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Generalized Shapiro-Loginov formula and moment stability 
of a string equation with random telegraphic parameter 

Z. KOTULSKI (WARSZAWA) 

IN THIS PAPER the results concerning the moments of stochastic linear differential 
equations with the multiplicative parameter in the form of a stochastic telegraph process 
(Shapiro-Loginov formula) are generalized to the case of Hilbert-space-valued evolution 
equations. The obtained results are then applied to the investigation of the moment 
stability of some string equation with stochastic parametric excitation. The results 
obtained for exact and modal approaches are compared showing the possibility of the 
simplified analysis as well as differences. Additionally, the system with the appropriate 
white-noise excitation is considered, and, with the aid of an "equivalent" white-noise 
process the conditions of an approximation of the telegraphic stochastic process are 
studied. 

W pracy uog6lniono wyniki dotyczllce moment6w rozwi!lzania liniowego stochastycz
nego r6wnania r6iniczkowego z multiplikatywnym parametrem w postaci stochastycz
nego procesu telegraficznego (wz6r Szapiro-Loginowa), na przypadek r6wnania ewolu
cyjnego o wartosciach w przestrzeni Hilberta. Uzyskane rezultaty zastosowano nas~p
nie do badania momentowej stabilnosci r6wnania struny ze szczeg6lnym stochastycz
nym wymuszeniem parametrycznym. Por6wnujllc wyniki otrzymane przy zastosowaniu 
metody nieskonczenie-wymiarowej i w przyblizeniu modalnym, pokazano mozliwosc 
uproszczonej analizy zagadnienia i r6znice w wynikach. Ponadto rozwazono uklad 
z odpowiednim {,r6wnowainym'1 wymuszeniem bialoszumowym i zbadano mozliwosc 
aproksymacji procesu telegra.ficznego bialym szumem. 

B pa6oTe o6o6meHhl peJym.TaTbl, KacaiOmnecx MOMeHToo peweHHH JIHHeiiHoro 
CToxaCTH'IeCKoro .llHcl>cl>epeHI.UiaJibHOro ypaoHeHHH c MYJihTHIIJIHKaTHBHhiM napaMeT
poM B BH,Ile CTOXaCTH'leCKOfO TeJierpaci>HOfO npouecca (ci>OpM)'Jia illanupo-llorHHO
Ba), Ha CJIY'laH 3BOJIIOUHOHH0f0 ypaoHeHHJI CO 3Ha'leHHJIMH B ram.6epTOBOM npo
CTpaHCTBe. lloJiy'leHHble peJym.TaTbl npHMeHeHbl JaTeM .llJIJI HCCJie.l);OBaHHJI MOMeHT
HOH cra6HJILHOCTH ypaoHeHHH CTPYHhl c oco6eHHbiM croxaCTn'leCKHM napaMe-rpn'lec
KHM BhiHy)f(J].eHneM. CpaoHHoax peJym.TaTbl, noJiyqeHHble npa npnMeHeHHH 6ecKoHe'l
HOpa3MepHoro MeTO,Ila H B MO.ll;aJihHOM IIpH6JIHJKeHHH, IIOKaJaHa B03MOJKHOCTb 
ynpomeHHOro aHaJIHJa npo6JieMbl H yuJaHhl paJHHUbl o pe3yJILTaTax. KpoMe 3Toro 
paccMOTpeHa cncreMa c cooToeTCTByiOIUHM G,3KBHBaJieHTHb1M") BhiHY:lKAeHneM Tuna 
6eJioro w}'Ma n nccJie,llooana BOJMO:lKHOCT h annpoKCHMaUHH TeJierpact>Horo npouecca 
6eJlhiM myMOM. 

1. Introduction 

AMONG SEVERAL definitions of stochastic stability (cf. [5, 13]), the concept of 
moment stability is very intuitive. We say that a solution of a stochastic 
equation is stable in the sense of k-th mean if its k-th moment is stable. 
There are some cases where the moment stability of an equation is relat!vely 
easy for investigation. We have to do with such a situation when exact equa
tions for the moments of the solution can be obtained. In the class of linear 
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stochastic difierential equations with a multiplicative stochastic coefficient 
(parametric excitation), the example could be the stochastic Langevin equa
tions (see [14]). For this kind of equations the moment equations have been 
derived in the literature. In papers [1] the ordinary differential equations with 
white-noise coefficients have been treated. CHow in papers [3, 4] has dealt with 
a partial differential equations of the parabolic type with a function-valued 
white-noise. Finally, in papers [9, 10] the moment ·equations for general 
evolution equations with a Hilbert-space - valued white-noise have been 
derived. Such equations include, as particular cases, both ordinary and partial 
differential equations. 

