

ROZPRAWA DOKTORSKA

Metoda zol-żel w zastosowaniu do otrzymywania nanokrystalicznych związków z układu Y-Nd-Al-O: synteza, struktura, luminescencja

mgr inż. Agnieszka Szysiak

Promotor

Prof. dr hab. Anna Pajączkowska

Warszawa, 2013

http://rcin.org.pl

Podziękowania

Pragnę serdecznie podziękować pani prof. dr hab. Annie Pajączkowskiej za opiekę naukową nad przebiegiem mojej pracy, cenne uwagi i wskazówki dotyczące pisania rozprawy oraz za wszelką okazaną mi życzliwość.

Dziękuję również pani dr inż. Ludwice Lipińskiej za czas poświęcony na dyskusje nad wynikami badań.

Dziękuję serdecznie kolegom z IKZ w Berlinie (dr Detleff Klimm i Steffen Ganschow) za ogromną życzliwość, bardzo miłą i udaną współpracę w zakresie badań DTA i mikrowyciągania kryształów.

Dziękuję bardzo panu prof. dr hab. Witoldowi Rybie-Romanowskiemu za pomoc w opracowywaniu wyników badań optycznych.

Dziękuję mojemu wyjątkowemu Mężowi za wsparcie, cierpliwość i motywowanie do pisania.

SPIS TREŚCI

WSTĘP

el i tezy pracy	3
-----------------	---

DOTYCHCZASOWY STAN WIEDZY

1. Związki z układu Y-Nd-Al-O						
	1.1.	Tlenki proste: Y ₂ O ₃ , Nd ₂ O ₃ , Al ₂ O ₃	8			
	1.2.	Związki z itrem: Y ₃ Al ₅ O ₁₂ , YAlO ₃ , Y ₄ Al ₂ O ₉	10			
	1.3.	Związki z neodymem: Nd ₃ Al ₅ O ₁₂ , NdAlO ₃ , Nd ₄ Al ₂ O ₉ , NdAl ₁₁ O ₁₈	13			
2.	Wybór metody syntezy 1					
3.	Metody charakteryzacji materiałów 2					
4.	Podsumowanie i przesłanki do części doświadczalnej 25					

CZĘŚĆ DOŚWIADCZALNA

5.	$Wybór\ metody\ syntezy\ proszków\ nanokrystalicznych-badanie\ Y_4Al_2O_9\ldots 26$					
6.	i badań układu Y-Nd-Al-O	45				
	6.1.	Otrzymywanie $\mathrm{Y}_2\mathrm{O}_3$ czystego i domieszkowanego jonami $\mathrm{Nd}^{3+},\mathrm{Yb}^{3+}\ldots$	45			
	6.2.	Badanie układów Y ₂ O ₃ Al ₂ O ₃ , Y ₂ O ₃ Nd ₂ O ₃	62			
	6.3.	Badanie układu Y ₃ Al ₅ O ₁₂ Nd ₃ Al ₅ O ₁₂ (YAG-NAG)	70			
	6.4.	Badanie układu YAlO ₃ NdAlO ₃ (YAP-NAP)	82			
	6.5.	Badanie układu Y ₄ Al ₂ O ₉ Nd ₄ Al ₂ O ₉ (YAM-NAM)	97			
7.	Podsumowanie i wnioski końcowe 1					
8.	Literat	ura	116			

WAŻNIEJSZE SKRÓTY I SYMBOLE STOSOWANE W PRACY PUBLIKACJE AUTORKI ZWIĄZANE Z NINIEJSZĄ PRACĄ

WSTĘP

Motywacją podjęcia tematu było rozszerzenie badań prowadzonych w ramach wykonywanego w ITME projektu badawczego MNiSW nr 3 T11B 004 30, pt.: "Nanokrystaliczne materiały dla optoelektroniki otrzymywane metodą zol-żel: badania strukturalne i optyczne", zakończonego 10.04.2009 r. Na podstawie wniosków z tego projektu wynikła potrzeba analizy układu Y-Nd-Al-O w celu potwierdzenia istnienia związków przewidywanych w ramach trójkąta Gibbsa.

Obecnie materiały otrzymywane za pomocą metody zol-żel przeżywają bardzo intensywny rozwój. Metoda ta jest odpowiednią do otrzymywania nanomateriałów (polikrystalicznych ciał stałych, których przynajmniej jeden z wymiarów nie przekracza 100 nm) w postaci proszków, a te z kolei są aktualnie najbardziej rozpowszechnioną formą nanomateriałów. Niezwykle szeroki jest również obszar zastosowań nanokrystalicznych materiałów – od dodatków do farb, kremów, czy jako składniki materiałów litych. W stosunku do tradycyjnych – objętościowych materiałów mogą różnić się właściwościami fizycznymi, mechanicznymi, magnetycznymi, elektrycznymi, czy optycznymi. Rozmiary proszków rzędu nanometrów pozwalają je również stosować jako materiały transportujące w ludzkim organizmie leki, bądź wykorzystywać w diagnostyce medycznej.

Cel i tezy pracy

Przedstawiona praca ma następujące cele:

1) naukowy:

- weryfikacja układu Y-Nd-Al-O, którego związki czyste i domieszkowane są bardzo atrakcyjne dla zastosowań, głównie w optoelektronice,
- otrzymanie związków i roztworów stałych (wieloskładnikowych) w ramach trójkąta Gibbsa, w układzie Y-Nd-Al-O:
 - Y₃Al₅O₁₂ (YAG); YAG:Nd \rightarrow roztwór stały (?) \rightarrow (Nd₃Al₅O₁₂) NAG?
 - YAlO₃ (YAP); YAP:Nd \rightarrow roztwór stały (?) \rightarrow NdAlO₃ (NAP)
 - Y₄Al₂O₉ (YAM); YAM:Nd \rightarrow roztwór stały (?) \rightarrow (Nd₄Al₂O₉) NAM?

- doświadczalne potwierdzenie, że metoda zol-żel jest odpowiednią do syntezy tlenków wieloskładnikowych (potrójne, domieszkowane),
- potwierdzenie efektywności podstawień i struktury badanych związków z układu Y-Nd-Al-O poprzez zaobserwowanie zjawiska luminescencji po domieszkowaniu (pojedynczym i podwójnym) jonami ziem rzadkich;

2) praktyczny:

• otrzymanie jednofazowych, czystych materiałów metodą zol-żel, do zastosowań w optoelektronice.

W ramach realizacji przedstawionej pracy podjęto próbę udowodnienia następujących tez:

Czy obecna wiedza o związkach z układu Y-Nd-Al-O jest kompletna?

Czy potwierdzą się założenia, że metoda zol-żel jest odpowiednia do otrzymania następujących połączeń (dwu- i wieloskładnikowych) – związków i roztworów stałych w układzie Y-Nd-Al-O, w ramach trójkąta Gibbsa:

 Y_2O_3 (YO) \rightarrow roztwór stały (?) \rightarrow Nd₂O₃ (NO) i Al₂O₃ (AlO)

 $Y_3Al_5O_{12}$ (YAG); YAG:Nd → roztwór stały (?) → (Nd_3Al_5O_{12}) NAG (?)

YAlO₃ (YAP); YAP:Nd → roztwór stały (?) → NAP

 $Y_4Al_2O_9$ (YAM); YAM:Nd → roztwór stały (?) → NAM (?)?

Sprawdzenie efektywności metody zol-żel do tworzenia związków w układzie Y-Nd-Al-O czystych i domieszkowanych.

Aby zrealizować postawione cele i udowodnić założone tezy, wyznaczono następujący zakres badań:

- synteza metodą zol-żel: dobór prekursorów i warunków syntezy,
- domieszkowanie jonami ziem rzadkich
- obróbka termiczna (wygrzewanie, spalanie),
- analiza proszkowa XRD analiza fazowa,
- badania za pomocą HRSEM skaningowej mikroskopii elektronowej,
- analiza DTA/TG termiczna,

- badania średnicy ziaren w funkcji temperatury i warunków syntezy,
- badania luminescencji,
- krystalizacja za pomocą metody mikrowyciągania (mPD), potwierdzenie stabilności struktury, charakteru topienia oraz przejść fazowych.

Praca jest z zakresu inżynierii materiałowej i ma charakter doświadczalny: wytwarzanie materiałów, określenie poszczególnych faz, a następnie ich charakteryzacja i ocena z punktu widzenia zastosowań.

Nd ₂ O ₃ - Al ₂ O ₃ .
Y ₂ O ₃ -
układu
/iązków z
wości zw
Właściy
Tabela 1.

Przykładowe zastosowanie	przemysłowe lasery dużej mocy, lasery przestrajalne, jako luminofor	domieszka w materiałach laserowych, barwienie porcelany i szkła	materiał ścierny, polerski, nośnik katalizatorów,	materiał laserowy, scyntylacyjny, detektor w mikroskopii elektronowej	materiał laserowy, scyntylacyjny, detektor promieniowania jądrowego	luminofor, ceramika laserowa	1	składnik nanokompozytów z Al ₂ O ₃	I	T
Sposób topienia	kongruentnie	kongruentnie	kongruentnie	kongruentnie	niekongruentnie	kongruentnie	I	kongruentnie	niekongruentnie	niekongruentnie
Temp. przemiany	2327	2071, 2185	ı	-	~ 1600	~ 1400	-	1700	ı	-
Temp. topnienia	2439	~ 2300	2050	1970	~ 1900	~ 2000	I	~ 2100	1905	I
Grupa przestrzenna	I a 3 (206)	P $\overline{3}$ m 1 (164)	R $\overline{3}$ c (167)	I a <u>3</u> d (230)	P b m n (62)/ P n m a	P 2 ₁ /c (14)	I	R $\overline{3}$ c (167)	P 2 ₁ /c (14)	-
Struktura	kubiczna, heksagonalna – wysokotemperaturowa	romboedryczna, heksagonalna, kubiczna	romboedryczna	kubiczna	ortorombowa, też heksagonalna i kubiczna – obie niestabilne	jednoskośna	ı	romboedryczna, kubiczna	jednoskośna	izomorficzna odmiana tlenku glinu
Związek	Y_2O_3	Nd2O3	Al_2O_3	Y ₃ Al ₅ O ₁₂	YAlO ₃	$ m Y_4Al_2O_9$	$Nd_3Al_5O_{12}$	NdAlO ₃	$Nd_4Al_2O_9$	NdAl ₁₁ O ₁₈

9

DOTYCHCZASOWY STAN WIEDZY

1. Związki z układu Y-Nd-Al-O

W układzie pierwiastków Y-Nd-Al-O istnieje szereg tlenków prostych i złożonych. I tak są to: Y₂O₃, Nd₂O₃, Al₂O₃, Y₃Al₅O₁₂, YAlO₃, Y₄Al₂O₉, Nd₃Al₅O₁₂, NdAlO₃, Nd₄Al₂O₉, NdAl₁₁O₁₈ (rys. 1). Niektóre z nich są niestabilne, jak chociażby NdAl₁₁O₁₈, czy też Nd₄Al₂O₉, niektóre są bardzo znane i szeroko opisane w literaturze, np. Y₃Al₅O₁₂, YAlO₃, Y₂O₃, o innych natomiast można znaleźć tylko wzmianki w nielicznych artykułach (NdAl₁₁O₁₈), a jeszcze inne są znane tylko w postaci proszku, ponieważ jak dotąd nie udało się ich otrzymać w postaci kryształów (Y₄Al₂O₉).

Rys. 1. Trójkąt Gibbsa dla tlenków glinu, itru i neodymu. Punkty pełne oznaczają związki o stabilnych strukturach, punkty puste oznaczają związki o strukturach niestabilnych. Strzałki pokazują kierunki rozkładu danego związku.

Jakby nie scharakteryzować wyżej wymienionych materiałów, pewnym jest, że są one obecnie w centrum zainteresowania nauki ze względu na ich ciekawe właściwości fizyczne i zastosowania, głównie w postaci kryształów jako materiały laserowe, materiały scyntylacyjne, czy też jako detektory w mikroskopii elektronowej. Coraz częściej zdarza się, że związki te są stosowane w postaci proszków, na przykład jako luminofory lub jako faza aktywna w kompozytach polimerowych. Wszystkie wyżej wymienione związki i połączenia między nimi są przedmiotem badań zawartych w niniejszej pracy i zostały przedstawione w trójkącie Gibbsa na rys.1. Obecny stan wiedzy o ich własnościach fizyko-chemicznych jest przedstawiony w Tabeli 1. W następnych rozdziałach zostały omówione poszczególne związki.

1.1. Tlenki proste: Y₂O₃, Al₂O₃, Nd₂O₃

przestrajalne $(Y_2O_3:Yb^{3+})^6$.

Y_2O_3

Tlenek itru Y_2O_3 (yttrium oxide) krystalizuje w układzie regularnym, w grupie przestrzennej I a $\overline{3}^1$. W temperaturze około 2280°C następuje przejście fazowe do struktury heksagonalnej. Y_2O_3 topi się kongruentnie i należy do grupy tlenków, które topią się w bardzo wysokich temperaturach, w tym przypadku jest to 2430°C. Jego przewodność cieplna (13.6 W/cm) jest znacznie wyższa, niż powszechnie stosowanych kryształów granatu itrowo-glinowego (YAG) (11.0 W/cm w temperaturze $30^{\circ}C$)², zaś współczynnik rozszerzalności cieplnej dla tlenku itru i granatu itrowo-glinowego jest bardzo podobny. Tlenek itru, domieszkowany jonami pierwiastków ziem rzadkich, w postaci kryształów jest stosowany jako materiał wyjściowy do produkcji laserów wysokiej mocy, zaś w postaci proszku ma zastosowanie jako luminofor w optycznych wyświetlaczach urządzeń emitujących światło. W literaturze opisane są właściwości spektroskopowe Y_2O_3 domieszkowanego pojedynczo różnymi pierwiastkami ziem rzadkich, takimi jak: Er, Eu, Yb^{3,4}, czy też Tb, Ho, Nd⁵. I tak na przykład ceramika Y_2O_3 :Nd³⁺, czy też Y_2O_3 :Yb³⁺ może być stosowana w wielu dziedzinach, takich jak przemysłowe lasery dużej mocy, czy chociażby fuzja laserowa (Y_2O_3 :Nd³⁺)⁶, lasery femtosekundowe, jak również lasery Przy otrzymywaniu Y_2O_3 , zmodyfikowana metoda zol-żel jest znakomitą alternatywą do wzrostu z fazy roztopionej, dla którego poważnymi ograniczeniami są wysoka temperatura topnienia i rozmiary otrzymywanych kryształów^{3,7}. Tlenek itru o rozmiarach nanometrycznych domieszkowany jonami ziem rzadkich otrzymywany był za pomocą różnych metod, jak na przykład synteza spaleniowa^{8,9}, piroliza aerozolu¹⁰, mokre metody chemiczne¹¹. Struktury nanometryczne proszków domieszkowanych jonami ziem rzadkich nadają ceramice Y_2O_3 interesujące właściwości optyczne i potencjalnie może być ona stosowana w mikrourządzeniach.

Al_2O_3

Tlenek glinu Al₂O₃ *(aluminum oxide)* występuje w kilku odmianach polimorficznych. Do najważniejszych z nich należą:

 α -Al₂O₃ (korund) – postać najtrwalsza o strukturze romboedrycznej, należąca do grupy przestrzennej R $\overline{3}$ c; topi się kongruentnie w temperaturze około 2050°C, odporny na działanie kwasów i zasad, o dużej twardości (9. stopień w skali Mohsa); stosowany jako materiał ścierny (zarówno w pastach do zębów, jak i w przemyśle), polerski czy chociażby jako kamień łożyskowy w zegarkach oraz do wyrobu materiałów ogniotrwałych; powstaje podczas prażenia odmiany gamma do 1000°C;

 γ -Al₂O₃ – biały proszek nierozpuszczalny w wodzie, o właściwościach amfoterycznych; stosowany jako wypełnienie w kolumnach chromatograficznych, czy też jako surowiec do otrzymywania metalicznego glinu metodą elektrochemiczną, jest także nośnikiem katalizatorów; powstaje poprzez prażenie wodorotlenku glinu w temperaturze około 300°C.

Nd_2O_3

Tlenek neodymu Nd_2O_3 *(neodymium oxide)* w temperaturze pokojowej ma strukturę romboedryczną i należy do grupy przestrzennej P $\overline{3}$ m 1¹². Powyżej temperatury około 2071°C ma strukturę heksagonalną, zaś w około 2185°C następuje przejście fazowe i powyżej tej temperatury Nd_2O_3 ma strukturę kubiczną¹³. Topi się kongruentnie w około 2300°C.

Tlenek neodymu ma zastosowanie w barwieniu porcelany i szkła. Jako dodatek szkła absorbuje żółtą linię D sodu, dlatego używany jest do produkcji okularów ochronnych, na przykład dla pracowników hut szkła. Stosowany jest jako domieszka w laserach opartych na ciele stałym (np. YAG:Nd), do produkcji kineskopów telewizorów czy też magnesów.

1.2. Związki z itrem: Y₃Al₅O₁₂, YAlO₃, Y₄Al₂O₉

W układzie tlenków Y_2O_3 - Al_2O_3 mogą tworzyć się trzy fazy: $Y_3Al_5O_{12}$ (YAG), YAlO₃ (YAP) oraz $Y_4Al_2O_9$ (YAM), które należą odpowiednio do: kubicznego granatu, ortorombowego perowskitu oraz struktury jednoskośnej. Faza YAG jest najbardziej stabilną w układzie tlenków itru i glinu. Wymienione związki, ich otrzymywanie i własności spektroskopowe są przedmiotem badań niniejszej rozprawy.

Y₃Al₅O₁₂ (YAG)

Granat itrowo-glinowy $Y_3Al_5O_{12}$ (YAG – *yttrium aluminum garnet*) ma strukturę kubiczną i należy do grupy przestrzennej I a $\overline{3}$ d. Topi się kongruentnie w temperaturze około 1970°C.

