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Thermodynamic models of pseudoelastic behaviour of shape 
memory alloys 

Notation 

B. RANIECKI (WARSZAWA), CH. LEXCELLENT (BESANCON) 

and K. TANAKA (TOKYO) 

W1TH1N THE FRAMEWORK of classical thermodynamics two workable models of pseudoelastic be­
haviour of shape memory alloys are developed. The so-called R-model undergoes only reversible 
processes and constitutes the generalization of the classical Maxwell model of phase transformation. 
The other model (RL-model) includes interaction energy. It predicts formation of external and 
internal hysteresis loops, and complies with the Clausius-Duhem inequality. The full set of coupled 
incremental constitutive relations are derived for both models. They enable us to determine phase 
composition, stress and heat exchange with surroundings under imposed strain and temperature vari­
ations, and are presumed to be valid at complex stress state. Specific form of kinetic law for phao;e 
transformations is suggested which contains only two constants. 
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1. Introduction 

SINCE THE TIME of discovery of shape memory effect (in gold-cadmium alloy at the be­
ginning of fifties), the number of alloy systems showing this effect has gradually increased, 
together with the systematic growth of the area of their applications. There is no doubt 
that complicated (,anomalous") behaviour of these alloys under applied thermomechan­
icalloadings is caused by ongoing forward martensitic and reverse martensite-parent phase 
transformations. The behaviour has been intensively investigated from the metallurgical 
point of view, and the results gave better understanding of the fundamental mechanisms · 
of shape memory phenomenon, e.g. the mechanism of twin boundary movement in the 
martensite phase, mechanism of transformation from one type of martensite phase into 
another type, and the effect of ageing by diffusion [1-5]. 

At the same time the numerous experiments performed in usual mechanical laborato­
ries displayed the typical uniaxial response of the ·alloys to the imposed stress cycle ( cf. e.g., 
the review ·[6]). Presuming that the stress amplitude is smaller thail the usual yield stress 
of weaker phase, one can roughly distinguish three temperature ranges corresponding to 
different response: 

a) At temperature T > A~(A~ being the conventional austenite-finish temperature 

at stress-free state, frequently employed in engineering) in vicinity of A~, the typical 
pseudoelastic behaviour is observed ( cf. Fig. 3). It is characterized by formation of closed 
hysteresis loop caused by ongoing forward martensitic and reverse martensite-parent phase 
transformations. In tension the extra-strain due to martensitic transformation is positive, 
whereas in compression it is negative, just opposite to the situation observed when reverse 
martensite-parent phase transformation takes place in the strain recovery part of the 
hysteresis loop. In this temperature range at stress-free state the specimen returns to its 
original shape after every thermomechanical loading-unloading path. 
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b) In the temperature range A1~ < T :::; A~, where A1~ is the conventional martensite­
start temperature at stress-free state, certain amount of permanent strain is observed after 
unloading, provided that the stress amplitude is sufficiently large. This is due to incomplete 
reverse transformation. The permanent strain may be relatively large at temperatures T :::; 
A~ (A~ 2:: M~ is the conventional austenite-start temperature at stress-free state) where 
the reverse transformation is precluded. It is sometimes said that in this temperature 
range the pseudoelasticity is coupled with inelasticity ("plasticity") [7]. 

c) In the temperature range MJ < T :::; M~ (M 0 being the conventional martensite­
finish temperature) the specimen is initially in two-phase state, and every thermomechan­
ical process terminating at stress-free state produces a permanent strain. No reverse trans­
formation proceeds, and the stress-induced martensite formed from the residual parent 
phase has usually different metallurgical character from the initial temperature-induced 
martensite. 

The experiments have also confirmed one of the most important features of the stress­
induced martensitic transformations in shape memory alloys: they produce negligible 
volumetric and large distortional changes. Contrary to the martensite formed in con­
ventional steel elements, where volumetric changes are dominant and are main sources 
in generation of the stresses during e.g. the heat treatment operations ( cf. [8]), in the 
case of shape memory alloys the distortional changes in shape associated with martensitic 
transformations determine the mechanical behaviour of alloys. 

In view of existence of strong cross-effect between the thermomechanical interactions 
and internal phase transformations, the development of physically plausible and possi­
ble simple constitutive equations for shape memory alloys is not an easy task. In the 
simple situation, when current temperature, stress, strain and amount of martensite 
(weight fraction) is known, they should enable us to determine, e.g., the incremental 
changes in stress, phase composition and heat exchange with surroundings under pre­
scribed incremental changes in strain and temperature. To this end use of concepts of 
thermodynamics is instrumental. Some attempts have already been made (cf. e.g., [9-13]). 
However, in all these studies either the thermodynamical potential has not been speci­
fied or/and the implications of the Clausius-Duhem inequality has not been investigated. 
Just recently MOLLER [14], and MOLLER and Xu [15] have presented a satisfactory one­
dimensional theory for the pseudoelastic temperature range, based on a non-convex free 
energy function that includes also effects of interactions between the phases. The effects 
are described by an additive ·part that depends solely on weight fraction z of martensite 
and vanishes at the beginning and at the end of forward and reverse transformations. 
Among others, they have shown that the width of the bounding hysteresis loop is deter­
mined by the interaction energy, and presented a number of convincing arguments on 
the way of possible creation of internal hysteresis loops under more complex deformation 
paths. The need for introduction of the interaction energy has also been emphasized 
by DELAEY et al. [16], and recently RANIECKI and TAN AKA [17] applied a method of 
continuum thermodynamics to show that incremental interaction energy is directly con­
nected with the surface average of the jump of elastic potential energy at all moving phase 
interfaces observed at microscale in generic incremental time elapsed. 

The growing range of applications of shape memory alloys and the lack of the theor­
etical basis for the design of structural elements call for the development of appropriate 
3-dimensional models that could also be used in non-isothermal situations. In this paper 
we generalize I. Muller concepts, and attempt to develop two such models, even though 
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there is still very little evidence on the behaviour of shape memory alloys under complex 
stress states. We believe that the models will help to systematize the research on the 
behaviour of these alloys, both experimental and theoretical. The models are presumed 
to be valid only in the temperature range of pseudoelastic behaviour (T > Aj) of shape 
memory alloys. The developed so-called R-model in the sense of thermodynamics is an 
"ideal device" that undergoes only reversible processes. In fact, it is a generalizations 
of the classical Maxwell model of phase transformation ( cf. [18]). The more realistic 
RL-model includes interaction energy and predicts formations of external and internal 
hysteresis loops in a way that is consistent with the requirements imposed by Clausius­
Duhem inequality. In the case of full isotropy it employs only seven additional material 
constants with respect to conventional linear thermoelasticity. They are not determined 
here for any specific shape memory alloys. This will be done in a separate note. 

2. R-model of ideal pseudoelastic behaviour. 

2.1. Free energy at non-equilibrium 

Suppose that a non-equilibrium state of a two-phase piece of an alloy is described 
by the following extended set of independent variables: €0'(n = 1, 2) - total intrinsic 
strains of both phases [strains averaged over instantaneous masses of parent (austenite) 
phase, a = 1, and product (martensite) phase, a = 2], h - a set of internal variables 
representing the current orientations of martensitic active systems in a representative vol­
ume V (habit planes plus directions of motions) together with the phase distortions under 
actual stress, and actual temperature T which is assumed to be close to the equilibrium 
temperature. 

