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PLASTIC YIELDING OF AXIALLY-SYMMETRIC BARS VITH NON-SYwwETRIC
V-KOTICH

L.DIETRICH and W.SZCZEPINSKI,WARSAW

I.Introduction .

The problem of the stress distribution and mode of deformation
of plane strain and plane stress notched bars of & perfectly pla-
stic-rigid material is rather well elaborated..\ number of papers
dealing with this problem have been published starting from the
classie papers by Hill (1) and Bishop [2].For axially symmetric
notched bars,however,the solution based on the Euber-von liises
yield criterion and the associated flow rule is still unavailable,
because as shown by Hill [3] the system of equations is not hyper-
bolic and therefore the method of characteristics cannot be used.

Shield [4] has shown that if the Tresca yield eriterion with
the associated flow rule,along with the Haaer-Karman hypothesis,is
employed,the system of governing equations becomes hyperbolic.He
presented the numerical solution to the problem of indentation of
a plastie infinite body by a flat axially symmetric punch.As shown
by KeClintock [5] this solution may be spplied to the problem of
an axially symmetric bar with a siit-shaped notch undergoing ten-
sion.This can be done by simply chang!ing respectively signs and

indexes of gtresses and velocities.
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Analogous solution for bars with V-shaped and various rounded
notchee,along with the experimental verification,have been presen-
ted in the previous paper [6].

In this study section 3 the plastic incipient flow of V=-notched
axially symmetric bars with different slope of both generators is
considered.The theoretical solution shows that the yield point load
is then greater than for a symmetrically notched bar.This effect
is similar to that obtained for the punch indentation problem (7]
under conditions of axial symmetry where,in contrast to the analo-
gous plane strain solution,the yield point average stresses over
the surface of the punch are greater for the rough punch than for
a smooth one.

Theoretical yield point loads have been verified experimentally.
Three sets of notched specimens of an aluminium alloy have been
tested.The experimental results demonstrate that the yield point
load calculated for perfectly plastic material has real signifi-
cance for ductile metals.

II.Basic equations.

The detailed analysis of the axially symmetric flow of a rigid-
-rlastic material obeying the Tresca yield criterion and the asso-
ciated flow rule is given by Shield (4].To make this paper suffi-
ciently self-contaired a nucber of necessary equations will be
Ziven below.

The stresses at any point of the plastic region of the axially
symmetric notched bar are represented in the principal stress
space O, , ¢, 53 by peoints located on that edge of the Tresca
hexagonal prisz for which
o ) (1)

and

o

- C

o = 2%k, (2)
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where 0; and 52 [51)621 are the principal stresses in the meridio-
nal plane,and 63=f:'9 is the circumferential stress.

Since equations (1) and (2) impose two independent conditioms
on the four stress components 0, , 6, , Tzr and Ge the state of
stress may expressed by two independent parameters ¥ and p , whose

meaning is indieated in fig.l.Consequently we can write

6,=p+ksin 24, T,p = k cos 29, -
6. =p - k sin 24, ﬁe=p—k.

The substitution of the expression into the equilibriuam equations
yields a hyperbolie system of two quasi-linear partial differential
equations with two unknown functions p ,+% and two independent
variables r , z .The equations of the characteristics of this sys-
tem have the form

dz _ = X
5= tan? ., dp - 2k dv = E[dz - dr) (4a)

for the first family of lines,ecalled later o — fawily,and
dz _ I
i " - cotd, dp + 2k d% = - Z(dz + dr) (4b)
Tfor the second family,called g - family.
The vector of the flow velocity in the meridional plane r , z
ean be expressed by the components v, and v, along the  and g

lines,respectively.If use is made of the isotropy condition and of

the incompressibility condition,these components must satisfy the

equations
dvy = wdd = - (v cotd - v,) dz/2r along an & - line, )
dv, + wdd = (vg cot? -.v) dr/2r along a @ - iine. !

Equations (5) were given by Hill [8] and later by Shield [4].
For the veloeity field to be associated with the stress field

the following inequalities must be satisfied
£€;20, £ 0 i, 0, (6)
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where £; and éz are the principsl strain rates in the r , z plane,
and 53 = tg is the circumferential strain rate.