YAG domieszkowany jonami pierwiastków ziem rzadkich lub metalami przejściowymi jest powszechnie używany jako materiał laserowy, scyntylacyjny, na detektory w mikroskopii elektronowej. YAG:Nd jest jednym z najlepszych materiałów laserowych o wysokiej mocy, z dużą wydajnością energetyczną, dającym bardzo krótki impuls (mierzony w nanosekundach) typu Q-switch. Lasery YAG:Nd są rutynowo używane podczas zabiegów usuwania barwnika ze skóry. Z kolei YAG:Er generuje bezpieczną dla ludzkiego oka długość fali i może być stosowany w wielu aplikacjach, gdzie wzrok ludzki narażony jest na uszkodzenie.

Monokryształy YAG wytwarzane są głównie za pomocą metody Czochralskiego. Jest to długotrwały i kosztowny proces wymagający drogiego sprzętu, dlatego w ciągu ostatnich kilkunastu lat nastąpił gwałtowny rozwój metod chemicznych, za pomocą których można otrzymać YAG w postaci proszku i przez to poszerzyć obszar jego zastosowań, np. jako luminofor, czy też przezroczysta ceramika, bądź składnik kompozytów (np.

polimerowych¹⁴). Kolejną ważną zaletą mokrych metod chemicznych, do których należy chociażby synteza zol-żel, jest możliwość wprowadzania dużych ilości domieszek. I tak na przykład dla YAG:Nd otrzymanego za pomocą tej właśnie metody udało się wprowadzić neodym o stężeniu do 27,5 %¹⁵ przy zachowaniu struktury typowej dla granatu, podczas gdy maksymalna ilość domieszki neodymowej, jaką udaje się wprowadzić do monokryształu otrzymanego metodą Czochralskiego, wynosi około 1,5 %¹⁶, zaś metodą krystalizacji z wysokotemperaturowego roztworu bezwodnego (HTS – ang. *high temperature solutions; flux-melt*) do 8 %¹⁷ i 12 %¹⁸. Lepsze efekty daje metoda epitaksji, czyli osadzania cienkich warstw na podłożu krystalicznym. Za pomocą tej techniki można wprowadzić aż 15 % jonów neodymu Nd³⁺ do struktury granatu¹⁹.

YAlO₃ (YAP)

Perowskit itrowo-glinowy YAlO₃ (YAP – *yttrium aluminum perovskite*) występuje w trzech odmianach i jego struktura jest pośrednią między strukturą typu perowskitu (CaTiO₃), a strukturą typu ilmenitu (FeTiO₃) i należy do grupy przestrzennej P n m a²⁰ lub P b m n²¹, struktury ortorombowej. Dwie pozostałe fazy to struktura heksagonalna oraz struktura kubiczna – obie są niestabilne. Są wzmianki w literaturze, że czysty YAlO₃ topi się kongruentnie około 1900°C, a jednocześnie poniżej temperatury 1600°C jest niestabilny²². Z kolei inni autorzy donoszą, że YAP jest stabilny po wygrzaniu w ciągu 300 godzin w temperaturze 1200°C w atmosferze powietrza i topi się kongruentnie w 1940°C²³. Te obserwacje zgadzają się z oszacowanymi wartościami dla układu Al₂O₃-Y₂O₃ przeprowadzonymi przez Olgę Fabrychnaya i innych²⁴, którzy potwierdzają stabilność perowskitu itrowo-glinowego w niższych temperaturach.

Perowskit itrowo-glinowy jest bardzo dobrze znanym materiałem laserowym. Na przykład monokryształy YAP domieszkowane cerem (YAlO₃:Ce) mają zastosowanie w technice laserowej, ale są również używane jako szybkie scyntylatory do detekcji promieniowania jonizującego²⁵. Domieszka manganu powoduje, iż YAP:Mn może być stosowany w dozymetrii termoluminescencyjnej jako detektor promieniowania jądrowego²⁶. Perowskit YAlO₃ wykazuje świetną stabilność termiczną i bardzo dobrą odporność chemiczną.

Tradycyjnie YAP otrzymuje się w postaci monokryształów, za pomocą metody Czochralskiego. Rozpoczynając krystalizację od temperatury około 1900°C, dzięki szybkiemu przechłodzeniu omija się przejście fazowe, które jest w około 1600°C. W tak wysokiej temperaturze występuje bardzo duża reaktywność tygla irydowego z tlenem, zatem procesy prowadzi się w atmosferze gazu obojętnego. Taka procedura prowadzi do znacznego zdefektowania kryształu.

Zmodyfikowana metoda zol-żel, ostatnio coraz szerzej stosowana, umożliwia otrzymanie YAP w prosty sposób, w atmosferze powietrza i typowego wyposażenia laboratorium chemicznego. Jednak otrzymanie jednofazowego YAP, nawet metodą zol-żel, nie jest łatwe. Często bowiem oprócz fazy pożądanej tworzą się inne fazy, takie jak YAG, YAM. Jak podają dane literaturowe, których na ten temat jest bardzo mało, otrzymanie jednofazowego YAP za pomocą zmodyfikowanej metody zol-żel wymaga temperatury co najmniej 1100°C, przy czym powinna być ona gwałtownie podnoszona bez chłodzenia próbki w międzyczasie²⁷.

Y₄Al₂O₉ (YAM)

Związek Y₄Al₂O₉ (YAM – *yttrium aluminum monoclinic*) ma strukturę jednoskośną i krystalizuje w grupie przestrzennej P $2_1/c^{28}$. W literaturze opisane są nieznaczne różnice w stałych sieci komórki jednoskośnej^{29,30,31}, co oznacza iż wartości te zależą od sposobu i warunków przygotowywania próbek. YAM topi się kongruentnie w temperaturze około 2000°C (1942°C - doświadczalnie³², 2030°C - doświadczalnie³³, 2250°C - teoretycznie³⁴). Abell i inni³⁵ opisują przejście fazowe dla YAM w temperaturze 1300°C, podczas którego następuje tworzenie się fazy YAG oraz innej niezidentyfikowanej fazy. Natomiast Yamane i inni³⁰ wskazują temperaturę 1370°C, w której zachodzi przejście fazowe powodujące, że objętość podstawowej komórki YAM zmienia się o około 0.4 %. Z kolei Fabrichnaya i inni^{24,36} pokazują, że Y₄Al₂O₉ już w temperaturze 1100°C jest niestabilny i podczas chłodzenia następuje jego rozpad do mieszaniny faz YAIO₃ i Y₂O₃ stabilnej w niższych temperaturach. Również Papadopoulos³⁷ i Liu³⁸ piszą o łatwo zachodzącym rozpadzie fazy jednoskośnej YAM na Y₂O₃, YAIO₃ (YAP) i Y₃Al₅O₁₂ (YAG).

Ze względu na przejście fazowe monokryształy $Y_4Al_2O_9$ zwykle pękają podczas chłodzenia. Problem ten można ominąć przeprowadzając syntezę w temperaturze poniżej przejścia fazowego. Możliwe jest to, gdy zastosujemy chemiczne metody syntezy i otrzymamy $Y_4Al_2O_9$ w postaci proszku. Do fazy jednoskośnej YAM dość łatwo wprowadza się jony pierwiastków ziem rzadkich. Domieszkowanie nadaje proszkom własności optyczne i mogą być one wykorzystywane jako luminofory lub materiał na ceramikę laserową^{20,39,40}. Znane są np. luminofory na nanokrystalicznych proszkach $Y_4Al_2O_9$:Eu³⁺ - mają one dwa centra luminescencyjne²⁷.

1.3. Związki z neodymem: Nd₃Al₅O₁₂, NdAlO₃, Nd₄Al₂O₉, NdAl₁₁O₁₈

W układzie tlenków Nd_2O_3 - Al_2O_3 stabilną jest tylko jedna faza, a mianowicie $NdAlO_3$. Ciągle pozostaje kwestią otwartą stabilność fazy jednoskośnej $Nd_4Al_2O_9$. Istnieją wzmianki w literaturze dotyczące istnienia faz $Nd_3Al_5O_{12}$ oraz $NdAl_{11}O_{18}$, ale jak do tej pory brak jest doniesień literaturowych na temat otrzymania tych związków.

Nd₃Al₅O₁₂ (NAG)

Brak jest danych literaturowych, które by potwierdziły otrzymanie jednofazowego granatu neodymowo-glinowego $Nd_3Al_5O_{12}$ (NAG - *neodymium aluminum garnet*). Jest natomiast kilka publikacji, które nie wykluczają istnienia tego związku, a wręcz wyliczenia termodynamiczne potwierdzają istnienie NAG^{41} .

NdAlO₃ (NAP)

Perowskit neodymowo-glinowy NdAlO₃ (NAP – *neodymium aluminum perovskite*) ma strukturę romboedryczną i krystalizuje w grupie przestrzennej R $\overline{3}$ c. Nieliczne dane literaturowe wskazują na przejście fazowe powyżej temperatury około 1700°C ze struktury romboedrycznej do kubicznej⁴². Związek ten topi się kongruentnie w temperaturze około $2100°C^{43}$. NAP jest bardzo interesującym materiałem, który użyty jako składnik w nanokompozytach z tlenkiem glinu znacznie poprawia ich właściwości luminescencyjne⁴⁴. Natomiast niedomieszkowany NAP nie wykazuje właściwości luminescencyjnych ze względu na dużą zawartość neodymu (100 %). Literatura dotycząca NAP-u nie jest zbyt obszerna. Jony neodymu Nd³⁺ są atrakcyjną domieszką w wielu związkach, która dodana w ilości do około 10 % daje efekt luminescencji. Zazwyczaj, gdy neodym jest dodawany do innych związków w ilościach powyżej 10 %, następuje wygaszanie zjawiska luminescencji.

$Nd_4Al_2O_9(NAM)$

Związek $Nd_4Al_2O_9$ (NAM – *neodymium aluminum monoclinic*) ma strukturę jednoskośną i krystalizuje w grupie przestrzennej P $2_1/c^{45}$. Topi się niekongruentnie w temperaturze około 1905°C⁴⁶. Poniżej około 1780°C następuje jego rozpad na NdAlO₃ i Nd₂O₃. Tylko w kilku publikacjach są wzmianki o istnieniu tego związku, przy czym zdania na temat jego stabilności są podzielone. I tak na przykład Wu i Pelton⁴³ opisują fazę NAM jako stabilny związek, podczas gdy Li i inni⁴⁷ odtwarzając badania Couturesa⁴⁶ piszą o jej niestabilności.

$NdAl_{11}O_{18}$ (NAO)

Najmniej danych literaturowych jest o związku $NdAl_{11}O_{18}$, którego odpowiednik w układzie tlenków itru i glinu nie istnieje ($YAl_{11}O_8$?) (Tabela 1).

2. Wybór metody syntezy

Związki nanokrystaliczne można otrzymywać za pomocą różnych metod. Wymienione poniżej metody, na bazie roztworów, różnią się procedurami syntezy chemicznej, a wszystkie produkty reakcji wymagają podobnej obróbki termicznej. Zaletą mokrych metod jest możliwość wymieszania się wszystkich składników reakcji na poziomie molekularnym, dzięki swobodnej dyfuzji cząsteczek w roztworze. Zapewnia to bardzo dobrą homogeniczność produktów. Odmienną jest metoda syntezy w fazie stałej, w której wszystkie reagenty znajdują się w fazie stałej i reakcja chemiczna zachodzi w fazie stałej w znacznie wyższej temperaturze niż w pozostałych metodach. Dyfuzja w fazie stałej jest utrudniona, co skutkuje mniejszą jednorodnością produktów syntezy. Poniżej opisano zastosowane w pracy różne metody syntezy, w celu wyboru najbardziej odpowiedniej dla związków z układu Y-Nd-Al-O.

Metoda zol-żel

Metoda zol-żel należy do tak zwanych mokrych metod chemicznych. Polega ona na przeprowadzeniu zolu (roztworu koloidalnego, zawierającego cząstki stałe o wymiarach 1 ÷ 1000 nm, zdyspergowane w cieczy w stężeniu 10⁵ ÷ 10⁷ cm⁻¹) w postać żelu. Odbywa się to poprzez powolne odparowywanie rozpuszczalnika. Następnie suszy się otrzymany żel, a potem wypala. W porównaniu z konwencjonalnymi metodami, technika zol-żel oferuje szereg korzyści, które czynią ją atrakcyjną dla wytwarzania materiałów o unikalnych właściwościach. Za pomocą tej metody można otrzymywać różne materiały w postaci nanokrystalicznych proszków, monolitów, czy też cienkich warstw⁴⁸. Dzięki temu, że podczas syntezy otrzymuje się homogeniczny roztwór, możliwe jest wprowadzenie do otrzymywanych materiałów, w bardzo wydajny sposób, znacznych ilości domieszek w postaci różnych substancji chemicznych, bądź biologicznych, czy też modyfikacja powierzchni grupami funkcyjnymi¹⁵. Bardzo dużą zaletą metody zol-żel są niskie temperatury prowadzenia poszczególnych etapów syntezy. To pozwala wbudowywać cząsteczki organiczne i polimery, za pomocą których można nadawać materiałom cechy niemożliwe do uzyskania w inny sposób. Dzieki odpowiedniemu dobraniu składu

chemicznego wyjściowych materiałów, jak również warunków termicznych prowadzenia procesu, można otrzymywać materiały porowate, z kontrolowanymi rozmiarami porów⁴⁹. W klasycznej metodzie zol-żel używane są dość drogie związki alkoholanów, ponadto starzenie żelu przebiega bardzo długo. Jednak już wprowadzenie pewnych modyfikacji, takich jak np. użycie tańszych odczynników w postaci tlenków, bądź soli, a także zastosowanie odczynnika polimeryzującego, czyni metodę zol-żel (tzw. Pechini'ego⁵⁰ – od nazwiska osoby, która jako pierwsza zmodyfikowała klasyczną metodę zol-żel w 1967 r.) bardzo atrakcyjną. Zmodyfikowana metoda zol-żel jest tańszą od klasycznej i prostą metodą otrzymywania różnorodnych materiałów.

Metoda strąceniowa

Metoda strąceniowa polega na wytrącaniu się z wodnych roztworów soli (np. azotanów, siarczanów, chlorków) uwodnionych osadów końcowych produktów^{51,52}. Po wytrąceniu się osadu jest on przemywany w celu usunięcia zanieczyszczeń pochodzących z roztworu i suszony w celu usunięcia wody. W kolejnym etapie syntezy otrzymany w postaci proszku osad jest wypalany w temperaturze pozwalającej na skrystalizowanie, w wyniku czego otrzymuje się drobnoziarnisty proszek⁵³. Główną zaletą metody strąceniowej jest możliwość otrzymania materiału z małą ilością aglomeratów (jest to szczególnie ważne z punktu widzenia otrzymywania gęstej ceramiki). Zaś główną wadą metody strąceniowej jest wrażliwość roztworu na zmiany pH, co może powodować niejednorodność fazową strącanego osadu, bądź wytrącanie się niepożądanych zanieczyszczeń⁵⁴. Kolejną wadą tej metody jest konieczność odseparowania strąconego osadu od roztworu, z którego jest on strącany, poprzez odmycie, co może powodować wymywanie niektórych składników i otrzymanie proszków o innym składzie chemicznym niż założony.

Metoda spaleniowa

Metoda spaleniowa polega na przygotowaniu roztworu, w którym znajdują się utleniacz i reduktor, a następnie podgrzaniu do temperatury, w której zostaje zainicjowana samopodtrzymująca się reakcja spalania⁵⁵. Podczas właściwej reakcji spalania następuje

gwałtowny wzrost temperatury, co powoduje wydzielanie się dużej ilość gazów w krótkim czasie, dzięki czemu możliwe jest otrzymanie drobnoziarnistego materiału, o niskim stopniu aglomeracji. Często zdarza się, że reakcja spalania jest niekompletna i powstają produkty w postaci amorficznej lub w niewłaściwej odmianie polimorficznej. Konieczne jest wtedy ponowne wypalenie takich proszków w celu uzyskania jednofazowych, dobrze skrystalizowanych produktów⁵⁶. Z punktu widzenia rozmiarów ziaren okazuje się, że są one dość jednorodne w porównaniu z innymi omawianymi metodami⁵⁷.

Synteza w fazie stałej

Jak sama nazwa wskazuje synteza w fazie stałej przebiega z udziałem dwóch lub więcej substratów w stanie stałym. Metoda ta polega na ogrzewaniu mieszaniny substratów w celu otrzymania stałego produktu końcowego. Jest to bardzo dobra metoda do otrzymywania np. polikrystalicznych ceramik¹⁷. Zwykle w celu otrzymania jednofazowego materiału (całkowite przereagowanie składników początkowych) konieczne jest zastosowanie bardzo wysokiej temperatury. To z kolei powoduje, że otrzymane produkty charakteryzują się dużymi rozmiarami ziaren, o wysokim stopniu aglomeracji. Użycie takich materiałów w postaci drobnego proszku, np. do pokrywania dużych powierzchni monitorów, wymagałoby ich rozdrobnienia, co z kolei wiązałoby się z wprowadzeniem zanieczyszczeń podczas mielenia. Niestety znaczne ilości zanieczyszczeń mogą być również wprowadzane do mieszaniny wyjściowej (substratów), ponieważ należy je odpowiednio wcześniej przygotować, poprzez dokładne rozdrobnienie i wymieszanie w taki sposób, by podczas właściwej syntezy miały jak największą powierzchnię do przereagowania. W tym celu należy odpowiednio zmieszać proszki wyjściowe, co też może się wiązać z wprowadzeniem zanieczyszczeń z młynka, czy też kul.

Podsumowanie

Do otrzymywania materiałów w postaci proszków można stosować różne metody. Ustalono, że najbardziej efektywną metodą jest zmodyfikowana przez Pechini'ego synteza zol-żel. Otrzymuje się dzięki niej materiały jednofazowe wieloskładnikowe czyste i wysoko domieszkowane o zróżnicowanych rozmiarach ziaren i o wysokim stopniu czystości¹⁵. Metoda strąceniowa może nastręczać pewnych trudności ze względu na dużą czułość na wahania pH, możliwe jest również wprowadzanie zanieczyszczeń ze względu na niedokładne odmycie strącanego osadu. Metodą spaleniową otrzymuje się materiały o jednorodnych rozmiarach ziaren, lecz nie zawsze uzyskuje się materiały jednofazowe ze względu na zbyt gwałtowny przebieg reakcji. W metodzie w fazie stałej ze względu na wielokrotną obróbkę termiczną materiałów wyjściowych trudno o zachowanie czystości i stechiometrii. W procesie wygrzewania w wysokiej temperaturze (zwykle 2/3 temperatury topnienia związku) otrzymuje się dużej wielkości aglomeraty.

