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Kinematics and statics of small superposed deformations 

Stefan Zahorski 

1. Introduction 

The. pro~lems · concerning an infinitesimal displacement 
. field · superimposed o:r;t finite . deformations of continuous me-

• dia are of great . importance for investigation of small vibrat~ 
-ions and .phenoniena .of stability loss. The theory of small 
· deformations -superposed on large fundamental deformations 
of non..;,iinear elastic materials wa.s initiated by Green, 

.Ri,;l·:ln .and Shield in 195.2, [1} /cf. also. [ 2 ]./. This ·theory t 
· formulated in convected coordinates descri ption, constituted 
t.he basis for further supplements and applications. In 1961 
Pipkin and _ Rivl~n (3), applying th(~ description of deformat
ions in a fixed Cartesian reference frame, developed the 
. . · . _.. . . 

theory . of small additional deforme. ·~ ions .in materials wi tb 
,fading memory. Similar problems o:f small a4ditional motions 
superposed on _a fundamental motion of viscoelastic materials 
were_ discussed by the present author l4 '51 · . . 

The main·aim of . the paper is to present a review of 
themost important kinemat ic and static relat'ions obtained 
so far in the field and to compare the results taking into 
c~nsideration two kirids of descript-ion of motion, i.e. in 
conv~cted - /moving/ coordinates as well as in fixed spatial 
coordinates. Fe~ this purpose some formally new relations 
have been· added and some transformations from one system of 
coordinates·into another have been presented. 

~e also wish, to._·emphasize that, from general point 
of view, two methods of description presented are entirely 
equivalent, hotiever, ·in ·some -particular problems either 
spatial coordinates or convected coordinates are more suit
able in·leadi~. up to simpler final results. 
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2. Equations of motion 

0 
Consider a body in its· undeformed state B at some 

instant of time ~ = o . Let the coordi~ates of a generic 
_particle _be XA .in an arbitrary curvilinear system of eo-_ 
ordinates ( XA) with covarian~ metric tensor GA& and 
contravariant metric tensor GAa ~espectively. This is 
what · is called the material system of coordinates. Denoting 
by {~L) an arbitrary fixed spati~ system .of coordinates 
with metric tensors cai.j and ~i.j respectively' we . 
can specify the deformation of a body giving :x:.." as ·a ftmC"'" 
tion of XA and time . '1:- , so that 

/2.1/ . 
) 

providing that regularity conditions ensuring the existence 
of the inverse second relation are satisfied. The above 
equations of motion can be also written in the equivalent 
vector form 

/2.2/ 

where ~ is the radius vector of a material particle cor---responding to the deformed state B at some . current in-
stant 't.. , and A following the comma denotes partial 
differentiatibn with respect to · XA • . · · 

· If · we consi,:ler that the system (X A) moves and deforms 
together with a body, we have the system of convected coordi- · 
nates, the metric t ·ensors of which /at instant "t. / are con
n~cted with corresponc;ling basis vectors with the following 
well known relations: 

/2.3/ GA'-(rc): GA·G• G =cLetGAa · 
.... 11¥ ) 
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The deformation gradients 

/2.4/ 
) ) 

being the measures of a local deformation in t he neighbour
hood of a particle X"' , become the corresponding coef
ficients of tensor transformation from (X~) to (.x. i.) if 
we use the notion of convected coordinates. 

We obtain the ~ollowing expressions for Christoffel 
symbols of the second kind in a system of convected coordi
nates: 

/2.5/ 
J A } cl.f 'OXA (3 ('a~~) 
"t~c =IQ~~ ~s sxc. = 

: ~ GAM ( GHa,c. + G..c.)s- Gac.,H) ' 

and the following expressions in an arbitrary system -of 
spatial coordinates: 