The solution of particular problems consiste in numerieal or
graphical integration of the equations (4) and (5).Salving sub-
sequently appropriate boundary value problems for stresses and
veloeities,we finally obtain the stress and velocity fields.In
this paper solutions are obtained by a graphical method elaborated
by kréz (9] for axially symmetric plastic flow.

IiI.Stress fields

Let us consider a V-notched axially symmetric bar with different
slope of both generators (Fig.2).The generator of the upper part
of the notch makes with the r-axis the angle w,while the genera-
tor of the lower part makes the angle I being smsller than w .
The bar is loaded by two opposite tensile forces.Graphiesl solu-
tions were obtained for notches with angles w= 60° (Fig.3) and
w= 30° (Fig.4).

The stress field in regiom AGC is determined by the stress free
surface AB,the fan at the singular point A being terminated by the
slip-line AC which meets the axis of aymmetry at an angle of 45°
at C.

The extensions of the stress field into the upper and lower ri-
gid parts of the bar were obtained by assuming the material to be
fully plastic.

The extension into the upper part is similar to that given by
Eason and Shield {7] for the punch indentation problem.The £-line
BC together with the condition that slip-lines meet the axis of
symmetry at angles 45°,determines the stress field to the left of
the A-Iine through B.The field to the right of the A-line through
B may be obtained by solving the inverse Cauchy boundary walue pro-
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blem,assuming the line BK to be hypothetieal stress-free surface
of the bar.Depending on the value of the angle w ane or two sho-
cks are introduced at the points M and E,where the [ -lines begin
to interseet one another.The disecontinuity lines are shown by bro~
ken lines.The hypothetical stress-free boundary is parallel to the
axis of symmetry at the point K.The utresandiacontinuity line KE
is terminating the stress field.Above KE the stress is uniaxial
tension or compression parallel to the z-axis and not violating the
yield eriterion as shown in both figures.

Let us consider now the extenaion into the lower part of the bar.
The f-line AC together with the condition that slip-lines meet
the axis of symmetry at angles of 45° determines the stress field
in the eurvilinear triangle ACOH.The angle of the slip-line fan
at A must be equal to the angle of the upper fan at A.The stress-
-free boundary AF was obtained in the same manner as the upper
boundary ABK.Depending on the value of w the atress discontinu-
ities are introduced at the point F or R,where the «-lines begin
to intersect one another.The stress field was terminated by the
gtress discontinuity line FG,below which the stresa is uniaxial
tension or epmpression.The calculated values of stresses shown in
Figs.3 and 4 do not exceed the yield point.

The total forces acting on both terminsiing discontinuity sur-
faces KE and FG were found to be within 6.3 % of the force calcu-
lated on the narrowest cross-section 40.This discrepancy may be
attributed to the inaccuracy of the graphical method used in this
work. .

The stress fields obtained for both cases are statically admis-
sible and the calculated yield point loads are lower bounds for the

tensile force.



It is interesting to note that the smaller is w the more the
tangent line to the strees-free surface AF at A approaches to the
gemerator AE of the upper part of the noteh.For w = 24° we have
w={ and both lines coincide.Thus the solution obtained for
w = 24° is valid for the limit case of the slit-notch making an
angle of 24° with the r-axis as shown in Fig.5.If w{ 24° the solu-
tion of type demeribed above cannat be constructed,beecause the
stress-free boundary AF of the lower extension of the stress field
interseets the boundary 4B of the upper part of the bar.

The total load of the ineipient plastic flow has Leen obtained
for both ealeulated cases w = 60° and w = 30° by means of numeri-

eal integration along the radius OA of the nmarrowest cross-gection
» [n
P =27 & Gzrﬂr . (7)

The yield point load factor of the notched bar will be defined

as the ratio

£= 22, (8)
where P, = 2T B%k is the yield point load af the smooth bar with
the diameter 2R.