W celu wybrania najlepszej metody syntezy proszków nanokrystalicznych z układu tlenków $Y_2O_3 - Nd_2O_3 - Al_2O_3$ przeprowadziłam próby otrzymania materiału $Y_4Al_2O_9$ (YAM) czystego i domieszkowanego jonami neodymu za pomocą wszystkich wyżej wymienionych metod. I tak zbadałam wpływ metod syntezy: zmodyfikowanej zol-żel, strąceniowej, spaleniowej i w fazie stałej, na czystość chemiczną i fazową oraz w przypadku próbek YAM:Nd, wpływ na widma luminescencyjne otrzymywanych materiałów. Wyniki zostały przedstawione w rozdziale 5. Sprawdziłam również, na przykładzie neodymu, która z wyżej wymienionych metod jest najbardziej odpowiednią do wprowadzenia w sposób kontrolowany domieszki do struktury jednoskośnej $Y_4Al_2O_9$ (YAM). Związek ten został przeze mnie wybrany ze względu na ciekawe własności optyczne, a także na problemy związane z jego otrzymaniem w postaci monokryształów. Otóż YAM topi się kongruentnie w temperaturze około 2000°C, natomiast w temperaturze około 1400°C wykazuje przejście fazowe. To powoduje duże naprężenia w czasie studzenia i pękanie kryształu. Chemiczne syntezy proszków nanokrystalicznych nie wykraczają poza tak wysokie temperatury, nanokrystality $Y_4Al_2O_9$ nie są więc narażone na wymienione przejście fazowe.

Na podstawie moich doświadczeń w otrzymywaniu wieloskładnikowych tlenków w postaci proszków oraz ich charakteryzacji, wybrałam metodę zol-żel jako najbardziej odpowiednią do otrzymywania nanokrystalicznych związków z układu Y-Nd-Al-O.

Otrzymywanie kryształów

W celu otrzymania materiału porównawczego do badań (proszki nanokrystaliczne – monokryształy) w postaci monokryształów, zastosowano metodę mikrowyciągania (mPD) opisaną poniżej.

Metoda mikrowyciągania (ang. micro-pulling down method - mPD)

Metoda mikrowyciągania jest metodą wzrostu kryształów z fazy roztopionej, podobnie jak metoda Czochralskiego. Jednak w odróżnieniu od metody Czochralskiego monokryształy są wyciągane zgodnie z kierunkiem siły grawitacji i mają średnicę o małych rozmiarach (rzędu do kilku milimetrów). Na rys. 2 został przedstawiony schemat układu do wzrostu kryształów za pomocą metody mikrowyciągania.

Rys. 2. Schemat układu do krystalizacji za pomocą metody mikrowyciągania.

Otrzymywane w laboratoriach monokryształy zazwyczaj maja kilkanaście centymetrów długości i nie ona tu jest ograniczeniem, lecz średnica. Materiał wsadowy jest umieszczany w tyglu znajdującym się w komorze pieca wypełnionej gazem ochronnym. Tygiel zazwyczaj jest dodatkowo termicznie izolowany tlenkiem cyrkonu i porowata ceramika. Piec ogrzewany jest indukcyjnie aż do stopienia się całego materiału w tyglu. Tygiel jest skonstruowany w ten sposób, że w stożkowym spodzie jest otwór w kształcie kapilary (o średnicy około 0,8 mm), przez którą wypływa stopiony materiał w zetknięciu z monokrystalicznym zarodkiem. Wyciągany z tygla materiał krystalizuje na zarodku, który z niewielką prędkością w sposób kontrolowany jest opuszczany w dół. Krystalizacja następuje na skutek niższej temperatury zarodka, niż temperatura topnienia materiału wsadowego. W metodzie mikrowyciągania kryształ jest z większą prędkością wyciągany z fazy roztopionej, niż w metodzie Czochralskiego. Sterowanie prędkością zarodka oraz kształtem kapilary, którą wypływa stopiony materiał, pozwalają również kontrolować kształt i wymiary otrzymywanych materiałów⁵⁸. Do krystalizacji monokryształów o małych rozmiarach wystarcza również niewielka ilość materiału wsadowego. Kryształy otrzymane metodą mPD stosuje się głównie do celów badawczych. Metodę mikrowyciągania opracowano w Japonii do otrzymywania włókien monokrystalicznych^{59,60,61}.

3. Metody charakteryzacji materiałów

Nanokrystaliczne materiały proszkowe otrzymano za pomocą zmodyfikowanej metody zolżel. Badano ich skład fazowy metodą rentgenowskiej analizy proszkowej (XRD), jak również dla niektórych materiałów przeprowadzono analizę termiczną (DTA, TG), która miała na celu określenie temperatur różnych przejść fazowych. Rozmiary ziaren i ich morfologię badano metodą skaningowej mikroskopii elektronowej (SEM/HRSEM). Proszki o niskiej zawartości jonów ziem rzadkich (maksymalnie do 10 % mol) zostały poddane badaniom luminescencyjnym. Celem tych badań było określenie zakresu i wydajności oraz czasu zaniku świecenia. W niektórych przypadkach wyniki porównano z odpowiednikami monokrysztalicznymi.

Rentgenowska analiza proszkowa XRD

Pierwszą z metod, za pomocą której charakteryzowano wszystkie proszki, była dyfraktometria rentgenowska XRD (z angielskiego *X-Ray Diffraction*). Polega ona na pomiarze intensywności rozpraszania promieni X na próbce przy różnych kątach. Za pomocą tej metody badano skład fazowy oraz strukturę otrzymanych materiałów. Z danych zawartych na dyfraktogramach policzone zostały średnie wielkości krystalitów. Posłużył do tego wzór Scherrer'a⁶² (dla prostych struktur):

 $\mathbf{D}_{hkl} = \mathbf{K} \cdot \lambda / (\beta \cdot \cos \theta) \ [nm]$

(1),

gdzie: hkl-wskaźniki płaszczyzny,

- K stała,
- $\lambda dlugość fali,$
- B szerokość połówkowa refleksu,
- θ kąt odbłysku,

oraz metoda Warren-Averbach'a⁶³ (dla struktur bardziej złożonych), polegająca na wyznaczeniu krzywej, która najlepiej pasuje do kształtu pików dyfrakcyjnych i na jej podstawie wyznaczeniu średniego rozmiaru krystalitów.

Próbki były badane przy użyciu dyfraktometru firmy Siemens typ D-500 z promieniowaniem lampy CuK_{α} przy długości fali $\lambda = 1.548$ Å. Pomiary były przeprowadzone w zakresie kątów 2 θ od 15 do 65° z krokiem 0.05° i 4 s dla typowej analizy fazowej oraz w zakresie kątów od 90 do 120° z krokiem 0.02° i czasem 5 s w celu uzyskania precyzyjnych wartości do wyznaczenia stałych sieci i rozmiaru krystalitów.

Skaningowa mikroskopia elektronowa SEM/HRSEM

Rozmiar i morfologia jednofazowych nanoproszków były analizowane za pomocą skaningowej mikroskopii elektronowej SEM (Scanning Electron Microscopy), przy użyciu mikroskopu Opton DSM-950 oraz wysokorozdzielczej skaningowej mikroskopii elektronowej HRSEM (High Resolution Scanning Electron Microscopy) przy użyciu mikroskopów LEO GEMINI 1530 lub AURIGATM CrossBeam[®] Workstation firmy Carl Zeiss z opatentowana technologia kolumny GEMINITM. Za pomoca skaningowego mikroskopu elektronowego możliwa jest obserwacja powierzchni materiałów w skali nanoi mikrometrycznej⁶⁴. Próbki w takim mikroskopie "bombardowane" są za pomocą wiązki elektronów, która omiata obserwowany obszar. Stosowano dwa rodzaje detektorów, jeden analizował wiazkę niskoenergetycznych elektronów wtórnych (SE - Secondary Electrons), drugi zaś elektrony odbite (BSE - Back Scaterred Electrons). Ponieważ próbki tlenkowe, które zostały otrzymane w ramach poniższej pracy są nieprzewodzące, często przeszkodą w uzyskaniu "dobrego" obrazu przy dużych powiększeniach było odpowiednie odprowadzenie ładunku elektrycznego gromadzacego się na ich powierzchni. Problem ten został rozwiązany poprzez naklejanie proszków na taśmę węglowa, a następnie odpowiednie ich napylenie bardzo cienką warstwą (około 2 nm) materiału przewodzącego (złoto/pallad).

Analiza termiczna DTA/TG

Wpływ temperatury na przemiany fazowe i zmianę masy próbek badano za pomocą termicznej analizy różnicowej i analizy termograwimetrycznej DTA/TG (*Differential Thermal Analysis / Thermogravimetric Analysis*) przy użyciu analizatora termicznego typu STA 449 F1 firmy NETZSCH z piecem platynowym (do 1500°C) w atmosferze powietrza wzbogaconego argonem lub piecem grafitowym (do 2000°C) w atmosferze argonu, bądź przy użyciu urządzenia typu STA 429 CD firmy NETZSCH z piecem wolframowym w atmosferze helu (do 2400°C). We wszystkich pomiarach wysokotemperaturowych (powyżej 1500°C) używano zarówno tygli, jak i uchwytów do próbek wykonanych z wolframu. Dla próbek wygrzewanych w niższych temperaturach używano tygli alundowych. Pomiary były prowadzone z szybkością ogrzewania/chłodzenia ± 15°C/min. Z przemian zachodzących podczas wygrzewania proszków, a obserwowanych za pomocą analizy termicznej, możliwe jest wyznaczanie temperatur różnych przemian fazowych, takich jak topnienie, rozkład, krystalizacja, bądź zaobserwowanie niektórych reakcji chemicznych.

Badania luminescencyjne

Podczas badań luminescencyjnych zwracano uwagę na strukturę widm emisyjnych związków nanokrystalicznych w zależności od warunków otrzymywania, czystości materiałów oraz domieszek. Badano również czasy zaniku dla większości omawianych materiałów.

Widma luminescencji były wzbudzane laserem półprzewodnikowym o długości fali 808 nm lub laserem argonowym o długości fali 514.5 nm, zaś rejestrowane za pomocą układu, w skład którego wchodził fluorymetr firmy Dongwoo Optron, monochromator z odległością ogniskową 750 mm oraz detektor InGaAs. Krzywe czasów zaniku były rejestrowane przy użyciu oscyloskopu cyfrowego Tektronix TD 3052, bezpośrednio po wzbudzeniu impulsowym generowanym przez oscylator optyczny pompowany przez trzecią harmoniczną lasera YAG:Nd. W niektórych przypadkach, w celu porównania właściwości luminescencyjnych próbek nanokrystalicznych, zostały przeprowadzone pomiary dla monokryształów. Widma luminescencyjne wówczas w obu przypadkach były rejestrowane w takich samych warunkach, to znaczy wzbudzenie było przy tej samej długości fali, takiej samej szerokości spektralnej pasma monochromatora i w tej samej temperaturze.

4. Podsumowanie i przesłanki do części doświadczalnej

Jak wynika z dokonanego przeglądu literaturowego, nie wszystkie związki z układu Y-Nd-Al-O zostały dostatecznie poznane, a ich właściwości zbadane. Ze względu na interesujące właściwości luminescencyjne tych materiałów, a także ze względu na brak dostatecznych wyników badań w zakresie wszystkich wyżej wymienionych materiałów, podjęto próby lepszego poznania ich własności fizyko-chemicznych.

Wszystkie istniejące i opisane w rozdziale 1 układy (proste związki, bądź roztwory stałe) zostały w ramach niniejszej pracy otrzymane za pomocą zmodyfikowanej metody zol-żel (Pechini'ego), która okazała się odpowiednią do otrzymywania materiałów w postaci proszków nanokrystalicznych. Schemat otrzymywania związków z układu Y-Nd-Al-O tą właśnie metodą został przedstawiony na rys. 3. Wybrane materiały w celach porównawczych zostały otrzymane również w postaci monokryształów, za pomocą metody mikrowyciągania (mPD).

O wyborze zmodyfikowanej metody zol-żel, jako odpowiedniej do syntezy tlenków prostych i złożonych w postaci proszków, zadecydowały badania przeprowadzone na związku YAM, czystym i domieszkowanym jonami neodymu. Szczegółowe wyniki prób otrzymania jednofazowego YAM i YAM:Nd za pomocą różnych metod: zol-żel, współstrącania, spaleniowej oraz syntezy w fazie stałej, zostały przedstawione w rozdziale 5.

Otrzymane materiały były charakteryzowane za pomocą badań XRD, SEM/HRSEM, DTA/TG oraz na próbkach o niskiej zawartości domieszek jonów ziem rzadkich (do około 5%) przeprowadzano pomiary luminescencji. Stwierdzono, że przy wyższych zawartościach jonów ziem rzadkich w materiale obserwowano zanik luminescencji.

CZĘŚĆ DOŚWIADCZALNA

W pracy badano układ Y-Nd-Al-O dla związków binarnych i trójskładnikowych na bazie itru i neodymu.

5. Wybór metody syntezy proszków nanokrystalicznych – badanie Y₄Al₂O₉

Przeprowadzono systematyczne badania wyboru metody syntezy i charakteryzacji materiału na przykładzie związku YAM. Na przykładzie Y₄Al₂O₉ czystego i domieszkowanego jonami neodymu, zbadano wpływ metod syntezy na jednorodność fazową i czystość chemiczną otrzymywanych materiałów, a także na ich morfologię, stopień aglomeracji oraz czasy zaniku luminescencji. Przeprowadzono próby otrzymania jednofazowych nanoproszków YAM oraz YAM: 1 % Nd za pomocą różnych metod: zmodyfikowanej zol-żel (Pechini'ego), współstrącania, spaleniowej oraz w fazie stałej.

Zmodyfikowana metoda zol-żel (Pechini'ego)

Schemat metody przedstawiono na rys. 3.

Przygotowanie próbek

Proszki nanokrystaliczne Y₄Al₂O₉ czyste i domieszkowane neodymem otrzymano za pomocą zmodyfikowanej metody zol-żel z wykorzystaniem następujących odczynników:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.
- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- C₂H₄O₂ kwas octowy, o czystości cz.d.a.
- C₂H₆O₂ glikol etylenowy, o czystości cz.d.a.
- woda dejonizowana.

Rys. 3. Schemat otrzymywania związków z układu Y-Nd-Al-O za pomocą zmodyfikowanej metody zol-żel.

Syntezę za pomocą metody zol-żel przeprowadzono w następujący sposób:

W zlewce umieszczonej na mieszadle magnetycznym rozpuszczano odpowiednią ilość tlenku itru (oraz tlenku neodymu w przypadku wprowadzania do YAM neodymu jako domieszki) w kwasie octowym o stężeniu 0.4 M. Tlenek (lub tlenki) rozpuszczano w ciągu kilku godzin (do 10 h) w temperaturze około 65°C. Gdy cały tlenek (lub tlenki) został rozpuszczony, dodano do roztworu azotanu glinu. Roztwór mieszano przez około 3 h, następnie dodano glikolu etylenowego i ponownie mieszano roztwór przez 3 h. W celu odparowania rozpuszczalnika zlewkę z klarownym roztworem umieszczono na rozgrzanej

maszynce elektrycznej. W kolejnym etapie syntezy przeprowadzono suszenie otrzymanego żelu w temperaturze 150°C w ciągu 12 h. W ten sposób uzyskany kserożel wypalono w temperaturze 1100°C w ciągu 12 h.

Badania XRD oraz SEM

Rys. 4. Dyfraktogramy jednofazowych proszków YAM: 1) czystego; 2) domieszkowanego 1 % Nd₂O₃; otrzymanych za pomocą metody zol-żel; wypalonych w temperaturze 1100°C w ciągu 10 h; pionowe ciągłe linie oznaczają wzorzec $Y_4Al_2O_9$.

Badania składu fazowego za pomocą dyfrakcji rentgenowskiej wykazały, że otrzymano jednofazowe proszki $Y_4Al_2O_9$ oraz $Y_4Al_2O_9$: 1 % Nd₂O₃ w procesie zol-żel, z roztworu kwasu octowego z dodatkiem glikolu etylenowego i w bezpośrednim wygrzewaniu próbki w temperaturze 1100°C w ciągu 10 h (rys. 4).

Morfologia proszków YAM, zarówno czystego, jak i domieszkowanego jonami neodymu, otrzymanych za pomocą zmodyfikowanej metody zol-żel nie różni się znacząco. Oba

proszki składają się z aglomeratów rzędu kilku mikrometrów, natomiast czysty YAM dodatkowo posiada aglomeraty rzędu nawet kilkudziesięciu mikrometrów (rys. 5).

Rys. 5. Zdjęcia SEM proszków YAM otrzymanych za pomocą metody zol-żel: a) czystego; b) domieszkowanego 1 % Nd₂O₃; wypalonych w temperaturze 1100°C w ciągu 10 h.

Metoda współstrącania

W celu optymalizacji morfologii i porównania własności fizycznych proszków YAM, zastosowano metodę współstrącania. Brak jest danych literaturowych opisujących otrzymywanie $Y_4Al_2O_9$ tą właśnie metodą. Z kolei literatura dotycząca otrzymywania proszków $Y_3Al_5O_{12}$ (YAG) metodą współstrącania wskazuje na konieczność zastosowania 2.5 % nadmiaru tlenku itru, ponieważ w warunkach syntezy nie strąca się cała jego ilość. Z tego też względu oprócz stechiometrycznych ilości, użyto również nadmiaru tlenku itru do syntezy YAM metodą współstrącania.

Przygotowanie próbek

Do syntezy proszków nanokrystalicznych Y₄Al₂O₉ (YAM) czystych i domieszkowanych neodymem za pomocą metody współstrącania zastosowano następujące odczynniki:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.

- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- HNO₃ kwas azotowy, o czystości cz.d.a.
- NH₄HCO₃ kwaśny węglan amonu, o czystości cz.d.a.
- woda dejonizowana.

Syntezę za pomocą metody współstrącania przeprowadzono w następujący sposób:

sporządzono roztwór azotanu itru (oraz azotanu neodymu w przypadku wprowadzania neodymu jako domieszki) poprzez rozpuszczenie na gorąco odpowiedniej ilości tlenku itru (i neodymu) w 1 M kwasie azotowym, następnie odparowanie rozpuszczalnika i dodanie wody dejonizowanej. W drugiej zlewce rozpuszczono azotan glinu w wodzie dejonizowanej i dodano do roztworu azotanu itru (i azotanu neodymu). Tak sporządzony roztwór azotanów wkroplono w temperaturze pokojowej, przy pomocy pompy perystaltycznej, do roztworu węglanu amonu. W ten sposób strącił się biały, luźny osad. Po kilku godzinach zdekantowano roztwór znad osadu, następnie osad przemyto wodą dejonizowaną, zawiesinę wymieszano i po kilku godzinach zdekantowano roztwór ponownie. Przemywanie osadu wykonano jeszcze 2 razy. Następnie osad suszono w temperaturze około 170°C przez około 5 h. Wysuszony proszek roztarto w moździerzu i przeniesiono do tygla. Na podstawie badań DTA/TG określono optymalną temperaturę wypalania. Proszek wypalano w temperaturze 880°C w ciągu 6 h.

Pomimo różnych ilości substratów – stechiometrycznych oraz z nadmiarem tlenku itru, a także różnych temperatur wypalania, nie otrzymano jednofazowego materiału YAM czystego, ani też domieszkowanego jonami neodymu za pomocą metody współstrącania. W tabeli 2 przedstawiono wpływ temperatury wypalania na tworzące się fazy w końcowym produkcie syntezy proszków $Y_4Al_2O_9$.

Tabela 2. Wpływ temperatur wypalania na fazowość proszków YAM otrzymywanych za pomocą metody współstrącania.

	Temperatura	Czas	Czas W		ystępujące fazy		
1000 1203	wypalania [°C]	wypalania [h]	główna	pozostałe	ślady		
stechiometrycznie	880	6	$Y_4Al_2O_9$	Y ₂ O ₃	YAlO ₃		
nadmiar (2.5 %)	850	6	Y ₂ O ₃	$Y_4Al_2O_9$	-		
nadmiar (2.5 %)	900	6	$Y_4Al_2O_9$	Y_2O_3	-		
nadmiar (2.5 %)	1000	6	$Y_4Al_2O_4$	Y_2O_3 , $YAlO_3$	-		

Badania XRD

Rys. 6. Dyfraktogram wielofazowego materiału otrzymanego za pomocą metody współstrącania o stechiometrii $Y_4Al_2O_9$; proszek wypalany w temperaturze 880°C przez 6 h; pionowe przerywane linie oznaczają wzorce $Y_4Al_2O_9$, Y_2O_3 oraz YAlO₃.

Jak wynika z danych przedstawionych w tabeli 2 i dyfraktogramu przedstawionego na rys. 6, nie udało się otrzymać jednofazowego materiału YAM za pomocą metody współstrącania. Oprócz fazy głównej powstawały dodatkowo fazy Y_2O_3 oraz YAIO₃. Potwierdza to niejako brak danych literaturowych na temat otrzymywania proszków $Y_4Al_2O_9$ tą metodą. Jednak otrzymywanie granatu itrowo-glinowego (YAG) metodą współstącania jest jak najbardziej możliwe⁶⁵.

Metoda spaleniowa

Inną metodą, którą zastosowano do syntezy proszków YAM jest metoda spaleniowa.

Przygotowanie próbek

Proszki nanokrystaliczne Y₄Al₂O₉ czyste i domieszkowane neodymem otrzymano za pomocą metody spaleniowej z wykorzystaniem następujących odczynników:

- Y(NO₃)₃·6H₂O sześciowodny azotan itru, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.
- Nd(NO₃)₃·6H₂O sześciowodny azotan neodymu, o czystości cz.d.a.
- C₆H₁₂O₆ glukoza bezwodna, o czystości cz.
- woda dejonizowana.

Syntezę przeprowadzono w następujący sposób:

odpowiednie ilości azotanów itru i glinu (oraz azotanu neodymu w przypadku wprowadzania jonów neodymu jako domieszki) rozpuszczono w minimalnej ilości wody dejonizowanej, następnie dodano glukozę. Roztwór mieszano aż do całkowitego rozpuszczenia się wszystkich składników, po czym ogrzewano w piecu komorowym w temperaturze 500°C. Miało to na celu usunięcie rozpuszczalnika (wody) oraz zainicjowanie procesu gwałtownego spalenia się związków węglowych, tak by otrzymać ziarna o niskim stopniu aglomeracji. Otrzymany w ten sposób proszek podzielono na dwie części i każdą z nich wypalono w innej temperaturze, to jest 750°C i 950°C w ciągu 2 h w celu wytworzenia struktury jednoskośnej YAM.

Rys. 7. Dyfraktogramy proszków YAM otrzymanych za pomocą metody spaleniowej: 1) czystego – jednofazowego; 2) domieszkowanego 1 % Nd_2O_3 – oprócz fazy głównej występuje tlenek itru; wypalanych w 950°C przez 2 h; pionowe ciągłe linie oznaczają wzorzec Y₄Al₂O₉, zaś pionowe przerywane linie wzorzec Y₂O₃.

Gdy wypalanie przeprowadzono w niższej temperaturze (750°C), proszek był amorficzny. Z przedstawionego na rys. 7 dyfraktogramu wynika, ze temperatura 950°C była wystarczającą do otrzymania dobrze skrystalizowanego jednofazowego materiału YAM. Nie udało się natomiast otrzymać jednofazowego proszku YAM domieszkowanego 1 % Nd za pomocą metody spaleniowej, nawet gdy wypalanie przeprowadzono w temperaturze 950°C. Oprócz głównej fazy Y₄Al₂O₉ występuje również faza Y₂O₃ w ilości około 1 %.

Rys. 8. Zdjęcia HRSEM (przy różnych powiększeniach) proszku YAM otrzymanego za pomocą metody spaleniowej; wypalanego w temperaturze 950°C w ciągu 2 h.

Rys. 9. Zdjęcia HRSEM (przy różnych powiększeniach) proszku YAM: 1 % Nd otrzymanego za pomocą metody spaleniowej; wypalanego w 950°C w ciągu 2 h.

Na zdjęciach z wysokorozdzielczego skaningowego mikroskopu elektronowego (rys. 8, 9) możemy zauważyć, że morfologia zarówno czystego Y₄Al₂O₉, jak i domieszkowanego 1 % Nd jest podobna. Oba proszki składają się z dość drobnych ziaren (około 50 nm) o podobnym kształcie. Jednak proszek YAM: 1 % Nd ma ziarna jakby o większym stopniu aglomeracji. Produkty syntezy spaleniowej mają najdrobniejsze ziarna i o najniższym stopniu aglomeracji spośród produktów innych syntez chemicznych opisanych w niniejszej pracy. Najprawdopodobniej jest to efekt najniższej temperatury, jaką można zastosować w metodzie spaleniowej by otrzymać jednofazowy proszek nanokrystaliczny YAM oraz krótkiego czasu poreakcyjnej wysokotemperaturowej obróbki termicznej.

Metoda syntezy w fazie stałej

Przygotowanie próbek

Do otrzymywania proszków Y₄Al₂O₉ czystych i domieszkowanych neodymem za pomocą metody syntezy w fazie stałej użyto następujących odczynników:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Al₂O₃ tlenek glinu, o czystości cz.d.a.
- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- C₄H₉OH alkohol butylowy, o czystości cz.d.a.

Syntezę przeprowadzono w następujący sposób:

odpowiednią ilość tlenków itru i glinu (oraz tlenku neodymu w przypadku wprowadzania jonów Nd³⁺ jako domieszki) wsypano do czaszy młynka kulowego, w której wcześniej umieszczono kulki cyrkonowe. Proszki zalano alkoholem butylowym. Tak sporządzoną zawiesinę mieszano 60 minut. W kolejnym etapie oddzielono zawiesinę od kulek i wysuszono w temperaturze 150°C. Uzyskany w ten sposób proszek roztarto w moździerzu agatowym i podzielono na 2 części, każdą sprasowano. Otrzymane pastylki wypalono w piecu komorowym: jedną w atmosferze powietrza w temperaturze 1600°C w ciągu 5 h, a drugą w próżni w temperaturze 1750°C w ciągu 30 h.
Badania XRD oraz SEM

Badania składu fazowego proszków za pomocą dyfrakcji rentgenowskiej wykazały, że otrzymano jednofazowe proszki YAM: czyste oraz domieszkowane 1 % Nd₂O₃ za pomocą syntezy w fazie stałej, poprzez wypalanie w atmosferze powietrza w temperaturze 1600°C w ciągu 5 h (rys. 10).

Rys. 10. Dyfraktogramy jednofazowych proszków YAM: 1) czystego; 2) domieszkowanego 1 % Nd₂O₃; otrzymanych za pomocą syntezy w fazie stałej; wypalane w atmosferze powietrza w temperaturze 1600°C w ciągu 5 h; pionowe ciągłe linie oznaczają wzorzec Y₄Al₂O₉.

Rys. 11. Dyfraktogram wielofazowego materiału otrzymanego za pomocą syntezy w fazie stałej o stechiometrii Y₄Al₂O₉; proszek wypalony w próżni w temperaturze 1750°C przez 30 h; pionowe przerywane linie oznaczają wzorce YAlO₃, Y₃Al₅O₁₂ oraz Y₂O₃.

Jeżeli tlenki itru oraz glinu (i neodymu) po zmieszaniu w młynku kulowym i wysuszeniu, wypalono w próżni w temperaturze 1750°C w ciągu 30 h, wówczas otrzymano materiał wielofazowy, aczkolwiek dobrze skrystalizowany. Zastanawiający jest fakt, że żadna z wytworzonych faz nie jest fazą jednoskośną Y₄Al₂O₉, są to natomiast: perowskit YAlO₃, granat Y₃Al₅O₁₂ oraz Y₂O₃ dla stechiometrii czystego YAM, a także Y₃Al₅O₁₂ i YAlO₃ dla stechiometrii YAM: 1 % Nd (rys. 11, 12).

Rys. 12. Dyfraktogram wielofazowego materiału otrzymanego za pomocą syntezy w fazie stałej o stechiometrii $Y_4Al_2O_9$: 1 % Nd₂O₃; proszek wypalany w próżni w temperaturze 1750°C przez 30 h; pionowe przerywane linie oznaczają wzorce $Y_3Al_5O_{12}$ oraz YAlO₃.

Rys. 13. Zdjęcie SEM (przy dwóch różnych powiększeniach) proszku YAM otrzymanego za pomocą syntezy w fazie stałej; proszek wypalany w atmosferze powietrza w temperaturze 1600°C przez 5 h.

Wysoka temperatura, konieczna do przereagowania tlenków znajdujących się w fazie stałej, sprzyja tworzeniu się trwałych aglomeratów. Na zdjęciach ze skaningowego mikroskopu elektronowego (rys. 13) możemy zauważyć, że proszek YAM ma bardzo jednorodny rozkład ziaren, mocno ze sobą połączonych, tworzących jakby sieć przestrzenną. Ziarna są wielkości rzędu pojedynczego mikrometra.

Badanie czystości chemicznej

W Laboratorium Charakteryzacji Materiałów Wysokiej Czystości Instytutu Technologii Materiałów Elektronicznych przeprowadzono badania mające na celu określenie stopnia zanieczyszczenia proszków YAM czystych i domieszkowanych 1 % Nd, otrzymanych za pomoca metod: zmodyfikowanej zol-żel, spaleniowej i w fazie stałej. Próbki badano za pomocą metod: AAS - Atomowej Spektrometrii Absorpcyjnej, ICP-AES - Atomowej Spektrometrii Emisyjnej z Plazma Indukcyjnie Sprzeżona oraz Spektrofotometrii UV-VIS. Wszystkie te techniki są roztworowymi, to znaczy, że konieczne było przeprowadzenie próbek do roztworu i niezbędna była obecność materiałów wzorcowych. Wyniki badań pokazały, że stężenia zanieczyszczeń (w postaci pierwiastków Er, Tb, Dy, Ho, Er, Yb, Ca, Fe, Pb) w badanych próbkach są na poziomie ślepej próby, a więc prawdopodobnie pochodzą od rozpuszczalników użytych do roztwarzania proszków YAM. Przeprowadzono również badanie próbek (w postaci stałej) na obecność zanieczyszczeń za pomoca Spektrografii Emisyjnej i również nie wykryto obecności obcych pierwiastków. Możemy więc stwierdzić, że jeżeli w otrzymanych proszkach YAM znajdują się zanieczyszczenia, to sa one na poziomie poniżej 1 ppm ($< 10^{-4}$ % wag), czyli poniżej progu oznaczalności zastosowanych metod.

Badania luminescencyjne

Zostały przeprowadzone badania luminescencyjne dla próbek $Y_4Al_2O_9$: 1 % Nd otrzymanych trzema różnymi metodami: zmodyfikowaną zol-żel, spaleniową, w fazie stałej. Widma luminescencyjne dla przejścia ${}^4F_{3/2} - {}^4I_{11/2}$ dla jonów Nd³⁺ były rejestrowane w temperaturze pokojowej (rys.14). Ostre linie charakterystyczne dla widm emisyjnych

jonów neodymu w uporządkowanych sieciach krystalicznych wskazują na brak faz amorficznych, potwierdzając tym samym wyniki badań strukturalnych (XRD).

Rys. 14. Widmo emisyjne proszku YAM: 1 % Nd otrzymanego za pomocą zmodyfikowanej metody zol-żel.

Rys. 15. Widmo emisyjne proszku YAM: 1 % Nd otrzymanego za pomocą metody spaleniowej.

Rys. 16. Widmo emisyjne proszku YAM: 1 % Nd otrzymanego za pomocą metody syntezy w fazie stałej.

Z widm luminescencyjnych proszków YAM: Nd otrzymanych za pomocą metod: zmodyfikowanej zol-żel (rys. 14), spaleniowej (rys. 15) oraz syntezy w fazie stałej (rys. 16), można zauważyć, iż kształt oraz położenie każdego z widm są niemalże takie same. Tylko próbka otrzymana metodą spaleniową ma minimalnie mniej ostre piki. Być może jest to spowodowane tym, że oprócz fazy głównej YAM występuje w niej również niewielka ilość tlenku itru.

Rys. 17. Czas życia poziomu ${}^{4}F_{3/2}$ dla proszku YAM: 1 % Nd otrzymanego za pomocą metody zol-żel.

Rys. 18. Czas życia poziomu ${}^4F_{3/2}$ dla proszku YAM: 1 % Nd otrzymanego za pomocą metody spaleniowej.

Rys. 19. Czas życia poziomu ${}^{4}F_{3/2}$ dla proszku YAM: 1 % Nd otrzymanego za pomocą metody syntezy w fazie stałej.

Jak wynika z danych przedstawionych na rysunkach 17 i 19, czas życia poziomu ${}^{4}F_{3/2}$ dla YAM: Nd jest identyczny dla proszków otrzymanych za pomocą metod: zmodyfikowanej zol-żel oraz syntezy w fazie stałej, najkrótszy jest natomiast czas zaniku dla próbki otrzymanej metodą spaleniową (rys. 18).

Wnioski

Przeprowadzono próby otrzymania jednofazowego materiału Y₄Al₂O₉ (YAM) czystego oraz domieszkowanego 1 % Nd w postaci proszku za pomocą czterech różnych metod: zmodyfikowanej zol-żel (Pechini'ego), współstrącania, spaleniowej oraz syntezy w fazie stałej.

Z badań dyfrakcji rentgenowskiej wynika, iż otrzymano jednofazowy YAM czysty oraz domieszkowany 1 % Nd za pomocą dwóch z wyżej wymienionych metod: zmodyfikowanej zol-żel i syntezy w fazie stałej. Nie otrzymano natomiast jednofazowego materiału YAM zarówno czystego, jak i domieszkowanego neodymem za pomocą metody współstrącania. Jeżeli chodzi o syntezę spaleniową, to otrzymano jednofazowy czysty YAM, zaś po wprowadzeniu jonów neodymu w postaci domieszki, oprócz fazy głównej Y₄Al₂O₉, występuje też niewielka ilość tlenku itru. Ze zdjęć wykonanych skaningowym mikroskopem elektronowym wynika, że ziarna o najmniejszej wielkości uzyskano dla proszku YAM otrzymanego za pomocą metody spaleniowej (wypalanego w temperaturze 950°C), zaś ziarna o największej wielkości dla proszku zsyntezowanego w fazie stałej (w temperaturze 1600°C). Z przeprowadzonych badań wynika, że wielkość ziaren zależy od temperatury wypalania proszków.

Badania luminescencyjne wykazały podobny charakter widm emisyjnych dla próbek otrzymanych metodami: zmodyfikowaną zol-żel, spaleniową i w fazie stałej. Najkrótszy czas zaniku luminescencji zaobserwowano dla próbki otrzymanej metodą spaleniową.

Próbkę o najmniejszym rozmiarze ziaren i najdłuższym czasie zaniku luminescencji otrzymano za pomocą zmodyfikowanej metody zol-żel (Pechini'ego).

Przeprowadzone przeze mnie i opisane w rozdziale 5 doświadczenia dowodzą, iż wybór metody zol-żel, jako najbardziej odpowiedniej do otrzymywania materiałów nanokrystalicznych z układu tlenków Y₂O₃-Nd₂O₃-Al₂O₃, jest słuszny.

