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In recent years, the assessment of the seismic reliability of monumental buildings
has been the object of several studies: in order to take into account the large
uncertainties in the loads and in the material and structural properties, in most
studies the seismic action has been mimicked by quasi-static horizontal forces of
magnitude depending on the intensity of the considered earthquake. In particular,
it has been shown that the probabilities of damage and collapse and their distri-
butions can be obtained by looking at a monumental building as an assemblage
of macroelements of known static and collapse behaviour, and considering the
relevant mechanisms: in this way, the so called kinematic approach to limit anal-
ysis is followed, and rigourously only lower bounds to the probability of collapse
are obtained. In order to obtain also upper (i.e. “safe”) bounds to the probability
of collapse under a given load, the static theorem of probabilistic limit analysis
must be used. In this lecture, the two theorems are presented, and the procedure
of seismic reliability assessment exemplified on two churches damaged in the 1976
earthquake of Friuli (North-East Italy): upper and lower bounds to the probabil-
ity of collapse of each macroelement and of the whole church are obtained as a
function of the applied horizontal load, i.e. of the earthquake intensity.

1. Introduction: the “macroelement” approach

The static and kinematic theorems of “probabilistic limit analysis”, first
formulated in 1972 by Augusti and Baratta, yield bounds to the probabil-
ity of plastic collapse under given loads of structures with random strength
properties.

The static theorem states that the probability of not finding an admissible
stress field in equilibrium with given loads is not smaller than the actual
probability of collapse, provided the usual assumptions of rigid-plastic limit
analysis hold.
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Conversely, the kinematic theorem states that the actual probability of
collapse is not smaller than the probability that the work done by given
applied loads for an arbitrary collapse mechanism exceeds the corresponding
dissipated internal power.

Thus, for a given structure, whose mechanical and geometrical proper-
ties have known probabilistic characteristics, subject to a set of static loads
defined to within a factor « (i.e. in the form Wy + aW), the cumulative
probability distribution curve of the actual collapse load factor a = ac is
bounded between the analogous curves for the static and kinematic collapse
load factors.

In the present lecture the static and kinematic approaches are applied,
to assess and bound on both sides the probability of collapse of monumental
buildings, and specifically of historic masonry churches, under static hori-
zontal loads of arbitrary direction, and proportional to the structural masses
(thus mimicking seismic loads).

The relevant uncertain quantities (including the direction of the horizon-
tal load) are assumed to satisfy discrete probability distributions.

For the structural analysis and assessment of the considered buildings, we
shall follow the “macroelement” approach, first formulated in 1994 [Doglioni
et al, 1994]. A “macroelement” is defined as “a recognisable and complete
part of the building, with a clear and unitary behaviour from the viewpoint
of seismic response”; then, each building under examination is considered as
the assemblage of macroelements (e.g. facade; nave walls; arches; chapels).
Several examples of each macroelement can be found among buildings of
the same geographical area. In this way, not only the ultimate behaviour of
the buildings is well schematised, but the contradiction between the need of
probabilistic assessment of vulnerability and reliability and the uniqueness of
each monumental building can be overcome: probabilistic predictions of the
response become possible, even for “unique” structures like historic churches.

The resistance and collapse conditions of each macroelement are obtained
from the study of its seismic response; the assumption of an appropriate
“logical diagram” allows to derive the collapse condition of the whole church.

2. Formulation of the limit analysis problem

2.1. Assessment of seismic strength in limit analysis

In “classical” limit analysis it is usually assumed that the structure under
examination is subject to a set of static loads defined to within a factor a,
i.e. in the form

Wo + aW, (2.1)
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where W, is a fixed vector (permanent loads) and W a reference vector. The
value of a that corresponds to the collapse of the structure (or a part of it)
is defined collapse load factor, and indicated in the following by ac.

We shall also indicate by oy a “statically admissible” load factor, i.e. a
coefficient such that the loads Wo+a,, W can be equilibrated by a stress field
that does not violate the strength condition in any point of the structure, and
by oy a “kinematically sufficient” load factor, i.e. a coefficient such that there
exists at least one kinematically sufficient mechanism, in turn defined as a
mechanism for which the power of the work done by the loads Wo + a, W
is not smaller than the dissipated internal power.

Well known theorems (valid, in full rigour, only for elastic-plastic struc-
tural behaviour) prove that, for any given structure of known geometry and
material properties,

ay < ac € a,. (2.2)

Thus, the determination of statically admissible and kinematically suffi-
cient load factors allows to bound the true value of the collapse load factor.

Much research effort has been spent over the last few decades on method-
ologies to find close bounds, or alternatively to minimize the kinematically
sufficient load factor: in fact, the kinematic approach has been generally pre-
ferred to the static approach because simpler to use and usually leading to
better approximations for comparable amounts of computing effort. This has
however often lead to forgetting that in this way results on the “unsafe” side
are obtained if not all possible collapse mechanisms are taken into consider-
ation: therefore, the validity of the static approach should be reconsidered,
now that much more powerful computing hard- and software are available
than even a few years ago.

In most cases, the seismic strength of a masonry structure under an earth-
quake of any given intensity can be studied with reference to quasi-static
loads defined in accordance with Eq.(2.1). Wy are vertical loads, usually
identified with the weights of the building masses (and possibly other quasi-
permanent imposed loads), while the seismic loads aW are considered as
static horizontal loads: the horizontal load vector W is assumed equal to Wy
(or part of it), and the proportionality coefficient « is taken equal to the ratio
a = ag/g between a representative value (typically, the peak) of the (hori-
zontal) ground acceleration ag and the acceleration of gravity g; a is thus a
measure of the intensity of the earthquake.

In the following, the collapse factor ac of the seismic load will be called
also seismic strength coefficient (or more simply seismic coefficient) of the
structure; it can be assumed as a measure of its seismic resistance. Note that
in Sec. 3.1.1, a “mechanism seismic coefficient” is defined.
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For the seismic strength assessment the structures considered in this pa-
per, it is convenient to decompose first the building into macroelements,
that is large elements (facade, lateral walls, arches, bell tower, etc.), which
- according to the experience of past earthquakes — respond as single units
to seismic action, and for which the main features of the seismic response
are at least approximately known. It is then possible to carry out the limit
analysis for each macroelement, i.e. to investigate collapse mechanisms and
equilibrated stress fields.