Another example of the stochastic linear differential equation, for which 
the exact moment equations can be written in closed form, is the one 
where the multiplicative parameter has the form of a stochastic telegraph 
process (cf. [7]). For this example the moment equations have been derived 
in [12] and [11] for the ordinary and the partial differential equations, 
respectively. 

In this paper we generalize the results concerning the moments of the 
stochastic equations with the multiplicative telegraphic parameter to the case 
of Hilbert-space-valued evolution equations. Then we consider the example of 
a string equation and investigate the mean and mean-square stability of its 
solution using both exact partial differential equations for the moments of its 
modes. The obtained results are then compared. Finally, we introduce the 
moment equations for the string with the "equivalent" white-noise process 
instead of the telegraph one in order to fmd corresponding stability conditions. 
(fhe literature concerning the stability of stochastic equations with discrete 
parametric excitations is cited in Ref. [11]). 

l. Generalized Sbapiro-Loginov formula 

Consider the stochastic evolution equation of the form 

(2.1) 

dU(t,y) 
-;It = dU(t,y) + P(t,y)aU(t,y), tE(0,1), 

U(O,y) = UOEX, 

yEF, 

where (F,§',@) is a complete probabilistic space, r is the set of elementary 
events, §' is the a-algebra of its measurable subsets and 91 is the prob
abilistic measure, U(t) is an X-valued stochastic process, X is a separable, 
real Hilbert space, .91 and f!l are linear, possibly unbounded operators 
(generators of strongly continuous semigroups of linear operators) acting 
from ~(d)(~(f!l)) c X into X, and P(t,y) is a stochastic telegraph process 
defined as (cf. [7]): 
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GENERALIZED SHAPIRO-LOGINOV FORMULA AND MOMENT STABILITY_ 145 

(2.2) P(O,y) =a, 

where a is a constant and N(t,y) is a homogeneous Poisson process with 
intensity v. This means that the process P(t,y) takes the values a or -a, jumping 
between the states at random instants of time constituting a Poissonian point 
process. 

The mean value and the covariance of P(t,y) are 

(2.3) <P(t,y)> =a e- 2"t, 

and the higher order moments satisfy the following recurrent relations: 

(2.4) m(t1, ••• ,t,.) = <P(t1 ,y) ... P(t,.,y)> 

= < P(t 1,y)P(t2,y) > m,._ 2(t3 , ... ,t,.), 

( < · > denotes the mathematical expectation of a random variable). 
Let R,[P(r)] be some H-valued functional depending on the values of P(t) 

for r < t. (H is a real separable Hilbert space). The functional Rr[P] can be 
represented in the form of the following functional Taylor series: 

(2.5) 

where K~">(t1 , ••• ,t,.) arc H-valued deterministic functions of n arguments t1 , ... ,t,. 
from the interval (O,t) and one real positive parameter t, defined as 

(2.6) (n) _ b"R,[P] I 
Kr (t1, ... ,t,.)- bP( ) bP( ) - , t1 ... t,. p- 0 

where b/[ bP(t)] is the Volterra variational derivative. 
Since K1"> is a symmetric function of all its arguments, the formula (2.5) can 

be written ·as 

CXl r '• tn-1 

(2.7) Rt[P] = Rt[O] + L J dt1 J dt2··· J dt,. K1">(t1, ... ,t,.) P(t1) ... P(t,.). 
n= 1 0 0 0 

Consider the product of P(t) and Rr[P]. We have 

(2.8) <P(t)Rr[P] > = <P(t)Rr[O] > 
CXl t f1 fn- 1 

+ I J dt1J dt2··· J dt,. K~">(t1····,t,.) <P(t)P(tl) ... P(t,.)>. 
n= 1 0 0 0 
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146 Z. KOTULSK.I 

Differentiating Eq. (2.7) with respect to t, multiplying by P(t) and taking 
expectation, we have 

(2.9) 
d d 

<P(t) dt Rt[P] > = <P(t) dt R[O] > 

00 t fl f,._ 1 

+ L J dt2 J dt3··· J dt,. K~n) (t,t2, ... ,t,.) <P2(t)P(t2) ... P(t,.)>. 
n=2 0 0 0 