6. Wyniki badań układu Y-Nd-Al-O

6.1. Otrzymywanie Y₂O₃ czystego i domieszkowanego jonami Nd³⁺, Yb³⁺

 Y_2O_3 z powodzeniem może być domieszkowany jonami ziem rzadkich. Ceramiki wytwarzane z nanokrystalicznych proszków Y_2O_3 :Nd³⁺ oraz Y_2O_3 :Yb³⁺ mają zastosowanie w wielu dziedzinach, takich jak przemysłowe lasery wysokiej mocy, czy systemy laserowe oparte na fuzji jądrowej, lasery femtosekundowe, lasery przestrajalne. Można oczekiwać, że wprowadzenie więcej niż jednej domieszki do tlenku itru może spowodować, że będzie wykazywał on nowe właściwości laserowe. Poniżej opisano badania obejmujące otrzymanie i charakteryzację zarówno czystego tlenku itru, jak i współdomieszkowanego jonami neodymu i iterbu w różnych stężeniach. Niektóre z tych wyników zostały opublikowane⁶⁶.

Przygotowanie próbek

Do syntez nanokrystalicznych proszków Y_2O_3 :Nd³⁺, Yb³⁺, za pomocą zmodyfikowanej metody zol-żel, użyto następujących odczynników:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.
- C₂H₄O₂ kwas octowy, o czystości cz.d.a.
- C₁₀H₁₆N₂O₈ kwas wersenowy, (etylenodiaminotetraoctowy EDTA), o czystości cz.d.a.
- C₂H₆O₂ glikol etylenowy, o czystości cz.d.a.
- woda dejonizowana.

Dodatkowo w celu wprowadzenia jonów iterbu, jako domieszki, użyto:

- Yb₂O₃ tlenek iterbu, o czystości cz.d.a.
- HNO₃ kwas azotowy, o czystości cz.d.a.

W ramach niniejszej pracy otrzymano nanokrystaliczny proszek Y_2O_3 czysty i domieszkowany jonami Nd³⁺; Yb³⁺; Nd³⁺ + Yb³⁺ za pomocą zmodyfikowanej metody zolżel (Pechini'ego), przy różnych warunkach prowadzenia procesu (tabela 3). I tak otrzymano jednofazowe związki: Y₂O₃ domieszkowany pojedynczymi jonami 0.5 % Nd, 2 % Yb; a także Y₂O₃ współdomieszkowany 0.5 % Nd i 1, 2 lub 4 % Yb. Wymienione nanokrystaliczne materiały otrzymano w następujący sposób:

- współdomieszkowany tlenek itru - Y_2O_3 : Nd³⁺ + Yb³⁺: tlenek itru i tlenek neodymu rozpuszczano w około 300 ml 1 M roztworu kwasu octowego, natomiast tlenek iterbu rozpuszczano w około 20 ml 1 M roztworu kwasu azotowego. Roztwory osobno ogrzewano i mieszano w zlewkach umieszczonych na mieszadłach magnetycznych. Z roztworu z azotanem iterbu odparowano rozpuszczalnik pozostawiając jego minimalną ilość, tak by nie wydzielił się osad i nie przywarł do gorącej zlewki, następnie dodano niewielką ilość wody. W ten sposób przygotowany roztwór azotanu iterbu dodano do zlewki z tlenkami i kwasem octowym. Całość mieszano przez około 10 h w 65°C w celu rozpuszczenia się tlenków itru i neodymu. Jeżeli po tym czasie tlenki nadal pozostawały nierozpuszczone, dodawano stężonego kwasu octowego w takich ilościach, żeby pH roztworu wynosiło ~ 4. Kwaśne środowisko zapobiega flokulacji wodorotlenków metali, dzieki temu nie jest konieczna kontrola pH. Gdy już tlenki itru i neodymu całkowicie sie rozpuściły, dodano glikolu etylenowego, jako czynnika polimeryzującego i roztwór mieszano jeszcze przez około 2 h, a następnie ogrzewano w celu odparowania rozpuszczalnika. W ten sposób otrzymany żel suszono w suszarce przez około 12 h w temperaturze 120°C, przeprowadzając go w kserożel, który następnie ucierano w moździerzu agatowym i na końcu wypalano w piecu komorowym w atmosferze powietrza. Celem ostatniego etapu - obróbki wysokotemperaturowej, był rozkład i usunięcie związków węglowych oraz krystalizacja właściwej struktury. Kserożele były wypalane w różnych temperaturach z przedziału 600 ÷ 1200°C. Czas wypalania wynosił od 1 do 12 h.

- tlenek itru domieszkowany jonami neodymu - $Y_2O_3:Nd^{3+}$: syntezę przeprowadzono w analogiczny sposób, jak dla współdomieszkowanego tlenku itru, tylko że bez udziału tlenku iterbu.

W tabeli 3 zawarto spis syntez oraz warunki, w jakich je prowadzono, dla tlenku itru czystego i domieszkowanego jonami pierwiastków ziem rzadkich. Dla próbki Y_2O_3 : 0.5 % Nd + 2 % Yb otrzymanej z roztworu z glikolem etylenowym przeprowadzono serię wypalania w kilku temperaturach 600, 800, 1000 i 1200°C przez 1 h, 5 h i 10 h w każdej z temperatur. Miało to na celu zbadanie wpływu temperatury i czasu wypalania próbek na morfologię i rozmiary ziaren, a tym samym zbadanie wpływu tych czynników na widma emisji otrzymanych proszków.

Lp.	Domieszka [%]	Związek	Temperatura	Czas wypalania
		kompleksujący	wypalania [°C]	[h]
1	-	glikol etylenowy	1000	12
2	0.5 Nd	-	1000	12
3	0.5 Nd	glikol etylenowy	1000	12
4	0.5 Nd	EDTA	1000	12
5	2 Yb	glikol etylenowy	1000	12
6	0.5 Nd + 1 Yb	glikol etylenowy	1000	12
7	0.5 Nd + 2 Yb	glikol etylenowy	1000	12
8	0.5 Nd + 4 Yb	glikol etylenowy	1000	12
9	0.5 Nd + 2 Yb	glikol etylenowy	600	1 5 10
10	0.5 Nd + 2 Yb	glikol etylenowy	800	1 5 10
11	0.5 Nd + 2 Yb	glikol etylenowy	1000	1 5 10
12	0.5 Nd + 2 Yb	glikol etylenowy	1200	1 5 10

Tabela 3. Warunki prowadzenia syntez Y₂O₃ czystego i domieszkowanego.

W celu zbadania wpływu związku kompleksującego na morfologię powierzchni oraz rozmiar ziaren i krystalitów otrzymywanych proszków, przeprowadzono syntezy otrzymywania Y_2O_3 : 0.5 % Nd, zarówno bez dodatku czynnika kompleksującego, jak również z udziałem glikolu etylenowego lub EDTA (kwas wersenowy) w tej roli. Próbki były wypalane w temperaturze 1000°C w czasie 12 h. W tabeli 5 zebrano wnioski wynikające z tych badań.

Charakteryzacja próbek

Otrzymane próbki były badane za pomocą metod XRD, SEM, HRSEM oraz zarejestrowano widma luminescencyjne.

Badania XRD

Wszystkie otrzymane proszki, zarówno czystego jak i domieszkowanego tlenku itru były jednofazowe, o strukturze kubicznej (rys. 20). Rozmiary krystalitów były wyliczane z równania Scherrer'a (tabela 4).

Tabela 4. Warunki prowadzenia przykładowych syntez i średnie rozmiary ziaren tlenku itru czystego i domieszkowanego, otrzymanego zmodyfikowaną metodą zol-żel z użyciem glikolu etylenowego⁶⁶.

Nr próbki	Domieszka (at%)	Temperatura wypalania T (°C)	Czas wypalania t (h)	Średni rozmiar krystalitów d (nm)	Stała sieci a _o (Å)
1	-	1000	12	68	10.5969
2	0.5 Nd	1000	12	68	10.6030
3	2 Yb	1000	12	67	10.5973
4	0.5 Nd; 2 Yb	1000	12	70	10.5972
5	0.5 Nd; 2 Yb	600	10	11	_*
6	0.5 Nd; 2 Yb	1200	10	85	10.5980

* ze względu na nieuporządkowanie struktury brak możliwości analizy

Rys. 20. Dyfraktogramy wybranych nanokrystalicznych próbek proszkowych Y_2O_3 czystego oraz domieszkowanego jonami Nd^{3+} i Yb^{3+} : 1) Y_2O_3 ; 2) Y_2O_3 : 0.5 % Nd; 3) Y_2O_3 : 2 % Yb; 4) Y_2O_3 : 0.5 % Nd + 2 % Yb, wygrzewanych w 1000°C przez 12 h⁶⁶.

Potwierdzono, że rozmiary krystalitów zależą od temperatury wypalania (rys. 21). Zależność ta w przedziale temperatur $600 \div 1200^{\circ}$ C, dla czasów wypalania 1 h, 5 h i 10 h jest prawie liniowa. Przykładowo, dla próbki Y₂O₃: 0.5 % Nd + 2 % Yb, rozmiary krystalitów rosną wraz ze wzrostem temperatury wypalania, od około 10 nm w 600°C do około 85 nm w 1200°C. Warto tutaj dodać, że rozmiary krystalitów zakupionego czystego proszku Y₂O₃ (przed obróbką za pomocą metody zol-żel) wynosiły 68 nm - po wypaleniu w temperaturze 1000°C i 130 nm - po wypaleniu w 1200°C. Taki sam rozmiar krystalitów zanotowano dla próbek tlenku itru domieszkowanego różnymi jonami, to jest Nd³⁺ i Yb³⁺.

Proszki były otrzymane za pomocą zmodyfikowanej metody zol-żel, z roztworu z dodatkiem glikolu etylenowego i wypalane w temperaturze 1000°C przez 12 h.

Rys. 21. Zależność średnich rozmiarów krystalitów od temperatury wypalania dla próbki Y_2O_3 : 0.5 % Nd + 2 % Yb, wypalanej w czasie 1 h, 5 h i 10 h⁶⁶.

Zmiany w rozmiarach krystalitów mają swoje odzwierciedlenie w wartościach stałej sieci. Zależność stałych sieci od temperatury wypalania, dla różnych czasów wypalania próbek, przedstawiono na rys. 22. Interesującym wydaje się być fakt, że dla wszystkich próbek 800°C wypalanych temperatury (zarówno powyżej czystego Y_2O_3 , jak i współdomieszkowanego 0.5 % Nd i 2 % Yb) stałe sieci doświadczalne mają niższą wartość niż te podane w literaturze i niższą niż zakupiony tlenek itru bez jakiejkolwiek modyfikacji (próbka "A" na rys. 22). Wydaje się również, że zakupiony Y₂O₃, poddany obróbce za pomocą metody zol-żel, ma mniej zdefektowaną strukturę. Ma on także mniejsze rozmiary ziaren niż przed obróbką.

Przeprowadzone badania XRD wykazały również, że krystality tlenku itru rosną w kierunku krystalograficznym <111>.

Rys. 22. Zależność stałych sieci czystego i współdomieszkowanego 0.5 % Nd + 2 % Yb tlenku itru od temperatury, dla różnych czasów wypalania próbek: A) Y_2O_3 - proszek zakupiony - niewypalony; A') Y_2O_3 – proszek zakupiony, wypalany przez 2 h; B) wzorzec Y_2O_3 według ICCD Standard PDF Nr. 41-1105; C) Y_2O_3 po obróbce za pomocą metody zol-żel (próbka nr 1 w tabeli 4)⁶⁶.

Badania SEM, HRSEM

Poniżej przedstawiono przykładowe zdjęcia ze skaningowego mikroskopu elektronowego przedstawiające morfologię powierzchni proszków Y_2O_3 współdomieszkowanych jonami Nd^{3+} i Yb^{3+} oraz domieszkowanych jonami Nd^{3+} .

Rys. 23. Zdjęcia HRSEM morfologii powierzchni próbki Y_2O_3 : 0.5 % Nd + 2 % Yb, przy różnych powiększeniach: a) większe powiększenie⁶⁶, b) mniejsze powiększenie; wypalanej w 1000°C przez 12 h.

Rys. 24. Zdjęcia SEM morfologii powierzchni próbki Y_2O_3 : 0.5 % Nd + 1 % Yb przy różnych powiększeniach: a) większe powiększenie, b) mniejsze powiększenie; wypalanej w 1000°C przez 12 h.

Rys. 25. Zdjęcia SEM morfologii powierzchni próbki Y_2O_3 : 0.5 % Nd + 4 % Yb przy różnych powiększeniach: a) większe powiększenie, b) mniejsze powiększenie; wypalanej w 1000°C przez 12 h.

Morfologia powierzchni jest podobna zarówno dla próbek niedomieszkowanego proszku Y_2O_3 , domieszkowanego, jak i współdomieszkowanego jonami Nd³⁺ i Yb³⁺, wypalanych w tej samej temperaturze (1000°C) i przez ten sam okres czasu (12 h). Na rys. 23 przedstawiono przykładowe zdjęcia próbki Y_2O_3 : 0.5 % Nd + 2 % Yb, zrobione za pomocą wysokorozdzielczego skaningowego mikroskopu elektronowego (HRSEM), przy różnych powiększeniach. Ziarna proszku tworzą aglomeraty w postaci belek i brył (rys. 23 b). Przy odpowiednio dużym powiększeniu zdjęć można zauważyć, że wielkość pojedynczych ziaren wynosi kilkadziesiąt nanometrów (rys. 23 a). Ziarna mają kształt zbliżony do kulistego.

Na zdjęciach zaprezentowanych na rys. 26 można zauważyć, że proszki tlenku itru domieszkowanego jonami Nd³⁺ otrzymane z użyciem różnych odczynników mają podobną morfologię powierzchni. Proszki otrzymane z roztworu z glikolem etylenowym wydają się mieć trochę bardziej zwartą strukturę, niż te otrzymane z roztworu z kwasem wersenowym (EDTA), ale podobny rozmiar ziaren (rys. 26 b, c). Jednak największy stopień aglomeracji wykazują ziarna proszku otrzymanego z roztworu bez udziału związku kompleksującego (rys. 26 a).

Rys. 26. Zdjęcia SEM morfologii powierzchni próbek Y_2O_3 : 0.5 % Nd, otrzymanych z roztworów zawierających różne związki kompleksujące: a) brak czynnika kompleksującego; b) glikol etylenowy; c) EDTA; próbki wypalane w 1000°C przez 12 h.

W tabeli 5 zebrano i przedstawiono wnioski wynikające z wpływu związku kompleksującego użytego do syntezy, ilości domieszki, czasu i temperatury wypalania domieszkowanego tlenku itru na rozmiar krystalitów oraz morfologię powierzchni otrzymanych proszków. I tak rodzaj związku kompleksującego użytego do syntezy lub jego brak, o ile nie mają większego wpływu na rozmiar krystalitów, to już morfologia powierzchni tlenku itru otrzymywanego za pomocą zmodyfikowanej metody zol-żel różni się w zależności od tego czy został użyty czynnik kompleksujący, czy też nie. Jego brak powoduje tworzenie się bardzo zwartych, płaskich aglomeratów o dość dużych wymiarach (około 10 µm). Zarówno ilość domieszki, jak i czas wypalania próbek, nie mają wpływu na rozmiar krystalitów, ani na morfologię powierzchni proszków. I o ile morfologia próbek

pozostaje bez zmian dla różnych temperatur wypalania, to już krystality wraz ze wzrostem temperatury zwiększają swój rozmiar.

Czynnik wpływający	Rozmiar krystalitów	Morfologia powierzchni	
Związek kompleksujący	brak większego wpływu	 BRAK – zwarte, płaskie aglomeraty, rzędu 10 μm (rys. 26 a); GLIKOL ETYLENOWY – luźno ułożone względem siebie aglomeraty o zróżnicowanej wielkości, rzędu kilku μm, złożone z mniejszych ziaren o kulistym kształcie i wielkości około 100 nm (rys. 26 b); EDTA – kuliste aglomeraty o zróżnicowanej wielkości, rzędu kilku μm, złożone z mniejszych ziaren o kulistym kształcie i wielkości około 100 nm (rys. 26 b); EDTA – kuliste aglomeraty o zróżnicowanej wielkości, rzędu kilku μm, złożone z mniejszych ziaren o kulistym kształcie i wielkości około 100 nm (rys. 26 c). 	
Ilość domieszki	brak wpływu	brak wpływu (rys. 24, 25)	
Czas wypalania	brak wpływu	brak wpływu	
Temperatura wypalania	wraz ze wzrostem temperatury rośnie wielkość krystalitów od ~ 10 nm w 600°C, do ~ 73 nm w 1200°C	brak większego wpływu	

Tabela 5. Wpływ warunków prowadzenia syntez na rozmiar krystalitów i morfologię powierzchni proszków tlenku itru domieszkowanego jonami pierwiastków ziem rzadkich.

Z badań przeprowadzonych w ramach niniejszej pracy wynika, że zarówno rodzaj użytego związku kompleksującego, jak i czas wypalania, ilość domieszki tlenku iterbu dla próbek

współdomieszkowanych ($Nd^{3+} + Yb^{3+}$), nie mają wpływu na rozmiary krystalitów w warunkach prowadzonych syntez.

Badania luminescencji

Na rys. 27 został przedstawiony schemat poziomów energetycznych, za pomocą których można opisać zjawisko luminescencji oraz transfer energii wzbudzenia w układzie Nd³⁺ - Yb³⁺. Ze stanu wzbudzonego ⁴F_{3/2} jonu Nd³⁺ następują trzy przejścia promieniste, dwa na stany wzbudzone o niższej energii ⁴I_{11/2} i ⁴I_{13/2} oraz jedno na poziom podstawowy ⁴I_{9/2}. Jony Yb³⁺ mają tylko jeden stan wzbudzony, dlatego w widmach absorpcyjnym i emisyjnym pojawia się pojedyncze pasmo odpowiadające przejściu pomiędzy poziomem podstawowym ²F_{7/2}, a stanem wzbudzonym ²F_{5/2}.

Rys. 27. Schemat poziomów energetycznych jonów Nd³⁺ i Yb³⁺. Strzałki ciągłe oznaczają obserwowane przejścia promieniste. Strzałka przerywana oznacza bezpromienisty transfer energii⁶⁶.

