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In recent years, the assessment of the seismic reliability of monumental buildings 
has been the object of several studies: in order to take into account the large 
uncertainties in the loads and in the material and structural properties, in most 
studies the seismic action has been mimicked by quasi-static horizontal forces of 
magnitude depending on the intensity ofthe considered earthquake. In particular, 
it has been shown that the probabilities of damage and collapse and their distri
butions can be obtained by looking at a monumental building as an assemblage 
of macroelements of known static and collapse behaviour, and considering the 
relevant mechanisms: in this way, the so called kinematic approach to limit anal
ysis is followed, and rigourously only lower bounds to the probability of collapse 
are obtained. In order to obtain also upper (i.e. "safe") bounds to the probability 
of collapse under a given load, the static theorem of probabilistic limit analysis 
must be used. In this lecture, the two theorems are presented, and the procedure 
of seismic reliability assessment exemplified on two churches damaged in the 1976 
earthquake of Friuli (North-East Italy): upper and lower bounds to the probabil
ity of collapse of each macroelement and of the whole church are obtained as a 
function of the applied horizontal load, i.e. of the earthquake intensity. 

1. Introduction: the "macroelement" approach 

The static and kinematic theorems of "probabilistic limit analysis", first 
formulated in 1972 by Augusti and Baratta, yield bounds to the probabil
ity of plastic collapse under given loads of structures with random strength 
properties. 

The static theorem states that the probability of not finding an admissible 
stress field in equilibrium with given loads is not smaller than the actual 
probability of collapse, provided the usual assumptions of rigid-plastic limit 
analysis hold. 
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10 G. AUGUSTI and M. CIAMPOLI 

Conversely, the kinematic theorem states that the actual probability of 
collapse is not smaller than the probability that the work done by given 
applied loads for an arbitrary collapse mechanism exceeds the corresponding 
dissipated internal power. 

Thus, for a given structure, whose mechanical and geometrical proper
ties have known probabilistic characteristics, subject to a set of static loads 
defined to within a factor a (i.e. in the form Wo + aW), the cumulative 
probability distribution curve of the actual collapse load factor a = ne is 
bounded between the analogous curves for the static and kinematic collapse 
load factors. 

In the present lecture the static and kinematic approaches are applied, 
to assess and bound on both sides the probability of collapse of monumental 
buildings, and specifically of historic masonry churches, under static hori
zontal loads of arbitrary direction, and proportional to the structural masses 
(thus mimicking seismic loads). 

The relevant uncertain quantities (including the direction of the horizon
tal load) are assumed to satisfy discrete probability distributions. 

For the structural analysis and assessment of the considered buildings, we 
shall follow the "macroelement" approach, first formulated in 1994 [Doglioni 
et al., 1994). A "macroelement" is defined as "a recognisable and complete 
part of the building, with a clear and unitary behaviour from the viewpoint 
of seismic response"; then, each building under examination is considered as 
the assemblage of macroelements (e.g. facade; nave walls; arches; chapels). 
Several examples of each macroelement can be found among buildings of 
the same geographical area. In this way, not only the ultimate behaviour of 
the buildings is well schematised, but the contradiction between the need of 
probabilistic assessment of vulnerability and reliability and the uniqueness of 
each monumental building can be overcome: probabilistic predictions of the 
response become possible, even for "unique" structures like historic churches. 

The resistance and collapse conditions of each macroelement are obtained 
from the study of its seismic response; the assumption of an appropriate 
"logical diagram" allows to derive the collapse condition of the whole church. 

2. Formulation of the limit analysis problem 

2.1. Assessment of seismic strength in limit analysis 

In "classical" limit analysis it is usually assumed that the structure under 
examination is subject to a set of static loads defined to within a factor a, 
i.e. in the form 

Wo+aW, (2.1) 
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PROBABILITY OF COLLAPSE OF MONUMENTAL BUILDINGS . . . 11 

where W o is a fixed vector (permanent loads) and W a reference vector. The 
value of a that corresponds to the collapse of the structure (or a part of it) 
is defined collapse load factor, and indicated in the following by ne. 

We shall also indicate by a'I/J a "statically admissible" load factor, i.e. a 
coefficient such that the loads W 0 +a1/J W can be equilibrated by a stress field 
that does not violate the strength condition in any point of the structure, and 
by a-y a "kinematically sufficient" load factor, i.e. a coefficient such that there 
exists at least one kinematically sufficient mechanism, in turn defined as a 
mechanism for which the power of the work done by the loads W o + a-y W 
is not smaller than the dissipated internal power. 

Well known theorems (valid, in full rigour, only for elastic-plastic struc
tural behaviour) prove that, for any given structure of known geometry and 
material properties, 

(2.2) 

Thus, the determination of statically admissible and kinematically suffi
cient load factors allows to bound the true value of the collapse load factor. 

Much research effort has been spent over the last few decades on method
ologies to find close bounds, or alternatively to minimize the kinematically 
sufficient load factor: in fact, the kinematic approach has been generally pre
ferred to the static approach because simpler to use and usually leading to 
better approximations for comparable amounts of computing effort. This has 
however often lead to forgetting that in this way results on the "unsafe" side 
are obtained if not all possible collapse mechanisms are taken into consider
ation: therefore, the validity of the static approach should be reconsidered, 
now that much more powerful computing hard- and software are available 
than even a few years ago. 

In most cases, the seismic strength of a masonry structure under an earth
quake of any given intensity can be studied with reference to quasi-static 
loads defined in accordance with Eq. (2.1). W 0 are vertical loads, usually 
identified with the weights of the building masses (and possibly other quasi
permanent imposed loads), while the seismic loads a W are considered as 
static horizontal loads: the horizontal load vector W is assumed equal to W o 
(or part of it), and the proportionality coefficient a is taken equal to the ratio 
a = ag/ g between a representative value (typically, the peak) of the (hori
zontal) ground acceleration ag and the acceleration of gravity g; a is thus a 
measure of the intensity of the earthquake. 

In the following, the collapse factor ac of the seismic load will be called 
also seismic strength coefficient (or more simply seismic coefficient) of the 
structure; it can be assumed as a measure of its seismic resistance. Note that 
in Sec. 3.1.1, a "mechanism seismic coefficient" is defined. 
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12 G. AuGUST! and M. CIAMPOLI 

For the seismic strength assessment the structures considered in this pa
per, it is convenient to decompose first the building into macroelements, 
that is large elements (facade, lateral walls, arches, bell tower, etc.), which 
- according to the experience of past earthquakes - respond as single units 
to seismic action, and for which the main features of the seismic response 
are at least approximately known. It is then possible to carry out the limit 
analysis for each macroelement, i.e. to investigate collapse mechanisms and 
equilibrated stress fields. 