Differentiating Eq. (2.8), we have (since Rr[O] is deterministic) 

(2.10) 

00 t f1 fn-1 d 
+ L J dt1 J dt2··· J dt,. -d K~">(ti, ... ,t,.) <P(t)P(t1) ... P(t,.)> 

n= 1 0 0 0 t 
00 f f2 fn- 1 

+ L J dt2 J dt3··· J dt,. K~">(t,t2, ... ,t,.) <P2(t)P(t2) ... P(t,.)> 
n=2 0 0 0 

00 t f1 fn-1 d 
+ L J dt1 Jdt2 ••• J dt,. K~">(tv ... ,t,.) -d <P(t)P(t1) ... P(t,.)> 

n= 1 0 0 0 t 

d d 
= <P(t) dt Rt[P] > + dt <P(t)> Rc[O] 

where in the second part of Eq. (2.10) the formula (2.9) has been used. 
Using now the property (2.4) of the moments of the telegraphic process P(t) 

and the following two equations satisfied by the mean and the covariance 
(deduced from Eq. (2.3)) 

(2.11) 

d 
dt <P(t,y)> = -2v < P(t,}')>, 

d 
dt < P(t,y) P(t1,y) > = -2v < P(t,y) P(t1,y)>, 

we finally arrive at the folloving Shapiro-Loginov formula (see [12] for its 
original real-valued version): 
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(2.12) 
d d 
dt < P(t,y) Rr [P] > = < P(t;y) dt Rr [P] > - 2v < P(t,y) Rr [P] >. 

The derivation of the equation for the mean value of the solution to Eq. 
(2.1) runs in two steps. First, taking the expectation of Eq. (2.1), we obtain 
the equation for two unknown functions < V(t,y)> and <P(t,y)V(t,y)>. 
Next, using the Shapiro-Loginov formula (2.12) for Rr[P] = V(t) and the 
governing equation (2.1), we obtain the equation for < P(t,y)V(t,y) > (the 
property (2.2): P 2(t,y) = a2 closes the hierarchy of the equations). The result 
is the following: 

(2.13) 
d 
dt < V(t,y) > = .91 < V(t,y) > + f!l < P(t,y)V(t,y) >, 

d 
dt < P(t,y)V(t,y)> = .91 <P(t,y)V(t,y)> -2v<P(t,y)V(t,y)> 

+ a2 f!l< V(t,y)>, 

with the initial conditions 

< V>(O) = V 0 , <PV>(O) = aV0 . 

Analogously, differentiating the tensor product of the functions V(t,y) and 
substituting Rr[PJ=V(t,y)® ... ®V(t,y), 1=2,3, ... , we arrive at the following 

l times 
equations for the moments of any order of the solution to Eq. (2.1): 

d l . l . 

dt r, = i~l d' r, + i~l &f' rr. 

(2.14) 
d l l 
- FP- "dirp + a2 " f!lir - 2vrP 
d l - L. l L. l l, 

t i=l i=l 

and corresponding initial conditions 

r,(O) = V 0 ® •.• ® V0 , 
l times 

Ff(O) = aV0 ® ..• ® V 0 , 
l times 

where the moments are defined as 

F1(t) = < V(t,y) ® ••• ® V(t,y) >, 
l times 
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Ff(t) = <P(t,y)U(t,y) ® ••• ® U(t,y)>, 
t times 

and the used operators Jlii and ~~ are acting on the simple tensors of the form 

in the following way: 

3. The string equation 

Atr, = y1 ® ••• ®Jliy, ® ••• ®Yt• 

Bi r t = Y 1 ® ••• ® ~Yt ® ••• ® Yt· 

As an illustrative application of the obtained moment equations we will 
deal with the problem of the moment stability of a dynamical system. Consider 
the equation of vibrations of a string in a medium with the viscosity fluctuating 
according to the telegraph process 

a2u a2u au 
at2 = c ax2 - p(t,y) at, tE(O,T], 

with the following initial and boundary conditions: 

(3.2) 

u(O,x) = u0(x), 

au 
at (O,x) = Vo(X) 

u(t,O) = u(t,L) = 0, 

XE[O,L], 

where Lis the length of the string and p(t,y) is the stochastic process of the 
following form: 

(3.3) p(t,y) = b[l- a0( -l)N(t,y>J, 0 < a0 < 1, 

and N(t,y) is the Poisson point process with intensity v. 
Substituting the velocity v = aufat into Eqs. (3.1), we arrive at the system of 

two evolutionary differential equations of the form 

au 
-=v 
at ' 

(3.4) 
av a2u 
at = c ax2 - bv + P(t,y)v, 
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where 

(3.5) P(t,y) = a( -l)N<r.y) 

is the telegraphic stochastic process defmed in Eq. (2.2), a = ba0 , c and b are 
arbitrary positive constants. 