Moreover, in application to seismic problems, it is important to keep in
mind (although often neglected in the formulation of the limit analysis prob-
lems in seismic engineering) that the direction (and sign) of the horizontal
loads oW is not predetermined, but random: however, inequalities (2.2) hold
for any given direction 6, namely

ay(6) < ac(6) < ay(8). (2.3)

In principle, statically admissible stress fields and kinematically sufficient
mechanisms should be investigated over the whole range of #. However, in
order to find bounds on a¢(f) it is necessary to determine only the values
of ay(f) and ay(@) in two orthogonal directions (for example, z and y in
Fig.1) and remember that, as well known from the general theory of plas-
ticity, the limit condition ac(f) is a closed convex curve in the z — y plane:
thence, it will be bounded between the rhomb defined by ay(xz), ay(xy)
and the rectangle defined by a,(+z), a,(£y), i.e. included in the shaded

oy (y)

Oy (-X) Oy (x)

oy (-x) oy (x) X

oy (-y)

FIGURE 1. Bounds to the limit domain ac(8) as a function of the force direction.
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area in Fig. 1. Thus, in the quadrant = > 0; y > 0, values of the statically
admissible and kinematically sufficient load factors are respectively given by

_ ay (z) - ay (y)
oy (0) = ay (z) - cosb + ay (y) sind’ (24)
oy (2) oy (y)
ay (6) = min [m, sﬂi/nz ] . (2.5)

Analogous formulas hold in the other quadrants.

In practice, such bounds are usually sufficient. Note that in Fig.1 and
in Egs.(2.4) and (2.5), symmetric strength properties have been assumed,
that is:

ay(z) = ay(—z), ayy) = ay(-y),
(2.6)
ay(z) = ay(—z), oy(y) = ay(-y).
However, Fig.1 and Eqs. (2.4) and (2.5) can be easily generalized if equali-
ties (2.6) do not hold. In applications, the same directions z and y can be
taken for all macroelements, or different appropriate directions can be cho-
sen for each macroelement (e.g., for a wall element, the in-plane and the
out-of-plane directions).

2.2. Static and kinematic theorems of probabilistic limit analysis
and their application to the assessment of seismic strength

Probabilistic limit analysis can be defined as the limit analysis of struc-
tures with random strength properties, while usually possible uncertainties
in the loads are treated separately. It is based on the following generalization
of inequalities (2.2).

A number of possible equilibrated stress fields and collapse mechanisms
are first individuated and chosen. Then, for any value of «, three events can
be defined, namely:

e collapse of the structure (or part of it);

o Fg.t: among the investigated stress fields, none is statically admissible
(i.e. is in equilibrium with the loads Wy + oW and does not violate
the strength condition in any point of the structure);

e E,: among the investigated mechanisms, at least one is kinematically
sufficient.

Since E., implies structural collapse, which in turn implies Egat, it is
immediate that the probabilities of the three events are related by

P[Egtat]) 2 P|collapse] = P; 2 P|Ecp). (2.7)
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Hence, the cumulative probability distribution curve P(ac) of the actual
collapse load factor a¢ is bounded between the analogous curves of the static
and kinematic collapse load factors:

P(ay) > Plac) > Play). (2.8)

Values of a,, and a., can thus be calculated from the chosen equilibrated
stress fields and collapse mechanisms.

As in “classical” limit analysis, the kinematic approach, although yielding
a result on the “unsafe” side (a collapse probability smaller than actual is
obtained if not all possible collapse mechanisms are taken into consideration),
has been more widely used also in probabilistic limit analysis, because of its
comparably greater simplicity and better approximation is usually achieved
for comparable amount of computing effort. Recently however, the static
theorem is being paid again an increasing attention.

If the structure under consideration is decomposed into macroelements,
it is possible to carry out the probabilistic limit analysis for each macroele-
ment, i.e. to investigate static collapse mechanisms and equilibrated stress
fields: once the probability of collapse of each macroelement is obtained (or
bounded), it is simple to derive the (bounds to the) probability of collapse
of the whole church if the macroelements are related by a logical diagram.

An approach to this problem (that will be illustrated in Sec.3 and 4) is
to take into consideration several (the most likely) collapse mechanisms of
each macroelement and to evaluate the values and probability distributions
of the corresponding collapse factors (specifically, in the example presented,
the collapse factors were assumed to be normally distributed around the
nominal value); then to calculate the probabilities of activation of the con-
sidered mechanisms under a given intensity of the horizontal load and, by
combining appropriately the probabilities of activation of each mechanism,
the probability of collapse of each macroelement.

In this approach, the direction of the horizontal action is taken into ac-
count by investigating two sets of kinematically sufficient mechanisms, cor-
responding to collapse in two orthogonal planes (in most cases, in-plane and
out-of-plane for the relevant macroelement).

Rigourously, according to the kinematic theorem of probabilistic limit
analysis, notwithstanding the high number of mechanisms investigated, only
lower (although possibly very close) bounds to the probabilities of collapse
are thus obtained. As it will be seen, this approach allows to investigate also
the probabilities of damage, although defined in a rather conventional way.
Alternatively, the “kinematic theorem” and the “static theorem” can be used
together to derive probability bounds, as in the example presented in Sec. 5.
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In the development of this example, instead of attributing a continuos prob-
ability distribution to the evaluated collapse load factors, the probabilistic
properties of the relevant parent quantities (material and geometrical proper-
ties, vertical loads and direction of horizontal action) are taken directly into
consideration, assuming for all these quantities discrete probability distri-
butions (i.e. probability mass functions [pmf] instead of probability density
functions [pdf]); thus, the number of possible combinations of values of the
random variables is finite.

In order to obtain lower bounds P(a.) to the actual probability of collapse
P(ac), the values of a obtained for each combination of the relevant ran-
dom variables are convoluted with their assumed probability distributions;
the dependence of a, on the direction of the horizontal action is given by
Eq. (2.5). To obtain also upper bounds P(ay,) to P(ac), equilibrated stress
fields must be investigated to find which ones are statically admissible for
each combination of random variables: the corresponding load factors are
then convoluted with the probabilities of each combination.

The randomness of the direction @ of the horizontal action is taken into
account by evaluating the bounds to the conditional probability of collapse
on an assumed 6, and combining them according to the assumed probability
distribution of 6.

The two just summarized procedures will be illustrated with reference
to two specific example of 18" century churches, heavily damaged (but not
destroyed) by the 1976 Friuli earthquake: Santa Maria del Fossale in the town
of Gemona (Fig.2) and Santa Maria Maddalena in the village of Flagogna
(Fig.9). The main data on both churches have been taken from [Doglioni et
al., 1994].