Moreover, in application to seismic problems, it is important to keep in 
mind (although often neglected in the formulation of the limit analysis prob
lems in seismic engineering) that the direction (and sign) of the horizontal 
loads o:W is not predetermined, but random: however, inequalities (2.2) hold 
for any given direction (), namely 

o:1/J(B) ~ o:c(B) ~ o:1 (B). (2.3) 

In principle, statically admissible stress fields and kinematically sufficient 
mechanisms should be investigated over the whole range of (). However, in 
order to find bounds on ac(B) it is necessary to determine only the values 
of a1/J(B) and a1 (B) in two orthogonal directions (for example, x and y in 
Fig. 1) and remember that, as well known from the general theory of plas
ticity, the limit condition ac (B) is a closed convex curve in the x - y plane: 
thence, it will be bounded between the rhomb defined by a1/J ( ±x), o:1/J ( ±y) 
and the rectangle defined by a 1 (±x), o:1 (±y), i.e. included in the shaded 

~ (-x) 

ay (-x) 

FIGURE 1. Bounds to the limit domain ac(O) as a function of the force direction. 
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PROBABILITY OF COLLAPSE OF MONUMENTAL BUILDINGS. . . 13 

area in Fig. 1. Thus, in the quadrant x ~ 0; y ~ 0, values of the statically 
admissible and kinematically sufficient load factors are respectively given by 

(2.4) 

({)) _ . [a' (x) a1 (y)] 
a 1 - m1n {) , . {) . 

COS Sill 
(2.5) 

Analogous formulas hold in the other quadrants. 
In practice, such bounds are usually sufficient. Note that in Fig. 1 and 

in Eqs. (2.4) and (2.5), symmetric strength properties have been assumed, 
that is: 

a11;(x) = a11;( -x), a11;(y) = a11;( -y), 
(2.6) 

a1 (x) = a 1 ( -x), a1 (y) = a 1 ( -y). 

However, Fig. 1 and Eqs. (2.4) and (2.5) can be easily generalized if equali
ties (2.6) do not hold. In applications, the same directions x and y can be 
taken for all macroelements, or different appropriate directions can be cho
sen for each macroelement (e.g., for a wall element, the in-plane and the 
out-of-plane directions). 

2.2. Static and kinematic theorems of probabilistic limit analysis 
and their application to the assessment of seismic strength 

Probabilistic limit analysis can be defined as the limit analysis of struc
tures with random strength properties, while usually possible uncertainties 
in the loads are treated separately. It is based on the following generalization 
of inequalities (2.2). 

A number of possible equilibrated stress fields and collapse mechanisms 
are first individuated and chosen. Then, for any value of a, three events can 
be defined, namely: 

• collapse of the structure (or part of it); 

• Estat: among the investigated stress fields, none is statically admissible 
(i.e. is in equilibrium with the loads W o + a W and does not violate 
the strength condition in any point of the structure); 

• Ecin: among the investigated mechanisms, at least one is kinematically 
sufficient. 

Since Ecin implies structural collapse, which in turn implies Estat, it is 
immediate that the probabilities of the three events are related by 

P[Estat] ~?[collapse] = Pr ~ P[Ecin]· (2.7) 
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14 G. AUGUSTI and M. CIAMPOLI 

Hence, the cumulative probability distribution curve P(ac) of the actual 
collapse load factor ac is bounded between the analogous curves of the static 
and kinematic collapse load factors: 

P(a1/J) ~ P(ac) ~ P(a1 ). (2.8) 

Values of a1/J and a1 can thus be calculated from the chosen equilibrated 
stress fields and collapse mechanisms. 

As in "classical" limit analysis, the kinematic approach, although yielding 
a result on the "unsafe" side (a collapse probability smaller than actual is 
obtained if not all possible collapse mechanisms are taken into consideration), 
has been more widely used also in probabilistic limit analysis, because of its 
comparably greater simplicity and better approximation is usually achieved 
for comparable amount of computing effort. Recently however, the static 
theorem is being paid again an increasing attention. 

If the structure under consideration is decomposed into macroelements, 
it is · possible to carry out the probabilistic limit analysis for each macro ele
ment, i.e. to investigate static collapse mechanisms and equilibrated stress 
fields: once the probability of collapse of each macroelement is obtained (or 
bounded), it is simple to derive the (bounds to the) probability of collapse 
of the whole church if the macroelements are related by a logical diagram. 

An approach to this problem (that will be illustrated in Sec. 3 and 4) is 
to take into consideration several (the most likely) collapse mechanisms of 
each macroelement and to evaluate the values and probability distributions 
of the corresponding collapse factors (specifically, in the example presented, 
the collapse factors were assumed to be normally distributed around the 
nominal value); then to calculate the probabilities of activation of the con
sidered mechanisms under a given intensity of the horizontal load and, by 
combining appropriately the probabilities of activation of each mechanism, 
the probability of collapse of each macroelement. 

In this approach, the direction of the horizontal action is taken into ac
count by investigating two sets of kinematically sufficient mechanisms, cor
responding to collapse in two orthogonal planes (in most cases, in-plane and 
out-of-plane for the relevant macroelement). 

Rigourously, according to the kinematic theorem of probabilistic limit 
analysis, notwithstanding the high number of ·mechanisms investigated, only 
lower (although possibly very close) bounds to the probabilities of collapse 
are thus obtained. As it will be seen, this approach allows to investigate also 
the probabilities of damage, although defined in a rather conventional way. 
Alternatively, the "kinematic theorem" and the "static theorem" can be used 
together to derive probability bounds, as in the example presented in Sec. 5. 
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PROBABILITY OF COLLAPSE OF MONUMENTAL BUILDINGS . . . 15 

In the development of this example, instead of attributing a continuos prob
ability distribution to the evaluated collapse load factors, the probabilistic 
properties of the relevant parent quantities (material and geometrical proper
ties, vertical loads and direction of horizontal action) are taken directly into 
consideration, assuming for all these quantities discrete probability distri
butions (i .e. probability mass functions (pmf] instead of probability density 
functions [pdf]); thus, the number of possible combinations of values of the 
random variables is finite. 

In order to obtain lower bounds P( a 1 ) to the actual probability of collapse 
P(ac), the values of a 1 obtained for each combination of the relevant ran
dom variables are convoluted with their assumed probability distributions; 
the dependence of a 1 on the direction of the horizontal action is given by 
Eq. (2.5). To obtain also upper bounds P(a'I/J) to P(ac), equilibrated stress 
fields must be investigated to find which ones are statically admissible for 
each combination of random variables: the corresponding load factors are 
then convoluted with the probabilities of each combination. 

