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Axisymmetric laminar interacting boundary layers 

A. KLUWICK (WIEN) 

THE COMPUTATION of high Reynolds number laminar viscous inviscid interaction phenomena hac; been 
one of the central issues in fluid mechanics over the past two decades. An important contribution to 
the understanding of such flows has been provided by asymptotic theories. In particular these theories 
show that a locally interacting laminar boundary layer develops a multilayer structure. Viscous effects 
are of importance only inside a thin region adjacent to the wall where the flow is governed by the 
bounda1y layer equations, the pressure being coupled to the displacement thickness. Owing to the 
complicated general form of the pressure-displacement relationship most studies of local interaction 
processes deal with the case of two-dimensional flow. Three-dimensional interaction effects can be 
mvestigated more easily, however, if it is possible to exploit symmetry properties ac; in the cac;e of 
axisymmetric flow. 

1. Introduction 

IT IS ONE of the main goals of modern fluid dynamics to improve the understanding 
of high Reynolds number internal and external flows. Due to the combination of highly 
developed computing techniques and powerful analytical methods remarkable progress has 
been achieved during the past 20 years as far as the case of laminar two-dimensional flow 
is concerned. Numerical codes based either on the full Navier-Stokes equations or the 
simplified equations of interacting boundary-layer theory/triple-deck theory are available 
to calculate such flows including small recirculation regions. Although it is certainly true 
that difficulties arise in studies dealing with longer separation bubbles and, furthermore, 
that the transition from weakly to grossly separated flow is not fully understood, still a fairly 
complete picture of two-dimensional laminar high Reynolds number flows has emerged. 
In contrast, three-dimensional laminar flows appear to have received much less attention 
even for weakly separated flows. Within the framework of triple-deck theory SMITH, 
SYKES and BRIGHTON [ 44] have studied two-dimensional boundary layers subjected to 
three-dimensional disturbances. Due to the complicated form of the interaction equations 
only the linear response of these equations was calculated, thus excluding the possibility 
of flow separation. Although nonlinear solutions to related types of problems have been 
obtained by SYKES [59] and more recently by DUCK and BURGGRAF (12], the possibility of 
treating fully three-dimensional flows appears to be rather limited at present. In order to 
gain some insight into the basic three-dimensional effects it seems reasonable, therefore, 
to concentrate on flows exhibiting symmetries which simplify the calculations. 

Two classes of such flows have been investigated intensively in the past. The first class 
concerns swept wing configurations which vary slowly in the spanwise direction. As a 
consequence the lateral pressure gradient is small and the interaction process is essentially 
two-dimensional in planes normal to the leading edge of the wing. Interesting phenomena, 
such as open separation, can therefore be studied with a minimum of computational effort, 
GITTLER and KLUWICK [ 16). 

Considerable simplifications of the governing equations are also possible if the flow 
under consideration is axisymmetric. Certainly this assumption appears to be rather re-
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624 A. KLUWlCK 

strictive at first sight. Still, flows of this type are useful in studying the influence of the 
three-dimensional spreading of stream tubes on interaction processes, which is also thought 
to play an important role under more general situations. Most important, it is found that 
due to this effect the flow near the trailing tip of an axisymmetric body differs substan­
tially from its two-dimensional counterpart. Finally, studies of flows past axisymmetric 
bodies at incidence have shed some light on the phenomenon of cross-flow separation 
and the formation of vortex sheets which are important ingredients of three-dimensional 
separated flows. 
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FIG. 1. Triple-deck structure of the interaction region for two-dimensional flow. 

2. Triple-deck solutions 

As a starting point, some properties of the interaction region holding in the case of 
strictly two-dimensional flow, Fig. 1, will be briefly summarized. To this end we consider 
the laminar boundary layer on a flat plate at a distance L from the leading edge which 
is subjected to disturbances caused, for example, by an impinging shock or a surface 
mounted obstacle. It is well known then that interaction effects are of importance inside 
a short region with streamwise extent of 0( c3 L) where 

c = Re-t/H ~ 1, Re = U~L 
lloo 

and Re, ffoo and v00 denote the Reynolds number, the free stream velocity and the 
kinematic viscosity evaluated at free stream conditions, respectively. Outside the boundary 
layer, in the upper deck region, the perturbations of the field quantities are governed by 
the linearized equations of inviscid theory. The role played by the main deck, which 
comprises most of the boundary layer, is a passive one; to transfer displacement effects 
exerted by the viscous near-wall region-termed the lower deck-to the upper deck and 
to transfer the resulting pressure disturbances back to the lower deck. Here the flow is 
governed by the boundary layer equations for an incompressible fluid which can be written 
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in the form 

(2.1) 

-ou + Du __ 
0 

ott ou dp o2u 
'lt-::- + v- = -- + -

D.r fJ y ' u.1: ay d:t [)y2 ' 

u = v = 0 on y = F(x), 

u = y for x - -oo, 

u = y + A(x) for y- oo, 
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where x, y, u, v and p denote Cartesian coordinates parallel and normal to the free stream 
direction, the associated velocity components and the pressure, suitably nondimensional­
ized and rescaled. 

The solution to the boundary-layer equations has to satisfy to no-slip condition at the 
wall which, using a Prandtl transformation, can be applied at y = 0. Additional conditions 
follow from the requirement that the disturbances decay far upstream and from the match 
between the result holding in the upper, main and lower decks, respectively. The quantity 
A( x) can be interpreted as a perturbation displacement thickness and thus determines the 
pressure disturbances via the relationships 

(2 .2)1 

or 

(2.2)2 

1 oo A'(~) 
p(x) = -:;: J --d~ 

II ~-X 
- oo 

p(x ) = -A'(x) 

depending on whether the external flow is subsonic or supersonic. Triple-deck equations 
of the form (2.1), (2.2), apart from minor changes of the boundary conditions, can be 
shown to cover a large variety of two-dimensional problems including trailing edge flows, 
supersonic free interactions, flows with blowing or suction, etc. Many of these applications 
have been reviewed by STEWARTSON [54), NEILAND (33), SMITH [48), MESSITER (30) and 
KLUWICK [ 19]. 
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FIG. 2. Triple-deck structure of the interaction region for axisymmetric flow. 
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626 A. KLUWICK 

Axisymmetric interacting boundary layers have been investigated first by HORTON [ 18] 
and VATSA & WERLE [62], and using the triple-deck concept by KLUWICK, GIITER & 
BODONYI (21], DUCK (11] and TIOMSHIN [60, 61]. As an example of this type of problem 
the flow past a flared cylinder is sketched in Fig. 2. It will be assumed first that the 
radius a of the cylinder is of the same order of magnitude as the length of the interaction 
region in the case of two-dimensional flow a/L = O(c3). Owing to this assumption the 
thickness of the lower-deck is small compared to a and, as a consequence, the flow inside 
the viscous layer adjacent to the wall is governed by Eqs. (2.1). Similarly, axisymmetric 
effects do not affect the flow inside the main deck to leading order. They do, however, 
have to be taken into account in the upper deck, where they cause modifications of the 
pressure- displacement relationships. Introducing the scaled cylinder radius 