3. Estimating the vulnerability and damages of churches by
the kinematic approach

As already stated, the structure is assumed to be loaded by given ver-
tical loads W and quasi-static horizontal loads W. The proportionality
coefficient a a (ratio between horizontal and vertical loads) is conventionally
taken equal to the ratio ag/g between a significant (peak or effective) ground
acceleration and the acceleration of gravity; the value of az is considered a
first-approximation measure of the intensity of the earthquake to which the
structure is assumed to be subjected.

To evaluate the probability of collapse, first the macroelements that de-
fine the structural organism of the building (in the example case, a church)
and characterize its seismic response must be individuated. Typical macroele-
ments of a masonry church are: facade; nave walls; “triumphal” arches be-
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tween nave and presbytery and between presbytery and apse; presbytery
walls; lateral chapels; apse (cf. Fig. 2).
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FIGURE 2. Church of Santa Maria del Fossale in the town of Gemona: plan and
considered macroelements (all measures in meters).
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With respect to response to seismic action, the macroelements can be
classified into four main typologies, namely:

(a) wall, with or without openings in any possible arrangement, and with
or without restraints along the length or at the border (e.g. facade or
lateral walls of the nave or of the presbytery),

(b) arch (e.g. the element between the nave and the presbytery or between
the presbytery and the apse),

(c) tower, an element that behaves as a cantilever with box cross section,
with or without openings, in any possible arrangement (e.g. the bell
tower),

(d) apse or lateral chapel, with curvilinear plan.

3.1. Evaluation of the vulnerability

3.1.1. For each macroelement: Once the structure has been subdivided
into appropriate macroelements:

(a) the most significant collapse mechanisms (z) for each macroelement (j)
are recognized,

(b) by means of the kinematic approach of limit analysis, the nominal val-
ues of the mechanism seismic coefficient C;; (defined as the value of
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the coefficient a that corresponds to the activation of the mechanism ¢
in macroelement j), are obtained for each i and j,

the probability density functions (pdf) fc,; of the mechanism seismic
coefficients Cj; are defined: in the presented example, each C;; has been
assumed to be normally distributed, with mean value E[Cyj] equal to
the value calculated in step (b), and coefficient of variation (c.0.v.)
estimated on the basis of the number, the significance and the uncer-
tainties of the parameters considered in step (b) (appropriate research
might allow a better identification of shape and parameters of these
distributions),

for each given value of ag, the probability P;; of activation of the i-th
mechanism for the j-th macroelement is calculated as follows:

ag/g
a a
P;; = Prob|Cy; < ;g] =Fc,»,-(?g) = j fe,(Ciy)dCy;,  (3.0)
0

where fc,; is the pdf defined under (c) above and Fg,; denotes the
corresponding cumulative distribution function (CDF);

for each value of a4, the collapse probability P; of the j-th macroele-
ment (defined as the activation of any mechanism) is calculated. To
this end, it is assumed that the collapse mechanisms of a macroele-
ment can be either independent [ind] or mutually exclusive [me| (the
latter condition represents, for example, most relations between in-
plane and out-of-plane mechanisms). The probability of combination
of “ind” and “me” mechanisms among themselves is given by either of
the well-known formulae respectively valid for independent and mutu-
ally exclusive events; hence, the corresponding probabilities of collapse
Pj,ind and Pj,me are:

Piia=Y Pj— ) PyiPoj+ >, PyjPyiPsj—..., (3.2)
i i1 11 #1213
Pj,me = Z w,-jPij, (33)
1

where w;; is a weighting factor, whose value is related to the probabil-
ity of activation of the i-th collapse mechanism in the j-th macroele-
ment. Again, the present stage of research allows only rough, rule-of-
the-thumb evaluations of the w;; coefficients: an example is reported
in Sec. 4 below (Table 4).



18

G. AugusTi and M. CIAMPOLI

TaBLE 1. Considered macroelement types and collapse mechanisms.

Macroelement

Collapse Mechanism

Facade

la. OQut-of-plane rotation due to the development of a horizon-
tal cylindrical hinge at the basis of the facade, and to the
detachment from orthogonal walls,

1b. OQut-of-plane rotation due to the development of a horizontal
cylindrical hinge corresponding to the top of the openings (en-
try, windows), and to the detachment from orthogonal walls,

2a. Qut-of-plane rotation of the top of the facade,

2b. OQOut-of-plane rotation due to the development of oblique cylin-
drical hinges,

3a. In-plane failure due to cracks with z trend,

3b. Detachment corresponding to the middle of the facade, and
translation in the plane of the facade.

Nave
lateral walls

4a. OQOut-of-plane rotation of a wall restrained on three sides but
free on the top side,

4b. Out-of-plane rotation of a wall restrained on four sides,

4c. Out-of-plane rotation of a wall restrained on the bottom side
and free on the other three (4cl: cylindrical hinge at the base
of the wall; 4c2: cylindrical hinge corresponding to openings,
such as windows).
5. Collapse due to localized thrusts from the roof,

6. Planar sliding due to oblique (X-shaped) cracks,

Nave as
a whole

7. Collapse due to transversal seismic action: cracks in the
transversal arches; crushing or cracking at the base of the
nave pillars,

8. Collapse due to longitudinal seismic action: cracks in the lon-
gitudinal arches; crushing or cracking at the base of the nave
pillars,

9. Cracks and/or disconnection of the vault ribs,

Triumphal arch

10. Shear failure of haunches,
1la. Rotation of one haunch,
11b. Rotation of both haunches,

Apse

12a. Rotation and translation of the top with detachment along
an inclined plane (often in circular and polygonal apses),

12b. Out-of-plane rotation due to the development of a horizontal
cylindrical hinge at the basis of the apse end wall (usually in
rectangular apses),

13a. Out-of-plane rotation due to the development of hinges cor-
responding to the edges,

13b. Out-of-plane rotation of vertical bends,
14. Planar sliding due to cracks with z trend,

Presbytery

4a, 4b, 4c, 5, 6, 7, 8, 9,

Transept — facade
Transept — nave

la, 1b, 2a, 2b, 3a, 3b,
4a, 4b, 4c, 5, 6, 7, 8, 9

Lateral chapels

12a, 12b, 13, 14.
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(f) the probability of combination of a set of “me” mechanisms with a set
of “ind” ones is given, after Eq. (3.2), by:

Ff’j = Rj,me + Pj,ind - P',me P',ind- (34)

Repeated application of Egs. (3.2), (3.3) and (3.4) makes it possible to
obtain the probability of activation P; of any one of the mechanisms
considered for the macroelement j, i.e. the probability of collapse of
the macroelement. Note that the direction of the applied load is not
explicitly taken into account when calculating the collapse probabili-
ties.