The randomness of the direction (} of the horizontal action is taken into 
account by evaluating the bounds to the conditional probability of collapse 
on an assumed (}, and combining them according to the assumed probability 
distribution of (}. 

The two just summarized procedures will be illustrated with reference 
to two specific example of 18th century churches, heavily damaged (but not 
destroyed) by the 1976 Friuli earthquake: Santa M aria del Fossale in the town 
of Gemona (Fig. 2) and Santa Maria Maddalena in the village of Flagogna 
(Fig. 9). The main data on both churches have been taken from [Doglioni et 
al., 1994). 

3. Estimating the vulnerability and damages of churches by 
the kinematic approach 

As already stated, the structure is assumed to be loaded by given ver
tical loads W and quasi-static horizontal loads a W. The proportionality 
coefficient a a (ratio between horizontal and vertical loads) is conventionally 
taken equal to the ratio ag/ g between a significant (peak or effective) ground 
acceleration and the acceleration of gravity; the value of ag is considered a 
first-approximation measure of the intensity of the earthquake to which the 
structure is assumed to be subjected. 

To evaluate the probability of collapse, first the macroelements that de
fine the structural organism of the building (in the example case, a church) 
and characterize its seismic response must be individuated. Typical macroele
ments of a masonry church are: facade; nave walls; "triumphal" arches be-
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16 G. AUGUSTI and M. CIAMPOLI 

tween nave and presbytery and between presbytery and apse; presbytery 
walls; lateral chapels; apse (cf. Fig.2). 

4 - triumphal arch 2 - nave right wall 

5- apse I - fa~ade 

13.70 

3 - nave left wall 

FIGURE 2. Church of Santa Maria del Fossale in the town of Gemona: plan and 
considered macroelements (all measures in meters). 

With respect to response to seismic action, the macroelements can be 
classified into four main typologies, namely: 

(a) wall, with or without openings in any possible arrangement, and with 
or without restraints along the length or at the border (e.g. facade or 
lateral walls of the nave or of the presbytery), 

(b) arch (e.g. the element between the nave and the presbytery or between 
the presbytery and the apse), 

(c) tower, an element that behaves as a cantilever with box cross section, 
with or without openings, in any possible arrangement (e.g. the bell 
tower), 

(d) apse or lateral chapel, with curvilinear plan. 

3.1. Evaluation of the vulnerability 

3.1.1. For each macroelement: Once the structure has been subdivided 
into appropriate macroelements: 

(a) the most significant collapse mechanisms (i) for each macroelement (j) 
are recognized, 

(b) by means of the kinematic approach of limit analysis, the nominal val
ues of the mechanism seismic coefficient Cij (defined as the value of 
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PROBABILITY OF COLLAPSE OF MONUMENTAL BUILDINGS. . . 17 

the coefficient a that corresponds to the activation of the mechanism i 
in macroelement j), are obtained for each i and j, 

(c) the probability density functions (pdf) fciJ of the mechanism seismic 
coefficients Cij are defined: in the presented example, each Cij has been 
assumed to be normally distributed, with mean value E[Cij] equal to 
the value calculated in step (b), and coefficient of variation (c.o.v.) 
estimated on the basis of the number, the significance and the uncer
tainties of the parameters considered in step (b) (appropriate research 
might allow a better identification of shape and parameters of these 
distributions), 

(d) for each given value of ag, the probability Pij of activation of the i-th 
mechanism for the j-th macroelement is calculated as follows: 

agjg 

P;j = Prob [ C;j ( ; ] =Fe;; (:g) = J /c;; (C;j) dC;j, (3.1) 

0 

where fciJ is the pdf defined under (c) above and FciJ denotes the 
corresponding cumulative distribution function (CDF); 

(e) for each value of ag, the collapse probability Pj of the j-th macroele
ment (defined as the activation of any mechanism) is calculated. To 
this end, it is assumed that the collapse mechanisms of a macroele
ment can be either independent [ind] or mutually exclusive [me] (the 
latter condition represents, for example, most relations between in
plane and out-of-plane mechanisms). The probability of combination 
of "ind" and "me" mechanisms among themselves is given by either of 
the well-known formulae respectively valid for independent and mutu
ally exclusive events; hence, the corresponding probabilities of collapse 
Pj,ind and Pj,me are: 

Pj,ind = L Pij - L Pil)pi2j + L Pil)pi2jpi3j- · · ·, (3.2) 
i} #i2 i} #i2#iJ 

(3.3) 

where Wij is a weighting factor, whose value is related to the probabil
ity of activation of the i-th collapse mechanism in the j-th macroele
ment. Again, the present stage of research allows only rough, rule-of
the-thumb evaluations of the Wij coefficients: an example is reported 
in Sec. 4 below (Table 4). 

• 
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18 G. AUGUST! and M. CIAMPOLI 

TABLE 1. Considered macroelement types and collapse mechanisms. 

Macroelement 

Facade 

Nave 
lateral walls 

Nave as 
a whole 

Triumphal arch 

Apse 

Presbytery 

Transept - facade 
Transept - nave 

Lateral chapels 

la. 

lb. 

2a. 

2b. 

3a. 

3b. 

4a. 

4b. 

4c. 

5. 

6. 

7. 

8. 

9. 

10. 
lla. 

llb. 

12a. 

12b. 

13a. 

13b. 

14. 

Collapse Mechanism 

Out-of-plane rotation due to the development of a horizon
tal cylindrical hinge at the basis of the facade, and to the 
detachment from orthogonal walls, 

Out-of-plane rotation due to the development of a horizontal 
cylindrical hinge corresponding to the top of the openings (en
try, windows), and to the detachment from orthogonal walls, 

Out-of-plane rotation of the top of the facade, 

Out-of-plane rotation due to the development of oblique cylin
drical hinges, 

In-plane failure due to cracks with x trend, 

Detachment corresponding to the middle of the facade, and 
translation in the plane of the facade. 

Out-of-plane rotation of a wall restrained on three sides but 
free on the top side, 

Out-of-plane rotation of a wall restrained on· four sides, 

Out-of-plane rotation of a wall restrained on the bottom side 
and free on the other three ( 4cl: cylindrical hinge at the base 
of the wall; 4c2: cylindrical hinge corresponding to openings, 
such as windows) . 