Consider the following form of the specific free energy function ([>n of a two-phase 
system 

(2.1) ([>n = (1 - z)¢(1) + z¢(2), 

where z is the mass fraction of martensite (z = M(2) / M; M is the total mass of a 
system equal to the initial mass of the parent phase, M(2) is the instantaneous mass of the 
product phase), <J><1) and ¢<2) are specific free energies of parent phase and product phase, 
respectively. We neglect the possible inelastic flow within both phases and assume that 
both phases have equal temperature-independent thermoelastic constants (L - elastic 
moduli and a 0 - thermal expansion coefficients), and equal temperature-independent 
specifi2 heats Cv at constant strains in the temperature range T > A j. We stipulate the 
free energies ¢0'(a = 1, 2) in non-equilibrium to be [20] 

(2.2) 

0' 0' 
where internal energies u0 and entropies s0 (a = 1, 2) at stress-free state and at the 

chosen reference temperature T0 are constants, €{t) = 0 and 

(2.3) €b) = t<(h) 

is the traceless (tr€{z) = 0) strain associated with the formation of the martensite phase. 
Thus, we assume that the intrinsic elastic strain of the parent phase is equal to the total 
intrinsic strain of this phase, and intrinsic elastic strain of the martensite is equal to 
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€(2)- €{z) = €(2)- K(h), cf. (20]. In the course of diffusionless martensitic transformation 
the chemical composition of phases does not change. Therefore, no state variables that 
represent it are present in the adopted forms of </P. The intrinsic strains €a and z are 
not independent since when the total overall strain € is prescribed, they have to satisfy 
the relation 

(2.4) € = (1 - z)€(1) + Z€(2) . 

The intrinsic Kirchhoff stresses 'fa corresponding to €a are defined by 

(2.5) 
'1'<1> = (V - v<2>)a<1>1 (M - M(2)) = 8¢(1> 1 8€<1> , 

'1'(2) = V(2)cr(2)l M<2
> = 8¢<

2
> I 8€(2) . 

where cr a ( n = 1, 2) are the intrinsic Cauchy stresses acting in both phases, and V<2> is 
the current volume of already formed martensitic plates. 

2.2. Properties at thermodynamic equilibrium 

The model we are aiming to construct in this section will describe the equilibrium 
properties of a system having (at non-equilibrium) the free energy function described 
by (2.1)-(2.2). It will be called the R-model of ideal pseudoelastic behaviour of shape 
memory alloys (R- from "reference" and "reversibility"). 

Applying the technique of Lagrange's undetermined multipliers (here - 'f) we form 
the function 

4>n = (1 - z )¢(1) + z ¢(2) + 't'·[ € - (1 - z )€(1) - Z€(2)]. 

At equilibrium, at constant T and €, this function is supposed to reach an extremum. 
Hence, the equilibrium values €~q, z eq and heq of € a , z and h are the functions of € and 
T that should be determined from the following set of equations 

'1'(1) = '1'(2), ¢<
2

> - ¢(1) + '1'(1) • ( €(1) - €(2)) = 0 ' 
'1'(2) • (8KI8h) = 0 , 

(2.6) 

and (2.4). Under the adopted form of the free energy function (2.1)-(2.2) the intrinsic 
stresses and Gibbs potentials (defined by {La = cpa - 't'a·€a ) of the two phases must be 
equal at equilibrium. Equation (2.6)3 will be satisfied when, at equilibrium, phase strain 
K reaches the extremum, i.e., when 8KI 8h = 0. As here we do not adopt any special 
micromechanical model specifying the exact physical meaning of h, we shall utilize only the 
fact that (2.6)3 shows that at equilibrium infinitesimal changes in K occur in the direction 
normal to the stress-deviator axis in the deviatoric stress space. 

Since thermoelastic properties of both phases are assumed to be the same, the differ­
ence ¢(1 L¢<2>, at equilibrium, is 

¢<1> - ¢<2> = 1r.{ (T), 1r.{ (T) = Llu - T Lls, 
* * (1) *(2) * *(1) *(2) 

Llu = u0 - u0 , Lls = s0 - s0 , 

(2.7) 

on account of (2.6)1 and (2.5). In engineering the quality 1r.{ (T) is frequently termed 
"phase chemical potential". It represents the "driving force" for temperature-induced 
martensitic transformations at the stress-free state. 
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The solutions of (2.6) and (2.4) for fixed T, € and K = Keq(Keq = K(heq)) is 

(2.8) 

what implies 

(2.9) 

€({) = €- ZeqKe\ €(f) = € + (1- Zeq)Keq ' 

Keq·L€- Keq·Lao(T -1(,) + 1rl 
z eq( € , T) = ______ .....:._ __ .....:.__~ 

Keq ·LKeq 
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We shall now stipulate that function K( h) are such that K · K = TJ = canst so that h 
plays the role of curvilinear coordinates on a sphere in the 5-dimensional deviatoric space, 
and K • ( 8K/ 8h) = 0 for every h. This latter condition will also be satisfied if one assumes 
that K is derivable from a potential that is a homogeneous function of order one with 
respect to five-dimensional hi ( i = 1, ... , 5) (e.g. when the potential is proportional to 
the modulus of hi)· Under this approximation, the possible solution of (2.6)3 is expected 
to have the form 

(2.10) Keq - Teq 
- TJ(_ .- )1/2 ' 

't'eq 't'eq 

where T eq is the deviatoric part of 't'eq · This is, of course, a purely heuristic assu~ption 
based upon expectation that after a change of the principal direction of stress and subse­
quent proportional loading the old martensitic plates will rotate, and the new martensitic 
systems will be formed in such a way that the overall phase distortion will have the same 
principal directions as the applied stresses. 

Combining (2.9) and (2.8) we find the equilibrium condition 

(2.11) 't'eq·Keq + 1rl = 0, 

which must be satisfied in a two-phase state. Provided that Keq is known, this condition 
can be used as a reference one for determination of critical stress for the stress-induced 
martensitic transformation. When martensite-start temperature M~ (of temperature­
induced martensite) at T = 0 is known, one gets the relation 

.1:t - i\11° .18 = o 
s ' 

since 1rl = 0 for T = A1~. As the pseudoelastic behaviour in the shape memory alloys 
is observed at temperature range T > A~ and most frequently A~ ~ M~, we assume in 
this paper that 

(2.12) 7rl < 0. 

Combination of (2.10)-(2.11) reduces the equilibrium condition (2.11) to the equation 
of a sphere in a 5-dimensional space of stress deviator 

(2.13) TJTeq + 1rl = 0, Teq = (Teq·Teq)
1

/
2

. 

Its radius increases linearly with the temperature. Equation (2.13)1 can also be regarded 
as an equation of straight line in the effective stress-temperature plane. Its slope is 

determined by the coefficient (3/2) 112L1s/TJ, i.e., by the difference Lls in the specific 
entropies of parent and martensite phases, at temperature 1(, and at stress-free state. 