1 ~ 1 'd~~ d (ax.") 12 .B/ -1j \<. J = o xJ ~x.k. t() ~/*' · • 

By (~f--) we have denoted an auxiliary system of fixed 
2.'ectangular Cartesian coordinates. This is evident that the · 
transformation coefficients "a~aL/e ~j and .f):x:.i/f)CiL do 
not depend on motion of a particle ><A ; thus for simpli- -
c~ty and without loss of generality we shall assume hereafter 
that the spatial system ( ~") coincides with Cartesian sys_

tem (~et.) • 
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Taking into account the relations /2.1/, all sc~lar, 
vector and tensor quantities describing any process of de~ 
formation can be regarded either as functions of the vari

ables ~"'>"C. , or as functions of the variables XA > 't. • 

3. Small add·i tional motion superposed on a ·fundamental 

motion 

Let us suppose that at instant 't.-= t a material 

particle following some disturbances takes a new· position 
· !; \ XA , i.) in the neighbourhood of :r (XA) i) determin

. ed by the ·small displacement vector 'Yt_ ~ lXA) i:.) , where 

"'l. is a small dimensionless parameter such that its squares 

and higher degree powers can be neglected in comparison with 

those of first degree. Thus, for the state ~ we have 

/3.1/ 

or 

/3.2/ 

where by w-'- we have denoted contravariant components 

of the vector ~ in the .basis ~~ of the fixed spatial 
system of coordinates ('X.'") . According to /2 .. 2/, /2.3/, 
we can Y.rri te 

where primes denote the increments of basis vectors, V 
is the · symbol of covariant differentiation, w-4 and ·vrA 

denote components of the vector W . . in the · basis GA - -· and §A . respectively. The vector )!! can be· also re-
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* J'resented in the new basis GA - or , however, the 
differences between corresponding components are immaterir-.1 
being of order 0(122

) • • 

The gradients /2.4/ in the disturbed state B ar8 
as follows: 

/3.5/ .) 

and bearing in mind that 

ll M i.. · .. M •'- i. X A X.,. = X A ::;r = 8 A X ) i X. ->M= X -'J. X .>H:. S j J 
JT lB ,_,. "S ~ ) o~ /3.6/ 

we obtain 

/3.7/ 
fA - - T XA XM = - w-"~"' X A X , t - W ,M rr 't 'L. .) T • · 

The above results can be applied t o transform tensor quanti-• . 

ties in the state B from the s :;,rstem of convected coordi-
nates (XA) to the system of spr cial coordinates (x.') and 
vice versa. The linearized increments of all tensors, vectors~ 
or scalars can be expressed in components of the vector vr -either in convected or in spatial reference frame. 

According to /2.3/ ,- /2.5/, /2.6/, we can write the 
increme.nts of metric tensors of the· system ~><A) in the 
state B in the following form /cf. [1.,2] /: 

.. 1/r ~ -' * A9 ~ A .. B AI& I AB 
/3 .8/ G :G · G =G +~uAS G· =G·G =G +'nG . AS ...... ~~ ~a AB C.. J -. ,..., l. 1 
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Similarly, for the increments of Christoffel symbols 
of the second kind, we obtain 

• . A t A }t • A . * * l-A. *-A 
/3 11/ J A}·- J 1 +~ . - X . \!~ =- ~ X 

• "\.6 c . - l_B cj <. s c. . . - 'f' ~,se:. . -''C -'fc. > 

J A \I .A [ AM ( I I I ) 
/3.12/ \.B cj = 2: G GHs;c. + G11cJ.B- Gsc..)"" + 

. ... G'AM(G . +G . G J A 
. MB,C MC_,B- BCJM!J=Ve~~ .> 

where Greek .indices refer to an auxiliary system of fixed 
rectangular Cartesian coordinates. 

The increments of basis vectors and metric tensors. 
of any system of curvilinear spatial coordinates correspond
ing to the .disturbed position of a material particle are as 
follows: 

/3.13/ ~ .. - ~.( ~"; t:) = ~.(x.~,t) -~-y~ .. }x.'";t)w-""(~t) = 
.· . =<aL.+"l.~i..·> 

. ,., . ........ 