Collapse due to localized thrusts from the roof, 

Planar sliding due to oblique (X-shaped) cracks, 

Collapse due to transversal seismic action: cracks in the 
transversal arches; crushing or cracking at the base of the 
nave pillars, 

Collapse due to longitudinal seismic action: cracks in the lon
gitudinal arches; crushing or cracking at the base of the nave 
pillars, 

Cracks and/or disconnection of the vault ribs, 

Shear failure of haunches, 

Rotation of one haunch, 

Rotation of both haunches, 

Rotation and translation of the top with detachment along 
an inclined plane (often in circular and polygonal apses), 

Out-of-plane rotation due to the development of a horizontal 
cylindrical hinge at the basis of the apse end wall (usually in 
rectangular apses), 

Out-of-plane rotation due to the development of hinges cor
responding to the edges, 

Out-of-plane rotation of vertical bends, 

Planar sliding due to cracks with x trend, 

4a, 4b, 4c, 5, 6, 7, 8, 9, 

la, lb, 2a, 2b, 3a, 3b, 
4a, 4b, 4c, 5, 6, 7, 8, 9 

12a, 12b, 13, 14. 
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PROBABILITY OF COLLAPSE OF MONUMENTAL BUILDINGS... 19 

(f) the probability of combination of a set of "me" mechanisms with a set 
of "ind" ones is given, after Eq. (3.2), by: 

Pj = Pj,me + Pj,ind - Pj,me Pj,ind · (3.4) 

Repeated application of Eqs. (3.2), (3.3) and (3.4) makes it possible to 
obtain the probability of activation Pj of any one of the mechanisms 
considered for the macro element j, i.e. the probability of collapse of 
the macroelement. Note that the direction of the applied load is not 
explicitly taken into account when calculating the collapse probabili
ties. 

Table 1 shows the types of macroelements and the relevant collapse mech
anisms that have been considered in the presented application; typical exam
ples of in-plane and out-of-plane collapse mechanisms are shown in Figs. 3, 4 
and 5. 

ak: compressive strength of masonry 
b: width of fa~ade 
J.Lt,b: effective length of cylindrical hinge 
h: height of the rectangular part of the fa~ade 
h,: height of the triangle at the top of the fa~ade 
h1: height of the centroid above the basis of the fa~ade 
sr: thickness of the fa~ade 

FIGURE 3. Facade: collapse mechanism la (see Table 1); detachment from or
thogonal walls and out-of-plane rotation due to the development of a horizontal 
cylindrical hinge at the basis of the facade. 

http://rcin.org.pl
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W 1: weight of body I 
W 2 = W 3: weight of bodies 2 and 3 
P: weight of the roof 

w,oygl + 2W2oyg2 + PoY" 

W1oxgl + 2W2oxg:! + PoxP 

0,~ 1 , Oy~ 1 : horizontal and vertical displacement of body I 
O.g2. Oy~2 : horizontal and vertical displacement of bodies 2 and 3 
O,p, Oyp: horizontal and vertical displacement of the roof 

FIGURE 4. Facade: collapse mechanism 3a (see Table 1); in-plane failure due to 
cracks with x trend. 

./ Body2 

I ~ : 

h~, ~ ~ 0------------~---_l~h-~b 
: : 

X I I 
I + I 

~ l---~----------J-~----~ 
: "\ ! 

Body I 

L__~~----+-------------------+---~ 

crk: compressive strength of masonry 
h: height of the lateral wall 
qr: height of the openings above the basis of the wall 
s: thickness of the lateral wall 
W 1: weight of body I 
W 2: weight of body 2 
P: weight of the roof 
01,, 01y: horizontal and vertical displacement of body I 
~ •• ~y: horizontal and vertical displacement of body 2 
~ ••• Ory: horizontal and vertical displacement of the roof 
x: distance between the openings and the cylindrical hinge 
\jf: rotation angle of the bottom part of the wall 
': rotation angle of the top of the wall 

FIGURE 5. Nave lateral wall: collapse mechanism 4b (see Table 1); out-of-plane 
rotation of a wall restrained on the four sides. 
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Table 2 shows examples of logical combinations of mechanisms leading to 
the evaluation of the collapse probability Pj of each considered macroelement. 

TABLE 2. Logical diagrams for evaluating the collapse probability Pj of the j-th 
macroelement (me stands for mutually exclusive, ind for independent mecha
nisms). 

Macroelement 

Facade 
(transept facade) 

Nave 
(transept nave) 

(presbytery) 

Triumphal arch 

Apse 
(lateral chapels and 

annexes) 

Collapse Probability 

ind 
Ps -- Pj 

Pl2a}- p, .,r p -

pl2li =rME PI2&1J 
13al ME 

p __r- PD IND 
Dh Pj 

pl4 

3.1.2. For the whole church: In most cases, the collapse of a building 
construction as a whole can be defined only conventionally. In fact collapse 
cannot be identified with the collapse of a single element, because each ele
ment may have a different role in the resistance of the whole. 

Thus, the probability of collapse of the church would be underestimated 
if it were measured by the probability of collapse of just one macroelement; 
it is rather a function of the probabilities of collapse of the macroelements 
according to the functional logic of the whole system. Therefore, in order 
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to assess the seismic vulnerability of the church, it is essential to consider 
both the different relevance of macroelements and the contribution of the 
vulnerability of each macroelement to the vulnerability of the whole. 

The collapse condition of the whole must be defined according to the in
teraction between macroelements towards structural integrity, that is defined 
by a logical diagram. 

Specifically: 

(g) Macroelements are divided into critical macroelements, whose collapse 
involves destruction of the whole building, and non critical macroele
ments whose collapse does not necessarily imply complete destruction 
of the building. The whole church can thus be seen as a series system, 
composed of critical n1acroelements and subsystems, in turn made of 
non critical macroelements working in parallel. 

(h) For each value of ag, the collapse probability of each subsystem com
posed of macroelements working in parallel is evaluated by: 

Pf,par = Ilk pk' (3.5) 

where Pk is the collapse probability of each branch k of the parallel 
subsystem. 

(i) The collapse probability of the whole church is evaluated using the 
usual relation valid for series systems: 

(3.6) 

where Pm includes the collapse probability Pj (3.4) of each critical 
macroelement and the collapse probability Pf,par (3.5) of each parallel 
subsystem. 

3.2. Evaluation of the probability distribution of damage 

The procedure illustrated in Sec. 3.1 can also be used to evaluate the prob
ability distribution of damages (expressed in an appropriate damage scale), 
on the basis of the calculated probabilities of collapse for each macroelement 
and for the whole building. 

This evaluation may support a statistical assessment of the distribution 
of damages to buildings formed by an arrangement of similar macroelements 
in a whole region hit by the earthquake. 

3.2.1. For each macroelement: First, an appropriate scale of damage 
must be defined, enabling to describe different states of each macroelement, 
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from no damage condition up to complete collapse. In the described applica
tion of the present procedure, a seven-level (k = 0 to 6) scale has been used; 
the seven damage levels k have been defined to correspond respectively to: 

k=O: no evidence of damage; 

k=1: first damages due to the inception of a mechanism, that can be detected 
only by an accurate examination; 

k=2: significant damages and "readability" of the mechanism, activated but 
still at the initial stage of development; 

k=3: clear and evident damages and "readability" of the mechanism, fully 
activated and at an intermediate stage of development; 

k=4: macroscopically evident damages and full development of the mecha
nism, with some minor part of the macroelement at the limit of collapse 
because of significant overall movements; 

k=5: as for k=4, but with significant parts of the macroelement at the limit 
of collapse and/ or destruction and/ or failures of other parts; 

k=6: complete collapse. 

