dp.

Furthermore, for any function f(x), continuous and differentiable on S,, we have
1 1

(314) f.k = 7ﬁuak+‘Ff.ﬁbk+Lnnk’

where A2 and B? are the coefficients of the first quadratic form of the surface S,. Using
Eq. (3.14) we can present Eq. (3.11) in the form

3.15) [ 65,6,V = [ otuldS,+ [8TPudSi+ [ {[(TPu),n
14 Se Sy S

—2 T}oulH —UU' aulﬂk— T}?kul} 693;ds,+ f [(Tiou‘"t a?k).a
St

1
+ (TPuyni 69y, g 4B s,

o
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Fic. 3. Parametrization of surface S with the curvilinear coordinate system.

where H denotes the mean curvature of S;. In writing Eq. (3.15) the following equalny
was used:

(3.16) 2Hn, = ;_B[(Ba,‘),,+(Ab,)_ r e

Since the variation d¢, = 0 on the curve I" bounding the surface S,, then the last term on
the right-hand side of Eq. (3.15) vanishes and the principle of virtual stresses takes now
the form

G17) [ 65,6,V = [ otupdS,+ [8TPudS,+ [ {[(TPu).
v 5, S, 8¢

—ZTf'u, H -0y Sulﬂg it T}?ku,} 6¢de‘ .

Let us note that the principle (3.17) (as well as the prinicple (2.17)) holds both in the case
of the conservative load system on S, and in the case of the nonconservative load system.

4. Optimality conditions for the surface S,

Consider now the problem of optimal design for an elastic body with an unspecified, in
advance, loaded boundary S;. Our discussion will be limited to mean compliance (maximum
stiffness) design with a prescribed upper bound on the total material cost of the structure.
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This type of design was proposed first by WasiuTyNsk1 [8] and discussed in general terms
by MRr6z [6, 7], who derived global optimality conditions for the shape of the free boundary.
Multiparameter formulation of optimal shape problems for external free boundary and
for internal surface between particular materials entering into the body was presented
by Dems and MRré6z [1, 2]. Here we derive the optimality conditions for the external bound-
ary loaded by conservative and nonconservative surface tractions. Both the stress and
displace...ent approaches will be used. Let us consider a loaded boundary S, shown in
Fig. 1 and derive the optimality conditions for minimum compliance design. The total cost
of the structure is

(4.1) C =cV,

where c is the specific cost of the material and ¥ denotes the volume of the structure.
Assume the complementary energy as a measure of mean compliance

4.2) o,= [Wepdv- [ tufds,.
| 4 Sy

Let us note that for a homogenous stress energy function, of order n+ 1, in view of Eq.
(1.2) there is

1
(4.3) 1, = n_+1“s.{ TPu,dS, for S,=0,
(4.4) I, = ——n% f (u9ds, for S,=0
S

and the complementary energy is proportional to the work of surface tractions on S, or S,.
The optimization problem

(4.5) minimize IT,, subject to C < C,,

where C, is the upper bound on the material cost, is now reduced to investigating the
conditions for stationarity of the Lagrange functional

(4.6) IT (o, @, A) = II,+ A(C—-C,),

where 4 is a positive Lagrange multiplier. The first variation of Eq. (4.6) with respect to
0y;, @« and A now equals [4]

ow
doy,

@47 oIl = faa,, av+ f%.aqa,ds,_ f 8t,u%ds,
v S‘. Sy

+ Ac f n, 0@, dS, + 8A(C - Cy).

Sy

Using the virtual stress equation (3.17), we have the stationarity condition

48) O, = [ {IW+(TPu).,—2T u,H —oy e )n— Tou,} d9,dS,
5

+ [ 6TPudS,+Ac [ ndpdS,+84(C—Co) = 0.
S LA
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Consider now the variation of the surface tractions 67;°. For the conservative load system
we can write

4.9 T = oll+[uy(x)]/0u,,

where IT; denotes the potential of external forces. Thus the variation of surface tractions,
due to variation of boundary configuration, takes the form

(4.10) T? = T2 6¢;.