Ponadto w relaksacji stanów wzbudzonych poza przejściami promienistymi biora udział również procesy bezpromienistego transferu energii i relaksacja multifononowa. Przerwa energetyczna pomiędzy stanami ${}^{4}F_{3/2}$ i ${}^{4}I_{15/2}$ w jonie Nd³⁺ przekracza 4500 cm⁻¹, podczas gdy efektywna energia fononowa dla Y_2O_3 wynosi około 430 cm^{-1 (3)}. Bazując na dobrze założonym uogólnieniu odnoszącym się do relaksacji multifononowej, bezpiecznie możemy założyć, że w zakresie małych stężeń jonów domieszki (aktywatora), relaksacja poziomu ${}^{4}F_{3/2}$ w jonie Nd³⁺ znajdującym się w sieci krystalicznej Y₂O₃ odbywa się poprzez przejścia promieniste. Te same wnioski dotyczą relaksacji poziomu ${}^{2}F_{5/2}$ w jonie Yb³⁺. Wraz ze wzrostem stężenia aktywatora w kryształach domieszkowanych jonami neodymu, następuje samowygaszanie się luminescencji. W kryształach współdomieszkowanych jonami neodymu i iterbu występuje transfer energii od jonów neodymu do jonów iterbu. Udział tych procesów w relaksacji stanów luminescencyjnych, dla układu jonów Nd³⁺-Yb³⁺ współdomieszkujących proszek nanokrystaliczny Y2O3, może być wywnioskowany z widma przedstawionego na rys. 28 (górna krzywa). Widma wzbudzone w pasmo absorpcji Nd³⁺ próbek współdomieszkowanych zawierają tylko linie emisji Yb³⁺, co wskazuje na bardzo wydajny transfer energii od jonów Nd³⁺ do Yb³⁺, pomimo względnie małych stężeń aktywatorów.

Dolne widma na rys. 28 zostały zarejestrowane dla proszków nanokrystalicznych domieszkowanych jonami Nd^{3+} w ilości 0.5 %, otrzymanych z użyciem różnych związków kompleksujących i bez nich. I tak linia zaznaczona jako (a) oznacza, że próbka została otrzymana z roztworu bez związku kompleksującego, (b) z roztworu z glikolem etylenowym i (c) z roztworu z EDTA. Proszki wzbudzano za pomocą argonowego lasera jonowego falą o długości 514.5 nm. Jak wynika z przeprowadzonych badań, różnice w przygotowaniu próbek nie mają wpływu na względne intensywności i szerokość składowych pasm luminescencyjnych. Oznacza to, że we wszystkich otrzymanych proszkach nanokrystalicznych, bezpośrednie otoczenie jonów luminescencyjnych Nd^{3+} jest takie samo. Wnioski te również są potwierdzone przez krzywe zaniku luminescencji jonów Nd^{3+} w próbkach domieszkowanych 0.5 % neodymu, które mają zależność wykładniczą, mieszczącą się w zakresie 350 ÷ 430 µs.

Rys. 28. Widma emisyjne próbek Y_2O_3 : 0.5 % Nd + 2 % Yb (górna krzywa) i Y_2O_3 : 0.5 % Nd otrzymanych z różnych roztworów (dolne krzywe): a) bez związku kompleksującego; b) z glikolem etylenowym; c) z EDTA. Wzbudzenie za pomocą argonowego lasera jonowego falą o długości 514.5 nm⁶⁶.

Na widmie emisyjnym, zarejestrowanym dla proszku Y_2O_3 : 0.5 % Nd³⁺ + 2 % Yb³⁺ (rys. 28, górna krzywa), nie jest widoczne pasmo odpowiadające za luminescencję neodymu. Niewielkie pojedyncze pasmo występujące przy długości fali około 1000 nm może zostać przypisane przejściu pomiędzy poziomami ${}^{2}F_{5/2}$ - ${}^{2}F_{7/2}$ jonów Yb³⁺, ponieważ zarówno położenie tego pasma, jak i jego kształt są identyczne jak w widmie emisyjnym zarejestrowanym dla monokryształów tlenku itru domieszkowanego jonami iterbu⁴. Wszystkie widma luminescencyjne przedstawione na rys. 28 są charakterystyczne dla jonów neodymu Nd³⁺ znajdujących się w stanie wzbudzonym. Energia potrzebna na emisję ze stanu wzbudzonego jonu iterbu, dostarczana jest poprzez bezpromienisty transfer energii od jonów neodymu do jonów iterbu. Wydajność tego transferu może być oszacowana na podstawie przeprowadzonych eksperymentalnie obserwacji wpływu stężenia jonów Yb³⁺

na krzywe czasów zaniku luminescencji jonów neodymu, jak to jest pokazane na rys. 29. Czas życia luminescencji neodymu maleje monotonnie wraz ze wzrostem stężenia iterbu. Wydajność η transferu energii zwykle jest szacowana z równania:

$$\mathfrak{g} = 1 - \tau / \tau_{o}, \tag{2}$$

gdzie τ oznacza czas życia jonów donorowych w obecności jonów akceptorowych, zaś τ_0 oznacza czas życia jonów donorowych przy nieobecności jonów akceptorowych.

Porównując wartości czasu życia luminescencji otrzymanych nanokrystalicznych proszków Y_2O_3 domieszkowanych 0.5 % Nd, z czasami życia proszków Y_2O_3 współdomieszkowanych jonami neodymu i iterbu (rys. 29), wydajność transferu energii, wynikająca z powyżej przedstawionego równania (2), przekracza 90 % już dla stężenia jonów Yb³⁺ wynoszącego 2 %.

Rys. 29. Wpływ stężenia jonów Yb³⁺ na krzywe zaniku emisji z poziomu ${}^{4}F_{3/2}$ jonów Nd³⁺ w Y₂O₃ współdomieszkowanym jonami neodymu i iterbu w ilościach: a) 0.5 % Nd + 1 % Yb; b) 0.5 % Nd + 2 % Yb; c) 0.5 % Nd + 4 % Yb⁶⁶.

Rys. 30. Wpływ temperatury wypalania nanokrystalicznych proszków Y_2O_3 współdomieszkowanych jonami neodymu i iterbu na krzywe zaniku luminescencji jonów Yb^{3+} na przykładzie próbki Y_2O_3 : 0.5 % Nd + 2 % Yb⁶⁶.

Na rys. 30 przedstawiono krzywe zaniku czasów luminescencji jonów Yb³⁺ w proszku nanokrystalicznym Y₂O₃: 0.5 % Nd + 2 % Yb wypalanym w temperaturach 600 i 1200°C. I chociaż widma luminescencyjne dla tej próbki są identyczne po wypalaniu w każdej z temperatur, wartości czasów życia różnią się od siebie około dwa razy. Wypalanie w wyższej temperaturze powoduje wydłużenie luminescencyjnego czasu życia, co prawdopodobnie spowodowane jest bardziej efektywnym usuwaniem grup OH niż wypalanie w niższej temperaturze. Warto tutaj zaznaczyć, że w odróżnieniu od próbek monokryształu, otrzymane próbki proszków nanokrystalicznych mogą zawierać pozostałości grup hydroksylowych OH. Zanieczyszczenie grupami OH bardzo skutecznie wygasza luminescencję jonów neodymu i prawdopodobnie to różna zawartość śladowych ilości tych grup, jest przyczyną różnic w wartościach czasów życia wymienionych powyżej

próbek tlenku itru, zawierających 0.5 % neodymu i 2 % iterbu. Wydaje się również, że zanieczyszczenia w postaci grup OH wygaszają także luminescencję iterbu.

Wnioski

Rodzaj użytego związku kompleksującego, czas wypalania oraz domieszkowanie jonami Nd^{3+} , Yb^{3+} , $Nd^{3+} + Yb^{3+}$ nie mają wpływu na rozmiary krystalitów oraz na morfologię tlenku itru w warunkach przeprowadzonych badań. Temperatura obróbki cieplnej proszków ma wpływ na rozmiary krystalitów i stałe sieci badanych materiałów.

Stałe sieci otrzymanych za pomocą zmodyfikowanej metody zol-żel proszków nanokrystalicznych, to jest czystego Y_2O_3 i wszystkich próbek domieszkowanych, wypalane w temperaturach wyższych niż 800°C, są znacznie niższe w porównaniu z danymi literaturowymi i ze stałymi sieci zakupionego proszku Y_2O_3 bez jakiejkolwiek obróbki chemicznej. Wydaje się zatem, że tlenek itru po obróbce za pomocą zmodyfikowanej metody zol-żel ma bardziej uporządkowaną strukturę i ma mniej punktowych defektów niż materiał wyjściowy, który ma ziarna o znacznie większych rozmiarach. Aglomeraty proszków tlenku itru mają postać belek rosnących zgodnie z kierunkiem <111>.

Bezpośrednie otoczenie luminescencyjnych jonów Nd^{3+} i Yb^{3+} jest takie samo we wszystkich próbkach nanokrystalicznych proszków Y_2O_3 , niezależnie od zastosowanego sposobu otrzymania materiału. Różnice w rozmiarach krystalitów nie mają wpływu na właściwości luminescencyjne otrzymywanych proszków.

Wydajność bezpromienistego transferu energii od neodymu do iterbu przekracza 90 % dla względnie niskich stężeń jonów Nd³⁺, to jest rzędu 0.5 % i stężenia jonów iterbu Yb³⁺ na poziomie 2 %. Śladowa zawartość zanieczyszczeń grupami OH ma wpływ zarówno na wydajność luminescencji jonów neodymu, jak i jonów iterbu.

6.2. Badanie ukladów Y₂O₃ ---- Al₂O₃; Y₂O₃ ---- Nd₂O₃

Y₂O₃ --- Al₂O₃

W układzie tlenków $Y_2O_3 --- Al_2O_3$ istnieją związki $Y_3Al_5O_{12}$, $YAlO_3$, $Y_4Al_2O_9$. Próby ich otrzymania w postaci związków czystych i domieszkowanych neodymem oraz charakteryzacja są opisane w następujących rozdziałach:

Y₃Al₅O₁₂- rozdział 6.3,

 $YAlO_3$ - rozdział 6.4,

 $Y_4Al_2O_9 - rozdział 6.5$.

Y₂O₃ ---- Nd₂O₃

Przygotowanie próbek

Do syntez nanokrystalicznych proszków z układu Y_2O_3 ---- Nd_2O_3 [$(Y_{1-x}Nd_x)_2O_3$, $0 \le x \ge 1$] użyto tych samych odczynników, jakie były używane do syntez proszków Y_2O_3 :Nd³⁺. Próbki otrzymywano za pomocą zmodyfikowanej metody zol-żel w analogiczny sposób jak opisany w rozdziale 6.1. dla tlenku itru współdomieszkowanego jonami neodymu i iterbu z tą różnicą, że bez udziału iterbu. Proszki były wypalane w temperaturze 1000°C przez 6 godzin. W ramach niniejszej pracy w celu przebadania układu ($Y_{1-x}Nd_x)_2O_3$, $0 \le x \ge 1$ otrzymano związki dla x = 0; 0.05; 0.10; 0.15; 0.20; 0.40; 0.60; 0.80; 1.

Charakteryzacja próbek

Badania XRD

Na rysunkach 31-33 przedstawiono zestawienie dyfraktogramów próbek proszkowych otrzymanych za pomocą metody zol-żel, związków z układu Y₂O₃ ---- Nd₂O₃.

Rys. 31. Dyfraktogramy próbek proszkowych: 1) czystego Y_2O_3 ; 2) Y_2O_3 : 20 % Nd; 3) Y_2O_3 : 40 % Nd; wygrzewanych w 1000°C przez 6 h. Pionowe linie ciągłe oznaczają fazę czystego Y_2O_3 .

Rys. 32. Dyfraktogramy próbek proszkowych: 1) czystego Y_2O_3 ; 2) Y_2O_3 : 60 % Nd; wygrzewanych w 1000°C przez 6 h. Pionowe linie ciągłe oznaczają fazę czystego Y_2O_3 .

Rys. 33. Dyfraktogram próbki proszkowej Y_2O_3 : 80 % Nd (Nd₂O₃: 20 % Y) wygrzewanej w temperaturze 1000°C przez 6 h. Pionowe kreskowane linie oznaczają fazę (Nd_{0.8}Y_{0.2})₂O₃, linie kropkowane fazę czystego Nd₆O₁₁.

Otrzymano jednofazowy tlenek itru, ale już dodatek neodymu na poziomie 20 % powoduje, że oprócz pików pochodzących od fazy głównej, to jest tlenku itru, pojawiają się piki pochodzące od innej fazy - tlenku neodymu (rys. 31, dyfraktogram nr 2). Domieszka tlenku neodymu na poziomie 40 % powoduje, że oprócz pików, które występują na dyfraktogramie z 20 % zawartością neodymu, pojawiają się niewielkie piki pochodzące od roztworu stałego Y₂O₃-Nd₂O₃ (rys. 31, dyfraktogram nr 3). Co ciekawe, dyfraktogram dla związku Y₂O₃: 60 % Nd₂O₃ wygląda niemalże identycznie jak dla czystego tlenku itru, z tą różnicą, że piki pochodzące od tlenku itru z neodymem są przesunięte w kierunku niższych wartości kąta teta (rys. 32). Z kolei na dyfraktogramie związku Y₂O₃: 80 % Nd₂O₃, oprócz pików pochodzących od roztworu stałego Y₂O₃-Nd₂O₃, pojawiają się również piki pochodzące od tlenku neodymu o wzorze Nd₆O₁₁ (rys. 33). Dla opisanych powyżej próbek piki dyfrakcyjne są przesunięte w stosunku do położeń linii wzorców, ponieważ w rzeczywistości są to roztwory stałe o nieco innym składzie (w bazie brak takich wzorców). Co ciekawe, zarówno dla zakupionego, niedomieszkowanego tlenku neodymu, jak i czystego tlenku neodymu po obróbce za pomocą zmodyfikowanej metody zol-żel, oprócz fazy głównej Nd₂O₃, na dyfraktogramie widoczne są również piki pochodzące od wodorotlenku neodymu Nd(OH)₃ (rys. 34). Oba dyfraktogramy wyglądają niemal identycznie. Na rys. 34 przedstawiono przykładowy dyfraktogram tlenku neodymu otrzymanego za pomocą metody zol-żel.

Rys. 34. Dyfraktogram próbki proszkowej Nd₂O₃ wygrzewanej w temperaturze 1000°C przez 6 h. Pionowe kreskowane linie oznaczają fazę Nd₂O₃, linie kropkowane fazę Nd(OH)₃.

Badania SEM

Na rysunkach 35-37 przedstawiono zdjęcia z wysokorozdzielczego skaningowego mikroskopu elektronowego przedstawiające morfologię powierzchni proszków z układu Y₂O₃-Nd₂O₃.

Rys. 35. Zdjęcia HRSEM morfologii powierzchni próbek proszkowych: a) Y_2O_3 ; b) Y_2O_3 : 20 % Nd₂O₃; c) Y_2O_3 : 40 % Nd₂O₃; d) Y_2O_3 : 60 % Nd₂O₃; e) Y_2O_3 : 80 % Nd₂O₃; f) Nd₂O₃, przy tym samym powiększeniu. Próbki wypalane w temperaturze 1000°C przez 6 h.

Rys. 36. Zdjęcia HRSEM morfologii powierzchni próbek proszkowych: a) Y_2O_3 ; b) Y_2O_3 : 20 % Nd₂O₃; c) Y_2O_3 : 40 % Nd₂O₃; d) Y_2O_3 : 60 % Nd₂O₃; e) Y_2O_3 : 80 % Nd₂O₃; f) Nd₂O₃, przy tym samym powiększeniu. Próbki wypalane w temperaturze 1000°C przez 6 h.

Przy większym powiększeniu zdjęć HRSEM przedstawiających morfologię powierzchni proszków o stechiometrii $(Y_{1-x}Nd_x)_2O_3$, $0 \le x \ge 1$ (rys. 35) możemy zauważyć, że różnice

pomiędzy poszczególnymi próbkami są niewielkie i wraz ze wzrostem zawartości neodymu nieznacznie zwiększają się rozmiary ziaren proszków (tamże: zdjęcia od górnego lewego do dolnego prawego rogu). I tak dla czystego tlenku neodymu (rys. 35 f) ziarna mają już wielkość kilkuset nanometrów, a nawet pojedynczych mikrometrów i różnią się znacznie wielkością od ziaren innych proszków. Z kolei przy mniejszym powiększeniu (rys. 36) możemy zauważyć, że najluźniej ułożone ziarna mają proszki z zawartością neodymu na poziomie 20 i 40 %, zaś najwyższy stopień aglomeracji wydają się mieć ziarna czystych tlenków itru i neodymu oraz proszków z większą zawartością neodymu – na poziomie 60 i 80 %.

Rys. 37. Zdjęcia HRSEM morfologii powierzchni próbek proszkowych: a) Y_2O_3 : 20 % Nd₂O₃; b) Y_2O_3 : 40 % Nd₂O₃, przy różnych powiększeniach. Próbki wypalane w temperaturze 1000°C przez 6 h.

Na rys. 37 przedstawiono zdjęcia z wysokorozdzielczego elektronowego mikroskopu skaningowego próbek proszkowych Y_2O_3 : 20 % Nd₂O₃ oraz Y_2O_3 : 40 % Nd₂O₃, przy różnych powiększeniach. Niektóre ziarna wyżej wymienionych próbek utworzyły bardzo ciekawe kształty – bądź luźno ułożonych belek, bądź kuli z nietypowymi "naroślami". Nie są to zdjęcia reprezentatywne.

Wnioski

Za pomocą zmodyfikowanej metody zol-żel (Pechini'ego) otrzymano związki z układu Y_2O_3 ---- Nd_2O_3 . W prawie całym zakresie tego układu występują pojedyncze związki i roztwory stałe. Dodatek jonów neodymowych do struktury tlenku itru już na poziomie 20 % powoduje, że oprócz pików pochodzących od fazy głównej, pojawiają się piki pochodzące od tlenku neodymu. Zwiększenie zawartości neodymu do poziomu 40 % sprawia, że oprócz pików pochodzących od czystych faz Y_2O_3 i Nd_2O_3 , pojawiają się niewielkie piki pochodzące od roztworu stałego Y_2O_3 -Nd $_2O_3$. Przy jeszcze wyższych stężeniach jonów neodymu, to jest na poziomie 60 %, dyfraktogram wygląda niemal identycznie jak dla czystego Y_2O_3 , z tą różnicą, że piki są przesunięte w kierunku niższych wartości kąta teta. Nanokrystaliczne próbki w postaci proszków z 80 % udziałem Nd $_2O_3$ są wielofazowe i oprócz pików pochodzących od roztworu stałego Y_2O_3 -Nd $_2O_3$, pojawiają się piki pochodzące od tlenku neodymu o wzorze Nd $_6O_{11}$.