(2.3) a=c-3/H..x41 5 j1-A1~1 1 /H _w ~ • ..\=0.33206 ... , ( 
T. ) -3/2 -

Too c3L 

where M, T and C denote the Mach number, the temperature and the Chapman constant 
entering the linear viscosity law Ji/Jioo = CT /T 00 , while indices oo and w refer to free 
stream and wall conditions, respectively, and with the Fourier transforms p, A, of p( x ), 
A(x ), the appropriate viscous inviscid coupling condition for subsonic flow is 

p(w) = -iwA(w)H1~1 >(iwa)H~ 1 )(iwa), Rew > 0, 

p(w) = -iwA(w)H1~2)(iwa)H?>(iwa), Rew < 0. 
(2.4 )t 

If the external flow is supersonic, (2.2)2 has to be replaced by 

p(x) = -A'(x) + ~ j W ( x: ~)A'(~)d~, 
-oo 

(2.4)2 z e-AZ d..\ 
lV ( z) = j --=-----=--

0 K[(..X) + 1r2 If(..\) ..\ . 

Note that as a-+ oo(2.4) 1 and (2.4)2 reduce to the limiting forms (2.2)t. (2.2)2. 
As the scaled body radius tends to zero, a -+ 0, both (2.4 )1 and (2.4 )2 yield 

(2.5) p(x) = A"(x)aloga. 

In agreement with the results following from slender body theory, the induced press­
ure disturbances are proportional to the curvature of the displacement body indepen­
dent whether the external flow is subsonic or supersonic. In passing we note that the 
pressure/displacement-relationship (2.5) is similar to that encountered in jets, SMITH & 
DUCK (43). 

While axisymmetric effects are confined to the external flow region, if a = 0(1) they 
eventually penetrate into the boundary layer as a -+ 0. As pointed out by DUCK [ 11] 
two cases, a = O(Re- 112 ) and a = o(Re- 112) leading to interaction length scales of 
O(Re-3f7(lnRe)) and O(Re-316(lnRe)), respectively, have to be treated separately. The 
main difference between these regimes is the double structure of the unperturbed bound­
ary layer which develops if the radius of the cylinder is considerably smaller than 
the classical boundary layer thickness is shown by GLAUERT & LIGHTHILL [14], 
STEWARTSON [50), BUSH [6]. In both of these cases, however, the effects of curvature 
are found to modify the flow properties inside the main deck only. To leading order, no 
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matter how small a is, the governing equations for the viscous wall layer reduce to the two­
dimensional boundary layer equations (2.1) supplemented by the pressure-displacement 
relationship (2.5). As a consequence, Eqs. (2.1) with (2.4) 1 or (2.4)2 depending on 
whether the external flow is subsonic or supersonic provide a consistent description of 
viscous-inviscid interactions on axisymmetric bodies for arbitrary values of a. 

Solutions to the interaction equations for supersonic external flow have been ob­
tained by KLUWICK et a/. [22, 23] and GIITLER & KLUWICK [15] . In order to gain 
some insight into the effects caused by the additional integral term of Eq. (2.4)2 as com­
pared to the case of planar flow, it is useful to consider the pressure distribution on 
a flared cylinder according to inviscid theory, Fig. 3. In the vicinity of the corner the 
flow is approximately two-dimensional and the pressure jump at the corner can be cal­
culated from the Ackeret relationship. Further downstream, however, the increase of 
the cross-sectional area of streamtubes due to the axisymmetry of the flow field be­
comes important and the pressure disturbances thus decrease (to leading order they 
even vanish in the limit x = oo ). This is the well known phenomenon of overcom­
pression/overexpansion which occurs on axisymmetric bodies with concave/convex cor­
ners. 

p 

-----
X 

FIG. 3. Pressure distribution an n fl ared cylinder --- inviscid flow, -viscous flow. 

If viscous effects are taken into account, pressure disturbances make themselves felt 
well upstream of the corner and, consequently, the magnitude of the pressure peak 
decreases. One therefore expects that separation on axisymmetric compression ramps, 
a* > 0, will be delayed as compared to the case of two-dimensional flow and this is con­
firmed by the numerical results shown in Fig. 4. For sufficiently small values of the scaled 
ramp angle 

(2.6) 

the boundary layer remains attached and due to the fact that the numerical computations 
were carried out for a slightly rounded rather than a perfectly sharp corner, the wall shear 
stress assumes its minimum value upstream of x = 0. As a increases, the minimum of the 
wall shear stress distribution decreases and incipient separation occurs at O' i$ ~ 3.39 (a = 
1) which should be compared with the corresponding result holding in the case of planar 
flow fri$ ;:::::: 1.57 (a = oo) obtained by RIZZEITA, BURGGRAF & JENSON [37]. For larger 
values of a the boundary layer separates upstream of the corner and reattaches at the cone 
surface. As expected, the pressure increase near the reattachment point is smaller than 
in the case of two-dimensional flow. Moreover, the maximum of the pressure distribution 
differs only slightly from the value of the pressure disturbance at the reattachment point 
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and the compression region upstream of this point is followed by a zone of rapid expansion 
caused by the increasing stream tube area. Finally, it should be noted that the formation of 
a plateau region of almost constant pressure for large values of a is clearly visible in Fig. 4. 
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FtG. 4. Pressure and wall-shear stress distributions for a = 1 and various positive 
cone angles a (GlTILER and KLUWlCK (15]). 

25 

25 

The structure of the flow inside the plateau region is sketched in Fig. 5. Similar to the 
case of planar flow the fluid is slowly moving upstream in the main part of this region. To 
leading order viscous efiects are of importance only inside a thin boundary layer adjacent 
to the wall where the no slip condition has to be satisfied and inside a thin shear layer 
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FIG. 5. Asymptotic structure of the plateau region. 

centered at the separation streamline. However, while in the case of two-dimensional 
flow the perturbation displacement thickness is a linear function of the distance x from 
the separation point, such a linear thickening of the displacement body is not sufficient 
to generate an axisymmetric separated flow region of constant pressure. Inversion of 
Eq. (2.4 )2 with p = Po = canst yields, KLUWICK et a!. [22] 

(2.7) 

It should be noted that the derivation of Eq. (2.7) requires that xja >> 1 and thus the 
above expression does not reduce to the two-dimensional result A(.-e) ,_ -pox as a ____,. oo. 
To recover the two-dimensional case it would be necessary to carry out the limit a ____,. oo 
with x ~ 1 fixed. 
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FIG. 6. Variation of the plateau pressure Po and the value of the pressure at separation Psep with a. 