Using now Eq. (4.10) in the stationarity condition (4.8) and taking into account Eq. (3.13),
we obtain

@11) I, = [ [W+(Tu),,—2T u,H -0, 8.+ Ac89,dS, + 6A(C—Cy) = 0.
S

Since d¢, and 44 are arbitrary variations, Eq. (4.11) yields the local conditions
ayey—W+2T u,H—(Tu),, = ¢ on S,
C = Co.

Consider now the parameter constrained variation of S, [1]. Let the boundary modfication
function ¢, (x) be specified to within a set of L parameters a;,

(4.12)

7
413) g =@xa), dp=grda, k=1,2,3, I=1,2,..,L
i
The stationarity conditions of IT; now take the form
[ 108y = WH2Tou H = (TPu)), simes.0,dS, = Ic [ nep, odS,,

(4.14) $¢ 3¢

C = Co
and constitute a set of algebraic equations from which the parameters g, can be determined,
The most typical cases of bundary variations will be discussed in Sect. 5.

As an example of a nonconservative load system consider now the surface tractions
given in the form

(4.15) T? = p(xmy,

where n; denotes the external unit normal vector on S, and p(x;) is a given function of
position. Therefore Eq. (4.15) represents, for example, loading by a pressurized fluid,
By using Eq. (3.7), the variation of Eq. (4.15) due to the variation of the boundary con-
figuration can be presented as follows:

(4.16) ST = dp(x)n;+p(x) Ony = p, ki 0@+ p(nyny Oy, —my 8y ),
whereas the work of the force variations on the diplacements u, can be expressed in the form

@17) [ 8TPuds, = [{[2pnuH—(nu), ot (pu)), dni+ (on), s} 09,dS,
Sy Sy

Using now Egs. (4.15) and (4.17) in Eq. (4.8) and taking into account Eq. (3.13), we obtain
the stationarity condition in the form

(4.18) O, = [ [W—oy e+ (pu), i+ Ac] 89,dS, + 8A(C— Co) = 0.
8¢
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The local necessary optimality conditions follow directly from Eq. (4.18):
o e,— W—(pu),, = A on S,
C = C,.
In the case of the parameter-constrained variation of S, (4.13), the global stationarity
conditions are similar to Eq. (4.14):

J.[Uub‘u— W—(puy), Jnk @k, dS, = Ac J-"t%.-gdsn
S Si

(4.19)

(4.20)
C = Co .

The derivation of optimality conditions using the potential energy follows similar steps.
Assume the potential energy

(4.21) I, = [U(e)av— [ Touds,
1 5,

as a measure of structure stiffness. The optimization problem is now formulated as fol-
lows:

(4.22) maximize I1,, subject to C < C,.
The stationarity conditions are derived by considering the functional
(423) H;(ul} T}O, Prs ;‘) = Hn—'l(c-co)

whose first variation equals [4]

(4-24) aH.: - ‘g":L asudV‘i' J.Unl 6?’de| —é f T;ouldS,
7 4 5 A

—ZC fﬂk atpde;_él(C-‘Co) = 0.

St

The variation of the work of surface tractions can be expressed as follows:
(425 8 [ TPuds, = [ 8TOu,dS,+ TP bu,dS,+ TPu,6(dS).

5 5,
By using Eq. (2.3) and the equality [5]

(4.26) 0(dS,) = (dgx,x —ni gy, )dSS,,
Eq. (4.25) can be transformed to the form

@27 6 [ TPuds, = [ 8TPu,dS,+ TP 8i,dS,+ [(Tu)),,—2T u, Hln, d,dsS,
S S,

1
— TP u, 0, dS, + AB [(Tu,Ba, 09y), o + (T}"u‘Ab,dq:,‘)_,]dS,,

where the last term on the right-hand side equals zero when the variation dg, = 0 on the
curve I" bounding the surface S,. Using the virtual work principle (2.17) and Eq. (4.27)
in Eq. (4.24), the stationarity condition of I, can be presented as follows:
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4.28) O, = [ {[U~(TPu),u+2T u,Hlny+ Tu,} 6, dS,
Sy
- fﬁ?}ou,ds,—ic .’ n, ¢, dS, —0A(C—C,) = 0.
5 S,

When the surface S, is loaded by the conservative load system (4.9), we obtian from Eq.
(4.28) the local optimality conditions

U—(TPu), ,+2T u;H = Ac on S,,

(4.29) Sy

or for the parameter-constrained variation of S, (4.13) the global conditions

[ U~ (TPu), a4 2T0u HIny s, 0 dS, = 7 [ mpy.0dS,,
(4.30) 5 S

C = Co.
In the case of the nonconservative load system (4.15), that variation being described by
Egs. (4.16) and (4.17), the local optimality conditions that follow from Eq. (4.28) take the

form
U—(pu)),, = Ac on §,,

C=Cn.