The system of evolution equations (3.4) written in the abstract form is as 
follows: 

dU(t,y) 
-----;it= dU(t,y) + P(t,y)aU(t,y), 

(3.6) 
U(O,y) = U0 , 

where 

[ 
0 , 1 J .91 = 02 

C - -b , 
ox2 

a= [o , o]· 
0 , 1 

In the above problem the Hilbert space where the operators d and a are 
acting is X= H~(O,L) x Il(O,L). Here 1IMO,L) is the Sobolev space of square 
integrable functions possessing square-integrable derivatives, with the support 
contained within the interval (O,L), and IJ(O,L) is the space of square-integrable 
functions on the same interval. 

In order to apply our generalized moment equations (2.14) to the derivation 
of equations for the mean value and the covariance of the solution of Eq. (3.1), 
we introduce the following denotations for the required moments: 

r1 = <u>, r2 = <v>, r 3 = <pu>, r 4 = <pv>, 

and 

r11 = <uu>, r12 = <uv>, r21 = <vu>, r22 = <vv>, 

roll= <puu>, rou = <puv>, roll= <pvu>, r022 = <pvv>. 

The obtained equations for the mean value are 

(3.7) 

atrl = r2, 
arr2 = co2 r1

- br2 + r 4
, 

a r 3 = -2vr3 + r 4 
t , 

atr4 = co2 r 3
- (2v + b)r4 + a2 r2, 
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with the following initial conditions: 

where 

a~~ 
t at' 

Z. KOTULSKI 

The equations for the second order moments are the following: 

(3.8) 

a,r11 = r12 + r21, 

a,rl2 = ca~rll - brl2 + r22 + ro2, 

a,r2l = catrll- br2l + r22 + ro21, 

a,r22 = catr12 + ca~r21 - 2bF22 + 2F022
, 

a,rou = ro12 + r021 - 2vrou, 

a,rol2 = ca~rou - (2v + b)r012 + r022 + a2 r12, 

a,ro21 = catrou- (2v + b)r021 + r022 + a2r21, 

a,ro22 = catr012 + ca~r02l - 2(v + b)r022 + 2a2 r22, 

along with the deterministic initial conditions 

F 11(0) = u (x1) u (x2), 

F 21(0) = v (xl) u (x2), 

F 011(0) = au(x1)u(x2), 

F021(0) = av (x 1) u (x2), 

F 12(0) = u(xl)v(x2), 

F 22(0) = v(xl)v(x2), 

F 012(0) = au(xl)v(x2), 

F 022(0) = av(xl)v(x2). 

Equations (3. 7) and (3.8) can be easily used for the investigation of the mean 
and the mean-square stability of the solution of the string equation (3.1). In the 
considered example the moment stability is the (Lyapunov) stability of the 
deterministic systems of partial differential equations (3. 7) and (3.8). As 
appropriate Lyapunov functionals we use the squared norm in, respectively, 
the spaces X x X and (X x X)®(X x X) for the mean and the mean-stability. 
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Such functionals are very natural; they guarantee that energy carried by our 
dynamical system (the string) remains bounded. 

At the beginning consider Eq. (3. 7) for the mean value. In this case the 
Lyapunov functional is defmed as 

Differentiating the functional Valong the trajectories of Eq. (3.7), we obtain 

(3.10) v = J [2car 1af1 + 2r2 f 2 + 2car3af3 + 2r4f 4
] dx 

= J [2car1ar2 + 2F2(ca2 r 1 - br2 + r 4
) + 2car3a(r4

- 2vF3
) 

+ 2F4(ca2F 3 
- (2v + b)F4 + a2F2

] dx 

= J[ -4vc(ar3
)
2 + 2(1 + a2)F2F4

- 2b(F2)2 - 2(2v + bXF4
)
2] dx. 