Table 1 shows the types of macroelements and the relevant collapse mech-
anisms that have been considered in the presented application; typical exam-

ples of in-plane and out-of-plane collapse mechanisms are shown in Figs. 3, 4
and 5.
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G,: compressive strength of masonry

b:  width of fagade

Meb: effective length of cylindrical hinge

h:  height of the rectangular part of the fagade

h: height of the triangle at the top of the fagade

hg:  height of the centroid above the basis of the fagade
si  thickness of the fagade

FIGURE 3. Facade: collapse mechanism la (see Table 1); detachment from or-
thogonal walls and out-of-plane rotation due to the development of a horizontal
cylindrical hinge at the basis of the facade.



20 G. AucusT! and M. CIAMPOLI
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Wi weight of body |
W, = W3 weight of bodies 2 and 3
P: weight of the roof

Oyg1+ Oyt horizontal and vertical displacement of body 1
8yg2. B2t horizontal and vertical displacement of bodies 2 and 3
Syp, Oyp:  horizontal and vertical displacement of the roof

FIGURE 4. Facade: collapse mechanism 3a (see Table 1); in-plane failure due to
cracks with x trend.
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Oi: compressive strength of masonry
h: height of the lateral wall
qp: height of the openings above the basis of the wall
s thickness of the lateral wall

W, weight of body |

W, weight of body 2

P: weight of the roof

815, 81y: horizontal and vertical displacement of body |
82, B2yt horizontal und vertical displacement of body 2
8 8;.,: horizontal and vertical displacement of the roof

X: distance between the openings and the cylindrical hinge
\"H rotation angle of the bottom part of the wall
¢: rotation angle of the top of the wall

FiGURE 5. Nave lateral wall: collapse mechanism 4b (see Table 1); out-of-plane
rotation of a wall restrained on the four sides.
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Table 2 shows examples of logical combinations of mechanisms leading to
the evaluation of the collapse probability P; of each considered macroelement.

TABLE 2. Logical diagrams for evaluating the collapse probability P; of the j-th
macroelement (me stands for mutually exclusive, ind for independent mecha-

nisms).
Macroelement Collapse Probability
P1a—] ME
}‘ P,
Pin ME
Facade P — me I
(transept facade) P, :'_ Pa IND
2b P]
P37 inD
P
P;
P4z
ME
. Pyy P,
Nave 4c ME
(transept nave) Ps qj_ Py
ICm . d
(presbytery) P in P
P
Triumphal arch P me i
Py ’
Piay
P
Piax . i
o Piogi3
(lateral chapels and Pizi— ue
annexes) :I— Pi3 IND
Pian P;
Plﬂ

3.1.2. For the whole church: In most cases, the collapse of a building
construction as a whole can be defined only conventionally. In fact collapse
cannot be identified with the collapse of a single element, because each ele-
ment may have a different role in the resistance of the whole.

Thus, the probability of collapse of the church would be underestimated
if it were measured by the probability of collapse of just one macroelement;
it is rather a function of the probabilities of collapse of the macroelements
according to the functional logic of the whole system. Therefore, in order
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to assess the seismic vulnerability of the church, it is essential to consider
both the different relevance of macroelements and the contribution of the
vulnerability of each macroelement to the vulnerability of the whole.

The collapse condition of the whole must be defined according to the in-
teraction between macroelements towards structural integrity, that is defined
by a logical diagram.

Specifically:

(g) Macroelements are divided into critical macroelements, whose collapse
involves destruction of the whole building, and non critical macroele-
ments whose collapse does not necessarily imply complete destruction
of the building. The whole church can thus be seen as a series system,
composed of critical macroelements and subsystems, in turn made of
non critical macroelements working in parallel.

(h) For each value of ag, the collapse probability of each subsystem com-
posed of macroelements working in parallel is evaluated by:

Prpar =[], Pes (3.5)

where P is the collapse probability of each branch k of the parallel
subsystem.

(i) The collapse probability of the whole church is evaluated using the
usual relation valid for series systems:

Pr= 1—Hm(1—Pm), (3.6)

where Pp, includes the collapse probability P; (3.4) of each critical
macroelement and the collapse probability Pjpar (3.5) of each parallel
subsystem.

3.2. Evaluation of the probability distribution of damage

The procedure illustrated in Sec. 3.1 can also be used to evaluate the prob-
ability distribution of damages (expressed in an appropriate damage scale),
on the basis of the calculated probabilities of collapse for each macroelement
and for the whole building.

This evaluation may support a statistical assessment of the distribution
of damages to buildings formed by an arrangement of similar macroelements
in a whole region hit by the earthquake.

3.2.1. For each macroelement: First, an appropriate scale of damage
must be defined, enabling to describe different states of each macroelement,
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from no damage condition up to complete collapse. In the described applica-

tion of the present procedure, a seven-level (k = 0 to 6) scale has been used,;

the seven damage levels k have been defined to correspond respectively to:

k=0: no evidence of damage;

k=1: first damages due to the inception of a mechanism, that can be detected
only by an accurate examination;

k=2: significant damages and “readability” of the mechanism, activated but
still at the initial stage of development,;

k=3: clear and evident damages and “readability” of the mechanism, fully
activated and at an intermediate stage of development;

k=4: macroscopically evident damages and full development of the mecha-
nism, with some minor part of the macroelement at the limit of collapse
because of significant overall movements;

k=5: as for k=4, but with significant parts of the macroelement at the limit
of collapse and/or destruction and/or failures of other parts;

k=6: complete collapse.

As for the probability mass distribution of the damage to the macroele-
ment, after relevant literature, it has been assumed that for any given value
of ag the binomial distribution can be adopted:

B(n,k,p) = E!—(;i—k)!p'“ (1—p)h) (3.7)

where:

e B(n,k,p) is the probability of occurring a damage k in a scale of
damage 0 — n;

k and n are positive integers;
k=0,1,...n;
e n = 6 for the chosen scale;

p is a parameter that defines the mean value of damage in a normalized
damage scale (0 < p € 1).