From the set of equations (2.8)-(2.9) one can eliminate Keq with the aid of (2.10). For 
general anisotropic solids the solution is lengthy. However, for isotropic solids, when a., 
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is the spherical tensor ~' = a 01, and 

L ijkt = lt(bikbjt + bitbjk) + bijbkt(l(- 2J.L/3), 

the solution has a simple form. The deviatoric part of (2.9) implies 

(2.14) Teq = 2it(€- zeqKeq) and Teq = 2J.L(f.- zeqTJ), f. = (€·€)112
, 

and in the region of the two-phase states the equilibrium values of zeq, ~q and Teq can 
be found from 

(2.15) 

on account of (2.9). Here J.L and]( are energetic shear and bulk moduli, respectively, and 
€ is the deviatoric part of the total overall strain. In the two-phase state region, there exists 
a family of spheres in the strain-deviator space (with zeq as a parameter) corresponding 
to the single sphere (2.13) in the stress space. Transformation starts (zeq = 0) when 

strain invariant f. reaches the critical value E(A) = El zeq=o = -nl /2J.LTJ, and it ends when 
El zeq=l = E(At) = TJ + E(A). Thus, the constant parameter TJ represents the thickness 
of the spherical shell containing the two-phase equilibrium states. It is equal to the total 
amplitude of pseudoelastic behaviour in Teq - f. plane (Fig. 1 ). 

0 

T eq 

e:( A) 

Two-phase 
equilibrium states 

FtG. 1. Schematic representation of the relationship between 
stress and strain invariants for R-model at fixed temperature. 

The transformation-start and transformation-end temperatures under the applied 
strain can also be illustrated on f.- T plane by two parallel straight lines as shown in Fig. 2. 

The ideal R-model that admits only reversible processes does not differentiate between 
temperatures A~ and M~, and temperatures MJ and A~, i.e., A~ = M;1• 

The equations (2.15)2,3, when written in the incremental form at constant T, are 

(2.16) dKeq = (TJ/E)P(€)d€, d'teq = -[1rl/(TJE))P(€)d€ , 

where 

(2.17) 
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e: 

Martensite finish 
Austenite start 

Region of two-phase 
equilibrium states 

Martensite start 
Austenite finish 

T 

FIG. 2. Illustration of transformation-start and 
transformation-finish temperature in f. - T plane. 
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tD is fourth-rank unit tensor in the deviatoric space (lBmn = (8im8jn + 8in8mj)/2-
8ij8mn/3). It has the property that PP = P, and its determinant vanishes, detP = 0. 
Stability of the equilibrium states in the two-phase region is, therefore, indefinite. If 
d€ is perpendicular to the current €, i.e., d€·€ = 0, the phase-transformation process 
is stopped, and the incremental equilibrium response is linear with the tangent modulus 
dependent on €. The tangent modulus decreases from 2J-L (for f corresponding to zeq = 0) 

to the value 2J-L/(1- 2J-L1]2/7rl) (for f corresponding to zeq = 1). 

2.3. Constitutive equations for R-model 

In what follows we shall restrict our attention only to the isotropic solids. By sub­
stituting (2.8)1 and (2.15) into (2.1) one finds the free energy ¢~q in thermodynamical 
equilibrium. It is a function of € and T that has discontinuous second derivatives at the 
boundaries of two-phase states, 

(2.18) ¢~q(€, T) = ¢~(fv, T) + ¢~(E, T) + ~~t)- T~~t), 
(2.19) ¢~(fv, T) = J( E~/2- 31( ao(T- 1(,)Ev + Cv(T- 1(,)- CvT ln(T j1(,), 

{ 

J-LE2 if /(E, T) = f + 1rl (T)/(2J-LTJ) ~ 0, 

(2.20) ¢~(€, T) = -1rl (T)E/TJ- (1rl (T))2 /(4J-L1]2) if 0 ~ f ~ 1], 

J-L(E- TJ)2
- 1rl (T) if f > TJ· 

Here, Ev = tu; E = (€ · €)112 and 1rl < 0. At fixed T > A~, the function (2.20) 
describes the figure consisting of two parabolas connected by the straight line tangent to 
both of them. The Kirchhoff stress and the entropy seq are derivable from (2.18) by the 
usual relations 

(2.21) 
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whereas equilibrium amount of martensite is zeq = 0 when f ~ 0, zeq = 1 when f > 1], 

and it can be calculated from (2.15)1 when 0 ~ f ~ 1]. 

We believe that the idealized R-model in the present form can be applied for rough 
estimation of transient strains and stresses occurring in structural elements (made of shape 
memory alloys) in the temperature range of pseudoelastic behaviour T > A~. The more 
practicable form, i.e. the rate-form, of constitutive relations for R-model can be written, 
in terms of usual Cauchy stress a, as follows (we neglect the superscript "eq"): 

(2.22) dam = f(11 [dEv- 3n 0 dT] , am = tra 13, a= a- ami , 

l
2ttod€ if [J < 0 or (f = 0 and df ~ 0)], 

-(d11-l pi(1JE)]€- [p11-l 1(1JE)]Pd€ if [0 < f < 1] 
(2.23) da = or (f = 0 and df > 0) or (f = 1J and df < 0)], 

2ttod€ - 2tto( 17 If )P d€ if [J > 1] 
or (f = 1J and df ~ 0)], 

where p is the mass density of two-phase alloy presumed to be constant, and we have 
introduced usual elasticity constants J.-Lo and ](11 • P is defined by (2.17), and the phase 
chemical potential- by (2.7). The function f (c£.(2.20)1) can also be expressed in terms 
of J.-Lo, 

f = f + p1rl (T)I(2J-Lo17). 
The incremental equation for the amount of martensite reads 

{ 

0 if [J < 0 or f > 1J or (f = 0 
(2.24) dz - or (f = 1J and df ~ 0)] , 

- (li1J)df otherwise. 

and df:::; 0) 

Note that, due to our assumption (2.10) which is presumed to hold also in single-phase 
martensitic state, the incremental elastic response of pure martensite described by (2.23)3 
is nonlinear. In view of lack of experimental data concerning the behaviour of pure 
strain-induced marten_site at T > A~ at complex stress state, we cannot judge whether 
this prediction is correct or not. For proportional loading both €·d€ and the second term 
occurring on the right hand side of (2.23)2 ,3 vanish. For such paths the predicted response 
is linear. We shall now derive the rate equation for the temperature. Since all processes 
described by R-model are reversible, we can combine incremental form of (2.21 h with 
- dq IT (dq being the heat exchange per unit of mass, positive if it is transferred to 
surrounding) to get 

(2.25) pcv dT = - pdq - 3T f(oao dfv + pi1sT dz . 

Note that, according to this model, the latent heat due to strain-induced (isochoric 

and isothermal) complete martensitic transformation is equal to pi1sT, and in the class 

of this processes L1s could be measured. Another way of determination of Lls follows 
from extrapolation of the line f = 1J (Fig. 2) into the temperature range T < !Yf~ = A~ . 

At T = A~ = Af~ we have 1rl = 0, and at T = A1J = A~ it is zeq = 1. Hence 

Llu = 111~ ..::18, ..::1'8 = 2J-L1]2 1 (.i\1~- lviJ). 