As for the probability mass distribution of the damage to the macroele
ment, after relevant literature, it has been assumed that for any given value 
of ag the binomial distribution can be adopted: 

( ) _ n! k( )(n-k) 
B n, k,p - k!(n _ k)!p 1- p , (3.7) 

where: 

• B(n, k,p) is the probability of occurring a damage k In a scale of 
damage 0- n; 

• k and n are positive integers; 

• k = 0, 1, ... n; 

• n = 6 for the chosen scale; 

• p is a parameter that defines the mean value of damage in a normalized 
damage scale (0 ~ p ~ 1). 

The parameter p for the macroelement j is obtained by assuming that its 
collapse probability Pj, Eq. (3.4), is equal to the probability that the level of 
damage is equal to or larger than a threshold level n*: 

Pj = 1- Bcum(n, n*, Pj), (3.8) 

where Bcum = Prob[k < n*] is the cumulative distribution function (CDF) 
corresponding to the binomial distribution (3. 7). 
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In the applications, the threshold level n * has been taken equal to n * = 4, 
since at this level the collapse mechanism of the macroelement is completely 
developed. 

Once the p parameters that correspond to several different values of ag 

have been evaluated for each macroelement, it is possible to calculate the 
probability of attaining each damage level in macroelements similar to the 
analysed one, even if they belong to different buildings. 

3.2.2. For the whole church: As already noted in Sec. 3.1.2 with refer
ence to collapse, the damage of the whole church can be defined only con
ventionally. In any case, a scale of damage must be defined, with the first 
level (k = 0) corresponding to no darnage, and the last (k =m) to total ruin 
(overall collapse). However, for the whole church it is not possible to match 
each intermediate level of the scale with a well-defined physical condition, 
like in a macroelement the inception and successive evolution of the collapse 
mechanism; rather, the levels of the damage scale are made to correspond 
to qualitative judgements about the general condition of the building. In the 
numerical applications, it has been assumed m = 10 and its threshold value 
has been taken equal to m*= 7. 

As for each macroelement, it is assumed also for the whole church that a 
binomial distribution can be adopted for the probability of damage, for any 
given value of ag: 

B(m, k, q) 
I m. k ( )(m-k) 

k!(m-k)!q 1
-q ' 

(3.9) 

where, in perfect analogy with Eq. (3. 7) 

• B(m, k, q) is the probability to have a damage k in a scale of 
damage 0- m; 

• k and m are positive integers; 

• k = 0, 1, ... m; 

• m= 10 for the chosen scale; 

• q is a parameter that defines the mean value of damage in a normalized 
damage scale (0 ~ q ~ 1). 

The value of the parameter q is obtained by assuming that the collapse 
probability of the whole church Pr, Eq. (3.6) is equal to the probability that 
the level of damage is equal to or larger than the value m* = 7 (threshold 
level), at which level the condition of irreversible failure is considered to have 
been reached: 

Pj = 1- Bcum(m, m*, q). (3.10) 
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Once the q parameters for the whole building corresponding to different val
ues of ag have been evaluated, it is possible to calculate the probability of 
finding each damage level in buildings similar (for typology and topological 
distribution of macroelements) to the building directly analyzed. 

4. Example of application of the kinematic approach: Santa 
M aria del Foss ale 

As an example, the application is reported of the described procedure to 
the church of Santa M aria del Foss ale in the town of Gemona, whose plan 
has been shown in Fig. 2. The following material parameters, typical of the 
churches in that area, have been used: 

• weight density = 18 kN 1m3 , 

• compressive strength = 2000 kN 1m2 , 

• tensile strength = 100 kN I m 2 , 

• shear strength = 150 kN I m 2 . 

The other relevant data have been taken from [Doglioni et al. 1994). 
The structural system is considered as the assemblage of the following 

macroelements (Fig. 2): 

1 -facade, 

2 - nave right wall, 

3 -nave left wall, 

4 - triumphal arch, 

5 - apse. 

It is also assumed that the collapse of any macro element implies the "de
struction" of the whole church: consequently; the macroelements are related 
in series in the logical diagram (Fig. 6). 

1 - fa~ade 3 - nave left wall 5- apse 

2- nave right wall 4- triumphal arch 

FIGURE 6. Logical diagram of the church of Santa Maria del Fossale, Gemona. 

The nominal mechanism seismic coefficients Cij of the macroelements 
have been calculated, as described in Sec. 3.1.1, by means of limit analysis, 
taking into account the collapse mechanisms of Table 1. Some examples of 
formulae yielding Cij have been shown in Figs. 3, 4 and 5. 
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The values of the Ci/s are reported in Table 3 as mean values, together 
with their estimated coefficients of variations ( c.o. v.). Lacking a more precise 
evaluation, the c.o.v.s have been estimated in a very rough and empirical 
way, that is: 

(i) the relevant random variables have been classified into four categories, 
according to their uncertainty (geometrical parameters; self weight and 
permanent actions; mechanical parameters, like compressive strength 
of masonry; mechanical parameters, like shear strength of masonry) ; 

(ii) the weights 0.015, 0.075, 0.075, 0.100 have been respectively associated 
to each category; 

(iii) finally, the c.o.v.s of the seismic coefficients have been obtained by 
multiplying each weight for the number of random variables of the 
corresponding category entering their definition and summing up. 

In Table 3, also the probabilities Pij of activation of the i-th mechanism for 
the j-th macroelement are shown for three values of ag. 

TABLE 3. Church of Santa Maria del Fossale: seismic coefficient cij (calculated 
mean values and estimated coefficients of variation) and probability Pii of acti
vation of mechanism i in macroelement j . 