Taking into account the definition /2.7/, we also 
obtain 
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It can be shown that the relations /3.9/ and /3.15/~ 
/3.16/ result directly from tensor transformations. To this 
end let us observ.e that the following auxiliary relations 
hold: 

where a." and ~N denote the components of two arbitra
ry vectors ~ and !! . Transforming, !or example G,. 
to the system of spatial coordinates (-oc..'') , and taking 
in~o acc~unt /3.15/, /3.16/, /3.18/, /3.19/, we obtain 

/3.20/ 
• l • .. A & B 
<a.\.l = ~tj t "l. ~ ~l = G A~ X .) \,X .) j :: 

= ( GA9 ~ "!. G~&)(x~ • +'l X' :,)(X,~ +"l. X~j )~ 

f ' A 6 ·xA x•a G x•A ·xa -
Q - G X . X . + GAD. . . i- ·~ . J . . . -/3.21/ d\.j- AS J~ .)J ""g.)'" Jj "~ •· -'J 
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= - n. \1'(~ ~~ -:c~ . - Q. wf 'e.~ 'X.."f'". = 
0 "'.,. "i 'Y 'f-l <:ll"f" ~ '~ >~'-

= (\.;l)<a'-~+ \;L)<a1~)w~ . *" 
Similarly, transforming · ~.. in the state B to 

the system (. XA) , it is possibli to carry out the relations 
equivalent to /3.9/1 • 

4. I:.Iaterial time derivative 

The mater.ial time derivative of an absolute tensor con
nect'ed with a material particle is defined as th,e time rate 

of that tensor watched by "an observer" moving together with 
a material particle /cf. e.g. [6,7] /. 

Let us consider two positions of a material particle 
corresponding to the state . B at instant t , and to the 

""" . 
state B immediately following B · at instant i: +At • 
In other words these positions of a pa~ticle differ only with 
an infinitesimal proces.s of deformation. The material time 
derivative of an absolute tensor ~ can be defined as fol-

lows: 
.....,. 

/4.1/ . . 

The representations of the tensor cp (-:x..L.) t) in the 
'fixed system of spatial coordinates (':C.'') - can be determin

ed according to the definition /4.1/ /cf. (6,7] I 
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/4.2/ 

where a /-e>t deno~es partial time differentiation holding 
-:x.."'· = const, and '\!..,. are contravariant spatial compo-:-

nent of the velocity of a particle. • 
To obtain representations of the terisor <Jl (X~ i:) 

in the system of ~onvected coordinates (X") ';we can 
also use the definition /4.1/, however, we must remember 
that components of ·various tensors referred to 'different 
moving frames cannot be directly compared; first they should 
be transformed to any fixed common frame, e.g. to . the Carte

sian system· \~at.) • . As the next step we qan pass to the 
timit and again return to the system (XA.) . · 

Let us observe that the quantities. 

/4.3/ 

· /4.4/ 

tend to 
and that 

/4.5/ 

/4 .. 6/ 

~~" ( xa. hA~)= -x.~t,~·x";\:.) \-A\: '\l"~"\><6~ ~) 1 

0 

~ 
~-JA and respectively, when At·~ 0 , 

where D/Dt denotes partial time differentiation holding 
XA. = const. 
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'l'aking into account I 4. 1 I and our previous remarks, 
we can write 

A ~ 0 (cl. t> fhCr··) = X }el: .. ~ ~ B Dt \ ~ .) C ... X.)~ l · · D · = 

/4.7/ - XA ... i: ~ [ ~ . . . D Q_ lh'-. . + 
- lcl, 'i .)~ ~ >C X)~ Dt 't' .. D 

et. o <Pc · . cl o XM ~c·J + v ···X + · · · - l: · .. vf X .. o 
_ ~C l" · · D 'i..,c.. JH JfL J~ 

- 0 l'kA· . ( A {A} C.) A-t M·: ... _(. ~ +{M 1vo'"' A·. 
: Ot 't' · · B + 'lJ J H + MC V -~ .. 8 t (U' JB 0 B J )'r · ·M . 