From Eq. (3.10) we have that the solution of Eq. (3.7) is stable if the matrix 

[ 
2b, -(1 + a2

)] 

A= -(1+a2), 2(2v+b) 

is positive definite. Therefore the condition of the mean stability of the solution 
of Eq. (3.1) is 

(3.11) 

or, after substituting the definition of a from Eq. (3.5), 

(3.12) 

To investigate the stability of Eq. (3.8), we choose as the Lyapunov 
functional the following expression: 

(3.13) V= JJ[c2(a1a2F 11)2 + c(a1F
12f + c(a1F 21)2 + (F22)2 

+ c2(a1a2r011)2 + c(alr012f + c(alr021f + (r022)2] dx1dx2. 

Differentiating Eq. (3.13) along trajectories of the equation, we have 

(3.14) 
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(3.14) 
[conl] 

Z. KOTULSKI 

+ ro22f022J dxldx2 = 2 H [ -bc(alr12f + calr12alro12 

- bc(a2r21)2 + ca2r21a2r021 - 2b(r22)2 + 2r22 r022 

- 2vc2(ala2r011f- (2v+b)c(alr012f + a2calr12alr012 

+ a2ca2r 21a2r 021 - 2(v+bXT022)2 + 2a2r 022T 22 .:... (2v+b)c(a2r 021 )2Jdx1dx2. 

The mean-square stability of Eq. (3.1) is guaranteed if the matrices constituting 
in Eq. (3.14) the quadratic forms with respect to the moments and the spatial 
derivatives of the moments, respectively, are negative defmite. 

The appropriate matrices of the quadratic forms are 

[ 
-2b, (1+a

2
) J 

A= (1 +a2), -2(v+b) ' 

0 

[ 

-2bc 

B _ 0 -2bc 
- c(1+a2) 0 

0 c(1+a2
) 

c(1 +a2
) 

0 
-2(2v+b)c 

0 

c(l~a2) J 0 . 

-2(2v+b)c 

The nontrivial inequalities obtained as the conditions of the stability are: from 
matrix A: 

and, from matrix B: 

Finally, since we consider only positive values of the parameters, the 
condition of mean-square stability is 

(3.16) 

or, with the use of Eq. (3.5) 

(3.17) 

In this section we have used moment equations for studying the stability of 
the solution to the partial differential equation. In practical problems of 
mechanics the evolution of systems is very often investigated using the modal 
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approach. Such a treatment leads from partial to ordinary differential 
equations and, usually in stability problems, yields conditions easier to derive. 
The considered case, which is relatively simple in analysis, gives us the 
opportunity to compare the results obtained using both methods. The 
following section is devoted to the modal treatment of our string equation. 

4. String equation. Modal approach 

Assume that the solution of the system (3.4) can be expanded into the series 
of the form 

(4.1) 

00 nnx 
u(t,x) = 11~1 Yit) sin L' 

00 nnx 
v(t,x) = 11~1 z,.(t) sin -y· 

Substituting Eq. (4.1) into Eq. (3.4) results in the sequence of equations of 
motion for all the modes 

dy,.(t)- () 
dt - z,. t' 

(4.2) 
dz,.(t) n2n2c 
-d- = - - 2-y,.(t)- bz,.(t) + p(t)z,.(t), 

t J.j 

n = 1,2, ... , and the initial conditions 

y,.(O) = J u0(x) sin n~ dx = Yno, 

z,.(O) = Jv0(x) sin n~x dx = z,.0 . 

The systems of ordinary differential equations (4.2) written down in abstract 
form (2.1) are the following: 

(4.3) 
Y,.(O) = Y,.0 , n = 1, 2, 3, ... , 

where .91,., n = 1, 2, ... and a are the following matrices: 
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(4.4) _ [0, OJ fJI- , 
0, 1 

and 

[Yno] Y,.o = . 
z,.o 

To study the approximate conditions of the moment stability of the 
solution of Eq. (3.1), we consider the moments of the modes. Equations for the 
mean values of the solutions to Eq. (4.3) (also possible to obtain with the use of 
Eq. (2.7)) are 

<y,.> = <z,.>, 

(4.5) 
<py,.> = -2v<py,.> + <pz,.>, 

n2n2c 
<pi,.> = -b<pz,.> - -e <py,.> - 2v<pz,.> + a2 <z,.>, 

with the initial conditions 

<y,.>(O) = y,.o, 

<py,.>(O) = ay,.0 , 

<z,.>(O) = z,.o, 

<pz,.>(O) = az,.o, 

where the angle bracket denotes the mathematical expectation of a random 
variable. The characteristic polynomial of the matrix U of the system 
(4.5) is 

(4.6) 

where 

(4.7) 
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(4.17) 
[conl] 

n2n2c 
a~= 2v(2v +b)+ (4v + b)b + 2--n:-- a2

, 

a~= 2(2v +b). 