The parameter p for the macroelement j is obtained by assuming that its
collapse probability Pj, Eq. (3.4), is equal to the probability that the level of
damage is equal to or larger than a threshold level n*:

Pj = 1 — Beym(n, n*, p;); (3.8)

where Beym = Problk < n*] is the cumulative distribution function (CDF)
corresponding to the binomial distribution (3.7).
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In the applications, the threshold level n* has been taken equal to n* = 4,
since at this level the collapse mechanism of the macroelement is completely
developed.

Once the p parameters that correspond to several different values of ag
have been evaluated for each macroelement, it is possible to calculate the
probability of attaining each damage level in macroelements similar to the
analysed one, even if they belong to different buildings.

3.2.2. For the whole church: As already noted in Sec.3.1.2 with refer-
ence to collapse, the damage of the whole church can be defined only con-
ventionally. In any case, a scale of damage must be defined, with the first
level (k = 0) corresponding to no damage, and the last (k = m) to total ruin
(overall collapse). However, for the whole church it is not possible to match
each intermediate level of the scale with a well-defined physical condition,
like in a macroelement the inception and successive evolution of the collapse
mechanism; rather, the levels of the damage scale are made to correspond
to qualitative judgements about the general condition of the building. In the
numerical applications, it has been assumed m = 10 and its threshold value
has been taken equal to m* = 7.

As for each macroelement, it is assumed also for the whole church that a
binomial distribution can be adopted for the probability of damage, for any
given value of ag:

m!

B(m, k, q) = mqk

(1-g*, (3.9)
where, in perfect analogy with Eq. (3.7)
e B(m,k,q) is the probability to have a damage k in a scale of
damage 0 — m;

k and m are positive integers;
k=0,1,...m;
e m = 10 for the chosen scale;

e ¢ is a parameter that defines the mean value of damage in a normalized
damage scale (0 < ¢ < 1).

The value of the parameter q is obtained by assuming that the collapse
probability of the whole church P, Eq. (3.6) is equal to the probability that
the level of damage is equal to or larger than the value m* = 7 (threshold
level), at which level the condition of irreversible failure is considered to have
been reached:

Pf = 1= Bcum(ma m¥, Q)' (310)
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Once the ¢ parameters for the whole building corresponding to different val-
ues of ag have been evaluated, it is possible to calculate the probability of
finding each damage level in buildings similar (for typology and topological
distribution of macroelements) to the building directly analyzed.

4. Example of application of the kinematic approach: Santa
Maria del Fossale

As an example, the application is reported of the described procedure to
the church of Santea Maria del Fossale in the town of Gemona, whose plan
has been shown in Fig. 2. The following material parameters, typical of the
churches in that area, have been used:

e weight density = 18 kN/m?3,

e compressive strength = 2000 kN /m?,
e tensile strength = 100 kN/m?,

e shear strength = 150kN/m?.

The other relevant data have been taken from [Doglioni et al. 1994].

The structural system is considered as the assemblage of the following
macroelements (Fig. 2):

1 - facade,

2 - nave right wall,

3 — nave left wall,

4 — triumphal arch,

5 — apse.

It is also assumed that the collapse of any macroelement implies the “de-

struction” of the whole church: consequently; the macroelements are related
in series in the logical diagram (Fig.6).

1 - facade 3 — nave left wall 5 - apse

A A4 s

2 — nave right wall 4 — triumphal arch

FI1GURE 6. Logical diagram of the church of Santa Maria del Fossale, Gemona.

The nominal mechanism seismic coefficients C;; of the macroelements
have been calculated, as described in Sec.3.1.1, by means of limit analysis,
taking into account the collapse mechanisms of Table 1. Some examples of
formulae yielding Cj; have been shown in Figs. 3, 4 and 5.
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The values of the C;;’s are reported in Table 3 as mean values, together
with their estimated coefficients of variations (c.o.v.). Lacking a more precise
evaluation, the c.o.v.s have been estimated in a very rough and empirical
way, that is:

(i) the relevant random variables have been classified into four categories,
according to their uncertainty (geometrical parameters; self weight and
permanent actions; mechanical parameters, like compressive strength
of masonry; mechanical parameters, like shear strength of masonry);

(ii) the weights 0.015, 0.075, 0.075, 0.100 have been respectively associated
to each category;

(ili) finally, the c.0.v.s of the seismic coefficients have been obtained by
multiplying each weight for the number of random variables of the
corresponding category entering their definition and summing up.

In Table 3, also the probabilities Pj; of activation of the i-th mechanism for
the j-th macroelement are shown for three values of a.

TABLE 3. Church of Santa Maria del Fossale: seismic coefficient C;; (calculated
mean values and estimated coefficients of variation) and probability P;; of acti-
vation of mechanism i in macroelement j.

Mechanism Ma.croe_lement E[C.]| cov. Pi; Py P;ij
(see Table 1)| (see Fig.2) - (ag =0.16 g)|(ag =0.28 g)|(ag =0.40g)
N~ la 1 0.146 | 0.375 0.601 0.993 1.000
1b 1 0.191 | 0.375 0.332 0.893 0.998
2a 1 0.845 | 0.390 0.019 0.043 0.089
2b 1 0.399 | 0.465 0.099 0.260 0.502
3a 1 1.122 | 0.325 0.004 0.010 0.024
3b 1 0.866 | 0.390 0.018 0.041 0.084
4a 2,3 0.191 | 0.450 0.358 0.848 0.992
4b 2,3 0.460 | 0.315 0.019 0.107 0.339
4c; 2,3 0.086 | 0.345 0.994 1.000 1.000
4cg 2,3 0.098 | 0.345 0.966 1.000 1.000
5 2,3 1.602 | 0.305 0.002 0.003 0.007
6 2,3 1.472 | 0.355 0.006 0.011 0.020
10 4 0.896 | 0.400 0.020 0.043 0.083
11 4 0.474 | 0.375 0.039 0.138 0.339
12a 5 0.218 | 0.390 0.248 0.768 0.984
13 5 0.286 | 0.405 0.138 0.479 0.837
14 5 2.141 | 0.265 0.000 0.001 0.001
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TABLE 4. Church of Santa Maria del Fossale: evaluation of the weighting
factors for collapse mechanisms number 4a, 4b, 4c of the macroelement “nave
right wall” (j = 2), (a - connection between lateral walls and transversal ele-
ments (facade and triumphal arch); b - tie rods between the tops of the lateral

walls).
Case 1 2 3 4
a yes yes no no
b yes no yes no
W4a,2 0.20 0.6 0.10 0.10
Wyb,2 0.70 0.1 0.80 0.10
Wac,2 0.10 0.3 0.10 0.10

In Table 4, an example is reported of the evaluation of the weighting
factors w;; carried out for a specific macroelement (the nave right wall, j = 2)
and the collapse mechanisms 4a, 4b, 4c (cf. Table 1); four alternative sets
of coefficient are shown, which depend on: a) a judgement on the degree of
connection between the lateral wall and the orthogonal ones, and b) on the
presence or the lacking of tie rods between the tops of the lateral walls.

