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Breaking water waves 

D. H. PEREGRINE (BRISTOL) 

THE PAPER addresses three basic questions about breaking water waves: why do they break, when do 
they break, and how do they break. 

WE ARE STILL at an early stage in the study of breaking waves. The basic question of 
"Why?", "When?" and ''How?" do receive answers, but in many cases they are incom­
plete, or imprecise. For example we know very little about the violent splashing which 
often accompanies wave breaking and descriptions of that phase of breaking are only just 
emerging. On the other hand good progress has been made in recent years in describing 
two-dimensional irrotational waves including the initial phase of wave breaking as a wave 
overturns and a falling sheet of water is formed. This presentation is biased towards these 
studies. 

1. Why do waves break? 

DISTURBANCES: wind moving objects, such as ships; and changes in water depth are 
all disturbances which may, or may not, cause wave breaking. Such disturbances are often 
involved in the generation of waves. 

Instabilities have often been described as a cause of wave breaking; studies of the 
nonlinear evolution of instabilities show that, although they can be a primary cause of 
breaking, the actual occurrence of breaking is not closely linked to the initial small distur­
bance. The full nonlinear evolution of two-dimensional instabilities has been calculated 
for the alternate-crest instability of LONGUET-HIGGINS (LONGUET-HIGGINS and COKELET 
[34]), the BENJAMIN-FEIR [8] modulational instability (DOLO and PEREGRINE [16]) and 
TANAKA'S [61] instability for waves higher than those with the maximum energy density 
by TANAKA, DOLO, LEVY and PEREGRINE [ 62] for the solitary wave, and JILIANS [26] for 
the deep water wave. 

Evolution towards breaking occurs after an initial instability but also in other circum­
stances: the example of long nonlinear waves in shallow water is well-kn_own and their 
steepening has now been studied to the initial breaking stage. Recent work by TELES OA 
SILVA and PEREGRINE [ 68] explores this evolution with two-dimensional irrotational flow 
computations. Examples are shown in Fig. 1. Waves of height less than 0.3 times the 
depth develop undulations and do not break. Waves that are focussed in space or time 
are another example. 

2. When do waves break? 

For simple two-dimensional examples this question can now be answered by direct 
computation. Comparisons with experiment show good agreement. On the other hand 
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FIG. 1. Long shallow water waves steepened and evolved to breaking. 
a) Initial wave of height 1.5 times the depth in front. b) Initial wave of height 0.7 times the depth in front. 

Diagrams courtesy of F.TELES da SILVA. 

computations have also given some surprises. This has been particularly marked in a 
recent study of solitary waves meeting a submerged semi-circular cylinder resting on a flat 
bed. All the practical examples of breaking induced are contrary to our initial expectation 
and for some of these examples of breaking we have yet to find a satisfactory explanation. 
They include waves which break backward and forward at the same time. See COOKER 
and PEREGRINE [11 ], a full account including satisfactory comparison with experiments is 
given by COOKER, PEREGRINE, VIDAL and DOLO [12). 

To predict when waves break it is not necessary to describe details of the breaking 
process. Comparisons between weakly nonlinear theory for deep water waves and com­
putation in two dimensions and experiment in three dimensions indicate that satisfactory 
predictions are possible with some suitable "allowance" for the final, brief, highly nonlin­
ear evolution toward breaking. 

3. How do waves break? 

Answers to this question are still in the observational stage of study. Even the initial 
overturning is still not understood, despite detailed numerical solutions and some reason­
able approximate analytical solutions. My own observation, based on many computations 
and experiments, is that breaking takes many forms. Some sort of initial jet, however 
small, is not universal, but if a jet occurs the only common feature appears to be a con­
vergence of surface fluid to create it. Initial study of converging flow has given us some 
amusing free surface profiles, see Fig. 2. 
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FIG. 2. Surface profiles arising from conditions corresponding to converging streams with an initially 
flat surface. Diagrams courtesy of A.ANDERSON. 
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