Applying the Routh-Hurvitz criterion (cf. [2]) to Eqs. (4.5), we have that 
for n = 1, 2, ... their solutions are stable if simultaneously three conditions are 
satisfied: 

Hence we say that the solution of our string equation is stable in the mean (in 
k-th approximation) if the equations for the mean values of modes (4.5) are 
stable for n = 1, 2, ... , k. This means in fact that the approximated solution 
of Eq. (3.1) (the truncated series (4.1)) is stable in the mean. 

To investigate mean-square stability, we should consider the mutual 
moments of the solutions of Eq. (4.2) for arbitrary ftxed n and m (the pairs 
(n,m) n = 1, 2, ... , k, m = 1, 2, ... , k), because the second moment of the truncated 
series (4.1) contains the terms <Y,.Ym>, <y,.zm>, <z,.zm>, n,m = 1,2, ... ,k. 
The adequate moment equations are 

(4.9) 

<Y,.Ym> = <y,.zm> + <z,.ym>, 
m2n2c 

<y,.·zm> = - ----n- <Y..Ym> - b<y,.zm> + <z,.zm> + <py,.zm>, 

n2n2c 
<z,.·ym> =- --n:- <Y,.Ym> - b<z,.ym> + <z,.zm> + <pz,.ym>, 

n2n2c m2n2c 
<z,.·zm> = - --n:- <y,.zm> - ----n- <z,.ym> - 2b<z,.zm> 

+ 2<pz,.zm>, 

<py,.·ym> = - 2v<py,.ym> + <py,.zm> + <pz,.ym>, 
m2n2c 

<py,.·zm> = a2 <y,.zm> - ----n- <PY,.Ym> - (2v + b)<py,.zm> 

+ <pz,.zm>, 
n2n2c 

<pzn·Ym> = a2 <z,.ym>- --n:- <PYnYm>- (2v+b)<pznYm> 

+ <pznzm>, 
n2n2c m2n2c 

<pz,.·zm> = 2a2 <znzm> - --n:- <py,.zm> - ----n- <pz,.ym> 

- 2(v + b)<pz11 zm>· 
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Applying the Routh-Hurvitz criterion of stability of the system of equations 
(4.9) for all pairs (n,m) such that n,m::;; k, we obtain the analytical conditions on 
the parameters of Eq. (3.1) which guarantee the stability of its solution. Of 
course, they are too involved to express them in an explicit form. The results 
will be presented graphically in Sect 5 for some ftxed parameters. The 
characteristic polynomial of the matrix of the system (4.9), the coefficients of 
which are required in the Routh-Hurvitz criterion, is given in the Appendix. 

5. Numerical example 

Consider the string equation (3.1) with the initial condition (3.2) and 
telegraph parametric excitation (3.3) and the corresponding moment equations 
with the following parameters ftxed: c = 1.0, L= 1.0, a0 = 0.1. For such 
constants the areas of mean and mean-square stability for the exact criterion 
introduced in Sect. 3 are shown in the b-v-system of coordinates (Fig.1). 

b 

0 a1 G2 a3 v as 

FIG. 1 Infinite-dimensional criterion of the mean and mean-square stability; L= 1, c = 1, a0 = 0.1. 

It is seen that the region of mean-square stability is contained within the region 
of the mean one. The dependence of the stability conditions on a0 is relatively 
simple (see the inequalities (3.12) and (3.17)). Forb= 0 the string is always 
unstable. The conditions of stability are independent of L and c. 

In the case of the modal approach introduced in Sect. 4 the situation is 
much more complicated. The conditions of stability depend on the parameters 
of the string equation c, L a0 and on the rang of approximation in a very 
involved way. 

Consider again our numerical example. Substituting the given values L= 1 
and c = 1, we have the mean stability of equations for each mode for all a0 , b 
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and v (except of b = v = 0). The modal equations loose the stability if b is 
sufficiently small and cjJJ tends to zero (cis small and L is big). We conclude 
that in the case of stability in the mean the modal approach and the exact 
criterion give quite different results. 