The variation of the plateau pressure, p0, and the separation pressure, Psep, with a is 
depicted in Fig. 6. It is seen that both p0 and Psep assume their largest values in the case 
of two-dimensional flow a ____,. oo while they tend to zero in the limit a ____,. 0. To study the 
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FIG. 7. Comparison between experimental and theoretical results: +++,experimental data from 
LEBLANC and GINOUX ([25], Fig. 4a); Moo = 2.25, Re = 8.7 · 104, a• = 7.5°, 

a = 34.6; - triple deck solution (KLUWICK et a/. [21 ]). 

properties of Po and Psep for a -- 0 it is convenient to introduce the transformation 

x = (-a.lna)317x*, y = (-alna)117y*, 

(2.8) u = (-alna)117u*, v = (-alna)- 117v*, 

A= (-alna) 117A*, p = (-alna)2f7p•, 

which leaves equations (2.1) unchanged while the pressure-displacement relationship (2.5) 
reduces to 

(2.9) p* = -d2A* fdx* 2• 

As mentioned earlier, interaction problems of exactly this form have been studied in a 
different context by SMITH & DUCK ( 43] and by SMITH & MERKIN ( 48]. Combination of 
their numerical results p0 = 1.222, p;ep = 0.855 and (2.8) yields the dependence of the 
plateau pressure and the separation pressure on a in the limit a -- 0 

(2.10) Po "J 1.222(-alna.)2f7, Psep "J 0.855(-alna)2f7. 

In Fig. 7 one set of experimental data obtained by LEBLANC & GINOUX (25] in the 
16 in. x 16 in. continuous supersonic wind tunnel of the von Karman Institute is compared 
with a numerical solution of the triple-deck equations (2.1), (2.4)2. The test conditions 
correspond to adiabatic flow over a flared cylinder with a = 7.5° at Moo = 2.25 with 
Re = 8.7 x 104 and a = 34.6. As in the case of two-dimensional flow investigated by 
RIZZETTA eta/. (37], the initial pressure rise in the interaction region is overpredicted by 
the asymptotic theory. In addition, inspection of Fig. 7 shows that the pressure maximum 
is lower than the value determined experimentally by about 11%. This discrepancy seems 
to be caused mainly by the linearization of the governing equations in the upper deck. 
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FIG. 8. Pressure and wall shear stress distribution for a = 1 and various negative 
cone angles a (GITTLER and KLUWICK [15]). 

631 

Some numerical results for negative flare angles (convex corners) are summarized in 
Fig. 8. Owing to the pressure drop upstream of the corner the wall stress increases initially. 
The formation of a recompression zone downstream of the corner, however, causes the 
wall shear stress to decrease before it finally rises again to approach the unperturbed value 
r w = 1 far downstream. Furthermore, the minimum of the wall shear stress distribution 
is seen to drop progressively as the flare angle (-a) increases indicating the possibility of 
boundary layer separation if (-a) is sufficiently large which was confirmed numerically. 
Since this effect is a direct consequence of the overexpansion and subsequent recom­
pression of the fluid as it turns around the corner, it does not occur in the case of two­
dimensional expansion ramps where the flow remains attached for all values of -a 2:: 0. 
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FIG. 9. Variation of xs and XR with cr for a= 1 (GIITLER and KLUWICK (15]). 

A. KLUWICK 

In Fig. 9 the position of the separation and the reattachement points is plotted as 
function of the flare angle, n, for a = 1. If a 2:: -11.28 the boundary layer remains 
attached and the solutions of the interaction problem are unique. In contrast, two solu­
tions exhibiting relatively long separated flow regions and a third one yielding attached 
flow are obtained if -11.42 ::; a ~ -11.28. For values of the turning angle a < -11.42 
attached flow is no longer possible. The numerical results point to the existence of three 
different types of separated flow within the range -11.42 < a < -12.42 and, furthermore, 
indicate that the triple-deck solutions are again unique if a < -12.42. Unfortunately, the 
numerical scheme used by GnTLER & KLUWICK (15] did not yield converged solutions 
with long recirculation zones for a < -11. 7. This difficulty may be caused by the FLARE 
approximation which was employed to prevent numerical instabilities once flow reversal 
occurs. However, as pointed out in a recent study by SMITH [49], it seems to be a com­
mon feature encountered in all the computational methods to date that "the computations 
become increasingly difficult/numerically unstable as the reversed-flow eddy strengthens". 
Therefore, the possibility that the triple deck equations cease to be valid if -a exceeds a 
finite critical value should be considered too. Indeed, it has been shown by SMITH [49] 
that a structure describing a reversed-flow singularity can be derived from all forms of the 
interaction equations known to date. 

Figure 10 shows the pressure and wall-shear-stress distributions for a = 1 and a = 
-11.6 corresponding to the three different branches depicted in Fig. 9. While the re­
sults for the solution with a short separation bubble are qualitatively similar to those for 
attached flow, the two solutions with longer recirculation zones exhibit interesting new 
features. Most important, it is seen that the shape of the pressure and wall-shear stress 
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FlG. 10. Pressure- and wall-shear stress distributions for a = 1 and a = -11.6 (GlTTLER and KLUWlCK [15]). 

distributions downstream of the separation points now qualitatively resemble those for 
separated flows over flared cylinders with a > 0 depicted in Fig. 4. in spite of the fact 
that the pressure disturbances within the recirculation zones are negative. In particular, 
the formation of a plateau region with p0 < 0 in the solution with long separation bubble 
is clearly visible in Fig. 10. 

3. Marginal separation 

The results depicted in Fig. 10 show that a supersonic laminar boundary layer may 
separate downstream of an axisymmetric expansion ramp if the turning angle -a of the 
flow is sufficiently large. In contrast, investigations by STEWARTSON (52, 53] and others 
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indicate that the boundary layer remains attached in the case of planar flow even in 
the limit Ia I -+ oo. This raises the question how this transition takes place as the 
scaled body radius a tends to infinity in the pressure-displacement relationship (2.4 )2. 
No detailed numerical investigation dealing with this problem has been carried out so 
far. Preliminary results by GnTLER (private communication) indicate that the point of 
zero wall-shear stress at incipient separation moves downstream as a increases. This sug­
gests that the position of the separation point eventually leaves the triple-deck scaling 
and that separation will then be caused by an imposed rather than a self-induced pressure 
gradient. As a consequence, a Goldstein singularity may be expected to form at the sep­
aration point. However, since the boundary layer remains attached in the case of strictly 
two-dimensional flow this singularity will be weak for a certain combination of values a 

and lal. 

Imposed pressure 

FIG. 11. Asymptotic flow structure for Re-3/ 8 < .d. 