Mechanism Macroelement 
E[Ci,i] 

pij Pii Pii 
(see Table 1) (see Fig. 2) 

c.o.v. 
(ag =0.16 g) (ag =0.28g) (ag =0.40 g) 

"\ la 1 0.146 0.375 0.601 0.993 1.000 

lb 1 0.191 0.375 0.332 0.893 0.998 

2a 1 0.845 0.390 0.019 0.043 0.089 

2b 1 0.399 0.465 0.099 0.260 0.502 

3a 1 1.122 0.325 0.004 0.010 0.024 

3b 1 0.866 0.390 0.018 0.041 0.084 

4a 2,3 0.191 0.450 0.358 0.848 0.992 

4b 2,3 0.460 0.315 0.019 0.107 0.339 

4cl 2,3 0.086 0.345 0.994 1.000 1.000 

4c2 2,3 0.098 0.345 0.966 1.000 1.000 

5 2,3 1.602 0.305 0.002 0.003 0.007 

6 2,3 1.472 0.355 0.006 0.011 0.020 

10 4 0.896 0.400 0.020 0.043 0.083 

11 4 0.474 0.375 0.039 0.138 0.339 

12a 5 0.218 0.390 0.248 0.768 0.984 

13 5 0.286 0.405 0.138 0.479 0.837 

14 5 2.141 0.265 0.000 0.001 0.001 
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TABLE 4. Church of Santa Maria del Fossale: evaluation of the weighting 
factors for collapse mechanisms number 4a, 4b, 4c of the macroelement "nave 
right wall" (j = 2), (a - connection between lateral walls and transversal ele
ments {facade and triumphal arch); b - tie rods between the tops of the lateral 
walls). 

Case 1 2 3 4 

a yes yes no no 

b yes no yes no 

W4a,2 0.20 0.6 0.10 0.10 

W4b,2 0.70 0.1 0.80 0.10 

W4c,2 0.10 0.3 0.10 0.10 

In Table 4, an example is reported of the evaluation of the weighting 
factors Wij carried out for a specific macroelement (the nave right wall, j = 2) 
and the collapse mechanisms 4a, 4b, 4c (cf. Table 1); four alternative sets 
of coefficient are shown, which depend on: a) a judgement on the degree of 
connection between the lateral wall and the orthogonal ones, and b) on the 
presence or the lacking of tie rods between the tops of the lateral walls. 

TABLE 5. Church of Santa Maria del Fossale: weighting factors Wij. 

Mechanism i Macroelement j Weight factors 
(see Table 1) (see Fig.2) Wij 

la 1 0.80 

lb 1 0.20 

2a 1 0.20 

2b 1 0.80 

1 1 0.40 

2 1 0.60 

4ci 2,3 0.78 

4c2 2, 3 0.22 

4a 2,3 0.10 

4b 2, 3 0.80 

4c 2,3 0.10 

10 4 0.30 

11 4 0.70 

12a 5 0.20 

13 5 0.80 
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The actual macroelement is in case 3 (poor connection with the orthogo
nal walls and presence of tie rods) and the corresponding set of Wij has been 
used in the calculations. 

The entire sets of weighting factors Wij evaluated in this way for the 
church of Santa M aria del Foss ale is reported in Table 5. 

The probability of collapse Pj of each macroelement, calculated for three 
peak ground accelerations ag as discussed in Sec. 3.1.1 (e) and in accord with 
the logical diagrams in Table 2, are shown in Fig. 7 together with the cor
responding probabilities of collapse of the whole church, calculated as in 
Sec. 3.1.2 with the logical diagram of Fig. 6. 

Figure 8 shows the relations between collapse probabilities and earth
quake intensity (fragility functions) calculated for each macroelement and 
for the whole church. 

Finally, the parameters of the binomial distributions of damage, for each 
single macroelement and the whole church, are reported in Table 6. 

TABLE 6. Church of Santa Maria del Fossale: values of parameter p, Eq. (3.7), 
and of parameter q, Eq. (3.9), of the probability mass distributions of damages of 
the macroelements and to the whole church, for the assumed threshold damage 
values (respectively n* = 4 and m*= 7) and three values of the horizontal load 
coefficient agj G. 

ag = 0.16g ag = 0.28g ag = 0.40g 

1- facade 0.632 0.544 0.688 

2, 3 - left and 
right nave 0.544 0.629 0.729 

walls 

4 - triumphal 
arch between 

0.382 0.500 0.618 
nave and 

presbytery 

5- apse 0.588 0.702 0.802 

whole church 0.770 0.885 0.955 
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1 2 4 5 whole 
church 

11 &/g = 0.16 
• a,/g = 0.28 
0 &/g = 0.40 

1- fa~ade 
2 - left nave walls 

3 - right nave walls 

4 - triumphal arch 

5- apse 

FIGURE 7. Church of Santa Maria del Fossale: collapse probabilities Pj of the 
macroelements, and collapse probability PJ of the whole church, evaluated for 
three values of the seismic coefficient agj g. 
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FIGURE 8. Church of Santa Maria del Fossale: fragility functions (collapse proba
bility vs. seismic coefficient ag/ g) of the macroelements and of the whole church. 
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5. Bounding the probability of collapse by combining static 
and kinematic approaches. A case example: the church of 
Santa Maria Maddalena, in Flagogna 

A more complete (i.e. kinematic and static) limit analysis has been de
veloped for the church of Santa M aria Maddalena in Flagogna (Fig. 9). 

FIGURE 9. Church of Santa Maria Maddalena, in Flagogna (Friuli, Italy). Plan 
and considered macroelements: 1 - facade; 2 - nave left wall; 3 - nave right wall; 
4 - presbytery left wall; 5 - presbytery right wall; 6 - apse; 7- triumphal arch 
between nave and presbytery; 8- triumphal arch between presbytery and apse. 

Let us illustrate the analysis of this church by the static approach first. 

5.1. Analysis according to the static theorem 

In investigating the admissible stress fields, the resistance condition is 
checked in control sections, namely: the bottom section of the macroelement; 
all discontinuity sections (e.g. at the basis and just above openings in the 
walls, or where the wall thickness varies abruptly); the sections with concen
trated loads. Stresses are assumed to be linearly distributed in these sections, 
possibly piecewise constant. It is assumed that the strength of masonry fol-
lows the Mohr-Coulomb criterion with tension cut-off (Fig. 10). 

In the specifically developed computer program, it is possible to assume 
as random the following variables: 

• the mass density of masonry; 

• the shear resistance To, the friction angle cp and the cut-off value at 
that completely define the strength criterion (Fig. 10); 
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FIGURE 10. Mohr-Coulomb criterion with tension cut-off. 

• the external vertical loads acting on each macroelement; 

• some internal forces in the masonry structure modeling the connection 
between orthogonal walls or the restraint conditions along the border. 

It is convenient to collect these variables into a vector X of random com
ponents Xq. 

As anticipated in Sec. 2, in this example all random variables have been 
assumed to be described by discrete probability density (or "mass") func
tions (pmf] (uniform or binomial): thus, all possible combinations of values 
of the random variables, each characterized by a probability, form a finite 
set. 

In order to reduce the number of possible combinations, it is important 
to select, for each macroelement, the most important random variables: this 
has been done by means of preliminary sensitivity analyses. 