Thus, we obtain finally /cf. e.g. (7] I 

"' "' where ~ and ~ denote the sums in all upper contra-
variant and all lower covariant indices respectively • 

• 
We wish to emphasize that the symbols ( ) and 0/Dt 

have in ~eneral different meanings, ho·wever, for vectors 
or scalars considered as functions of a particle and tL~e 

they are formally equivalent. For exa~ple, we have 

/4.9/ ~(X~ t) = ~r(X~ t)=±(x~ t)) 

v-i.(xA. "):: ~~:x:.~(xA, t) = x.~ (xA_, t) . 
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5. Velocity and acceleration 

Taking into account /3.1/, /3.2/ and /4.9/, we can ex• press the velocity of a particle in the disturbed state B 
in the following vector form: 

/5.1/ 

r~~ul tiplying both sides of the above relation· by the vectors 
. .. ... 
~ i. and CA" determined in the disturbed position of 

a material particle, and taking into account /3.13/, /3.14/, 
we obtain 

/5.2/ 

/5•3/ 

The components of the velocity vector referred to con
~ 

vected coordinates in the state. ·e, can be obtained multi• . 
plying ·both sides of. /5.1 I by the vectors §A or ~A 
This leads to 

/5.4/ 

/5.5/ 

where we have used /3.4/ andthe following additional relat
ions: 

/ 5.6/ ~fG ·G8
) = o ot\~A ~ , 

According to / 4.8/ the incr ements of velocity components can 
be · v~ritten in t l.1e follO\ving forn : 
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/5.8/ 