Similar considerations hold in the case of smoothed axisymmetric compression/expan­
sion ramps if the distance LlL over which the transition from the cylindrical to the con­
cal geometry takes place is large compared to the triple-deck length scale. Figure 11 
shows the asymptotic structure of the resulting flow field which has been investigated 
by KLUWICK (20] under the assumption that LlL is still small compared to the typical 
boundary-layer length scale: Re- 3/H ~ Ll ~ 1. As a consequence, viscous effects on 
the disturbances caused by the ramp are negligible small over most of the boundary-layer 
and have to be taken into account only in a thin region adjacent to the wall. The re­
quirement that (i) axisymmetric effects are retained in the equations governing the flow 
outside the boundary layer and that (ii) acceleration, pressure gradient and viscous terms 
are equally important inside the viscous sublayer leads to the following estimates for the 
thickness HL of this sublayer, the ramp angle a, and the cylinder radius aL in terms 
of Ll: 

(3.1) 

Introducing appropriate asymptotic expansions based on these estimates one recovers the 
boundary-layer equations (2.1). In contrast to the triple-deck problem, however, the lat­
eral displacement of the external inviscid flow caused by the viscous sublayer is too small 
to influence the leading order term of the expansion of the pressure disturbances. In the 
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case of external supersonic flow Eq. (2.4 )2 has to be replaced by 

(3.2) 

where Rw ( x) characterizes the (scaled) distance of the body surface from its unperturbed 
position far upstream. The flow inside the boundary layer thus is seen to be driven by 
an imposed pressure g.radient. In general, this will lead to the occurrence of a Gold­
stein singularity at the point of vanishing skin friction which terminates the integration of 
Eqs. (2.1), (3.2). However, as shown by RUBAN [40] there exists yet another type of a 
singular solution that can be extended continuously through a point of zero skin friction. 
Let o·c denote the value of o· at incipient separation, then the wall shear stress distribution 
associated with this solution is given by 

(3.3) 
ou 

a = ac: ~ly=O"" aolx- x,l, x---+ x,. 
uy 

Here a 0 and x., denote a positive constant and the position of the point of vanishing 
skin friction, respectively. Equation (3.3) is a special case of the more general relation­
ship 

lal = lacl + kc, 

(3.4) 
ou . 1 
oyly=ll"' aoy (x- x.,)2- aikc, 

lkl = 0(1) , lad = 0(1), c ~ 1, 

holding for Ia - o·cl << 1. According to this relationship (8tt/8y)y=ll > 0 in the vicinity 
of the point x = X s if lal < lo·cl while the wall shear stress distribution exhibits a weak 

Goldstein singularity at x = ;rs -~ if lal > lacl· Since the singular behaviour of 

the wall shear stress is accompanied by a singularity of the vertical velocity component 
as well, Eq. (3.2) expressing the result that the displacement thickness does not influence 
the pressure disturbances to leading order is violated locally. This suggests that a local 
interaction theory can be formulated which describes the flow properties near x = x, and 
indeed it can, RUBAN [41], STEWARTSON, SMITH & KAUPS [55]. 

Order of magnitude estimates similar to those leading to Eq. (3.1) indicate that the 
streamwise and lateral extent of the interaction region is O(c112) and the included pressure 
perturbations enter the governing equations at the appropriate order if 

(3.5) 

Since the lateral extent of the interaction region is small compared to the characteristic 
body radius, axisymmetric effects are negligibly small inside the boundary layer as well 
as in the external flow region. In the viscous sublayer adjacent to the wall the Navier­
Stokes equations reduce to the boundary-layer equations (linearized with respect to the 
separation profile) to first and second order. To determine the first-order approximation 
of the wall shear stress it is necessary to investigate the properties of the second-order 
solution at large distance from the wall. Elimination of the exponentially growing term 
using the pressure-displacement relationship (2.2) 1 for two-dimensional subsonic external 
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flow leads to the integra-differential equation 

(3.6) 

for the (scaled) wall shear stress A in terms of the (scaled) streamwise coordinates X a: 
(x- x&)/c112• Here r a: (lal- lacl)/c characterizes the difference between the actual 
value of the ramp angle and ac. 

It can be shown that (3.6) also controls marginal separation in the•case of supersonic 
flow. To this end it is necessary to modify the definitions of the scaled variables such that 
the sign of X is changed. As a consequence, separation/reattachement in subsonic flow 
corresponds to reattachement/separation in supersonic flow. 

5 

s 0 +-------------""o;iNf--~iL---+--+-----~ 
""' 

-5 

-5 0 5 10 
x 

FIG. 12. Wall shear stress distribution for various values of the scaled turning angle r. 

Numerical solutions of (3.6) for various values of the parameter r assuming incom­
pressible flow have been obtained by RUBAN [41], STEWARTSON et al. [55] and BROWN & 
STEWARTSON [5]. Some results for r > 0 corresponding to values of the ramp angle Ia I 
which exceed the critical value lacl, leading to marginal separation according to classical 
boundary-layer theory, are depicted in Fig. 12. It is seen that separation is delayed by the 
interaction between the boundary layer and the external in viscid flow. Furthermore, the 
results show that the wall shear stress distributions are almost symmetrical with respect 
to the origin X = 0 if the boundary layer is fully attached or contains a small separation 
bubble. As the length of the separation bubble increases, however, the minimum of the 
wall shear stress is shifted downstream. In the case of very long separation bubbles inter­
action effects are of importance mainly in the vicinity of the reattachement point where 
a rapid transition from the local solution for regular boundary-layer separation A = -X 
to the local solution controlling marginal separation A = X takes place. 

Figure 13 displays the variation of the position X$/ X R of the separation/reattachement 
point with r . If r < 0 the boundary layer remains fully attached and the solutions to the 
interaction equations (3.6) are unique. If r > 0, however, two or four different solutions 
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FIG. 13. Variation of X s and X R with r. 

can be calculated in the parameter range 0 ~ F < Fe while solutions cease to exist for 
F > Fe where Fe ~ 2. 75. The nonexistence of solutions for large positive values of F 
indicates that a substantial change of just marginally separated flow, possibly leading to 
global separation, must occur as F increases beyond the critical value Fe. However, it is 
not known yet how this transition takes place. 

4. Trailing-tip flows 

In all cases considered so far the thickness of the viscous sublayer of the local in­
teraction region was found to be small compared to the characteristic body radius. As 
a consequence the flow close to the wall was governed by the two-dimensional form of 
the boundary layer equations and axisymmetric effects were of importance only insofar 
as they changed the pressure displacement relationship. However, there are many real 
applications where such a description of the interaction process no longer applies and an 
important one is the trailing-tip region of an axisymmetric body of finite length. 