The set (2.22)-(2.25) constitutes the full set of coupled equations of R-model for ho­
mogeneous processes. An easy combination of (2.25) with the usual Fourier equation of 
heat conductivity will enable us to apply the equations for continuous structures. The set 
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contains only 3 constans (Lls, Llu and 77) that do not occur in the set of basic equations 
of usual linear thermoelasticity. 

3. The role of configurational free energy. Unstable equilibria 

The highly indealized R-model presented in Sec. 2 can not describe the actual be­
haviour of crystalline solids under ongoing martensitic transformation above Aj, except 
(perhaps) of the imaginable situation when in a single crystal all martensitic plates are 
formed on commonly oriented single habit plane, and when the progress of forward­
reverse transformation is completely symmetric in time. Then, e.g., the plates formed 
at the end of forward transformation disappear at the beginning of the reverse transfor­
mation. During the real process of strain-induced martensite in crystalline solids, in a 
vicinity of equilibrium line (area £ in Fig. 1) the loop is formed as a result of many 
physical events such as interaction of different martensitic systems and elastic misfit of 
the differently oriented phase domains within the single crystal, etc. To encompass some 

effects of the interactions suppose that 1t~ and s~ occurring in (2.2) are replaced by 

( ) * (1) 
u 1 = 1to + u(l - z), (2) *(2) 

U = Uo + u(z) , 

(1) *(1) 
S = s0 + 8(1 - z), (2) *(2) 

S = s0 + s( z) , 

where functions u( x ) and s( x ) can be regarded as the "configurational internal energy and 
entropy" due to transformations. They are supposed to vanish for x = 1. It is expedient 
to assume that configurational specific free energy of martensite at the beginning of the 
forward transformation is much higher than at its end -just opposite to the parent phase. 
Therefore, the term u( z) - Ts( z) is expected to be non-negative. The simplest functions 
that satisfy the above requirement are the linear functions u(x) = u0 (1 - x )/2, s(x) = 
s0(1 - x )/2, where u0 - Ts0 2: 0. It can easily be seen that, instead of altering free 
energy functions (2.2) of individual phases, one can equivalently add to the function (2.1) 
a term containing the free energy of internal interaction 

(3.1) <Pit(T) • z • (1 - z); <Pit = 'Uo - Tso, 

which is expected to be non-negative (¢it 2: 0). This is the term similar to the one 
introduced by MOLLER and Xu [15] in their one-dimensional theory of formation of 
a hysteresis loop due to transformation. Here we use the same classical concepts and 
consider extended free energy function of two-phase system in non-equilibrium under 
3-axial state of stress: 

(3.2) 

where functions ¢ 0 are unaltered and are given by (2.2), and intrinsic stresses are defined 
by (2.5). Repeating the same procedure as that used in Sec. 2.2, it can be found that the 
equilibrium conditions (2.6)1 and (2.6)3 are valid also in this case, whereas (2.6)z must 
be replaced by 

(3.3) 

The solution of this new set of conditions under fixed Keq is again given by (2.8)t. and 
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(2.8)2 how has the form 

(3.4) 
Keq · LKeq - 24>it 

Accepting the assumption (2.10), the counterparts of Eqs. (2.13) and (2.15)t, for 
isotropic solids, become 

(3.5) 
1rtf + 77Teq - 4>it(1 - 2zeq) = 0 , 

1rl + 2p,ryf - 2(p,ry2 
- 4>it) Zeq - 4>it = 0 , 

whereas the other two equations (2.15)2, and equations (2.14) remain unchanged. 
The locus of two-phase equilibrium states can be illustrated by a segment A - A1 

(Fig. 3) of the straight line which now has the negative slope on the invariants plane 

0 

T 
eq 

e: 
n 

FIG. 3. Schematic representation of hysteresis loop and the seat of equilibrium states (AAt) in stress 
invariant-strain invariant plane at constant temperature for RL-model. 

Its equation can easily be derived by eliminating zeq between (3.5)1 and (2.14)2 

(3.6) (Jl1]
2 

- 4>it)Teq + 2Jtf¢it + Jl"l( 1rtf - 4>it) = 0 · 

The critical stress Teq(A) = Teql zeq=o and Teq(At) = Teql zeq=t at which the forward and 
reverse transformation could start are 

(3.7) Teq(A) = (¢it- 7rtf)/ry, Teq(At) = Teq(A)- 24>it/"7, 

and the dependence of zeq on f (or Teq) in the two-phase region is linear ( cf. (3.5)). 
Since the slope of the segment A - A1 is negative, all equilibrium states are unstable. 
This can also be proved analytically by repeating the procedure presented in Sec. 2.2. 
Therefore, no real process of transformation can be observed along a reversible path such 
as A - A1 shown in Fig. 3. The instability at equilibrium states is the primary source 
of the formation of hysteresis loop, such as A - J( - A 1 - J( 1, in two-phase crystals. 
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Its width Teq(A) - Teq(At) is equal to 2</Jit/TJ (MOLLER and Xu [15]). The real process 
of deformation of shape memory polycrystalline alloys, in the range of pseudoelastic 
behaviour, proceeds along paths such as A - B and At - lv/ shown by dotted lines in 
Fig. 3. The deviations from the ideal pseudoelastic flow (A- I·() and from an ideal strain 
recovery (At- KI) may be thought of to be the effect of interactions between differently 
oriented crystals. In the next section we shall develop the model that will account for the 
creation of the hysteresis loop and the observed hardening. It will be called the R L -model. 

4. RL-model 

4.1. Free energy function of constrained equilibria. Thermal equations of state 

Most of two-phase states, e.g. the state P shown in Fig. 3, which are reached during 
actual processes of deformation are not states of absolute equilibrium. This clearly follows 
from the discussion presented in Sec. 3. On the other hand, when strain (stress) corre­
sponding to the point P shown in Fig. 3, together with the temperature, is kept fixed, the 
piece of two-phase metallic solid remains at complete rest. We shall say that it is in an 
"constrained equilibrium" where a thermodynamical rate corresponding to some internal 
thermodynamic force may vanish, even though the force is non-zero. This concept has 
been developed by KESTIN and RICE [21 ], RICE [22] and has been so often used in applied 
thermomechanics (see, e.g., KLEIBER and RANIECKI [23]) that now it can be regarded as 
the classical one. To derive the free energy function of constrained equilibria we shall use 
the adopted function (3.2) (which was assumed to be valid at any non-equilibrium state) 
and follow other hypothesis (MOLLER and Xu [15]) stating that at a constrained equilib­
rium the intrinsic stresses are the same (a so-called uniform stress model) and are equal 
to the overall stress T, even though neither € a- nor z satisfy the equilibr_ium conditions 
discussed in Sec. 3; 

(4.1) 'f(l) = '1'(2) = 'T. 

Using (2.5) and (2.2), we can solve the set of equations consisting of (2.4) and (4.1)1 

with respect to €a, regarding £ as a given strain. The solution is 

(4.2) €(t) = €- Z K, €(2) = € + (1 - z )K, 

what implies 

(4.3) 'T = L[€- ZK- Cl.o(T -11>)] . 