TaBLE 5. Church of Santa Maria del Fossale: weighting factors w;;.

Mechanism 3 Macroelement j Weight factors
(see Table 1) (see Fig. 2) W
la 1 0.80
1b 1 0.20
2a 1 0.20
2b 1 0.80
1 1 0.40
2 1 0.60
4c, 2,3 0.78
4c2 2,3 0.22
4a 2,3 0.10
4b 2,3 0.80
4c 2,3 0.10
10 4 0.30
11 4 0.70
12a 5 0.20
13 5 0.80
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The actual macroelement is in case 3 (poor connection with the orthogo-
nal walls and presence of tie rods) and the corresponding set of w;; has been
used in the calculations.

The entire sets of weighting factors w;; evaluated in this way for the
church of Santa Maria del Fossale is reported in Table 5.

The probability of collapse P; of each macroelement, calculated for three
peak ground accelerations ag as discussed in Sec.3.1.1(e) and in accord with
the logical diagrams in Table 2, are shown in Fig.7 together with the cor-
responding probabilities of collapse of the whole church, calculated as in
Sec. 3.1.2 with the logical diagram of Fig. 6.

Figure 8 shows the relations between collapse probabilities and earth-
quake intensity (fragility functions) calculated for each macroelement and
for the whole church.

Finally, the parameters of the binomial distributions of damage, for each
single macroelement and the whole church, are reported in Table 6.

TABLE 6. Church of Santa Maria del Fossale: values of parameter p, Eq.(3.7),
and of parameter g, Eq. (3.9), of the probability mass distributions of damages of
the macroelements and to the whole church, for the assumed threshold damage
values (respectively n* = 4 and m* = 7) and three values of the horizontal load
coefficient ag/G.

ag =0.16g | ag =0.28g | ag =0.40g

1 - facade 0.632 0.544 0.688
2,3 - left and
right nave 0.544 0.629 0.729
walls
4 - triumphal
Bl Bkt 0.382 0.500 0.618
nave and
presbytery
5 — apse 0.588 0.702 0.802
whole church 0.770 0.885 0.955
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1.00
B oa/g=0.16
PP | ®a/g=028
0.80 O a/g=040
0.60 -
040
1 - fagade
2 - left nave walls
020 3 - right nave walls
4-_ triumphal arch
S - apse
000 - " ~ - =
1 2 3 4 I i

FI1GURE 7. Church of Santa Maria del Fossale: collapse probabilities P; of the
macroelements, and collapse probability Py of the whole church, evaluated for
three values of the seismic coefficient ag/g.

1.00
PiiPr g
0.80 —*—1 -fagade
0.70 1 —#—2 3 _ nave walls
0.60 1 .
4 — triumphal arch
0.50
0.40 1 5 - apse
0.30 1 —*—whole church
0.20
0.10
0.00 -

0.00 0.10 0.20 0.30 0.40 0.50 060 a,/g

FiGuURE 8. Church of Santa Maria del Fossale: fragility functions (collapse proba-
bility vs. seismic coefficient ag/g) of the macroelements and of the whole church.
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5. Bounding the probability of collapse by combining static
and kinematic approaches. A case example: the church of
Santa Maria Maddalena, in Flagogna

A more complete (i.e. kinematic and static) limit analysis has been de-
veloped for the church of Santa Maria Maddalena in Flagogna (Fig.9).

19.50

- *
é —_rl
0.85
13.| Lr 5
90 0

4@

s

FIGURE 9. Church of Santa Maria Maddalena, in Flagogna (Friuli, Italy). Plan
and considered macroelements: 1 — facade; 2 — nave left wall; 3 — nave right wall;
4 — presbytery left wall; 5 — presbytery right wall; 6 — apse; 7 — triumphal arch
between nave and presbytery; 8 — triumphal arch between presbytery and apse.

b

Let us illustrate the analysis of this church by the static approach first.

5.1. Analysis according to the static theorem

In investigating the admissible stress fields, the resistance condition is
checked in control sections, namely: the bottom section of the macroelement;
all discontinuity sections (e.g. at the basis and just above openings in the
walls, or where the wall thickness varies abruptly); the sections with concen-
trated loads. Stresses are assumed to be linearly distributed in these sections,
possibly piecewise constant. It is assumed that the strength of masonry fol-
lows the Mohr-Coulomb criterion with tension cut-off (Fig. 10).

In the specifically developed computer program, it is possible to assume
as random the following variables:

e the mass density of masonry;

e the shear resistance 7p, the friction angle ¢ and the cut-off value o
that completely define the strength criterion (Fig. 10);
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F1GURE 10. Mohr-Coulomb criterion with tension cut-off.

o the external vertical loads acting on each macroelement;

e some internal forces in the masonry structure modeling the connection

between orthogonal walls or the restraint conditions along the border.

It is convenient to collect these variables into a vector X of random com-
ponents Xg.

As anticipated in Sec. 2, in this example all random variables have been
assumed to be described by discrete probability density (or “mass”) func-
tions [pmf] (uniform or binomial): thus, all possible combinations of values
of the random variables, each characterized by a probability, form a finite
set.

In order to reduce the number of possible combinations, it is important
to select, for each macroelement, the most important random variables: this
has been done by means of preliminary sensitivity analyses.

Thus, the following variables X, have been considered random in numer-
ical calculations:

e the shear resistance 7y of masonry;

e a concentrated force F', orthogonal to the considered element, that

models the constraint effect of adjacent orthogonal elements.

The assumed probability mass functions of these two variables are shown
in Figs.11(a-c): two alternative distributions of F' have been considered in
relation to the efficiency (good or poor) of the constraint.

Also the direction 0 of the horizontal load action has been taken as a
random variable with a discrete probability distribution, and in particular a
uniform distribution (Fig. 11(d)).