When mean-square stability is considered, we have a more interesting 
situation. In Fig. 2 the regions of the mean-square stability of the vibrating 

as~--~~~~~~~~~~~~~~~~-T~ 

b 

0 0.1 0.2 0.3 0.4 )i 0.5 

FIG. 2. Regions of mean-square stability for 1, 2, 5, 10, 15, 20, 25 modes; L= 1, c = 1, a0 = 0.1. 

string for n = 1,2,5,10,15,20,25 modes are shown. Taking into account only 
the first mode gives a result far from the one obtained in the infinite-di
mensional method (see Fig. 1). It is seen that for n tending to 20 the bounds 
of the stability regions concentrate near the curve obtained with the use of the 
infmite-dimensional criterion; next they diverge and give the stability regions in 
the b-v-system of coordinates more restrictive than in the exact case. As 
a conclusion we can say that the first mode approximation gives in our 
example some information about the instability of the string, but it may 
happen that taking too many modes we loose information about instability 
and do not gain certainty about stability. 

Let us remark that our conclusion differs from the classical results of 
Lyapunov stability of the string with deterministic parameters, where the 
positivity of the damping coefficient b is the condition of the asymptotic 
stability. In the considered approach the solution not only tends to zero (with 
its temporal derivative), but also makes the fluctuating parameter P(t,y) (the 
mixed moments) tend to zero. The obtained conditions guarantee that 
a numerical procedure for solving the exact set of the moment equations 
converge for the long period of time. 
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6. Relation to white-noise coefficient 

As it is seen from Eq. (2.3), the correlation time of the random telegraph 
process is 1/2v and it tends to zero as the intensity v in the Poisson stream of 
pulses tends to infinity. Therefore we can say that the process P(t, y) tends to 
a white-noise when v __. oo but a2 jv remains bounded, and, what follows, for 
very large v the telegraph process could be approximated by a white-noise one 
with the "equivalent" intensity I= a2jv (cf. [6]). 

Let us assume that the process P(t, y) in Eqs. (3.4) is replaced by 
a white-noise with intensity I= a2 jv. The equations for the two lowest 
order moments of the solution of such a modified equation are (cf. [8]) the 
following: 

a rt- r2 
t - ' 

(6.1) 
a F2 = ca2 F 1 

- bF2 + ! I F2 
t 2 ' 

and 

atru = rt2 + r21, 

a rt2 = ca2 ru- brt2 + r22 +!I rt2 
t 2 2 ' 

(6.2) 
a r2t = ca2 ru - br2t + r22 +!I rzt 

t 1 2 ' 

(fhe denotations in Eqs. (6.1) and (6.2) are the same as in Eqs. (3.7) 
and (3.8)). 

The stability conditions obtained from Eqs. (6.1) and (6.2) (in a way 
analogous to that in Sect · 3) for the mean and the mean-square are, res
pectively, 

(6.3) 

and 

(6.4) 

a2 
-<2b 
v 

a2 
- <b, 
v 

what, with the use of Eq. (3.5), gives 
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(6.5) a~< 2v 

and 

(6.6) 

Using the modal approach we obtain the following equations for the 
moments (see the series (4.1)) (cf. [1]): 

(6.7) 

and 

(6.8) 

<SYn.Ym> = <ynzm> + <ZnYm> • 

m2n2c 
<yn·zm> =- -----n:- <YnYm>- b<ynzm> + <znzm> 

n2n2c m2n2c 
<zn·zm> = - -----n:- <ynzm> - -----n:- <ZnYm> - 2b<znzm> 

+ 21 <pznzm>. 

As it is seen, the condition of stability of Eqs. (6.7) for n = 1,2, ... is 

(6.9) 

or 

(6.10) 

and it is independent of n. 

1 
b- - ] > 0 

2 ' 

a2 
- <2b, 
v 
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From the inequalities (6.3) and (6.10) we have that the exact and 
approximated conditions of mean stability in the case of the white-noise 
process in the parameter are equivalent. 

The condition of mean-square stability in the case of the modal approach 
is much more involved. From the Routh-Hurvitz criterion we have that the 
system of equations (6.8) is stable if simultaneously W0 , W1, W2 and W3 are 
positive, where these quantities in terms of the parameters of the "equivalent" 

( 
n2 n2c m2 n2 c) 

white-noise are c; = --n:-, c! = ------n- : 

For the parameters taken in the numerical example (a 0 = 0.1, L= 1, c = 1), 
we always have the mean-square stability of each mode except b = 0 
and v = 0. This fact shows that approximation of the telegraph process 
with white noise requires great caution. It may happen that the result 
of such a substitution gives some unexpected result - like here the 
stability of the originally unstable system. This means in fact that even 
if the telegraph process in the limit case gives white noise, its nonlinear 
transformation (generated by the string equation) might not converge to the 
analogous nonlinear transformation of white-noise. Therefore such an ap
proximation could be performed only within the general problem where it is 
used. 
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Appendix 

The characteristic polynomial of the matrix of the system of Eqs. (4.9) is 

Det(U- ).Jd) = ).8 + a7).
7 + a6 ).