By inserting ( 4.2) into (2.2) and (3.2) one eventually arrives at the following form of 
the free energy function of constrained equilibria 

f> c = [€- €pe(z, K)]·L[€- £pe(z, K)]/2- (T -11>)awL[€- €pe(z, K)] 

(4.4) + Cv(T -11,)- CvT ln(T /11>) + </>*(z, T), 
* .(t) .(t) f -

¢ = u0 - Ts0 - Z 7r0 (T) + <Pit(T)(1- "' )z , 

where the free energy of internal interaction <Pit is given by (3 .1 )2, €pe is the pseudoelastic 
strain defined by 

(4.5) €pe = Z K, trK = tr€pe = 0. 
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and K represents the intrinsic phase distortion due to parent-martensite transformation, 
averaged over all the colonies of the martensite present in the representative mass of the 
polycrystalline alloy element, at a generic instant of homogeneous process of transforma­
tion. The general form ( 4.4) could also be supported on the grounds of micro mechanics 
( cf. (19]). Equation ( 4.3) constitutes, of course, one of four thermal equations of state 
that could be derived from (4.4) through 'T = 8¢c/8£. 

At present very little is known about the evaluation of K under the action of variable 
stress (strain) and temperature, and still much experimental and theoretical work has to 
be done to deduce its satisfactory form. To make some progress we come back to the case 
of full isotropy and propose to keep the relation (2.10) to be valid also at any constrained 
equilibrium state. Hence ( cf. (2.15)) 

( 4.6) K = ry(£/ f), €pe = ryz(€/ f). 

The free energy ( 4.4) for isotropic solids then becomes the function of single internal 
parameter z; 

(4.7) 

where <P~ is defined by (2.19) and <P*- by (4.4)2. It employes only 5 additional parameters 

(..:1u, Lls, u0 , s0 , 17) which do not occur in the free energy function for an isotropic linear 
elastic solids. The stress-strain relations following from (4.7) are (cf. (4.3) and (4.2)); 

Tm = tr'T/3 =am/ p = l([fv- 3oo(T -1(,)], 
T = (j I p = 2Jt[€ - €pe] . 

(4.8) 

Here, I" and J( are related to the usual elasticity constant by I" = flo/ p and J( = /(0 / p, 
and (4.8)z implies relations similar to (2.14)2 and (2.15); 

(4.9) K/1} = €/f = TjT, T = 2Jt(f- fpe) = 2J-l(f- Z1J), 

where 

fpe = ( €pe ·€pe)1/ 2 = Z1], f = (£·€)1/2, T = (T·T)1/ 2 . 

We define the entropy of constrained equilibria s and the driving force of the phase 
transformation 1rf by (cf. (2.7) 1) 

. * .(t) 
(
4

.
10

) s(£, T, z) = -8</lc/oT = Cv ln(T ji(,) + 3/t Oofv- zLls + s0 + z(l- z)s0 , 

1r 1 ( £, T, z) = -o<Pc/ oz = 1rl (T) + 2JL1Jf- 2(1-"1]2 
- <Pit)z - <Pit, 

what implies 

(4.11) d</Jc = -s dT + 'T·d£ - 1rf dz. 

Both the entropy and the driving force 1rf can easily be expressed in terms of stress 'T by 
use of ( 4.8), 

(4.12) 

T * *(1) . 
s('T, T, z) = 3o0r m + J [cp(Ot)/Ot]d01 - zLls + s0 + z(1- z)so, 

Tr, 

1rf ('T, T, z) = 1rl (T) + 1JT - </Jit(l - 2z), 

where 

(4.13) 
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is the usual specific heat at constant pressure. Equations ( 4.8) and ( 4.10) or ( 4.12) consti­
tute a full set of thermal equations of state for the RL-mode1 considered. One constitutive 
equation is missing: the kinetic law for the weight fraction of the martensite. This will be 
discussed in the next subsection. 

4.2. Incremental relations of transformation kinetics 

i) Recall the first and the second laws of thermodynamics specified for an infinitesimal 
homogeneous process; 

(4.14) 
du = -dq + 'f·d€, 

ds + dq/T = dD/T ~ o, 
where 

(4.15) u = </>c +Ts 

is the specific internal energy, dq represents the heat exchange (cf. Sec. 2.3), and dD is 
the increment of the energy dissipation which cannot be negative. With the aid of (4.11) 
and (4.15), in a routine way, we eliminate ds and dq from (4.14) obtaining the eventual 
form for the incremental energy dissipation · 

(4.16) dD = 1rf dz ~ 0. 

Thus, the Clausius-Duhem inequality precludes the parent-martensite transformations at 
states where 1rf < 0, and prevents the reverse transformations when 1rf > 0. Note that 
1rf = 0 implies the equilibrium conditions (3.5) discussed in Sec. 3. 

ii) To specify the kinetic equations of phase transformations we presume that there 
exist two functions 1/Jcx ( 1r f, z) (a = 1, 2), such that an active process of parent phase 
decomposition (dz > 0- the forward transformation) can proceed only when 1jJ<1> = 
const (d'ljJ<1> = 0), and an active process of martensite decomposition (dz < 0 - the 
reverse transformation) can proceed only if ,p<2> = const (d'f/;<2> = 0), 

(4.17) ,p(l> = 1rf- k<1>(z), ,p<2> = -1rf + k<2>(z). 

The functions ,pcx are single-valued except possibly the point z = 1 for the function ,P(l) 

and the point z = 0 for the function 'f/;(2). 
Since in polycrystalline solids the complete forward and complete reverse transforma­

tions are never observed, we assume for simplicity that functions kcx(z) have the following 
mathematical properties 

(4.18) . 
k(2)(1) = 0; 

and take 

(4.19) 

lim k(I) = +oo, lim (1 - z)k<1> = 0, 
z-1 z-l 

lim k<2> = -oo lim zk<2
> = 0, 

z-o ' z-o 
dkcx / dz > 0 for 0 < z < 1 , 

k<1
> = - (A1 + B1z) ln(1 - z) + Ctz, 

k<2
> = [A2 - Bz(1- z)] In z- Cz(1 - z), 

k(l) > 0 
- ' 
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where Aa, Ba, Ca are constants (Aa > 0, Ca 2:: 0) . Although the RL-model developed 
here is expected to be valid only in the temperature range T > A~, it is expedient to 

extrapolate linearly its properties to the temperature range T < A~ for stress-free state 

('1' = 0), in order to find the relations between constants Ll~ , Llu, s0 , u0 , A a , B a , C a and 
the temperatures A~, A~ , 111~ and A!J which, in engineering, are regarded as character­
istics of shape memory alloys. At the initiation of the forward transformation (parent -+ 

martensite) at 'l' = 0 and at temperature T = 111~, the driving force rr f is supposed to 
vanish. The same should hold at the initiation of the reverse transformation (marten­
site -+ parent)at temperature T = A~, provided that the threshold values for rrf are 
negligible. Thus for 'l' = 0 

rr f = 0 for T = 111° z = 0, and for T = A 0 z = 1 . 
S' S ' 

Hence two relations for 4 constants Lls , Llu, s0 and u0 can be found 

(4.20) Llu- u0 = !11~(L1s- 80), L1u + 'Un = A~(L1s +so). 