where D/Ot = ( 9/'0t) xA = const. It can be seer1 e r~sily 
that tr10 last terms on the right hand side of /5.7; ·; /5. B/ 
c.re exclusively of convected character and the;y- vanish 

~~~13tantly vfhen the fundame Tt;;i l motion does not exist. 

In a similar way, we obtain for the acceleration vec-

tor 
. 

/5.9/ ~(XA>t) =~(XA_,t)+~~\XA,t) ·> 

. 
/5.10/ ~'- = ~~ + ~v'~ = rU-"- +- "1. \. W.'- - r\,~ t~'-..,. )w-'"'), 

/5.11/ 

and 

• 

/5.12/ U ~ = ""A+ 1_,)~ =~A+ "t\'~A + -\:yM V'Aw-M) > 

/5.13/ 

The correspondins inc.rements in convected coordinates 

can be writte11 in an explicit form as follows: 

/5.14/ 
• ' · o't M t> o r. M\ "" ~ 
\)A= ·o\.2. \'I( A- 2. ~ '\J OtWM - O't \t]~ iW'"' + W'"' V'~ CO ~'IJ t 

. + ~ llftl ( ~ '\}N - '\)"I'\ 'i71l -u-) ) 
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/5. 15/ 

Successive accelerations of higher orders can be dealt 
with in a similar manner. 0e ha~e for exmnple 

/5. 15/ 
) 

where ~~) denotes the matel"ial differentiation performed 
'\"\. times, according to the definition of the 'Y\. -th acce
leration. 

It can be also shown that the increm~nts /5.7/, /5.8/ 
or /5.14/, /5.15/ can be derived from /5.3/ or /5.11/ by 

direct tensor transformations. Let us consider for example . 

and next taking into account /5.3/ and /3. 7/, we · obt.ain 

· A M · 
,;s'A = X~'- ( ~\.- "'~{~'f")w"r) - ~~l-\X. )~x..H. 'U"" == 

. ,.. xA !>J " '\ :f' ~ r, w '(' \ x ~.. -= ·'t't - ,)~ '\)' '-~ 1" J 'A - '\) \'1-1 ~ ""'),"' )-t- -

/5.18/ . "' N " ,. xr... u!) l \. '~"' -= w-~ - "'"'~~"'- '\)' \'~' X,.,. 'X. .)~M - )-\, 1.~~ J -
. ~ 

=- W.A- '\)~lw~~+\.~w)w-N)-~'It'f\.l~"'"~-:~x.)~-

Also 
. -'U~~"C"{_s.~JX;\.. =~A. ~ "l'""V'l1~A 

. 
/5.19/ {).A: ·~~A,u.\.: ~A +"'t(~~A.U.~-\-~~A..Q.'-) > 
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and 

/5.20/ = w-A + "'"' ( W~A + \:N )wW) +~-"""'" \\_·:)(::::fL' ~~A+ 
+~.,."'~-le.,. "J 'X. ~A = 

6. Strain tensors and Rivlin-Ericksen kinematic tensors 

The Cauchy-Green strain tensors follow. from the defi

nitions /cf.[3,6] I 

/6.1/ 

When the system of material co-ordinates ( XAJ moves 

c .. nd deforms together with a body I convected coordinates/ the 
second definition /6.1/ is also valid in that system. The . 

tensor Cij and CAS evaluated at the same current · 
instant of time t are ·nwnerically equivalent to the 

metric tensors ~c and GA8 (t) respecticrely. In parti
cular, if in the iAi tial undeformed state 8 the system: 
( XA) coincides with . ( ··x:.f·) then 

0 

/6.2/ CAB(O) = GA8(0)::: 9.:j at 

Similarly, if the above systems of coordinates· coincide in 
the deformed state B , \7e have 

at 't = t . 
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The increments of the Cauchy-Green tensors are de-• 
tenninecl as differences between the disturbed state · B 
and the deforr.1ed state B . According to /6.1/ and /3.91, 
/3.21/, we obtain 

/6.4/ 

In any rectangular Cartesian reference frame the above de
finition is equivalent to the definition of the classical 
strain tensor I cf. [ 3] I, thus 

16.51 

It can be also shown, in a way similar to /3.151, 
\ 

13.161, that in the present notation C i.j (\.) :: 0 
Frequently, other definitions of strain tensors are 

more advantageous in convected coordinates. Let us intro
duce the following strain tensor I cf. ( 2) I: 

/6.6/ 

I 
vthence by simple comparison with 16.41 we have: EA& = 
- ~G' - C"7 •• ~ - 2. -48 - V (A Y'f B) • 

The Ri vlin-Ericksen kinematic tensors [ 8] , are of 
great importance in the theory of non-linear visco-elastic 
materi c..ls . f cf. also [ {, 3] 1. Their definition in the curvi

. linear fixed system of coordinates . l ~'-) can be presented 
as follows: 

/6.7/ A
(O) 
. . = V V· + V. V. = 2 d.i.; &.J. .. J J .. . ,J ) 