Morfologia powierzchni proszków jest podobna, a wraz ze wzrostem zawartości neodymu nieznacznie zwiększają się rozmiary ziaren.

6.3. Badanie ukladu Y₃Al₅O₁₂ ---- Nd₃Al₅O₁₂ (YAG-NAG)

Granat itrowo-glinowy domieszkowany neodymem jest jednym z najważniejszych materiałów laserowych. W handlu dostępne są kryształy YAG:Nd z domieszką na poziomie maksymalnie $2.5 \%^{67}$. Jak dotąd największą ilość neodymu do struktury granatu Y₃Al₅O₁₂ udało się wprowadzić stosując zmodyfikowaną metodę zol-żel, dla której limit rozpuszczalności neodymu w YAG'u wynosi aż 27.5 % i jest prawie dwukrotnie wyższy niż uzyskiwany w metodzie epitaksji. Wynik ten został otrzymany w Zakładzie Technologii Chemicznych ITME, opisany w publikacji¹⁵ i jest dość często cytowany. Jak wynika z przedstawionego w rozdziale 1.2. zestawienia limitu rozpuszczalności jonów Nd³⁺ w strukturze Y₃Al₅O₁₂, zależy on głównie od metody otrzymywania granatów YAG:Nd. W niniejszej pracy starałam się opisać układ YAG-NAG, który nie był dotychczas zbadany.

Przygotowanie próbek

Do syntez nanokrystalicznych proszków z układu $Y_3Al_5O_{12}$ ---- $Nd_3Al_5O_{12}$ [$(Y_{1-x}Nd_x)_3Al_5O_{12}, 0 \le x \le 1$] użyto następujących odczynników:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.
- C₂H₄O₂ kwas octowy, o czystości cz.d.a.
- HNO₃ kwas azotowy, o czystości cz.d.a.
- C₂H₆O₂ glikol etylenowy, o czystości cz.d.a.
- woda dejonizowana.

Nanokrystaliczne proszki o wzorze $(Y_{1-x}Nd_x)_3Al_5O_{12}$ ($0 \le x \le 1$) zostały otrzymane za pomocą zmodyfikowanej metody zol-żel (Pechini'ego) w następujący sposób:

Odpowiednie ilości tlenków itru i neodymu rozpuszczano w roztworze kwasu octowego w ciągu kilku godzin (~ 10 h) w temperaturze około 60°C. W międzyczasie kontrolowano pH roztworu i gdy przekraczało ono zakres $4.5 \div 5.0$, dodawano stężonego kwasu octowego.

Utrzymywanie słabokwaśnego środowiska (pH ~ 5) miało na celu zapobiegnięciu flokulacji tlenków metali. W drugiej zlewce rozpuszczono azotan glinu w wodzie dejonizowanej i dodano do roztworu octanów. Całość mieszano przez około 2 h. Następnie dodano glikolu etylenowego i w ten sposób otrzymany roztwór mieszano przez kolejne 2 h, po czym całkowicie odparowano rozpuszczalnik. W kolejnym etapie syntezy przeprowadzono suszenie w temperaturze 120°C w ciągu 12 h. W ten sposób uzyskany kserożel wypalano w piecu komorowym, w temperaturze 800°C przez 2 h, w atmosferze powietrza, z bardzo małą szybkością wzrostu temperatury (~ 2°/min) ze względu na zawartość łatwopalnych związków organicznych w żelach. Następnie proszki wypalano po raz kolejny w temperaturze 1000°C przez 6 h.

W ramach niniejszej pracy w celu przebadania układu $(Y_{1-x}Nd_x)_3Al_5O_{12}$, $0 \le x \ge 1$ otrzymano związki dla x = 0; 0.01; 0.02; 0.04; 0.05; 0.06; 0.08; 0.10; 0.125; 0.15; 0.275; 0.30; 0.65; 1.

Charakteryzacja próbek

Badania XRD

Na rysunkach 38 i 39 przedstawiono zestawienia dyfraktogramów wybranych próbek proszkowych granatu $Y_3Al_5O_{12}$ domieszkowanego jonami Nd³⁺ z zawartością neodymu od 1 do 15%. Wszystkie z przedstawionych proszków są jednofazowe i mają strukturę granatu.

Rys. 38. Dyfraktogramy wybranych nanokrystalicznych próbek proszkowych $Y_3Al_5O_{12}$ domieszkowanych jonami Nd³⁺ uszeregowane wraz ze wzrastającą zawartością neodymu, kolejno (od dołu): 1, 2, 4, 6, 8, 10 % Nd. Próbki wygrzewane w 800°C przez 2 h i w 1000°C 6 h.

Przy próbach zwiększenia zawartości neodymu w strukturze granatu YAG do 30 i 65 % otrzymano materiał niejednofazowy. Oprócz fazy granatu, pojawiła się obca faza perowskitu. Każda z tych faz ma strukturę o wysokiej symetrii i małym stopniu zdefektowania, co przejawia się małą ilością pików na dyfraktogramach. Na rys. 40 przedstawiono dyfraktogramy proszków (Y_{0.70}Nd_{0.30})₃Al₅O₁₂ i (Y_{0.35}Nd_{0.65})₃Al₅O₁₂, czyli z zawartością neodymu na poziomie 30 i 65 % odpowiednio.

Rys. 39. Dyfraktogramy nanokrystalicznych próbek proszkowych $Y_3Al_5O_{12}$ domieszkowanych jonami Nd³⁺ na poziomie 12.5 % - dolna krzywa oraz 15 % - górna krzywa.

Rys. 40. Dyfraktogramy nanokrystalicznych próbek proszkowych z układu $Y_3Al_5O_{12}$ - $Nd_3Al_5O_{12}$ o zawartościach neodymu na poziomie 30 % - dolna krzywa oraz 65 % - górna krzywa.

Maksymalna ilość tlenku neodymu, jaka rozpuszcza się w granacie YAG otrzymanym za pomocą zmodyfikowanej metody zol-żel to 27.5 %. Przy wyższych stężeniach jonów neodymowych Nd³⁺ pojawia się, oprócz głównej fazy granatu, faza perowskitu. Podczas próby otrzymania granatu neodymowo-glinowego Nd₃Al₅O₁₂ badania XRD wykazały, że otrzymano materiał jednofazowy, ale nie był to granat, lecz perowskit neodymowo-glinowy. Przeprowadzono więc syntezę otrzymywania perowskitu NdAlO₃, zgodnie z jego stechiometrią, w celu porównania próbek. Wyniki zostały przedstawione na rys. 41. Porównanie dyfraktogramów obu próbek wskazuje na to, że krystality w proszkach NAP otrzymanych ze stechiometrycznych ilości tlenków są mniej zdefektowane i lepiej wykształcone. Można tak wnioskować po ostrych, dobrze wykształconych pikach w tej próbce (rys. 41, górna krzywa).

Rys. 41. Dyfraktogramy nanokrystalicznych próbek proszkowych perowskitu neodymowoglinowego NdAlO₃ otrzymanego w wyniku: "niestechiometrycznej" syntezy, podczas próby otrzymania granatu neodymowo-glinowego – dolna linia oraz "stechiometrycznej" syntezy – górna linia.

Odnosząc się do schematu reakcji:

$$3 \text{ Nd}_2\text{O}_3 + 5 \text{ Al}_2\text{O}_3 = 2 \text{ Nd}_3\text{Al}_5\text{O}_{12}$$
(3),

$$2 \text{ Nd}_3\text{Al}_5\text{O}_{12} = 6 \text{ NdAlO}_3 + 2 \text{ Al}_2\text{O}_3 \tag{4}$$

można wnioskować, że w próbce, w której otrzymano "niestechiometryczny" perowskit NdAlO₃, część tlenku glinu Al₂O₃ pozostaje w postaci amorficznej, jest więc niewidoczna dla promieniowania rentgenowskiego i tym samym pozostaje niewidoczna na dyfraktogramie.

Wynika stąd, że nie można otrzymać za pomocą zmodyfikowanej metody zol-żel związku o stechiometrii Nd₃Al₅O₁₂, ponieważ rozpada się on na perowskit NdAlO₃ oraz na amorficzny tlenek glinu Al₂O₃.

Jak wcześniej wspomniano, graniczna rozpuszczalność jonów neodymu Nd³⁺ w strukturze granatu wynosi 27.5 % dla próbek otrzymanych za pomocą zmodyfikowanej metody zolżel. Jednak gdy w ten sposób otrzymany materiał ($Y_{0.725}Nd_{0.275}$)₃Al₅O₁₂ został użyty jako materiał wsadowy do wyciągania kryształu w metodzie mikrowyciągania, okazało się, że oprócz fazy głównej granatu obecna jest również faza perowskitu. Jak wykazały dalsze badania, bardzo dużo jak na kryształ hodowany z roztopu, bo dopiero aż 8 % i więcej dodatku jonów neodymu powoduje powstanie dodatkowej fazy perowskitu, gdy z jednofazowego materiału wytworzonego za pomocą zmodyfikowanej metody zol-żel próbuje się otrzymać kryształ granatu YAG:Nd. Wynika stąd, że za pomocą zmodyfikowanej metody zol-żel można otrzymać jednofazowy granat itrowo-glinowy YAG z podstawionymi jonami neodymu Nd³⁺ w miejscu jonów Y³⁺ na najwyższym dotychczas znanym poziomie, to jest 27.5 %. Przy wyższych stężeniach jonów neodymu (aż do 100 %) obecne są dwie fazy, ta o strukturze granatu i dodatkowa o strukturze perowskitu.

Jeżeli chodzi o "granat neodymowo-glinowy" $Nd_3Al_5O_{12}$, to nie został on jak dotąd otrzymany. Detlef Klimm i inni⁴¹ powołując się na wykonane obliczenia piszą, że faza $Nd_3Al_5O_{12}$ powinna być stabilna tylko w temperaturze poniżej 930°C, zaś w wyższych temperaturach następuje jej rozpad na $NdAlO_3$ i α - Al_2O_3 . Zatem otrzymanie takiego związku może być niezwykle trudne, bądź też praktycznie niemożliwe. Ci sami autorzy piszą również, że z termodynamicznego punktu widzenia w granacie itrowo-glinowym możliwe jest rozpuszczenie aż 80 % neodymu.

Badania SEM

Na rys. 42 przedstawiono wybrane zdjęcia ze skaningowego mikroskopu elektronowego zrobione na różnych etapach otrzymywania YAG'u.

Rys. 42. Zdjęcia SEM morfologii powierzchni próbki $Y_3Al_5O_{12}$ na różnych etapach obróbki cieplnej: a) żel wysuszony w 120°C w ciągu 12 h; b) proszek wypalony w 800°C w ciągu 2 h; c) proszek wypalony w 1000°C w ciągu 6 h⁶⁸.

Na rys. 42 pokazano zdjęcia przedstawiające morfologię powierzchni tak zwanego kserożelu, czyli wysuszonego żelu (rys. 42 a), który został otrzymany po odparowaniu rozpuszczalnika oraz zdjęcia morfologii powierzchni proszku YAG wypalonego w 800°C przez 2 h (rys. 42 b), a następnie w 1000°C przez 6 h (rys. 42 c). Na rys. 43 przedstawiono zdjęcia HRSEM morfologii powierzchni proszku YAG domieszkowanego 5 % Nd, wypalonego w 1000°C, zaś na rys. 44 zdjęcia SEM przedstawiające morfologię powierzchni proszków YAG z zawartością jonów neodymowych na poziomie 2, 10, 15 i 22.5 %.

Na zdjęciach przedstawionych na rys. 42 można zaobserwować, że wraz ze wzrostem temperatury zmienia się struktura proszku YAG: od amorficznej i nieregularnej w 120°C, do struktury z dość dobrze wykształconymi ziarnami o kulistym kształcie i rozmiarach około 200 nm w 1000°C, co świadczy o wytworzeniu się struktury polikrystalicznej. Przykładowo proszek YAG domieszkowany jonami neodymowymi na poziomie 5 % składa się z aglomeratów kształtem przypominającym płatki o bardzo zróżnicowanych rozmiarach – od pojedynczych, do kilkunastu mikrometrów. Na zdjęciach z HRSEM widać, że aglomeraty składają się z ziaren o wielkościach poniżej 100 nm (rys. 43).

Rys. 43. Zdjęcia HRSEM przedstawiające morfologię powierzchni proszku YAG: 5 % Nd, wypalanego w 1000°C (przy dwóch różnych powiększeniach).

Zwiększanie udziału jonów neodymowych w strukturze granatu YAG wydaje się skutkować wzrostem stopnia aglomeracji ziaren proszków (rys. 44).

Rys. 44. Zdjęcia SEM morfologii powierzchni nanokrystalicznych proszków $Y_3Al_5O_{12}$ domieszkowanych jonami neodymowymi na poziomie: a) 2 %; b) 10 %; c) 15 %; d) 22.5 %. Próbki wypalone w 1000°C w ciągu 6 h.

Badania DTA/TG

W celu określenia optymalnej temperatury wypalania otrzymywanych proszków przeprowadzono badania DTA/TG dla próbki YAG w postaci kserożelu, czyli po etapie odparowania rozpuszczalnika i wysuszenia otrzymanego żelu. Na rys. 45 zostały przedstawione krzywe z wynikami wyżej wymienionych badań. Wynika z nich, że w zakresie temperatur wypalania od 0 do 1000°C próbka kserożelu YAG traci około 53 % swojej masy całkowitej.

Rys. 45. Krzywe DTA (górna krzywa) i TG (dolna krzywa) próbki $Y_3Al_5O_{12}$ poddanej badaniom w postaci wysuszonego żelu⁶⁸.

Pierwszy ubytek masy jest już w temperaturze około 100°C i ma charakter endotermiczny. Prawdopodobnie jest to związane z odparowywaniem resztek wody, która pozostaje w próbce po procesie suszenia. Największy ubytek masy można zaobserwować w temperaturze około 400°C. Wynosi on mniej więcej 34 % i ma charakter egzotermiczny. Najprawdopodobniej jest on związany z częściowym ubytkiem związków węglowych zawartych w kserożelu. Z kolei w zakresie temperatur 600 ÷ 850°C obserwowany jest niewielki przyrost masy, na poziomie mniej więcej 1 % i towarzyszy mu reakcja egzotermiczna. Następny efekt cieplny z maksimum w około 860°C może być związany z dalszym wypalaniem pozostałych związków węglowych w próbce, jak chociażby kwasu octowego. Towarzyszy mu ubytek masy na poziomie ponad 6 %. W tak wysokiej temperaturze zachodzi również krystalizacja granatu itrowo-glinowego.

Badania luminescencji

Na rys. 46 przedstawiono widmo emisji nanokrystalicznego proszku YAG: 1 % Nd otrzymanego za pomocą zmodyfikowanej metody zol-żel, zarejestrowane w temperaturze pokojowej. Składa się ono z licznych wąskich i dobrze wykształconych linii.

Rys. 46. Widmo emisji nanokrystalicznego proszku YAG: 1 % Nd otrzymanego zmodyfikowaną metodą zol-żel.

Widmo emisji nanokrystalitów YAG: 1 % Nd zawiera trzy pasma odpowiadające przejściom ${}^{4}F_{3/2}$ - ${}^{4}I_{11/2}$ w zakresie około 920 nm (10870 cm⁻¹), ${}^{4}F_{3/2}$ - ${}^{4}I_{13/2}$ około 1060 nm (9430 cm⁻¹) i ${}^{4}F_{3/2}$ - ${}^{4}I_{9/2}$ około 1350 nm (7410 cm⁻¹). Warto przy tym zaznaczyć, że intensywność pasma w zakresie około 920 nm jest znacznie mniejsza niż w rzeczywistości, ze względu na spadek czułości detektora InGaAs w zakresie spektralnym poniżej 1000 nm.

Wnioski

Za pomocą zmodyfikowanej metody zol-żel (Pechini'ego) otrzymano związki z układu Y₃Al₅O₁₂ ---- Nd₃Al₅O₁₂. Okazuje się, że według obecnego stanu wiedzy, ilość neodymu, jaką udaje się wprowadzić do struktury granatu itrowo-glinowego, zależy od zastosowanej metody syntezy. Ustalono, że maksymalna ilość tlenku neodymu, jaka rozpuszcza się w granacie YAG wynosi aż 27.5 %. Przy wyższych stężeniach jonów neodymu Nd³⁺, nanokrystaliczne próbki w postaci proszków są wielofazowe i oprócz głównej fazy granatu, pojawia się faza perowskitu. Przy próbie otrzymania granatu neodymowo-glinowego Nd₃Al₅O₁₂ otrzymano perowskit NdAlO₃ oraz Al₂O₃. Faza Nd₃Al₅O₁₂ prawdopodobnie nie istnieje i nie udało się jej otrzymać w ramach niniejszej pracy.

Wraz ze wzrostem udziału jonów neodymowych w strukturze YAG, zwiększa się stopień aglomeracji ziaren próbek proszkowych.

W trakcie wypalania nanokrystalicznych proszków $Y_3Al_5O_{12}$, otrzymanych za pomocą zmodyfikowanej metody zol-żel, w temperaturze 1000°C następuje spadek masy o około 50 %. Jest to związane z utratą wody i związków węglowych, które powstają w trakcie syntezy w roztworze wodnym.

Widmo emisji proszku YAG: 1 % Nd otrzymanego zmodyfikowaną metodą zol-żel składa się z wąskich i dobrze wykształconych linii.