The stipulated form (4.19) of the function k a enables us to include the classical rela­
tionships for transformation kinetics of temperature-induced martensite discussed in early 
papers of MAGEE (24) and KOISTINEN and MARBURGER (25) . Magee's development was 
based upon two postulates: 1. The number of plates of martensite formed in the specimen 
at time elapsed (t + Llt, t) divided by the updated mass of austenite is proportional to 
the increment of thermodynamic driving force rr f. 2. The volume (mass) of each plate is 
close to the average volume (mass) of all plates. When these two postulates are adopted 
and extended to the reverse transformation considered in our case, we must set 

(4.21) B a =O, C a =O (a=1,2) , 

which reduces (4.19) to the simple logarithmic relations. However, since now we take 
into account the interaction free energy </>it (that was neglected by Magee) from (4.17) 
and ( 4.19) does not follow the empirical exponential relation between z and tempera­
ture for temperature-induced martensite found by Koistinen and Marburger for ferrous 

alloys. Nevertheless, when luo/ L1ul ~ 1 and lso/ L1sl ~ 1, the alteration should not 
be significant. Moreover, we shall show that for special choice of constants A a, Ba and 
Ca the Koistinen and Marburger empirical relation is consistent with (4.19). For shape 
memory alloys, use of this relation was suggested by TANAKA et al. (11], TANAKA (12] 
and VACHER and LEXCELLENT (13]. If 

Ct = 2</>it(llf~), Cz = 2</>it(A~), 
(4.22) a1A1 = Lls- so, azAz = L1s +so , 

azBz = a1B1 = 2so , 

then the equations 'l/Ja = 0 for 'l' = 0 can be transformed into the form 

[!It/~- T + (1/ at) ln(1- z)][L1s- s0 + 2soz ] = 0, 

(A~ - T- (1/ a2) In z](L1s- so+ 2soz] = 0, 

on account of ( 4.12)2 and ( 4.20). This implies the required exponential laws 

(4.23) 
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for forward and reverse transformation, respectively, provided that 

(4.24) L\s > lsol· 
When ( 4.22) is adopted, six constants A a. Ba and C a are expressed in terms of Lls, s0 , u0 

and two constants at, a2~ The latter constants can be estimated when MJ (martensitic 
transformation stops at T = 0) and A~ (reverse transformation terminates at T = 0) 
temperatures are known. Usually one adopts certain conventional number for the residual 
z to define lvlJ and A~. Most commonly zr1 = 0.99 and zf = 0.01 for the forward and 
reverse transformations, respectively. Using ( 4.23) we can estimate a a as follows: 

(4.25) 
a 1 = [ -ln(1- zf)]j(M~- MJ), 

az = (-In zf)/(Aj- A~). 

The use of ( 4.25) should be made with caution when conventional values zr1 and zf 
are not given. It is a frequent practice that MJ and A~ are specified by the linear 

extrapolation of the data measured for some narrow range of z. Then zr and zf are 

usually not given and the quoted temperatures lvlJ and A j have no clear physical meaning. 

Under the choice ( 4.20), ( 4.22) and ( 4.25) there will be only three constants unspecified 

in the set Yc = { 1], Lls, s0 , u0 , Aa, Ba, Ca}· One possible way of their identification will 
be indicated beneath. 

iii) Consider two lines 1/Ja = 0 (a = 1, 2). Together with z = 0 and z = 1 they form 
the "bounding" loop on the plane 11! - z (Fig. 4a)) in a sense that no state for which 
1/Ja > 0 is accessible. Some other lines 'l/J 0 = const are also illustrated in the figure. 
The lines 'ljJ(t) = const and 1jJ<2l = canst are meaningful only when 11! ~ 0 and 11! ~ 0, 
respectively. Processes such that 11! < 0 and dz > 0 or 11! > 0 and dz < 0 are excluded 
by the Clausius-Duhem inequality ( 4.16). Therefore, all infinitesimal processes that start 
from the states 11 f ~ 0 can be either active processes of parent phase decomposition 
( dz > 0) or passive processes ( dz = 0). Likewise, all infinitesimal processes that begin 
from the states 11 f ~ 0 can be either active processes of martensite decomposition ( dz < 
0) or passive (dz = 0). The typical thermodynamically admissible loops on 11! - z plane 
are illustrated in Fig. 4a, e.g., A - B - C - D or A - B - C - F - G - E - 11 or 
A-B-E- H. 

The lines 1/Ja = const ~ 0, for fixed temperature T, can be mapped onto T - f 
plane, shown in Fig. 4b, with the aid of the equations ( 4.10)z, ( 4.12)z (or ( 4.9)z) and 
( 4.17), where z is regarded as a parameter. The segment A- At is the locus of unstable 
equilibrium states (11! = 0). Its equation is the same as the equation of the line A- At 
shown in Fig. 3 and discussed in Sec. 3; 

( 4.26) (ft1]2 - </>it)T + 2pf</>it + fl1J( 11l - </>it) = 0, 

and z varies along A - A 1 linearly according to ( 4.10)z or ( 4.12)z if </>it -::f 0. 
The coordinate lines z = canst (for passive processes) of Fig. 4a are mapped on the 

plane T - f into the Hooke's lines r - 2pf = const, on account of ( 4.9)2. This enables us 
to use an easy graphical method for determination of the current value of z on any flow 
curves 1/Ja = const, provided that they are known from experiments. It suffices to draw a 
line T - 2pf = const from a point of the segment A - At to a point of intersection of 
this line with any curve 1/Ja = const. 
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Since we neglect in this work the possible threshold values for the driving force 1r f, no 
isothermal passive process can be initiated from an unstable two-phase equilibrium state. 
The two-phase material element being in an unstable state, say C in Fig. 4a, b, tries to 
find the more stable equilibrium state near the Hooke's straight lines 0- A or 0 1 - A1• 

In effect, either the pseudoelastic strain recovery process C - F - D (associated with the 
negative incremental work) is initiated or pseudoelastic active process C - H 1 proceeds. 
It requires less work to be done (to reach the same strain) than the usual single-phase 
elastic solid. 

We define the isothermal energetic modulus E~!? of pseudoelastic active flow, and the 

isothermal energetic modulus Ef,;> of pseudoelastic strain recovery as follows ( cf. Fig. Sa, 
c): 

(4.27) E:e := (8r/8E)I 1/Ja =const = 2p(1- 1JZ~ ), 

where z~ (a = 1, 2) are the activity coefficients of isothermal strain-induced transforma­
tions; 

(4.28) 

The domain of determination for z~l)(E~~>) is '1j;<1> ~ 0 and 1rf ~ 0, and for z~2 > it is 
1j;<2> ~ 0 and 1rf ~ 0. For easier elaboration of experimental data it is useful to em­
ploy the isothermal moduli of pure pseudoelastic flows E~ and the activity coefficients 
of isothermal stress-induced transformations z~ defined by ( cf. Fig. 5b, d) 

E~ = E:e/(1- E:e/2tt) = H~ jr72 = 1/(7Jz.~ ), 
z~ = (8z/8r)l wa=const = 17/ 11~ = [H~ /(2p,HC: )] z~ , 

(4.29) 

where 

(4.30) JJ CX = H (X - 21L1]2 = k(X - 2,1..· 
T 1:: f" Z lf'Jt • 

The moduli E;e determine the slopes of the curves (associated with the active processes) 
on T - fpc plane. For II~ = 0 the pseudoelastic active flow, and pseucoelastic strain 
recovery are ideal in the sense that T - f (or fpc) curves are parallel to the f -axis. This 
special case has been considered by MOLLER and Xu [ 15] in their 1 - D theory. The 
available experimental data for polycrystalline alloy evidently show that 