For w = 60° the yield point load factor is fgy0 = 1.75 end for
w= 30° is found to be £400 = 2.42.For W = 90% it is obviously
fg00 = 1.00.The eontinuous line 1 in Fig.6 plotted through the
ealeulated points gives the value of the load factor for an arbi-
trary angle w of the notch.The lower continuous line 2 gives the
load factors for symmetrically V-notehed bars [6],i.e. for ¥ =w.
The exzet value= of the load factors for nm—éymetrically notched
bars with angles w ¢ 24° are not known.For practical purposes,
however,their approximate values may be obtained from the straight
line through the points A and B.The dashed line 3 shows the load
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factor values for plane strain bars with V-shaped notches.
IV.Velaecity field
Let us assume that the incipient plastic flow is confined to
the region ABC.The rigid parts of the bar move with the velocity
v, as shown in Fig.2.It is more convenient,however,to assume with-
out loss of generality,that the upper part of the bar is fixed
{v = 0)and the lower part movee downwards with the velocity 2v°.
Such conditions can be obtained by superposition of the rigid
translation of the bar downwards with the velocity Vo
The velocity field in the region ABC must satiafy the conditions
that the normal velocity acroass pA-line AC is continuous and that
the normal velocity across ®(-line BC is zero.Thus along BC L 0
and the first of equations (5) gives
Vo = A/VT en BC ,
where 4 is a comstant.To avoid an infinite value of v, at C the
constant A must be set equal to zero.Thus
Vo =V =0 on BC , (9)
The eondition that the mormal velccity across AC must be conti-
nuous implies
Vg = 2 A sind on iC , (10)
Thus the second of equations (5) takes the form
av, + 2 v, sinh dd+ (v, - 2 v, cosh§E = 0 . (11)
Integrating this equation we obtain
v - 2 v, cost =ﬁ_B-, {12)
where B is a constant.A similar argument to the above shows that
B = 0,s0 that
v, =2 v, costh along AC . (13)

The conditions (9) and (13)constitute the characteristic boun-

dsry value problem for the veleocity equations (5),and define the



veloeity field in the entire region ABC.Since the veloecity problem
is sinmilar to that eonsidered by Eason and Shield [7],the same
procedure may be used in our case.In the present atudy this field
has not been calculated,and therefore the numerical check of ine-
qualities (6) eculd not be made.

V.Experimental results

Three sets of specimens were tested to determine the yield point
fTor axially symmetriec bars with various angles w .The material of
all specizens m the aluminium alloy PA3 (according to polish stan=-
darts) containing 5 percent of magnesium.

A universal hydrsulic testing machine and hinge-type fittings
were used in order to minimize the possibile bending of the bar.
Defornations were recorded by means of a mechanical extensometer
with two 0.01 mm division dial gauges and 60 mm gauge length,applied
on the surfaee of sach specimen at diametrically opposite positions.
In order to eliminate possible sligth deviations from symmetry,
the deformations were takem as the mean value of readings of both
dial gauges.It was found that such measuring technique assures
good reproducibility of experimental results.

In the first set six specimens with various angles w have been
tested.Dimensions of specimens are shown in Fig.7,where also ini-
tisl portioms of the conventional stress 0 = B/F, (F, =T&%) - el-
ongation Al diagram are presented.Since the diagrams do not dis-
play clearly vigible yield point stresses,a conventional definition
of the yield average stress 0" is introduced as the point at whieh
the tangent modulus reaches the value 0.3 tanc ,where & is the
angle which makes the initial atraight portion of the diagram with
the elongation axis.The actual yield point load factor was then
ealeulated from the formula f = 0"/0,,where O, is the actual aversge
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yield point stress obtained experimentally for an unnotched bar.
The experimental valueas of the load factor are shown as small
stars in Fig.6.

In the same manner & set of specimens with symmetrical notched
(W=17) has been tested.The material was also the Fi3 aluminium al-
loy and the same measuring technique has been used.The experimental
¥ield point load factors are marked in Fig.6 by small circles.

In the last set 13 specimens of the PA3 aluminium alloy were
tested.All dimensions including notch angle were the same except
the diameter 2¢ of the upper part (¥ig.8) .Thus the influence of
the e/K ratio on the yield point load has been investigated.Fig.8
shows some of the obtained conventional stress-elongation diagrams
for various c/R ratios.Arrows indicate the conventional yield
point average stress estimated in the manner described above.

Thug obtained yield point stresses are shown by small circles in
Fig.9.