The global conditions for the parameter-dependent variation of S, will be presented as
follows:

(4.31)

[ WW—=(pu). s, adS, = 2c [ nig,0,dS,,
S¢

S,

(4.32)
C = Co.

Let us note that the equivalence of the optimality conditions derived by means of the
stress energy and the potential energy functions follows directly from the equality

(4.33) U(e)+ W(ay) = 0y,

5. Parameter-constrained simple boundary variations

The derived optimality conditions provide equations for the function g;(x) defining
the loaded boundary S, for any three-dimensional structure. In this Section we restrict our
discussion to a plane case when the stress state in the direction x; normal to the plane
X, X, is uniform or vanishes and the structure shape in the x, x,-plane is to be determined.
We consider several simpler cases depending on a set of shape parameters a,.

In the following we shall assume that the optimization problem is formulated by using
the stress energy function and the structure is loaded by conservative surface tractions
on S;. Thus the optimality conditions (4.14) will be used for determining the shape para-
meters, Other cases of the optimization problem can be considered in a similar manner.
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5.1. Piecewise linear boundary

Consider a boundary composed of a finite number of linear segments, Fig. 4, forming
a polygon of r sides. Let boundary modification be performed by describing a displacement
vector g{ to each polygon vertex. Since after modification each boundary segment should

a b o(i*"

F1G. 4. Piecewise linear boundary; a) Variation of boundary; b) Decomposition of vertex displacements
and shape parameters of the boundary.

remain linear, the boundary displacement function for the j-th segment ¢/ takes the form

5.1 ¢is) = %[(Lj—s)qr}"’+sq9f“”], 0L s Ly, =12, J=1,2,..¥F,
7]

where L; denotes the length of the side j.

Assume now that the displacement components of the vertices A;,, normal to the
sides j—1 and j and denoted by a/j;', a;), are the shape parameters and should be de-
termined from the optimality conditions. Thus the boundary modification function for
the j-th segment can be expressed as follows:

‘P{ = L[(LJ— ) a{!—)ln{ _a{.ﬁ”{_ I +5 a{}-ﬁl)né a{1+l}n£

n{~'ni —ni"'n} ninit —ninf*t )
i J J-1 +1
(.2) @k = 1 —(L,—s) “(n 'ni —afyn] _ au“,nl __ o
2 I g n*' 'nl —ni-'nj n-’n“‘—-njrl“’ ’

OHSSL‘[; j=l|23--'pr}

where afj;' and a/;, form a set of 2r shape parameters.

Using now Eq. (5.2) in the optimality conditions (4.14), we obtain a set of 2r equa-
tions:
L

1 1
5 f [0y e— W—(Tu)), J(L;—s)ds = 5 AcL,,
)

(5.3) ’

%;f [0y 65— W—(TPu,), ,]sds = LACLJ
H

2
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from which 2r parameters af;, defining the shape of the optimal boundary can be determin-
ed. The Lagrange multiplier A is found from the condition of the constant material cost
of the polygon.

5.2. Rigid-body translation of a closed contour

Consider now a translation of a closed boundary where each point undergoes the same
displacement, Fig. 5. Assuming that the two independent parameters a,, a, define the

Fi1G. 5. Translation of a closed contour.

position of the domain enclosed by the surface S,, the boundary modification function can
be presented in the form

(5.4 @, =a, =const, i=1,2

and from Eq. (4.14) we obtain two stationarity conditions:

‘ [0y 85— W42T u, H— (T u,), Jdx; = f [01 65— W+2T u  H—(Tuy), JJdx,,

AcB ADB
(5.3)
f (o1 &) =W+2T u H— (T uy), Jdx, = f [0y &1y =W+2T u, H—(Tu,), Jdx,
CAD éDB

where integration is performed on portions ACB, BDA, CAD and DBC, respectively.