Thus, the following variables Xq have been considered random in numer
ical calculations: 

• the shear resistance To of masonry; 

• a concentrated force F, orthogonal to the considered element, that 
models the constraint effect of adjacent orthogonal elements. 

The assumed probability mass functions of these two variables are shown 
in Figs. 11(a-c): two alternative distributions of F have been considered in 
relation to the efficiency (good or poor) of the constraint. 

Also the direction (} of the horizontal load action has been taken as a 
random variable with a discrete probability distribution, and in particular a 
uniform distribution (Fig. 11 (d)). 

To carry out the calculations, first an arbitrary direction (} = i of the 
horizontal action and a combination Xj of the values of the Xq random vari
ables (To and F in the developed example) are chosen. The problem becomes 
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FIGURE 11. Probability mass functions of assumed random variables: (a) shear 
resistance To; (b) efficient constraint force F; (c) poor constraint force F; (d) di
rection 0 of the horizontal action. 
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deterministic, and the probability of not finding a statically admissible stress 
field under these conditions is by definition given by: 

{
0 if Q ~ Q'I/J ·· , 

p [Estat,ji] = p [Estat I e = i, X = Xj] = . Jt 

1 1f a > a'I/Jji, 
(5.1) 

where a'I/Jji is the value of the statically admissible load factor for the j-th 
combination of r.v.s and the i-th load direction. As already stated (Fig. 1 and 
Eq. (2.4)), the values of a'I/Jji for each direction i are calculated by interpolat
ing linearly the values corresponding to two "principal" orthogonal directions 
(for walls and arches, in-plane and out-of-plane directions). Equation (5.1) is 
represented by a 0- 1 step function with discontinuity at a= a'I/Jji (Fig. 12). 

(a) 

(b) 

CDF[\ 

/: 
P(aq;))·/ : 

/ : 
/ I P[E.:in•ii] 

11("' 
/ I 

o~------A'-·---------
1

-----7~ ani O.,ji a 

pdf 

FIGURE 12. (a) Probability distribution functions of the statically admissible load 
factor 0:>~~ Ji, the kinematically sufficient load factor a..,3i, and an approximation 
of the "true" value of the collapse load factor; (b) probability density function of 
the approximated P(ac3i ). 

If, as assumed, each of the random variables Xq can take only a finite 
number of values Xqj, the number N of their possible combinations can be 
large, but- as already stated- is finite. Assuming moreover that the variables 
Xq are statistically independent of each other (as it seems reasonable for To 
and F), the probability of not finding a statically admissible stress field, for 
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any given load direction () = i becomes: 

N 

P [Estat I() = i] = LP [ Estat IO = i, X = Xj] · P [X = Xj] 
j=l 

N Q 

= LP[Estat IO = i, X= Xj]. n P[Xq = Xqj] . (5.2) 
j=l q=l 

(a) 

I I I I I 

19 so 

(b) 
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FIGURE 13. Nave wall: (a) geometry; probability mass functions of the largest 
admissible horizontal load acting in (b) out-of-plane-direction and (c) in-plane 
direction. 
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An example of the pmf's of the horizontal statically admissible load a'I/Ji W 
calculated in this way for a specific macroelement (the nave walls - macroele
ment 2, 3) in the two "principal" load directions, is shown in Fig. 13. 

Finally, the probability P[Estad for an arbitrary load direction is obtained 
by summation of the probabilities (5.2) multiplied by the probability of each 
possible direction. Assuming nd directions, each with the same probabil
ity 1/nd: 

nd 
1 

nd 

P [Estad =LP [Estat IB = i] · P [8 = i] =-LP [Estat IB = i]. (5.3) 
i=l - nd i=l 

In the calculations, eight possible directions, each with a probability 
1/nd = 1/8, have been assumed (Fig. 12d). 

The CDF curves P(a'I/J) plotted in Fig.14 have been obtained taking ac
count of the probabilities of each combination of r.v.s, as it will be illustrated 
later, by means of Fig. 15. 

5.2. Kinematic analysis 

In Secs. 3 and 4, the relevant collapse mechanisms of each macroelement 
were considered, and it was shown how nominal values of the mechanism 
seismic coefficients Cij (i.e. the values of a that activates mechanism i in 
macroelement j) can be obtained from the nominal (i.e. mean) values of the 
quantities involved. Then, each Cij was assumed to have a continuous prob
ability distribution around its nominal value: the probability of activation of 
each mechanism under a load defined by the coefficient a = ag/ g, coincides 
with the corresponding value of the cumulative distribution function (CDF) 
of Cij, Eq. (3.1). Appropriate combination of the probabilities of activation of 
each mechanism allowed to obtain the probability of activation Pj of any one 
of the mechanisms considered for each macroelement j. If all possible collapse 
mechanisms had been considered in this process, Pj would be the actual col
lapse probability of macroelement j; otherwise, according to the kinematic 
theorem of probabilistic limit analysis, Pj yields only a lower bound. Exam
ples of curves Pj (a) for each mechanism and corresponding CD Fs Pr( a) for 
whole churches have been presented in Fig. 8. 

As anticipated, a slightly different approach is at the basis of the P( a-y) 
curves drawn in Fig.14. 

Discrete rather than continuous probability distributions have been as
sumed for the structural characteristics, and a procedure similar to the 
one illustrated in Sec. 5.1 has been followed, adopting an analogous nota
tion. First, for each macroelement, kinematically sufficient load factors a"Yji 
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FIGURE 14. Probability bounds P(o:111 ), P(o:-r ); approximation to P(o:c): 
(a) macroelement 1 (facade); (b) macroelements 2, 3 (nave walls); (c) macroele
ments 4, 5 (presbytery walls); (d) macroelement 6 (apse); (e) macroelement 7 
(arch between nave and presbytery); (f) macroelement 8 (arch between presbytery 
and apse). 

have been determined for each combination Xj of the relevant random vari
ables and direction i. In contrast to the static analysis presented in Sec. 5.1, 
the interaction diagram has been assumed rectangular, i.e. external to any 
convex diagram (cf. Fig. 1 and Eq. (2.5)). The corresponding probability 
P[Ecinl X = XjiB = i) is given by a 0- 1 step function with discontinu
ity at a = a'Yii (Fig. 12). 
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Then, noting that the random variables Xq can each take only a finite 
number of values Xqj, the probability of finding a kinematically sufficient 
mechanism, for any assumed load direction 0 = i becomes: 

N 

P[Ecin 10 = i] =I: P[Ecin IO = i, X= Xj] · P[X = Xj] 
j=l 

N Q 
= I: P [Ecin 10 = i, X= Xj] · IT P [Xq = Xqj]. 

j=l q=l 

(5.4) 

With a finite number of possible directions i of the load, the probability 
P[Ecin] for an arbitrary load direction is obtained by summation of the prob
abilities (5.4) multiplied by the probability of each direction. Assuming that 
each direction has the same probability 1/nd, we get 

~ 1 ~ 
P [Ecin] =LP [Ecin IO = i] · P [0 = i] =-LP [Ecin IO = i]. (5.5) 

i=l nd i=l 

The CDF's P( a 1 ) plotted in Fig. 14 have then been obtained by consider
ing many relevant mechanisms and all eight possible (and equally probable) 
directions of the seismic action. 