(4.31) H~ ~ 0 , 

and we assume that this inequality is satisfied for every state within the bounding loop. 
Note the simple relations which exist between the moduli E~ , J?; representing the mech­
anical behaviour of an alloy and activity coefficients z~ and z~ that characterize the 
kinetics of phase transformations ( cf. Fig. 5). From the discussion presented here it 
becomes evident that there exist many possibilities of determination of the set of physical 
constants Yc. For example, when relations ( 4.20)-( 4.22) and ( 4.25) are used, the three 
remaining unspecified constants could be determined from the measured data concerning 

the initial modulus E~>, the slope of the line A - A1 in Fig. 4b (that represent the 
unstable equilibrium states- cf. (4.26)) and the critical stress r(A) at a certain fixed 
temperature. 
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FIG. 5. Activity coefficients of isothermal trans­
formations: a) strain-induced, b) stress-induced. 
Isothermal moduli of: c) pseudoelastic active 
flow E~l and pseudoelastic strain recovery 

E~l, d) pure pseudoelastic flows. 

FIG. 6. Activity coefficients of temperature-in­
duced transformations: a) strain-assisted, 
b) stress-assisted. Coefficients of: c) transfor­
mation-induced stressing (isometric), d) trans-

formation-induced straining (isostatic). 

Consider now the possible non-isothermal paths. To any state within the bounding 
loop shown in Fig. 4a there corresponds a straight line in E - T or T - T plane (Fig. 
4c, d). The mappings are, respectively, described by (4.10)2 and (4.12)2 with fixed values 
of 1rf and z. With the two main points A (1rf = 0, z = 0) and A1 (1rf = 0, z = 1), 
representing unstable equilibrium states of the bounding loops, are now associated two 
straight lines that intersect the temperature axis at A1~ and A~, respectively. Those 
two straight lines constitute the graphical illustration of the effect of stress (strain) upon 
martensite-start temperature during forward transformation, and austenite (parent phase)­
start temperature during reverse transformation. When configurational entropy vanishes 
(80 = 0), the lines are parallel. The positive 80 , however, increases the tendency for the 
intersection of the two lines on T - T plane at higher temperature. The straight lines 
corresponding to the points B and M of Fig. 4a are also shown in the Fig. 4c, d. We 
define the activity coefficients of strain-assisted ( e: = const) thermally-induced martensite 

z~!, and strain assisted thermally-induced austenite z~~> by ( cf. Fig. 6a) 

(4.32) zfTe = -(8zjoT)I ~:=const = [Lls- (1- 2z)so]/ If~, a = 1, 2. 
1/101 =const 

Likewise, the rate of transformations under f1.xed stress ('T = const) can be characterized 
by activity coefficients zffr of stress-assisted ( 'T = const) therhlally induced forward (a = 
1) and reverse (a = 2) transformations ( cf. Fig. 6b) 

(4.33) zfTr = -(8z/ 8T)I r=const = [Lls- (1- 2z)so]/ H~ = (H~ / H~)zfTe. 
1/101 =const 
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In terms of zf}7 and zf}E one can express the isostatic (T = const) coefficients Er (Fig. 6d) 
of transformation-induced straining, and isometric (f. = const) coefficients rfj (Fig. 6c) of 
transformation-induced stressing, respectively, 

f.y = - ( {)f.j oT)! r =const = TJZr 7 , 

'l/1° =const 

r!} = ( OT I 8T)! E=const = 2tlTJZTE = E~f.T . 
'l/1° =const 

(4.34) 

According to experimental evidence zf}7 is not negative, and this condition will be satisfied 
provided that ( 4.24) and ( 4.30) hold. Note the following identity 

(4.35) 

that enables to determine one of the activity coefficients when the three others are known. 
It has been used to derive the last equality occurring in ( 4.34 )2. The relations ( 4.34) show 
the interrelations that exists between thermal properties of an alloy and the quantities 
that characterize the kinetics of thermally-induced transformations. We emphasise again 
that the domain of determination of the quantities with superscript a = 1 (forward 
transformation) is 'lj; (l) ~ 0, rrf ~ 0, 0 ~ z ~ 1, whereas that with superscript a = 2 
(reverse transformation) it is 'lj;(2) ~ 0, rr f ~ 0, 0 ~ z ~ 1. 

We shall now consider arbitrary thermo-mechanical process. In the case of non­
isothermal infinitesimal processes it is possible to adjust non-zero df. and dT which will 
produce no progress of transformation (d z = 0). Such infinitesimal passive processes will 
oe termed ,neutral processes". We shall now derive the analytical criteria for infinitesimal 
neutral, passive and active processes. 

Consider a fixed state (f., T, z) corresponding to a point within the bounding loop of 
Fig. 4a. For prescribed infinitesimal changes in the strain and the temperature (dE, dT), 
the quantity 

(4.36) 

is proportional to the cosine of the angle between the infinitesimal vector (dE, dT) and 
the vector normal to the straight line that passes through a point representing the current 
state in the plane f. - T. When dErrf = 0, the vector (dE, dT) is parallel to the straight 
line. We note that, on account of (4.10)2 and (4.17), d'lj;a = 0 implies dErrf = H~ dz, 
and since H~ is positive (cf. (4.31)), dErrf = 0 precludes the progress of active phase 
transformations. Therefore, the appropriate condition for instantaneous neutral process 
reads 

(4.37) dz = 0 if dE rr f = 0 

(neutral process of phase transformation). 
The response of the proposed RL-model for dErrf ::f 0 depends on the state. For 

example, when z = 0 and rrf < 0 we have dz = 0 independently of the sign of dErrf. Such 
processes, however, concern the single-phase solid and, therefore, will not be qualified as 
"passive". Four different regions of states can be distinguished (cf. Fig. 4a): 

region 1 where z = 0 and rrf = 0 (unstable equilibria, point A- Fig. 4a), 
region 2 where z > 0 and 7r f > 0, 
region 3 where z > 0 and rr f = 0 (locus of other unstable equilibrium states), 
region 4 where z > 0 and 1r f < 0. 
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Due to our assumption that passive processes can not be initiated from a two-phase 
state of unstable equilibrium, the condition for a passive process is 

(4.38) dz = 0 if (d f. 1rf < 0 in regions 1 and 2) or (df.1rf > 0 in region 4). 

In all other situations the active processes are commenced. The condition for the progress 
of active austenite (parent phase) decomposition can be written as follows: 

(4.39) dz > 0 if df. 1rf > 0 in regions 1, 2 and 3, 

whereas, that for an active decomposition of the martensite reads 

(4.40) dz < 0 if dE1rf < 0 in regions 3 and 4. 

The possible orientations of the infinitesimal yector (de , dT) for neutral, passive and 
active processes are shown in Fig. 4b. 