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/6.8/ 

where d..lj denotes the strain rate tensor. Transforming 
the above expression to the system of convected coordinates, 
we obtain 

/6.9/ 

/6.10/ A('\l+-1) = A(>VH) X.\, 'X..j :. A(.~) + At\J) 'V '\J~ +A (\J} ~'\)to{ 
AS Lj .>A JS AB · A~ S Me, A • 

• (-1) 

On expandiiJ.g A AB according to the definition /4.8/, we 
have finally 

/6.11/ '"= 0 -1 2 ... \ \ ) ) ) ) ~ 

·rn view of /6.7/ and /6.8/, the increments of the Riv
lin-Ericksen tensors in any spatial system of coordinates 
take the form 

/6014/ A\(.'IJ+\)- (A.{~~)' +t.~">cv.'U"f"+At~)~u'.,. +A\..,~v..u"' + 
\.~ - '"} . \.1" . ~ \."f' J . ...l \. 

A to)~ 'l,)rr +At~) 1 ~}~~+A"~ s .T-\''\)~ + ... ~ \. VC'" l..~ ~ ""j \.\. s.j ~ 
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where on account of /4.2/ 

/6.15/ 

To derive t he corre s ponding increrilents ref·erred to 

the system of convec ted coc.r rl. i nat es (XA) , let us take 

into consideration the followi ng simple relations: 

/6.16/ 

~ 

Hence, we have in the state ~ 
• * .. . ~ () \ 
v;_u~::: 'L)A. ~~ == ('L)A + "l_~·u,)(~s + ·'""l.~s) = 

/6 .17 I =·V ·G + v· ·G +-G ·-w = ( ' D ) 
->A "-s ~ - >A -~ - 'B Dt .._.)A 

According to /6·. 9/, /6.11 I, the above transformation leads 

to the results 

/6.18/ 

/6.19/ 
J\\ (-J+i)- D A'(v) - D.Y+1 Al(o) 
f"\ A8 - Dt AB- Ot"'+i AB 

Bearing in.mind the definition of the angular velocity 

vector or the spin tensor /of. [ 6] l 
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/6.20/ ~.,A - E.A~C. w = ~ €: ASC c~ ttr. - ~ 't): ) 
'"""" - &c. 2. s c _c B J 

where e.ASC is the permutation sJ~bol, we obtain the 
following result: 

/6.21/ 

In ·other words, increments of the spin tensor in the state 
·~ depend as well on the displacement vector w- as on 

. . ,......., 

the velocity of fundamental motion in the state B • I\Iore-
over, it can be observed that the relation /6.18/ is equi
valent to 

/6.22/ 
A\ to> :: 2 cC 0 c:i D C - z D E 
': A~ AS:: Ot A'a: t)lc. Aro- Dt A'O • 

The relations /6.18/, /6.19/ can be obtained directly 
on the base of /6.12/ t.o /6.15/ throughout the corresponding .. 
tensor transformation in the disturbed state B . For 
example, taking into account the definitions /6.8/ and /4.8/, 
we arrive at 

/6.23/ 
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In a similar '~Nay, taking into account /6.8/, /6.14/, we 
obtain 

/6.24/ 

and 

/6.25/ 

We wish to emphasize that any raising o~ indices in 
A'l~) A\(.") 
n i.i and /"\ ,a. should be done in the disturbed ·state 

• J "g * . ; ,., A% 
B using the metric tensors 'a "1 · and G respeti-

vely. Thi~ leads to the results 

Similarly, bearing in mind that 
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and taking into account 

ue obtain 

For the increments of mixed components of the skevv

symmetric spin tensor the following relations are valid 

[cf. /6.20/, /6.21/]: 

/6.32/ u} ·.C.. = D ~\7, ~c._. Vc.W') +d.. ~c.W"M- W YHW<:. t-
. A Dt A A Al'\ A't:\ 

-\- c:Lc"'V'~W".A - wc.NqA W'"~ ' 

/6.33/ w'A - \·A 
- <..0,.. 

•C., '-

In other words, the inci·ements of mixed cornpon.::.n t D of th2 

spin tensor depend not only on the angular velocity of 
fundamental motion but also on the corre spondj_ng strain r2.te 

tensor. 

7. Equations of equilibrium and boundary conditions 

Equations of equilibriwn and surface relations between 
the stress vector and the stress tensor can be written in 
the following equivalent forms /cf. [2] /: 
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/7.1/ 

/7,2/ or 

where and are mixed ahd contravariant 
components of the symmetric Cauchy stress tensor, t A. · 

and tA are covar~ ant and conti'avariant components of 

the sur·face stress vector t fA and .{.., denote 
""'r 'A 