6 + a5 ).
5 + a4 ).

4 + a3).
3 + a2 ).

2 + a1). + a0 , 

a 7 = 8(v +b), 

a6 = 24v2 + 26b2 + 56vb + 4(c2 + c2
)- 6a2

, 
n m 

a5 = 32v3 + 144v2b + 156vb2 + 44b3 + 24(v + b)(c2 + c2
)- 4a2 (9v +?b), 

n m 

a4 = 9a4
- 2a2 (36v2 + ?Ovb + 25b2 + 4(c2 + c2 

)) + 2(c2
- c2 

)
2 

n m n m 

+ 4(c2 + c2
)
2 + (c2 + c2 )(56v2 + 120vb + 56b2

) 
n m n '" 

+ 16v4 + 160v3b + 332v2 b2 + 220vb3 + 4lb4
, 

a 3 = a4 (36v + 20b)- a2 (32(v + b)(c2 + c2
) + (48v3 + 224v2b + 200vb2 

n m 

+ 40b3
)) + (24(c4 + c4

) + 16c2c2)(v +b)+ (c2 + c2 )(64(v3 + b3
) 

n m n m n m 

+ 224vb(v +b))+ 64v4b + 288v3 b3 + 368v2 b3 + 164vb4 + 20b5
, 

a2 = - 4a6 + a4 (4(c2 + c2
) + 36v2 + 60vb + 12b2

)- a2
(- 2(c4 + c4

) 
n m n m 

+ 36c2c2 + (c2 + c2 )(56v2 + 96vb + 40b2
) + 112v3b + 232v2b2 

n m n m 

+ 120vb3 + 12b4
) + 4(c6 + c6

- c4 c2
- c2c4

) + (c4 + c4 )(40v2 
n m nm nm n m 

+ 72vb + 34b2
) + c2c2

( -16v2 + 48vb + 28b2
) + (c2 + c2 )(32v4 

n m n m 

+ 192v3b + 320v2b2 + 192vb3 + 36b4
) + 80v4 b2 + 224v3b3 

+ 196v2b4 + 60vb 5 + 4b6
, 

a 1 = -8a6 v + a4(8(c2 + c2 )(v +b)+ 40v2b + 24vb2
)- a2(4(c4 + c4 )(b- v) 

n m n m 

+ c2c2 (72v + 56b) + (c2 + c2 )(48v3 + 112v2b + 80vb2 + 16b3
) 

n m n m 

+ 64v3 b + 80v2b3 + 24vb4
) + 8(c6 + c6

- c4c2
- c2c4 )(v +b) 

n m n m n m 

+ (c4 + c4 )(32v3 + 80v2b + 68vb 2 + 20b3
) + c2c2

(- 64v3
- 32v2b 

n m n m 

+ 56vb2 + 24b3
) + (c2 + c2 )(64v4 b + 192v3b2 + 192v2b3 + 72vb4 

n m 

+ 8b5
) + 32v4b3 + 64v3 b4 + 40v 2b5 + 8vb6

, 

a0 = a4(4(c~ + c!)2 + (c~ + c!)(16v 2 + 8vb))- a2(4(- c!- c! + c:c! 

+ c2c4
) + (c4 + c4

)( -16v2 + 4vb + 8b2
) + c2c2 (32v2 + 56vb + 16b2

) 
n m n m n m 

+ (c2 + c2 )(48v3b + 56v2b2 + 16vb2
)) + (c8 + c8 + 6c4c4 

- 4c6c2 
- 4c2c6

) 
n m n m nm nm nm 

+ (c6 + c6
- c4c2

- c2c4 )(8v2 + 8vb + 4b2
) + (c4 + c4 )(16v4 + 32v3b 

n m nm nm n m 

+ 36v2b2 + 20vb3 + 4b4
)- c2c2(32v4 + 64v3b + 8v2b2

- 24vb3
- 8b4

) 
n m 

+ (c2 + c2)(32v4 b2 + 64v3b3 + 40v2b4 + 8vb5
). 

n m 
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