5.3. Rotation of a closed contour

Consider now the rotation of a closed boundary around a point 0, Fig. 6. The displace-
ments of the typical boundary point P equal

@, = —x{(1 —cosw) —x3sinw,

(5.6) @2 = xIsinw —x3(1 —cosw),

where x3, xJ are the initial coordinates of the point P and w denotes the angle of rotation,



OPTIMAL SHAPE DESIGN OF LOADED BOUNDARIES 255

Fic. 6. Rotation of a closed contour.

which plays the role of the shape parameter of boundary modification. By using Eq. (5.6)
in Eq. (4.14), the stationarity condition now takes the form

(5.7) [ (o165 =W+2T0u, H—(TPu), )(x,d%, +x2dx) = 0.
S;

5.4. Expansion and contraction of the closed contour

Let us give a family of closed curves described by the equation

(5.8) F(xy,x5,k) =0
and, furthermore, let F be a homogeneous function of order p of its arguments, such that
(5.9) F(tx,, tx,, tk) = t°F(x,, x5, k).

For k = ko Eq. (5.8) describes the optimal boundary S,. Let us assume that the coefficient
k can be expressed as follows:

(5.10) k = ko+a = k.,(1+ -f’—),
ko

where a is the shape parameter of boundary modification. For a > 0 the boundary under-
goes an expansion, whereas for a < 0 — contraction. By using Egs. (5.9) and (5.10), the
boundary modification function can thus be presented in the form

(5'11) P =—o—4a, i= 132:
ko

where x; are the coordinates of the boundary points. Using now Eq. (5.11), the stationa-
rity condition (5.11) yields

(5.12) f [0y =W +2T u, H— (T uy), J(x,dx; —x,dx,) = 2AcA,
S¢

where 4 denotes the area of the surface bounded by the curve F(x,, x,, k;) = 0. The
equations of the form (5.12) together with the condition of the constant material cost
of the structure constitute a set of algebraic equations from which the parameters k, for
all considered boundaries and the Lagrange multiplier A can be determined.
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Let now Eq. (5.8) represent the family of concentric circles described by the equation
(5.13) x{+x}—-k* =0,
where k denotes a radius of the circle. In such a case the boundary modification function
(5.11) represents the translation of the boundary points along radial directions, and the
stationarity condition (5.12) takes the form

(5.14) fldueu—-W+—;—T}nu,—(ﬂoul)_,]ds = hicko,
5 o
where k, is the required radius of the optimal boundary.

5.5. General modification of a boundary

The discussed boundary modifications contained several simpler transformations of
optimized boundaries. Consider now a more general parameter modification. Let us assume

X

Fi1G6. 7. General modification of a boundary.

to this end that the optimized boundary can be described in a polar coordinate system
(r, £). Fig. 7, by the equation

(5.15) r=ro®)+ef), &<E<E,

where ry(£) is a reference shape function. The function ¢,(£) modifying the boundary along

radial direction can be expressed as follows:
L

(516) ® = D afi®),
I=1
where f; are smooth functions each satisfying relevant end conditions and a4, denote the

L shape parameters.
Transforming ¢, to the Cartesian coordinate system (x,, x,), the boundary modi-
fication functions take the form

L
@ = zﬂ{ﬁ(f)coﬁ,
L

P2 = D afi(®)sing

I=1

(5.17)
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and the optimality conditions (4.14) constitute a set of L+ 1 equations:

§e f
G.18) [ [oyey—W+2T0u H~(T0u) i [ro+ Y a, f)) fudé
I=1

&s
e L
=dc [ (ro+ X aif)fidt, k=1,2,.. L,
£ i=1

C= Co
from which the shape parameters a; and the Lagrange multiplier A can be determined.