The heavy lines show the theoretical estimates of yield point
average stresses.For ¢/R ) 1.78 the extended slip-line field from
Fig.3 lies entirely within the actual contour of the upper part of
the bar.Thus to the right of ¢/R = 1.78 the yield point stress is
constant for arbditrary e/R.zor ¢/R { 1.78 the exact solution is
s8till unavailadle and the lower and upper bounds on the yield point
load can only be calculated.A lower bound may be obtained from the
field shown in Fig,10.If the actual ¢/R ratio is to small for the
given wq,we can always find such an angle w, for which the exten-
ded stress field will be inseribed entirely within the actual con-
tour of the bar.The load factor taken from Fig.6 for W, furnishes
& lower bound on the actual load faetor.in upper bound on the
yield point load may be found by equating the work done by both
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tensile forces F to internal dissipated energy for any kinematical-
ly admissible deformation mode,considered as plastic only.In this
study the upper bounds have been calculated by assuming a simple
collapse moae containing & shear plane making an angle of 45° with
the axis of symmetry.This collapse mechanism gives the best upper
bounds for ¢/B { 1.59.7or 1.59 {¢/R{1.78 the better upper bound

on the yield load will be connected with the slip-line mechanism.

leferences

1. R.Eili, The rlastic yielding of notched bars under temsion,
Quart.J.ilech.ippl.liath., 2, 40 (1949).

2. J.F.7.Cishop, Cn the complete solution to problems of deformation
.of a plstic-rigid material, u.leck.fhys.solids,2, 43 (1953).

3. R.Hill; “he mathematicel theory ol plsticity, 2nd Ed., p.263,
Cxford: Clarendon Iress. 1956.

4. Q.T.ohield, Cn the plastic flow of metals under conditions of
axial symmetry, Proc.Roy.voc. A 233, 267 (1955). _

5. F.A.lcClintock, COn notch sensitivity, Weld.J.Research supl.,

_ ¥ay 19€1. '

E. ?.Séczepiﬂski,L.Dietrich,ﬂ.urescher and J.liastkowski, Flastie
flow of axially-symmetric notched bars pulled in tension,
Int.J.>o0lids otruct.,2, 543 (1966).

7. G.CZason and R,T.Shield, The plastic indentation of a semi-infi-
nite solid by a perfectly rough circular puunch, Zeits.ingew.
veth.Phys., 11, 33 (196C).

8. 2..ill1, The mathematical theory of plsticity, 2nd Id., p.279,
Cxford: Clarendon Iress. 19%6. )

9. Z..76z, Uraphical solutions of axially;syumetric problems of pla-

stic flow, Zeits.\ngew.llath.Thys., 18, 219 (1967).






e e e — 0z
B o — ———— — oL
o W s e i 0f1
GLY = ./7
L§) — — — —_ ———500
&.w‘l _—— » |II...I8.D
180 —— \
By = —— 800 -
Z90——
480~ - L0 ~
80— &40 -
BT,O\/ ,
Y]]
—_— =000
¥ 40 Siun = < ¥ 40 Spun

Fig. >



) | ..+ -
%l ———— — - ——— — — — 003
Blh e - : _ —— — —— g}
| / 0 ——— e — L}
- e
R - e
[+1o = Fy = R AT -| &
- —— - h —— — — -
gEp—-— — --— \@_‘ _ ' ) \ o
- —— = -
00— —- —e— . 120 m

Y ——— : —— 200

/ —- 900
Gli)=— =— :

— 800

7 e !
/ =400
L=~ — L0
Ho- N [ ()

fe~




94°
" I.;., A N .
\ X \ o | _
_ N ,
: . > N Lo - ) 0
| e © =
..w| :
_ % _
v
W Y




o Symmetrical nofch
» Asymmetrical nolch
Materal: aluminum |
alloy (PA3)

(=1]

i 75 for spec. na 1and ?
$2R= 9 Por spec no 3o 4
! Por spee.ng 5 usi

L Ma’erial: akuminium alloy PA3




(5]
- |
kG-mm U N I
o : 5 0o 4 ﬁ
20 oL /{ ]
e T !
o @z
: | o2
N Lower boind | | /\%D
¢ | |
| /
1 | J-
I SR
| i
| e
| | ' Material: aluminium alloy PA3
G L l I i

?is. 9



WA