To carry out the calculations, first an arbitrary direction 8 = 1 of the
horizontal action and a combination X; of the values of the X, random vari-
ables (79 and F in the developed example) are chosen. The problem becomes



32 G. AucusTI and M. CIAMPOLI

(a)
0.40 -
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020 -
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FiGURE 11. Probability mass functions of assumed random variables: (a) shear
resistance 7o; (b) efficient constraint force F'; (c) poor constraint force F; (d) di-
rection 6 of the horizontal action.
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deterministic, and the probability of not finding a statically admissible stress
field under these conditions is by definition given by:

0 if @< ay,,

P[Estat,ji] = P[Esta.tl 0=1, z= Xj] = { (5-1)

1 ifa > Qs

where ay;; is the value of the statically admissible load factor for the j-th
combination of r.v.s and the i-th load direction. As already stated (Fig. 1 and
Eq. (2.4)), the values of a;; for each direction % are calculated by interpolat-
ing linearly the values corresponding to two “principal” orthogonal directions
(for walls and arches, in-plane and out-of-plane directions). Equation (5.1) is
represented by a 0 — 1 step function with discontinuity at o = ay;; (Fig. 12).

CDF/
1
/i o
o | | P(og;) /! 7 \-(,h- Pros
. ] -@; 2/,
- ) 1 /é}o‘
VA e _
/ :/P[Ecimji] !r:: [‘l‘SUCTEK-‘- -
1
1

7/

FiGure 12. (a) Probability distribution functions of the statically admissible load
factor ay ;i» the kinematically sufficient load factor a.,;;, and an approximation
of the “true” value of the collapse load factor; (b) probability density function of
the approximated P(ac;,).

If, as assumed, each of the random variables X, can take only a finite
number of values Xg;, the number N of their possible combinations can be
large, but — as already stated — is finite. Assuming moreover that the variables
X, are statistically independent of each other (as it seems reasonable for 7y
and F'), the probability of not finding a statically admissible stress field, for
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any given load direction # = i becomes:

N
P[Egat|0=i] =Y P[Ega |0 =i, X = X;]- P[X = X}

j=1
N Q
=Y PlEaatl0 =14, X = X;]- [[ P[Xe = Xq5]. (5:2)
i=1 q=1
(a)
| | | | |
k0
,,,,,,,,,, S e a2 s
g
18.50
(b)
0.40
0.30
0.20
0.10
0.00
g 3§ 8 8 B 8 &
[=] [=] (=] (=} (=} =} (=)
(c)
0.40
030
0.20 1
0.10 1
0.00
g £ 8 8 8 g &

FIGURE 13. Nave wall: (a) geometry; probability mass functions of the largest
admissible horizontal load acting in (b) out-of-plane-direction and (c) in-plane
direction.
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An example of the pmf’s of the horizontal statically admissible load a.,, W
calculated in this way for a specific macroelement (the nave walls — macroele-
ment 2, 3) in the two “principal” load directions, is shown in Fig. 13.

Finally, the probability P[Estat] for an arbitrary load direction is obtained
by summation of the probabilities (5.2) multiplied by the probability of each
possible direction. Assuming nq directions, each with the same probabil-
ity 1/ngq:

ng 1 nd
PEsta.t= PESt,at9=Z"P0=i=— PEstatgz’I;. 5.3
[];[ I ][]_nd;[ 6 =1]. (5.3)
In the calculations, eight possible directions, each with a probability
1/ng = 1/8, have been assumed (Fig. 12d).

The CDF curves P(oy) plotted in Fig. 14 have been obtained taking ac-
count of the probabilities of each combination of r.v.s, as it will be illustrated
later, by means of Fig. 15.

5.2. Kinematic analysis

In Secs. 3 and 4, the relevant collapse mechanisms of each macroelement
were considered, and it was shown how nominal values of the mechanism
seismic coefficients Cj; (i.e. the values of o that activates mechanism 7 in
macroelement j) can be obtained from the nominal (i.e. mean) values of the
quantities involved. Then, each C;; was assumed to have a continuous prob-
ability distribution around its nominal value: the probability of activation of
each mechanism under a load defined by the coefficient a = agz/g, coincides
with the corresponding value of the cumulative distribution function (CDF)
of Cyj, Eq. (3.1). Appropriate combination of the probabilities of activation of
each mechanism allowed to obtain the probability of activation P; of any one
of the mechanisms considered for each macroelement j. If all possible collapse
mechanisms had been considered in this process, P; would be the actual col-
lapse probability of macroelement j; otherwise, according to the kinematic
theorem of probabilistic limit analysis, P; yields only a lower bound. Exam-
ples of curves P;(a) for each mechanism and corresponding CDFs P(a) for
whole churches have been presented in Fig. 8.

As anticipated, a slightly different approach is at the basis of the P(ay)
curves drawn in Fig. 14.

Discrete rather than continuous probability distributions have been as-
sumed for the structural characteristics, and a procedure similar to the
one illustrated in Sec.5.1 has been followed, adopting an analogous nota-
tion. First, for each macroelement, kinematically sufficient load factors a.;;
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p 1907 p, 1007
0.80 1 0.80
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(e )
FIGURE 14. Probability bounds P(ay), P(ay); approximation to P(ac):

(a) macroelement 1 (facade); (b) macroelements 2, 3 (nave walls); (¢) macroele-
ments 4, 5 (presbytery walls); (d) macroelement 6 (apse); (e¢) macroelement 7
(arch between nave and presbytery); (f) macroelement 8 (arch between presbytery
and apse).

have been determined for each combination X; of the relevant random vari-
ables and direction i. In contrast to the static analysis presented in Sec. 5.1,
the interaction diagram has been assumed rectangular, i.e. external to any
convex diagram (cf. Fig.1 and Eq.(2.5)). The corresponding probability
P[Ecn| X = X;|0 = 4] is given by a 0 — 1 step function with discontinu-
ity at @ = a,,; (Fig.12).
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Then, noting that the random variables X, can each take only a finite
number of values Xg;, the probability of finding a kinematically sufficient
mechanism, for any assumed load direction 6 = ¢ becomes:

P[Ecn |0 =] = EP[Ecmw—z, X =X;]-P[X = X;]
(5.4)
=J§1P[Ecin 0=1, X = X;] -qglp[xq s X

With a finite number of possible directions i of the load, the probability
P|[E,,] for an arbitrary load direction is obtained by summation of the prob-
abilities (5.4) multiplied by the probability of each direction. Assuming that
each direction has the same probability 1/nq, we get

P [Eecin ZP[EW,w_z] Pl9=1]= ZP Einl6=14].  (5.5)

i=1

The CDF’s P(a. ) plotted in Fig. 14 have then been obtained by consider-
ing many relevant mechanisms and all eight possible (and equally probable)
directions of the seismic action.