In contrast to the case of two-dimensional flow near the trailing tip of a flat plate 
which has been studied in detail starting with the pioneering work of STEWARTSON [51] 
and MESSITER [29], trailing-tip flows have received much less attention. A summary of 
studies dealing with such flows has been given by BODONYI, SMITH & KLUWICK [3] who 
investigated the local flow structure assuming that the body under consideration is so 
slender that the effect of the pressure gradient on the evolution of the boundary layer 
according to classical theory can be neglected. The boundary-layer equations can then be 
written in the form 

a a 
-(1'll) + -(1·v) = 0, ox 01' 

ou ou 82u 1 ou 
ll- + v- = - + --. o.'r or 81·2 1· or 

(4.1) 

Here ( u, v) denote the non-dimensional velocity components of an incompressible viscous 
fluid in a cylindrical coordinate system (x , r), Fig. 14. Coordinates and velocity campo-
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nents are nondimensionalized with the length I of the body and the freestream velocity 
U00 , respectively. In addition, 7' and v are scaled with Re- 112 = (UooL/v)- 112 in the usual 
manner. 

r 

II 
!--------

X 

Ftc. 14. Multilayer structure of the trailing tip area for 1/4 < n < 1/2 (BODONYl eta/. [3]). 

The boundary conditions of Eqs. ( 4.1) include the no-slip condition at the body surface, 
the symmetry condition at the wake centerline and the requirement that the axial velocity 
component approaches its freestream value at large distances from the wall: 

tt=v=O on r=rb(x), O~x~1, 

ott 
(4.2) v = - = 0 on r = 0, x > 1, 

01' 
u ----;. 1 as 7' ----;. oo. 

Solutions to Eqs. ( 4.1 ), ( 4.2) have to be calculated numerically in general. To this end 
BODONYI et al. [3] considered body shapes of the form 

(4.3) 1'b(x) = a(1- xtx112
, 0 ~ x ~ 1, 

where a is an arbitrary constant. It is perhaps tempting to expect the fluid motion in 
the trailing tip area of an axisymmetric body to be just a minor generalization of the 
two-dimensional case. In this latter case the boundary layer is essentially unperturbed 
upstream of the trailing edge interaction region where the velocity profile undergoes a 
rapid transition over a distance O(Re-3/H) tending to zero in the limit Re ----;. oo. In 
contrast, the boundary layer on an axisymmetric body is forced to adjust much more 
gradually, in fact well ahead of the trailing tip interaction region. In this pre-interaction 
region the evolution of the boundary layer is dominated by the large relative changes 
of the body radius which grow without bound as the trailing tip is approached. As a 
consequence one would expect viscous effects to be of importance only within a small 
fraction of the oncoming classical boundary layer thus leading to the development of an 
interesting but rather complicated multilayered structure. As shown by BODONYI et al. [3] 
three different ranges of the exponent n characterizing the trailing-tip shape have to be 
considered. 

A scheme of the flow structure for 1/4 < n < 1/2 is depicted in Fig. 14. In this case 
viscous effects are confined to a thin layer I comparable in thickness with the body radius 
rb( x ). Here the stream function 'lj; can be expressed in terms of the similarity solution 

(4.4) lf'(x,r) = Xf(~), X= 1- x, 
1' 

~ = axn' 
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FIG. 15. Variation of the effective wall shear stress 'Y = f"(l) with n for 1/4 < n < 1/2 (BODONYI eta/. [3]) . 

.1 

( Re-1 In Re) 318 

Re~2 r---------r----------------------

0 1 n 

FIG. 16. Variation of the interaction length scale ~ with n (BoDONYt eta/. [3]). 

while in Region II outside the viscous sublayer the appriopriate representation of 'lj; is 
given by 

(4.5) 'l/; = V'o(7') + o(l), r = 0(1), 
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which describes a slightly perturbed uniform shear flow. The function ~0 (1') depends on 
the entire history of the boundary layer upstream of the trailing tip area and cannot be 
determined by local considerations. Substitution of the relationship ( 4.4) into Eqs. ( 4.1 ), 
( 4.2) yields 

(2n- 1)~(/' /~f + (J(J' /0)' = (~(/' /0')' ' 
/(1) = /'(1) = 0, 

(4.6) 

where ()' denotes differentiation with respect to ~· A third boundary condition follows 
from the investigation of the asymptotic behavior of /(0 as ~ ___. oo. Matching with 
the solution ( 4.5) holding outside the viscous sub layer requires that the viscous terms of 
Eqs. ( 4.6) vanish at large distances from the wall which leads to 

(4.7) J(~) ""'Beln , B > 0 as ~ ___. oo . 

Equations ( 4.6), ( 4.7) have been solved numerically using both shooting and finite dif­
ference techniques. The variation of the effective wall shear stress 1 = /"(1) with n, 
depicted in Fig. 1.6, indicates that 1 ___. 0 as n ___. 1/2 while 1 ___. oo as n ___. 1/4 which can 
be confirmed analytically by means of asymptotic expansions. In addition, these analytical 
results provide useful information how the double structure holding for 1/4 < n < 1/2 
has to be modified if n < 1/4 or n > 1/2. In both cases the oncoming boundary layer 
develops a three tiered rather than a two-tiered structure, viscous effects being confined 
to the innermost layer. However, while the thickness of the viscous sublayer is small com­
pared to the local body radius if n < 1/2, this layer is much thicker than xn if n > 1/2. 
Again it is found that the description of the flow in the outermost region of the boundary 
layer contains a certain amount of arbitrariness which reflects the influence of the entire 
flow between the leading and trailing tips. In contrast, the solutions in the thinner layers 
are determinated uniquely to leading order. 

y·Re- 1 '2 

· · · ·· ····· · --· ·· 0(11) 

Upper deck 

------- - -- - --·-· · O(Re- 112) 

II Mat"n deck 
]- - --- -- ---=-=--=----·· O(Re-1

12L1 
1 ---..... Lower deck 

~ __.---/ x-1 
I O(IJ) 

FIG. 17. Asymptotic structure of the trailing tip local interaction region for 1/4 < n < 1/3. 

The results discussed so far are based on the assumption that the pressure gradient 
term of the boundary-layer equations is negligibly small compared to the inertia and 
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viscous terms. Owing to the boundary-layer displacement exerted on the external inviscid 
flow and the resulting pressure response, however, this assumption is violated at very small 
distances from the trailing tip X = O(d) where viscous inviscid interaction finally comes 
into play. Application of slender body theory (e.g. COLE [9], pp. 182) yields the order of 
magnitude estimate 

(4.8) 

for the feedback pressure where 6( x) is a representative displacement function such that 
'tP,...., !1·2 - b(x) in Eqs. (4.1), (4.2) as 1·--;. oo for all x. To determine the interaction length 
scale d the induced pressure gradient has to be compared with the smallest interia term 
inside the boundary layer. The final results, plotted in Fig. 17, show that .1 depends on 
the parameter n which characterizes the body shape in the pre-interaction region. It is 
seen that the interaction length scale is largest in the case of a blunted trailing tip n = 0. 
In this limit .:1 is proportional to Re-J/X but the result holding for planar flow is slightly 
modified by the occurrence of the In Re term. As n increases, .1 is found to decrease 
initially but remains constant .:1 = O(Re- 1 In Re) 112 for n > 1/3. As a consequence, 
the streamwise extent of the trailing tip local interaction region is large compared to the 
boundary-layer thickness for all values of n. 