components of a body ·force per ·unit mass, g is the den-

sity of a body, and 'n.A - components of the unit normal 
vector. The a.bove · equations have been wri t t en in convected 
coordinates, however, they have the :3arne :form in an arbi tra-
ry f ixed system of coordinates (. x~), ._ 

JJe t us suppose that in a.ny disturbed state B all 
the quantities mentioned above undergo some increments 

"' which we denote b~,. prJ.ITlGS ,, Thus l' for the state B expresa-
ed in the coordinatoe · (~':}' ) , ;ve have: 6~+-rt6'~, ·t~+-rz.t,,, 
f .+-nf~ 0"-" o~ ·"·~· - - q ~J . .... .., • ·1 1 . tl t (XA) t. t. "'> .;)" ~;} , u ··· a. -j~ ~n-~, ",. L·• .... Q :) J.ID.l ar y, . ln · •• 1e sys ern . , 

we bave. t:::A ... ""1-?\;:~ ~ .LA+-nt'A . etc e Because of different pro-- • '\.,7~· ·v·~,)~ .L. ) 

perties of i;hc systems \. x..i.) and (XA) , the correspond-
ing increments of tensors and vectors in .one representation 
differ from those in the other, however, the relations 
betw~en the1u can be established without any essential dif
ficulty$ 

Substituting formally new values of the quantities 
considered into the equations of equilibrium and the sur

" ' face relations in the state B , we obtain 

\\C.. ( "'f'''L}l ~ f \<. i ..,. . f \ ' ( \ • • I 
V'"'-6 i. - lK L 6"m.. +\.KT J 6\. +- Sr\.·+ CS

1

Ti. = g '\)'\. + gtri. ) 
/7.3/ i 

\7. 6''-"'- + ~ ~ l:s\<.+ f \<.. 1'6i.~+ rl\. + o'fl. :;: d{r'-..-o1J1 ~ 
l(. "b<,'Y't\.J \.\<. m.J . Sr ;:, ~ ~ .) 
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Bearing in mind the relations ~3.12/, /5.12/, /5.13/,and 
remembering that in the state B 

... ~ 

_. • ~ .._ M . t M )w. N j N 16 M 
V. 6 = 6A. .~ \W\ N 6 A - 1.M Al N M A )\'-1\ ~ ) /7.5/ 

we also arrive at the following equations /cf. [1, 2) I: 

/7.7/ 

= g'1YA + g( WA + UN~w-N)) 

t-7 e}AH + 6AN'Y. Q" w.M +-6HMV. 'J. 'Vtt'A + o\fA + of' A
"Vt-\ M M N M ~ ~ -

: S,)-A + s\wA ~'\)-NVNW'A) > . 

/ 7 8/ .L\ 6'"" . . 6"" \ . • . l;..A. = A "n.'"' + A~~ 

The relations ·between the increments 6\~ · and 6\t 
result from the following transformation: 

s ~ = 6A. ~ '-· Xi.. = l6~ ~'ls'~)( -x.~" +"'Lw-~.A)(X~ +'l_X1,~): 
.) ~ >A. )~ Jj ~ 

/7.9/ 

so that 
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Similarly, we obtain 

/7.11/ 

It can be also shown that the equations /7.6/, /7.7/ can 
be derived from /7.3/ as a result of simple tensor trans
formation. 

Let us assume for further simplicity of trans:format
ions that the fixed system of spatial coordinates . ( :x:.i.) 

coincides with the sys.tem of rectangular Cartesian coor-
. dinates (\oL) · • In more general cases, with no loss of . 
gener_ali ty, we can always transform: the equations consider
ed from one fixed system of coordinates into another fixed 
system. 

Under the above assumption, the equations of equi._ 
li brium in the state B , written in the form 

/7.12/ 6 ~ ~ ~ ( t. - ~.) :. 0 
'- )\<. . v\: \. \. ' 

can be 

/7.13/ 
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where we have used /2 •. 5/, /2.6/, /3 .. 11/ rejecting all terms 
of higher order than 0 ( "1) " Taking into· account /3,12/ ~ 
/5.12/, /7.1/1 it can be observed that the condition for 

/7.13/ to be satisfied . 

/7. 14/ 

is equiv-alent to already written equation /7 ~ 6/. In a simila:: 
way the equation /7 .7/ for contravariant representation of 

the stress tensor can be derived startiP~ from the equation 

of equilibrium in the form /7.1/2• 
Let us note at the end of our considerations that for 

incompressible materials many of .the relations discussed so 

far can be simplified considerably. This is achieved with 
the following incompressibility conditions: 

\ M 
/7a15/ G = d....e.tGJ\.O:: i o = ~1:>~ • G =2G\7. w-

~o ) ;;) ) M ') 
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