5.3. An approximation of the probability of collapse 

In previous Sections, CDF's of the statically admissible and kinematically 
sufficient load factors, respectively P( aw) and P( a1 ), that - according to 
inequalities (2.8) -bound the CDF of the actual collapse loads factor P(ac), 
have been obtained for the macroelements indicated in Fig. 9. Note that the 
bounds on the probability of collapse obtained in this way (Fig. 14) are in 
most cases quite acceptable, especially in the range of significant values of 
the seismic intensity. 

An approximation of the true curve P( ac) is also plotted in each of 
the graphs presented in Fig. 14. It has been calculated by assuming that, for 
each load direction Oi and combination Xj of the other random variables, the 
value of the actual collapse load factor acij is a random variable uniformly 
distributed in the interval [a1/Jji, a 1ji] (Fig. 13(b) ); thus the corresponding 
CDF is the dash-dotted straight line. 

The procedure followed to obtain the bounding curves P(awJ, P(a1J and 
the approximate curve is illustrated in Fig. 15, where three combinations of 
random variables are considered and three diagrams analogous to Fig. 12(a) 
are plotted on the left-hand side. Each diagram is multiplied by the probabil
ity Pj of the respective r.v. combination; as the three combinations of random 
variables are independent, it is straightforward to obtain by multiplication 
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FIGURE 15. Construction of the bounding curves P(o:'C/JJ, P(o:"''J and the ap
proximate curve (dash-dotted). 

and summation the probabilities of the collapse load factors P( a'I/Ji), P( a,i), 
and the approximation. 

The figure on the right is thus obtained. The three curves P( a'I/JJ, and 
the approximation to P( a,i), P( aci) are obtained by increasing the number 
of combinations of r.v.'s (including also the random B). 

5.4. Limit analysis of the church 

As already noted (Sec. 3.1.2), the collapse of a building as a whole can 
be defined only conventionally. In any case, in order to assess the seismic 
vulnerability of the church, it is essential to consider both the different rel
evance of macroelements and the contribution of the vulnerability of each 
macroelement to the vulnerability of the whole building system. 

Figure 16 shows the logical diagram that has been assumed for the church 
of Santa M aria Maddalena: macroelements 1, 2 and 3 are considered critical 
macroelements, whose collapse implies the collapse of the whole church; col-
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FIGURE 16. Logical diagram of the church of Santa Maria Maddalena, Flagogna. 

lapse of the whole church is also implied by collapse of either macroelements 
6 or 8, or by either collapse of macroelements 4 and 5, or of macroelement 7. 
The whole church is thus seen as a series system of five elements (the three 
critical macro elements and the two parallel subsystems). 

Under the simplifying assumption of stochastic independence, for each 
seismic intensity the collapse probability of each parallel subsystem is given 
by Eq. (3.5), while the collapse probability of the whole church is given 
by Eq. (3.6), with Pm including the collapse probability Pj of each critical 
macroelement and the collapse probability Pf,par of each parallel subsystem. 

Bounds on the probability of collapse of the church have been evaluated 
by applying Eqs. (3.5) and (3.6) to the Pk(o.'l/1) and Pk(o.-y) relative to each 
macroelement k: more specifically, for each direction () = i of the horizontal 
load, the probabilities of collapse Pk(o.'I/JJ and Pk(o.-yJ of each macroelement 
have been combined according to Eqs. (3.5) and (3.6). Then, bounds on the 
probability of collapse of the whole church for any load direction() have been 
evaluated by applying Eqs. (5.3) and (5.5) respectively. 

The values obtained are plotted in Fig. 17, together with the approximate 
curve P(o.c), obtained as described in Sec. 5.3. Also in this case, the bounds 
on the probability of collapse are quite acceptable. 

1.00 
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0.20 
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1- P(ay) 

-- P(a"') 

0.00 ~ ... .-::...._r----~----,------, 
0.0 0.2 0.4 0.6 0.8 

a= a8/g 

FIGURE 17. Santa Maria Maddalena, Flagogna: collapse of the whole church: 
probability bounds P( a"'), P( a..,); approximation to P( ac). 
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6. Some final considerations 

In this lecture, the concepts of reliability analysis have been applied to 
investigate the seismic vulnerability of a specific type of structural system, 
namely monumental buildings (and in particular, masonry churches). 

In order to develop a mechanical model that can be applied without 
undue computational efforts, drastic simplifications have been introduced 
to describe seismic excitation and the corresponding structural responses. 
Namely: 

• seismic loads have been represented by a set of static horizontal loads 
a W, where W stands for the weight of structural masses and other 
permanent vertical loads, and a is a coefficient that can be assimilated 
to the ratio ag/ g between the peak or effective horizontal ground accel
eration and the acceleration of gravity g (the value ac that corresponds 
to collapse of the building is by definition its seismic coefficient); 

• the structural behaviour at collapse ha..'> been assumed to be well de
scribed by the macroelement approach. 

These assumptions have made it possible to use the theorems of proba
bilistic limit analysis and bound the probability of collapse of the considered 
buildings from above and below. 

Note also that the collapse of a church (but in general the same consider
ations might be repeated for any building construction) cannot be identified 
with the collapse of any single macroelement (in the more general case, of 
any component of the structural system); in order to assess the seismic vul
nerability of the church, it is essential to consider both the different relevance 
of macroelements and the contribution of the vulnerability of each macroele
ment to the vulnerability of the whole. 

Introducing discretized probability distributions for the relevant random 
properties involved in the problem, a concrete example of application has 
shown that, with a reasonable computational effort, the cumulative prob
ability distributions P(ac) of the seismic coefficients can be bounded be
tween analogous curves P( a'I/J) and P( a.,.), relative respectively to statically 
admissible and kinematically sufficient seismic loads, a'I/J W and a.,. W. The 
randomness of the direction of the horizontal action has also been taken into 
account. 

Of course, the validity of the results obtained is limited by the intro
duced simplifying assumptions; therefore they should be considered only as 
approximations, that however can be very useful for a preliminary assess
ment of the seismic reliability of a large number of structures. The design of 
the retrofitting interventions for any specific example will of course require 
a more detailed structural analysis. 
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This lecture is based on two papers [1, 2], in which detailed lists of original 
references can be found. 
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