As pointed our earlier, interaction efiects are of importance at distances from the 
trailing tip where the induced pressure gradient is comparable in magnitude with a rep­
resentative inertia term inside the boundary layer. Evaluation of the results holding for 
n < 1/3 shows that the inertia terms are smallest inside the viscous sublayer adjacent to 
the body surface. Therefore, this layer is afiected first by the interaction pressure as one 
would expect from previous triple-deck studies of two-dimensional and three-dimensional 
flows. In contrast, the feedback pressure first affects the outermost region of the bound­
ary layer if n > 1/3. It remains to be clarified whether a more complicated significant 
interaction is delayed until the length scale 1 - x is still smaller. 

To complete the description of the flow past a slender axisymmetric body of finite 
length the trailing tip local interaction region has to be investigated next. Most of this 
work, however, still remains to be carried out. Results for the case 1/4 < n < 1/3 
have been obtained by BODONYI & KLUWICK [2]. As shown in Fig. 17 the interaction 
region then comprises a region of external inviscid flow and two wall layers which are 
the continuation of Regions I and II of the pre-interaction zone. In contrast to the 
problems considered in Sect. 4, axisymmetric effects are of importance in all three lay­
ers of the interaction region but, again, it is possible to express the solutions holding in 
the upper and the main decks in closed form. The flow inside the lower deck is gov­
erned by the axisymmetric form of the boundary-layer equations for an incompressible 
fluid 

D~Y(YU) + 0~_.(YV) = 0, 

{JU I {JU - dP {J2U 1 {JU 
U DX + \ oY - - dX + ()Y2 + Y oY' 

(4.9) 

where (X, Y), (U, V) and P denote cylindrical coordinates, the velocity components 
and the pressure (all suitably scaled), respectively. Equations ( 4.9) are supplemented 
with the boundary conditions at the body surface Y = F(X) and the wake center-
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line 

( 4.10) 
U = V = 0 on Y = F(X) , X < 0, 

au 
- = V = 0 on Y = 0, X > 0. 
fJY 

A. KLUWlCK 

Consistency with the prescribed body shape in the preinteraction zone requires F(X) "" 
( -X)n, X ---+ -oo. 

Finally, matching with the velocity profile in I given by Eqs. (4.4), (4.7) and with the 
results holding in the main and upper deck yields 

U = (-X)l-nj'(-Y-) 
Y (-X)n ' 

. .:'( ---+ -oo, 

(4.11) 
1-2n 1 - 2n 1-4n 

U = KY_n_ + --KY_n_A((), Y---+ oo, 
n 

J{ = B/n, 

P = -~A"(X). 

The solution of the interaction equations (4.1), (4.10) and (4.11) poses an extremely 
difficult problem. Numerical calculations have started just recently and no converged 
results are available at present. 

S. Incompressible flow past cones at incidence 

Exp~rimental as well as numerical studies dealing with high Reynolds number flows 
past axisymmetric bodies at incidence have revealed the formation of strikingly complex 
streamline patterns if boundary layer separation occurs, BIPPES & TuREK (1 ]. It is not sur­
prising, therefore, that such flows have received scant attention, theoretically, so far. Start­
ing from the pioneering work of LEGENDRE (26], 0SWATITSCH (34] and LIGHTHILL (27] 
a number of interesting new results concerning the local behavior and global topological 
structure of general three-dimensional separating flows have been obtained by HORNUNG 
& PERRY (17], PERRY & CHONG (35], DALLMANN (10). However, attempts to calculate 
the complete flow field generated by an axisymmetric body at incidence are rare and 
appear to concentrate mainly on the case of conical tips. 

Let ( x, r, ¢) denote cylindrical coordinates with corresponding velocity components 
(u, v , w) where x, r are nondimensional with the length L of the cone and u, v, w, are 
nondimensional with the free stream velocity iJ 00 • Furthermore, let the cone axis coincide 
with the x-axis. Then the body surface is given by 

(5.1) 1' = [X, 0 ~ [ ~ 1, 

where c denotes the semi-vertex angle of the cone which is assumed to be small and of 
the same order of magnitude as the angle of incidence a = ca0 , a 0 = 0(1). Introducing 
the stretched distance from the cone surface Y = Re1l 2(1·- ex), Re = U00 Ljv, and 
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FIG. l R Flow past a slender cone at a small angle of attack. 

asymptotic expansion of the form 

(5 .2) 

u = ·u 1 ( x , Y, ¢) + ... , 
v = nt1(x, Y, ¢) + Re- 112 v1(x, Y, ¢) + . .. , 
w = €Wt(X, Y, ¢) + ... ' 
p = -c; Inc;+ c2Pt(¢) 

643 

for the velocity components and the pressure disturbances, solutions to the resulting 
boundary layer equations are sought in self-similar form 

oF fJt/1 y 
(5.3) Ui = 01J (1], </J), WI = fJl] (17, </J), 1J = y~x· 

F(17, ¢), G(1J, ¢)satisfy the set of equations 

3 -(2F + t/lrp)Fryry + tf!ryFrpry = Fryryry, 

3 dpl 
-(:zF + tf!rp )l/lry ,l + lfJry(Fry + lfJrpry) = -{[;j; + lfJryryry, (5.4) 

17 = 0 : F = t/1 = Fry = lfJry = 0, 

17 = oo: Fry= 1, tf!ry = 2aosin¢, 

FIG. 19. Graphs r., r2 versus cP (ZAMETAEV [63]). 
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where 

(5.5) :• = -2aosin¢(1 + 2aocos¢). 