5.3. An approximation of the probability of collapse

In previous Sections, CDF’s of the statically admissible and kinematically
sufficient load factors, respectively P(ay) and P(ay), that — according to
inequalities (2.8) — bound the CDF of the actual collapse loads factor P(ac),
have been obtained for the macroelements indicated in Fig. 9. Note that the
bounds on the probability of collapse obtained in this way (Fig. 14) are in
most cases quite acceptable, especially in the range of significant values of
the seismic intensity.

An approximation of the true curve P(ac) is also plotted in each of
the graphs presented in Fig. 14. It has been calculated by assuming that, for
each load direction 8; and combination X of the other random variables, the
value of the actual collapse load factor ac;; is a random variable uniformly
distributed in the interval [ay,,, on;;] (Fig. 13(b)); thus the corresponding
CDF is the dash-dotted straight line.

The procedure followed to obtain the bounding curves P(ay,), P(a,,;) and
the approximate curve is illustrated in Fig. 15, where three combinations of
random variables are considered and three diagrams analogous to Fig. 12(a)
are plotted on the left-hand side. Each diagram is multiplied by the probabil-
ity P; of the respective r.v. combination; as the three combinations of random
variables are independent, it is straightforward to obtain by multiplication
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Ficure 15. Construction of the bounding curves P(ay,), P(a,;) and the ap-
proximate curve (dash-dotted).

and summation the probabilities of the collapse load factors P(ay,), P(a,),
and the approximation.

The figure on the right is thus obtained. The three curves P(ay,), and
the approximation to P(a.,), P(ac;) are obtained by increasing the number
of combinations of r.v.’s (including also the random 8).

5.4. Limit analysis of the church

As already noted (Sec.3.1.2), the collapse of a building as a whole can
be defined only conventionally. In any case, in order to assess the seismic
vulnerability of the church, it is essential to consider both the different rel-
evance of macroelements and the contribution of the vulnerability of each
macroelement to the vulnerability of the whole building system.

Figure 16 shows the logical diagram that has been assumed for the church
of Santa Maria Maddalena: macroelements 1, 2 and 3 are considered critical
macroelements, whose collapse implies the collapse of the whole church; col-
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FIGURE 16. Logical diagram of the church of Santa Maria Maddalena, Flagogna.

lapse of the whole church is also implied by collapse of either macroelements
6 or 8, or by either collapse of macroelements 4 and 5, or of macroelement 7.
The whole church is thus seen as a series system of five elements (the three
critical macroelements and the two parallel subsystems).

Under the simplifying assumption of stochastic independence, for each
seismic intensity the collapse probability of each parallel subsystem is given
by Eq.(3.5), while the collapse probability of the whole church is given
by Eq.(3.6), with P, including the collapse probability P; of each critical
macroelement and the collapse probability Py pa, of each parallel subsystem.

Bounds on the probability of collapse of the church have been evaluated
by applying Eqgs. (3.5) and (3.6) to the Pi(ay) and Pi(a,) relative to each
macroelement k: more specifically, for each direction 8 = ¢ of the horizontal
load, the probabilities of collapse Py(cy,) and Pi(c,) of each macroelement
have been combined according to Egs. (3.5) and (3.6). Then, bounds on the
probability of collapse of the whole church for any load direction & have been
evaluated by applying Eqgs. (5.3) and (5.5) respectively.

The values obtained are plotted in Fig. 17, together with the approximate
curve P(ac), obtained as described in Sec. 5.3. Also in this case, the bounds
on the probability of collapse are quite acceptable.

1.00

P
0.80 -
0.60 -

~ P(0c)
0.40 1 = P(ary)
0.20 ~ P(0wy)
000 B T T T 1
0.0 0.2 0.4 0.6 0.8

0 = a,/g

FIGURE 17. Santa Maria Maddalena, Flagogna: collapse of the whole church:
probability bounds P(av), P(a,); approximation to P(ag).
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6. Some final considerations

In this lecture, the concepts of reliability analysis have been applied to
investigate the seismic vulnerability of a specific type of structural system,
namely monumental buildings (and in particular, masonry churches).

In order to develop a mechanical model that can be applied without
undue computational efforts, drastic simplifications have been introduced
to describe seismic excitation and the corresponding structural responses.
Namely:

¢ seismic loads have been represented by a set of static horizontal loads
aW, where W stands for the weight of structural masses and other
permanent vertical loads, and « is a coefficient that can be assimilated
to the ratio ag/g between the peak or effective horizontal ground accel-
eration and the acceleration of gravity g (the value ac that corresponds
to collapse of the building is by definition its seismic coefficient);

e the structural behaviour at collapse has been assumed to be well de-
scribed by the macroelement approach.

These assumptions have made it possible to use the theorems of proba-
bilistic limit analysis and bound the probability of collapse of the considered
buildings from above and below.

Note also that the collapse of a church (but in general the same consider-
ations might be repeated for any building construction) cannot be identified
with the collapse of any single macroelement (in the more general case, of
any component of the structural system); in order to assess the seismic vul-
nerability of the church, it is essential to consider both the different relevance
of macroelements and the contribution of the vulnerability of each macroele-
ment to the vulnerability of the whole.

Introducing discretized probability distributions for the relevant random
properties involved in the problem, a concrete example of application has
shown that, with a reasonable computational effort, the cumulative prob-
ability distributions P(ac) of the seismic coefficients can be bounded be-
tween analogous curves P(ay) and P(ay), relative respectively to statically
admissible and kinematically sufficient seismic loads, ay,W and a,W. The
randomness of the direction of the horizontal action has also been taken into
account.

Of course, the validity of the results obtained is limited by the intro-
duced simplifying assumptions; therefore they should be considered only as
approximations, that however can be very useful for a preliminary assess-
ment of the seismic reliability of a large number of structures. The design of
the retrofitting interventions for any specific example will of course require
a more detailed structural analysis.
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This lecture is based on two papers [1, 2], in which detailed lists of original
references can be found.
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