6. Optimal design of a circular disk with a circular hole

As simple illustration of utilization of the stationarity conditions obtained in Sect.
4, let us consider the optimal design problem of a circular disk with a circular hole that
is loaded by uniform internal pressure p; and external pressure p,, Fig. 8. The disk with
an inner radius r; and an outer one r, is made of a linearly elastic material. The optimization

X\

FiG. 8. Circular disk with a hole subject to uniformly distributed pressures.

problem is now reduced to determining these radii under the condition of constant material
cost of the disk. Moreover, let us assume that the state of plane stress is considered.
The cost of the disk is assumed to be proportional to

(6.1) C = ca(r—rd).
The complementary energy of the disk equals

(6.2) I, = Z—IE- f (6? =va, 0,4+ 0})rdr,

Ti
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where o, and o, are the radial and circumferential stress components, while E and » denote
elastic constants. The equilibrium equation

(6.3) Tj; (re)—o, =0

should be accompanied by boundary conditions:

= -a,=p;, T°=0 for r=r,
(6.4) ; i ro i
’=06,=-p, T°=0 for r=r,
and stationarity conditions (4.19) on the surfaces r = r; and r = r,, which, expressed in
terms of stress components, could be written in the form
(0, +p)?*=2(1 —v)p} = 2AcE for r=r,,
(0,+p.)>—2(1—v)p2 = 2AcE for r=r,.
Equation (6.3) is satisfied for the stress field

A A
©.6) 0= 4B, o=-1B

(6.5)

and the boundary conditions (6.4) are satisfied when

rir? purt —p.r?
6.7) A= TELTf (pe—p), B= _‘r*:zfﬂz'—
The optimality conditions (6.5), in view of Egs. (6.6) and (6.7), take the form
2": 2 2
= (Pi—pe)* —(1—»)pi = AcE,
68 ¢
= (p—p )2 —(1 —-)p? =
(reg _rig)z (.pl Pe) (l v)p‘ AcE.
The constraint on the cost of the disk in view of Eq. (6.1) can be expressed as follows:
(6.9) re—rt =gq,

where g > 0 is the prescribed relative cost of the design.
Equations (6.8) and (6.9) constitute a set of equations with 3 unknowns r;, r, and A.
The optimal radii determined from this set are then

610 rn=L ]//q GAp—(t9p 1 l/q G-»)p—(1+7)p,
2 pj _Pg 2 pl _pl?
under the condition

Pi 3—»
(6.11) I{E< e

If the condition (6.11) is not valid, then there is no real solution of the optimality condi-
tions (6.8) and the complementary energy of the disk does not attain the optimal value
in the sense of the formulation above. In that case, however, the mean compliance of the
disk of constant material cost decreases together with the value of the inner radius r;
tending to zero.
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The mean compliance of the disk (6.2) in view of Egs. (6.6), (6.7) and (6.9) can now
be presented in the form

©6.12) W= z%s [(14+3)r2r2(pe—p)? + (1 =9) (Bir? —por2)?].

A similar consideration can be made for the case of the state of plane strain. The solution
of the optimization problem is once again described by Egs. (6.10) +(6.12), in which the
Young’s modulus E should be replaced by E/(1—»?) and the Poisson’s ratio » by »/(1 —»).

Figure 9 shows the variation of the disk compliance (6.12) as a function of the radius
r; for a given value of cost of the design ¢. Both the states of plane stress and plane strain

Ny Eépez o—f/ﬂl
[em?]
} 20

85 .
nsE/6; / /
80 15

Plane stress stale /7 ‘
~ane siress stake
85 \‘\ / / 10

80 \\_/ 05
Plane strain state__—
P
= i/ 2
“ (6t/R)p, /7 s
o ol
; =] v4 -10
I~
60

-1
0 20 30 40 [ [m) g

FiG. 9. Mean disk compliance and circumferential stresses versus inner radius (v = 0.3, g = 25.0 cm?,
Pilpe = 1.5).

are considered. Moreover, the change of circumferential stress ¢, on the inner and outer
edge of the disk is shown. It is easy to see that the values of r; and r, satisfying Eqgs. (6.70)
correspond to a global minimum of the mean disk compliance.

7. Conclusions

The derived optimality conditions generate the nonlinear set of equations which
determine the shape parameters of the loaded boundaries. The solution of this set is possi-
ble, in general, through the iterative procedure analysis-synthesis similar to that already
discussed in [1, 3], where the finite element formulation of optimal shape design was pre-
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sented. So far, our analysis has been confined to mean compliance design, but other be-
havioural constraints can easily be incorporated.

The derived virtual displacement and stress principles can thus constitute a foundation
for a more general class of problems of optimal structural synthesis which will be discussed
in consecutive papers.

The optimality conditions for a free boundary are automatically generated by as-
suming the surface tractions on a part of S, as vanishing.
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