Equations (5.4) simplify considerably in the windward plane of symmetry ¢ = 0 and the 
leeward plane of symmetry ¢ = 1r. For example, by adopting the assumptions w = 0, 
ow/ 8¢ ::f 0 for ¢ = 0 one obtains 

(5.6) 

F,, •. , + GF- G )F •• = 0, 

a"""+ GF- a )a •• + a~- F.a.- ~kGk + 1) = o, 
17 = 0: F = G = Fry = Cry = 0, 

3 
17 = oo: Fry = 1, Gry = - 2k, 

where G = 1/tf¢> and k = 4a0/3 denotes the parameter introduced by MOORE [31]. Exactly 
the same equation holds for ¢ = 1r if the definitions of G, k are modified according to 
G = 1Jt/(7r-¢), k = -4a0/3. Numerical investigations ofEqs. (5.6) have been performed 
by CHENG [8), ROUX [38), MURDOCK [32), CEBECI, STEWARTSON & BROWN [7] and 
various other authors (the reader interested in this topic is referred to RUBIN, LIN & 
TARULLI [39] for a useful summary). It is found that (dual) solutions exist in the windward 
plane ¢ = 0 for all values of k. In contrast, similarity solutions for the leeward plane 
¢> = 1r could be obtained for -0.292 < k < 0 and -1 < k < -0.666 only. Furthermore, 
integration of the full set of Eqs. (5.4), (5.5) by marching in the ¢-direction starting with 
the (appropriate) windward similarity solution shows that the leeside similarity solution 
is recovered in the limit ¢ ---+ 1r if 0 > k > -0.292. Moreover, these calculations indicate 
that the azimuthal velocity component w is no longer proportional to ( 1r - ¢>) as ¢> -..... 1r 

but rather remains finite if -0.292 > k > -0.80. Therefore, one of the assumptions 
leading to Eqs. (5.6) is violated in this range of the parameter k measuring the incidence 
of the cone. As a consequence, the boundary layers growing on either side of the conical 
tip do not blend smoothly at ¢ = 1r but give rise to a collision phenomenon similar 
to that encountered in studies dealing with high Dean number entry flows in curved 
ducts, STEWARTSON, CEBECI & CHANG (56), STEWARTSON & SIMPSON [57], KLUWICK & 
WOHLFART (23, 24]. Finally, due to the formation of a region of adverse pressure gradient 
dp/d¢> > 0 near ¢ = 1r for k < -2/3, the boundary layer separates and the numerical 
integration terminates before the leeside symmetry plane is reached if k < -0.800. The 
leeside similarity solutions fork < -0.666 thus do not appear to be of relevance, e.g. do 
not seem to be embedded in a global boundary-layer solution. 

A detailed investigation, both numerical and analytical, of the properties of the solu­
tions to the boundary layer equations (5.4), (5.5) has been performed by ZAMETAEV [63]. 
The distribution of the axial and azimuthal components of the wall shear stress r 1 = 
F7171 (0, ¢), rz = G7111 (0, ¢)at incipient separation a 0 = aoc = 0.6 are depicted in Fig. 20. 
It is seen that r2 vanishes at¢ = ¢c ~ 3.01 but the numerical integration of the boundary 
layer equations can be continued through this point. Furthermore the numerical results 
indicate that rz varies linearly with ¢ as ¢ ---+ ¢c, the rates of change being different for 
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¢- <i>c - o- and ¢ - <Pc ___. o+ ' however. 

(5.7) T (0 ¢) = { ao(</J c - ¢), </J - </J c -+ o-
2 ' >..ao(¢ - ¢c ),¢- <Pc -+ o+. 

Investigation of the local properties of the boundary layer equations for 1¢- <Pel = O(u), 
lao- aocl = O(u1+>.), u ~ 0 yields 

(5.8) 

where 

(5.9) 

A. - ¢- </Jc 
o/1- ---, 

0' 

It is interesting to note that exactly the same result has been derived by BROWN [4] 
who studied the marginal separation of a three-dimensional boundary layer on a line of 
symmetry. 

Using these relationships, which contain Eq. (5.7) as a special case G1 = 0, it can 
be shown that r 2(0 , ¢) is a smooth function in the whole domain -oo < ¢ 1 < oo if 
a 0 < aoc· In contrast, the wall shear stress distribution exhibits a singularity at a finite 
value ¢ 1 < 0 and cannot be extended up to ¢ 1 = oo if a 0 > aoc· Since the strength of 
this singularity vanishes in the limit a oc - o·0 -+ 0 it can, however, be eliminated in a 
manner similar to the two-dimensional marginal separation case by taking into account 
the interaction between the boundary layer and the external inviscid flow. Comparison 
of the induced pressure gradient fJp/ fJ(1·¢) = O(u Re- 112

) and the viscous term EPw/ 
81·2 = O(€u714 Re- 1) entering the second order momentum equation following from the 
local analysis of the classical boundary-layer equations, indicates that the parameter range 

T=Ax 115 

lj= ~X 1/5 

FIG. 20. Azimuthal shear stress distribution for r = 2, .\ = 0.5 (ZAMETAEV (64]). 
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covered by the interaction concept is u = O(c-2/ 5 Re- 115). The appropriate asymptotic 
interaction theory has been formulated by ZAMETAEV [64]. According to the similarity 
solution (5.3) the radial velocity component at the outer edge of the boundary layer is 
proportional to x- 112• As a consequence, the induced pressure disturbances inside the 
interaction region depend on both x and ¢1 which in turn forces x to occur explicitly in the 
expansions of the various field quantities. Viscous effects are found to be negligibly small 
in the main part of the boundary layer but they have to be taken into account in a thin 
sublayer adjacent to the wall. There the flow is governed by the three-dimensional form of 
the boundary-layer equations linearized with respect to the separation profile to leading 
order. Its solution involves an arbitrary function B(x, ¢ 1) characterizing the azimuthal 
component of the wall shear stress. In order to determine B(x, ¢ 1) it is necessary to 
derive the solvability condition for the second order equations holding in the viscous 
sublayer. Using suitably scaled variables A, ¢ in place of B, ¢1 this condition can be 
expressed in the form, ZAMETAEV [64], 

(5.10) 

¢ [ 8 A 3 8 A l 1 Joo 82 A dt J Aat- >..t + (1- >..)A + 4(1- >..)x ox dt = 2Vx _ ot2 ~' 
-00 ¢ 

A "' -¢- F( -¢)-A, ¢--+ -oo, A "' >..¢, ¢--+ oo, 

where the parameter rex (a0 -etoc)/u1+>. measures the incidence of the cone. As shown 
by ZAMETAEV (64], solutions to Eqs. (5.10) for x --+ 0 can be expressed in terms of 
the similarity variable y = x 115¢: A "' x- 115 A1(y). Starting with the similarity solution 
Eq. (5.10) was then integrated numerically by marching in the x-direction for the two 
cases>.. = 0.5, r = -2 and>.. = 0.5, r = 2. Results for the latter case, corresponding to a 
value of ao which is larger than aoc, are depicted in Fig. 20. It is seen that the minimum 
of the azimuthal component of the wall shear stress decreases and that the slope of the 
wall shear stress distribution at reattachment steepens as the distance x from the tip of 
the cone increases. Theoretical considerations indicate that a singularity is formed at 

X 
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FtG. 21. Variation of the separation position tP s on a circular cone with Re (FmoES [13]). 

http://rcin.org.pl



AXISYMMETRIC LAMINAR INTERACTI NG BOUNDARY LAYERS 647 

finite values of x = x ., y = y. and evaluation of the numerical data yields the estimate 
x. :::::: 2.3, y. :::::: 0.7 for r = 2, A = 0.5. It does not seem unlikely that the formation of 
this singularity heralds the onset of global separation characterized by the appearance of 
a vortex sheet shed from the point x = x., y = y • . Furthermore, it may be expected that 
the location of the singularity moves upstream as r increases thus eventually leading to 
the case of conical separation. 