To satisfy ( 4.37) we take linear relationship between dz and dE 1r f 

(4.41) 

In the course of an active process, this relation must comply with the assumed form 
of the functions 'lj;o:. Hence the proportionality factors A o: can be evaluated from the 
"consistency" relations d'lj;o: = 0. This gives Ao: = 11 HC: (cf. (4.28)). By combining 
(4.37) and (4.41) one eventually arrives at the following final form .of the incremental 
relations of transformation kinetics: 

df. 1rf I H!1
) if df.1rf ~ 0 and 

[(z > 0 and 7rf ~ 0) or (z = 0 and 7rf = 0)], 

df. 1rf I H!2
) if df.1rf ::; 0 and [(z > 0 and 7rf ::; 0)], 

(4.42) dz = 0 if { df. 1rf ::; 0 and 
[(z > 0 and 7rf > 0) or (z = 0 and 1rf = 0)]} 
or{df.1rf~O and(z>O and1rf<O)} 
or { z = 0 and 1r f < 0}. 

where dE1rf is defined by (4.36). Whenever II~ > 0, the kinetics relations can also be 
expressed in terms of d-r and dT. It can be shown that introducing the infinitesimal 

quantity dT1rf = 1JdT- [Lls + (2z- 1)80] dT, it is sufficient for this purpose to replace 
df.1rf and H~ occurring in (4.42) by dT1rf and H~, respectively. 

The other proposal for analytical description of internal hysteresis loops may be found 
in [26] and [27]. 

4.3. Incremental Corm or basic equations Cor R L ·model 

The full set of coupled incremental equations for RL-model consist of: 
a. The incremental equations of transformation kinetics ( 4.42). 
b. The relation between increments of mean stress, mean strain and temperature -

it has the same form as the corresponding relation for R-model, cf. (2.22). 
c. The relations between deviators of strain and stress that can be obtained from ( 4.8)2 

and (4.9): 

( 4.43) 
da = 2~-to(d€- d~), 
d~ = (1Jic)[£dz + zP(€)d€], 

where P is defined by (2.17). 
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d. The relation for the temperature change which can be derived by eliminating ds 
between (4.12)1 and (4.13) (cf. also (4.16)); 

(4.44) cp dT = -dq + 1rf dz- 3a.oTdaml p + T(Lls- s 0 + 2zs0 ) dz. 

The second, third and the fourth terms occurring on the right-hand side of ( 4.44) rep­
resent: heat due to the energy dissipation, reversible heat of usually small piezocaloric 
effect and reversible heat due to the phase transformations, respectively. The latter heat, 
however, is exactly balanced by the part of the heat due to the energy dissipation, what 
can easily be noted by substituting ( 4.12)2 into ( 4.44 ). The equivalent form of ( 4.44) is 

(4.45) Cp dT = -dq + a·d~ I p + l(z) dz- 3cxoTdaml p' 

where 

(4.46) l(z) = ~ ·u- uo(l- 2z ) 

can be referred to as the ,latent heat of phase transformation" at stress-free state. When 
infinitesimal mass of the parent phase d.A1 is totally transformed into martensite at a = 0 
then l ( z) dlvf = M ( cP dT + dq) is an extra heat transferred to the surroundings. The 
second term on the right-hand side of ( 4.45), a·d~ I p = 1JT dz, may be interpreted as 
the heat due to dissipation of the mechanical work. 

Using (4.13), equation (4.45) can be equivalently expressed in terms of Cv and fv, vis., 

(4.47) Cv dT = -dq + (j • d~ I p + l(z) dz- 3aoT f{odfvl p. 

Note that neither Lls nor s0 occur in the equation for the temperature. Therefore, 
these quantities can not be detected by direct calorimetric measurements, such as dis­
cussed e.g. by ORTIN and PLANES [9-10]. The most significant influence on temperature 
changes in the course of homogeneous adiabatic processes ( dq = 0) have second and 
third terms occurring on the right-hand sides of (4.45) and (4.47). Both terms oscillate 
during proportional loading-unloading processes associated with the forward and reverse 
transformations. While the third term produce zero net change in the temperature after 
each consecutive cycle, the second term causes its slight gradual increase. 

For both models (R-model and RL-model) the constitutive equations for the pseu­
doelastic strain €pe are singular at € = 0 (cf. (4.43)). This should not entail, however, any 
particular trouble when solving the specific engineering problems. At the temperature 
range T > A~, € = 0 implies z = 0, so that no two-phase state occurs when € = 0, and 
at the singular point the incremental relations become the same as that of usual linear 
thermoelasticity. When applying the numerical methods it is advised to set z = 0 and 

z = 1, whenever z ~ z{ and z ~ z~ (cf. (4.25)), respectively. 

5. Concluding remarks 
In this paper two workable models of pseudoelastic behaviour of shape memory alloys 

have been developed. They account for the most significant features of the behaviour of 
alloys at the temperature range T > A~, such as pseudoelastic flow and the formation 
of the characteristic hysteresis loop (RL-model) associated with the forward and reverse 
austenitic-martensitic transformations. They employ the possible least number of physical 
constants. In fact, in addition to the conventional data normally supplied by the pro­
ducer, the knowledge of a typical single hysteresis loop at simple tension is sufficient for 
the specification of all constants. The observed behaviour under uniaxial stress state is 
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interpreted in terms of relations between second invariants of stress and strain deviators. 
This hypothesis enables us to derive the incremental constitutive equations for general 
three-dimensional stress state. 

As pseudoelastic flow and pseudoelastic strain recovery are inherently associated with 
the phase transformations ongoing under applied stress and/or varying temperature, the 
use of the methods of the thermodynamics seems to be most appropriate. We applied 
those classical concepts (concerning two-phase systems) that have been advanced and 
developed for two-phase shape memory alloys by MOLLER and Xu [15], and we com­
bined them with the concepts of thermodynamics of constrained equilibrium developed 
by KESTIN and RICE [21-22] at the end of sixties and in the seventies. The knowledge 
of the type of stability and the positions of states of absolute equilibrium in the set of all 
states accessible during actual thermomechanical processes gave possibility for physically 
plausible explanation of the abnormal "pseudoelastic" behaviour of shape memory alloys 
at T > J-1~. It is also instrumental in finding the character of the formation of internal 
loops which, so far, are not well investigated on experimental ground. Although, the 
basic equations of the ideal R-model presented here describe only reversible processes, 
we believe that the model can find some engineering applications, e.g., it may be used 
for rough estimation of transient stresses that occur in structural elements made of shape 
memory alloys. The coupled incremental constitutive equations are also derived for more 
realistic RL-model. The most important equation of kinetics of phase transformation 
accomplished formation of bounding and internal loops was deduced here from Clausius­
Duhem inequality. The experimental verification of the predictions of RL-model should 
not involve special problems. Likewise, both models can easily be implemented into 
existing numerical codes. 

When developing both models we found it extremely difficult to formulate the evolu­
tion equation for the parameter K. We believe that its magnitude undergoes rapid changes 
at the beginning of the formation of the first martensite plates, and that it remains almost 
constant at the advanced stage of transformations. The orientation of the principal direc­
tions of K, however, may be much influenced by the changes in the principal directions 
of the applied stress. What we proposed here is a "proviso" that will be modified in the 
further studies. At present it makes the generalization of the theory to account for tem­
perature range T < A~ very difficult. In view of the lack of appropriate experiments con­
cerning the complex pathes, we could not find anything better. The RL-model, therefore, 
can be regarded as a reference one that may help to systematize the research in this field. 
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