The interaction process associated with the separation of a vortex sheet from a smooth 
conical surface has been investigated by RILEY [36], SMITH [ 46] generalizing earlier work 
by J. H. B. SMITH [45] dealing with the properties of inviscid flow. Let x, y and z 
denote the distance along the separation line <P = <Pa. the distance on the body surface 
perpendicular to this line and the distance normal to the body surface, respectively. It 
then follows from SMITH's [ 4 7] work that, when y is sufficiently small, the shape of the 
vortex sheet leaving the surface at y = z = 0 can be expressed in the form z = J.l(x)yn 
with n = (2/vf + 1)12. Here !11 = 0, 1, ... to ensure (i) that the departure of the sheet 
from the body surface is tangential and (ii) that the pressure p is continuous at the sheet. 

If M = 0 the azimuthal component of the pressure gradient exhibits a singularity as 
the separation line is approached from upstream oploy "-J c1(-y)- 1/ 2, y-+ o- while opl 
oy vanishes in the limit y ---+ o+. In contrast 8p I oy is a smooth function of y if M > 0 and 
op I oy -+ 0 for y ---+ o±. As a consequence, the attempt to incorporate viscous effects into 
the inviscid flow model faces a difficulty. Owing to the strong adverse pressure gradient 
present for M = 0 the boundary layer is expected to separate upstream of the inviscid 
separation line y = 0. On the other hand it is not clear why the boundary layer separates 
at all if the location of the separation line is chosen such that inviscid theory predicts 
smooth separation A1 > 0. A similar difficulty has been encountered in studies dealing 
with high Reynolds number flow past circular cylinders (SYCHEV [58], SMITH [45, 47]) 
and as in this problem the difficulty is resolved by taking J.l and c to be small rather than 
0(1) quantities: J.l = Re- 1116 p:(x), c1 = Re- 1116 c1,JI = 0(1),c1 = 0(1). Physically, this 
means that the separation line is shifted a small distance ¢ - </J 3 = O(Re- 1116) from its 
inviscid position following from the requirement of smooth separation, thus introducing 
a weak singularity in the pressure gradient which can be smoothed out by taking into 
account viscous-inviscid interaction. Since y = O(Re-3/H), z = O(Re-3/H) in the local 
interaction region, the variation of the field quantities in the x-direction is much smaller 
than in the circumferential direction as well as in the direction normal to the surface, 
and derivations with respect to x thus drop out of the interaction equations to leading 
order. Similar to the case of viscous inviscid interactions on swept wing configurations 
(GI1TLER & KLUWICK [16]), therefore, the continuity and y-momentum equations can 
be solved independently of the x-momentum equation which is linear in u. In terms of 
suitably scaled variables one then essentially recovers Eqs. (2.1), (2.2)t 

aw 8l¥ dP 82 ~v aw av 
w aY + v az = - dY + azz ' 8Y + az = o, 

(5.11) l¥ = 0 on Z = 0, 

(5.12) 

W ,_ Z + A(Y), Z-+ oo; 

l¥ "-J Z, Y -+ -oo, 

P = _!_ foo A'(O 
7r Y -e 

-oo 
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In addition to the boundary conditions (5.12), the triple-deck solution must satisfy the 
relationship 

P(Y) ""'J -a1YI 112 as Y ___.. -oo 
following from the match with the pressure distribution upstream of the local interaction 
region. Here a denotes the scaled parameter c1 characterizing the strength of the pressure 
gradient singularity present there. 

The success of the theoretical model outlined so far hinges on the existence of a 
solution to Eqs. (5.11), (5.12) and (5.13). A detailed numerical study of this nonlinear 
eigenvalue problem has been performed by SMITH [42]. His results strongly support the 
conclusion that such a solution exists and is unique, the corresponding value of a being 
a= 0.44. 

As pointed out earlier, the value of a determines the strength of the pressure gradi­
ent singularity occurring in the solution upstream of the triple deck region and which 
is smoothed out by the local interaction process. However, it also determines the local 
shape of the vortex sheet leaving the body surface as well as the position of the separation 
line, Fig. 21. 

Equations (5.11), (5.12) and (5.13) provide a self-consistent description of the local 
flow properties near the separation line of a conical vortex sheet. Unfortunately, how­
ever, attempts to embed this local structure into the global flow field are faced with 
severe difficulties. These difficulties are associated with the behaviour of the bound­
ary layer downstream of the triple-deck region which, due to the curvature of the 
external streamlines, develops a jet-like velocity profile. SMITH [ 46] argues that the 
boundary layer, therefore, must separate before it reaches the triple-deck region to 
shelter the decelerating fluid in the lower deck from the faster upstream moving fluid. 
This in turn leads to the formation of another separated sheet and it is not yet clear 
how the merging between this sheet and that emanating from the triple deck can be 
achieved. 

6. Concluding remarks 

It has been shown that asymptotic methods provide a useful tool for the investiga­
tion of interacting laminar boundary layers on axisymmetric bodies. Applications in­
clude the flow past cylindrical bodies with slightly perturbed surfaces, trailing tip flows 
and the flow past cones at incidence. These contributions have considerably deepened 
the current knowledge of the properties of high Reynolds number laminar flows. How­
ever, in a number of cases only the first steps towards a consistent asymptotic theory 
have been made and important problems remain unsolved. For exampi~ , it is not clear 
yet how the transition from local to global separation takes place bo .. · in cases with­
out and with incidence. Although the behaviour of the classical boundary layer near 
the trailing tip of an axisymmetric body has been elucidated ;;uite recently assuming 
that the body shape is given by a power law, the interaction equations have been for­
mulated and solved only for a very narrow regime of the exponent so far. Interesting 
progress has been achieved as far as the flow past a slender cone at incidence is con­
cerned. Clearly, however, a more detailed numerical study of the resulting equation for 
marginal (cross-flow) separation concentrating on the possibility of multiple solutions also 
seems desirable. Furthermore, a complete picture of the flow will have to include a more 
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refined model of the collision phenomenon which sets in before crossftow separation 
occurs. 

This research was supported in part by the Austrian FWF under grant number P5557 
and jointly by FWF and the National Science Foundation under grant number P5825. 
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