6.4. Badanie układu YAIO₃ ---- NdAłO₃ (YAP-NAP)

W układzie Y-Nd-Al-O duże znaczenie przypisuje się związkom o strukturze perowskitu YAP i NAP. YAlO₃ domieszkowany jonami ziem rzadkich lub metali przejściowych ze względu na swoje właściwości optyczne ma liczne zastosowania. Jest on z powodzeniem używany jako ośrodek czynny w laserach na ciele stałym^{69,70}, scyntylatorach⁷¹, jako luminofor⁷², czy chociażby pigment ceramiczny⁷³. Z drugiej strony perowskit neodymowoglinowy jest interesującym materiałem ze względu na jego zastosowanie w nanokompozytach z glinem – poprawia w nich wydajność świecenia⁴⁴. Ponieważ oba perowskity itrowo-glinowy i neodymowo-glinowy mają różne struktury, YAP ortorombową²⁰, NAP romboedryczną⁷⁴, wzajemna rozpuszczalność obu tych faz jest ograniczona. Jak do tej pory oprócz publikacji⁷⁵ opracowanej w ramach niniejszej rozprawy doktorskiej nie ma doniesień literaturowych na temat dwuskładnikowego diagramu fazowego YAP-NAP oraz temperatur topnienia związków o wzorze $Y_{1-x}Nd_xAlO_3$ ($0 \le x \le 1$). Sa tylko wzmianki o niedomieszkowanym perowskicie itrowoglinowym lub domieszkowanym co najwyżej w ilości 3 %, jak również o niedomieszkowanym perowskicie neodymowo-glinowym (x = 1). YAP z niewielką ilością domieszki (rzędu kilku procent) otrzymywany jest w postaci monokryształu za pomocą metody Czochralskiego, natomiast otrzymanie go w postaci krystalicznego proszku za pomocą mokrych metod chemicznych jest niezwykle trudne, aczkolwiek możliwe⁷⁶.

Przygotowanie próbek

Do syntez nanokrystalicznych proszków z układu YAlO₃ ---- NdAlO₃ (Y_{1-x}Nd_xAlO₃, $0 \le x \ge 1$) użyto następujących odczynników:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.
- C₂H₄O₂ kwas octowy, o czystości cz.d.a.
- C₂H₆O₂ glikol etylenowy, o czystości cz.d.a.
- woda dejonizowana.

Nanokrystaliczne proszki z układu YAlO₃ ---- NdAlO₃ zostały zsyntezowane za pomocą zmodyfikowanej metody zol-żel (Pechini'ego) w następujący sposób:

Odpowiednią ilość tlenku itru i tlenku neodymu rozpuszczano w ciągu kilku godzin w temperaturze 65°C w roztworze kwasu octowego w zlewce umieszczonej na mieszadle magnetycznym. W drugiej zlewce rozpuszczono azotan glinu w wodzie dejonizowanej i dodano do roztworu octanów, mieszano przez około 2 h. Następnie dodano glikolu etylenowego i mieszano przez kolejne 2 h. Odparowano rozpuszczalnik poprzez umieszczenie zlewki z klarownym roztworem na maszynce elektrycznej. W kolejnym etapie syntezy suszono otrzymany żel w temperaturze 120°C w ciągu 12 h. W ten sposób uzyskany kserożel wypalano w temperaturze 1000°C przez 12 h. Następnie w celu uzyskania jednofazowego materiału proszki wypalano jeszcze raz w temperaturze 1600°C przez 7 h.

W celu porównania właściwości otrzymywanych nanokrystalicznych proszków z kryształami objętościowymi, wykonano próbki materiałów o wzorze $Y_{1-x}Nd_xAIO_3$, $0 \le x \ge 1$ w postaci monokryształów za pomocą metody mikrowyciągania (micro-pulling down – mPD) z grzaniem indukcyjnym. Materiał wsadowy stanowiły: a) mieszanina perowskitów YAIO₃ i NdAIO₃ przygotowana z tlenków o wysokiej czystości za pomocą reakcji w fazie stałej, b) nanokrystaliczne proszki otrzymane za pomocą zmodyfikowanej metody zol-żel w sposób opisany powyżej. Materiał wsadowy topiony był w tyglu irydowym, który był termicznie izolowany za pomocą ceramik z tlenku cyrkonu i tlenku glinu. Komora wzrostu była opłukiwana gazem ochronnym (N₂) w trybie ciągłym. Kryształy były wyciągane z szybkością 0.20 mm/min przy użyciu drutu irydowego jako zarodka. We wszystkich przypadkach cały materiał wsadowy (około 0.5 g) został wykorzystany do krystalizacji.

Otrzymano próbki o wzorze $Y_{1-x}Nd_xAlO_3$, dla x = 0; 5; 15; 20; 25; 27; 35; 45; 50; 55; 65; 73; 80; 97 za pomocą wyżej opisanych metod: zmodyfikowanej zol-żel oraz mikrowyciągania. Warunki otrzymywania oraz skład fazowy produktów przedstawiono w tabeli 6.

D	Stężenie	Wypalanie:	Due 1-1-4	Due 1.1.4	
[% Y]	[mol/dm ³]	temperatura [°C]/	Produkty syntezy	Produkty syntezy	
	rozpuszczalnika	czas [h]	zol-zel	mikrowyciągania	
0	0.4 CH ₃ COOH	1000/12	NdAlO ₃	NdAlO ₃	
5	0.4 CH ₃ COOH	1000/12	NdAlO ₃	-	
15	0.4 CH ₃ COOH	1000/12	NdAlO ₃ /YAlO ₃	-	
20	0.4 CH ₃ COOH	1000/12	NdAlO ₃ /YAlO ₃	-	
25	1 CH ₃ COOH	1300/2	$NdAlO_3 + Y_2O_3$	NdAlO ₃ /YAlO ₃	
			$+ Nd_2O_3$		
27	1 CH ₃ COOH	1300/2	NdAlO ₃ /YAlO ₃	NdAlO ₃ /YAlO ₃	
35	0.2 CH ₃ COOH	1300/2	$NdAlO_3 + YAlO_3$		
			+ Y ₃ Al ₅ O ₁₂	-	
45	0.4 CH ₃ COOH	1000/12	NdAlO ₃ /YAlO ₃	-	
50	0.2 CH ₃ COOH	1300/2	$NdAlO_3 + YAlO_3$	-	
			+ Y ₃ Al ₅ O ₁₂		
55	0.2 CH ₃ COOH	1300/2	YAlO ₃ /NdAlO ₃	-	
65	0.4 CH ₃ COOH	1200/2	$YAIO_3 + NdAIO_3$		
		1300/2	+ Y ₃ Al ₅ O ₁₂	-	
73	1 CH ₃ COOH	1300/2	NdAlO ₃	NdAlO ₃ /YAlO ₃	
80	0.4 CH ₃ COOH	1000/12	$YAlO_3 + Y_4Al_2O_{19}$		
		1000/12	+ Y ₃ Al ₅ O ₁₂	-	
97	1 HNO ₃	1300/6	$YAlO_3 + Y_3Al_5O_{12}$		
			$+ Y_4Al_2O_9$	-	

Tabela 6. Warunki prowadzenia syntez zol-żel związków o wzorze $Y_{1-x}Nd_xAlO_3$, $0 \le x \ge 1$ oraz skład fazowy produktów otrzymanych za pomocą metod zol-żel i mikrowyciągania.

Charakteryzacja próbek

Otrzymane próbki były badane za pomocą różnych metod. Stałe sieci zarówno nanokrystalicznych proszków, jak i sproszkowanych monokryształów były wyznaczane za pomocą dyfraktometrii rentgenowskiej (XRD). Otrzymane widma z XRD wykorzystano do

analizy Rietveld'a za pomocą programu komputerowego PowderCell (wersja 2.4. na Windows). Rozmiar i morfologia nanokrystalicznych proszków były analizowane za pomocą wysokorozdzielczej mikroskopii skaningowej (HRSEM). Za pomocą termicznej analizy różnicowej i analizy termograwimetrycznej (DTA/TG) badano wpływ temperatury na przemiany fazowe i zmianę masy próbek. We wszystkich pomiarach używano tygli wolframowych. Chłodzenie i grzanie przeprowadzano z szybkością \pm 15°C/min.

Badania XRD

Rys. 47. Dyfraktogramy wybranych nanokrystalicznych próbek proszkowych z układu YAP - NAP: 1) YAlO₃; 2) Y_{0.8}Nd_{0.2}AlO₃; 3) Y_{0.55}Nd_{0.45}AlO₃; 4) Y_{0.2}Nd_{0.8}AlO₃; 5) NdAlO₃; pionowe przerywane linie oznaczają wzorzec YAlO₃⁷⁵.

Charakter zmiany struktury od ortorombowej perowskitu itrowo-glinowego YAlO₃ do romboedrycznej perowskitu neodymowo-glinowego NdAlO₃ przedstawiono za pomocą dyfraktogramów na rys. 47. Na dyfraktogramach próbek o strukturze ortorombowej (z dużą

zawartością itru), można zauważyć niewielką ilość fazy YAG, o obecności której świadczy pik przy około 33°, który zanika w miarę jak fazy YAP jest coraz mniej. Oznacza to, że dla YAIO₃ domieszkowanego jonami neodymu, oprócz głównej fazy perowskitu występuje niewielka ilość fazy granatu (Y₃Al₅O₁₂). Fakt ten może być tłumaczony niestabilnością fazy YAP w niższych temperaturach²².

Wyjściowe "czyste" struktury krystaliczne YAP i NAP należą do różnych grup przestrzennych: YAP – struktura ortorombowa, grupa przestrzenna Pbnm (62), nr wzorca ICDD 01-089-7947, NAP – struktura romboedryczna, grupa przestrzenna R3c (167), nr wzorca ICDD 04-007-8024 (tabela 7). Wyniki szczegółowych badań XRD, obejmujących zbadanie zależności objętości komórki archetypowej perowskitu od udziału jonów Nd³⁺, zostały przedstawione na rys. 48.

Rys. 48. Objętość V_a komórki archetypowej perowskitu w funkcji udziału jonów Nd/(Nd+Y); wypełnione punkty oznaczają strukturę ortorombową, puste punkty – romboedryczną; trójkąty i koła – kryształy otrzymane za pomocą metody mikrowyciągania z proszków i tlenków odpowiednio, kwadraty – proszki otrzymane za pomocą zmodyfikowanej metody zol-żel⁷⁵.

Aby móc porównywać zmiany parametrów geometrycznych w funkcji udziałów jonowych, dla każdej ze struktur przeliczano objętość komórki elementarnej na objętość tzw. archetypowej komórki perowskitu, tj. zdeformowanej, quasi-sześciennej komórki, obejmującej jeden oktaedr AlO₆. Stosowano metodę Rietveld'a do udokładniania parametrów strukturalnych, m.in. objętości komórek elementarnych, a następnie dzielono je na odpowiednie części. W ten sposób ortorombową objętość dzielono na cztery, a heksagonalną (opisującą strukturę romboedryczną) na sześć części - tyle komórek archetypowych przypada na komórki elementarne.

Na rys. 48 można zaobserwować, że wraz ze wzrastającym udziałem jonów Nd^{3+} wzrasta objętość podstawowej komórki archetypowej, ponieważ średnica jonu Nd^{3+} (1.15 Å) jest większa niż jonu Y^{3+} (1.06 Å). Zależność ta jest liniowa, szczególnie dla mniejszej zawartości jonów Nd, czyli w przedziale $0 \le x \ge 0.7$, gdzie x = Nd/(Nd+Y). Ograniczenie liniowej zależności stężenia jonów danego rodzaju od objętości komórki związane jest ze średnią wielkością promieni jonowych pierwiastków itru i neodymu, która wynosi 03 x 1.04 Å + 0.7 x 1.12 Å = 1.096 Å i jest prawie identyczna z wielkością promienia jonowego samaru, która wynosi 1.098 Å⁷⁷. Na uwagę zasługuje fakt, że wszystkie perowskity o wzorze sumarycznym REAIO₃ (RE – pierwiastek ziem rzadkich) o promieniach jonowych pierwiastków ziem rzadkich mniejszych od samaru SmAIO₃ mają strukturę ortorombową⁷⁴. Perowskity z pierwiastkami ziem rzadkich o promieniach jonowych większych od promienia jonowego neodymu mają strukturę romboedryczną.

W zakresie średnich udziałów stężeń jonów Nd^{3+} , czyli dla $0.45 \le x \le 0.85$, na dyfraktogramach obserwuje się piki pochodzące zarówno od struktury ortorombowej, jak i romboedrycznej. Przyjęto, że w tym przedziale udziałów mogą współistnieć w kryształach obszary o obu symetriach, przy czym udziały obu typów jonów w poszczególnych strukturach powinny być takie same lub bardzo zbliżone. Wniosek taki wynika z bardzo zbliżonych objętości komórek archetypowych wyznaczonych dla obu struktur, dla tych samych nominalnych składów (Tabela 7).

Związek	YAlO ₃	Y _{0.45} Nd _{0.55} AlO ₃	Y _{0.05} Nd _{0.95} AlO ₃	NdAlO ₃
Struktura	Pnma	Pnma	R3c	R3c
krystaliczna	ortorombowa	ortorombowa	romboedryczna	romboedryczna
Wymiary	a = 5.180	a = 5.269	a = 5.321	a = 5.321
komórki	b = 5.320	b = 5.302	-	-
elementarnej (Å)	c = 7.375	c = 7.465	c = 12.915	c = 12.916

Tabela 7. Parametry sieci krystalicznych wybranych próbek z układu YAlO₃-NdAlO₃ otrzymanych za pomocą zmodyfikowanej metody zol-żel⁷⁵.

Rys. 49. Kryształ Y_{0.73}Nd_{0.27}AlO₃ o długości około 25 mm, otrzymany za pomocą metody mikrowyciągania⁷⁵.

Dla wszystkich próbek o dużej zawartości fazy YAlO₃, będących roztworami stałymi, obszar dwufazowy występuje pomiędzy liniami solidusu i likwidusu i w konsekwencji wzrost kryształów ze stopionego materiału w tym zakresie może odbywać się bez znaczącej segregacji. Jako przykład na rys. 49 został przedstawiony kryształ Y_{0.73}Nd_{0.27}AlO₃ otrzymany za pomocą metody mikrowyciągania (mPD). Materiał wsadowy do otrzymania tej próbki stanowiła mieszanina tlenków itru, neodymu i glinu.

Badania HRSEM

Na zdjęciach z wysokorozdzielczego skaningowego mikroskopu elektronowego przedstawiających morfologię powierzchni próbek z układu YAP-NAP obserwuje się

wzrost wielkości ziaren wraz ze wzrostem udziału jonów itru (rys. 50). Związane jest to ze sposobem otrzymywania próbek, a konkretnie z temperaturą wypalania proszków. Otóż do otrzymania jednofazowego perowskitu neodymowo-glinowego czystego i domieszkowanego małą ilością itru wystarczającą maksymalną temperaturą wypalania jest 1000°C. Jednak aby otrzymać jednofazowy perowskit itrowo-glinowy czysty i domieszkowany neodymem potrzeba znacznie wyższych temperatur, osiągających aż 1600°C. Związki wypalane w wyższych temperaturach mają większe rozmiary ziaren (rys. 50 d).

Rys. 50. Zdjęcia HRSEM przedstawiające morfologię powierzchni proszków: a) $Y_{0.05}Nd_{0.95}AlO_3$; b) $Y_{0.15}Nd_{0.85}AlO_3$; c) $Y_{0.45}Nd_{0.55}AlO_3$; d) $Y_{0.80}Nd_{0.20}AlO_3$; a) \div c) proszki wypalane w 1000°C; d) 1600°C⁷⁵.

Badania DTA/TG

W celu określenia temperatur topnienia i przejść fazowych związków z układu YAP-NAP przeprowadzono badania DTA, we współpracy z Leibniz Institute for Crystal Growth (IKZ) w Berlinie, dla około 20 próbek z całego zakresu, włącznie z YAlO₃ i NdAlO₃. Próbki były w postaci zarówno proszków, jak i kawałków kryształów otrzymanych za pomocą metody mikrowyciągania. Jeżeli chodzi o proszki, to zostały one przed pomiarami wygrzane w temperaturze 1600°C w powietrzu i okazało się, że dzięki temu próbki były jednofazowe. Zazwyczaj stosowano trzykrotny proces grzania-chłodzenia każdej próbki. Jeżeli chodzi o interpretację wyników z analizy termicznej, to użyteczne były tylko te, które dotyczyły grzania próbek, ponieważ podczas każdego chłodzenia następowało przechłodzenie w zakresie aż do 50°C. Przykładowe wyniki analizy DTA pokazane zostały na rys. 51. Analizując te wyniki należy również uwzględnić, że pomiary były prowadzone przy różnych ustawieniach aparatury. Było to nie do unikniecia, ponieważ próbki z duża zawartością neodymu ze względu na zbyt wysoką temperaturę topnienia nie mogły być mierzone przy użyciu analizatora termicznego typu STA 449 F1 firmy NETZSCH z piecem platynowym (do 1500°C) w atmosferze powietrza wzbogaconego argonem, w którym to analizatorze mierzono próbki na samym początku. Ponadto duża liczba pomiarów sprawiała, że wielokrotnie trzeba było wymieniać termoparę wolframowo-renową (W-W/Re) umieszczoną w uchwycie do próbek. Niestety dla pomiarów w tak wysokich temperaturach również kalibracja nie jest w pełni miarodajna. Ponadto wartość temperatury oznaczającej koniec krzepnięcia jest w granicach błędu pomiarowego, który wynosi \pm 15°C. Tylko dla kilku próbek temperatura topnienia (likwidusu) może być określona jako temperatura, dla której krzywa DTA po przejściu temperatury topnienia wraca do poziomu linii podstawowej (próbka o składzie x = 0.45 na rys. 51). Niestety dokładność w wyznaczaniu tego punktu jest zdecydowanie gorsza i trzeba założyć bład w granicach $\pm 20^{\circ}$ C.

Rys. 51. Krzywe DTA wykonane dla próbek z zakresu od prawie czystego YAP (Nd/(Nd+Y) = x = 0.03) do czystego NAP (x = 1). Dwa graniczne składy zaznaczone są nieprzerywaną linią (dwie górne linie), składy blisko eutektyku przerywaną kreskowaną linią (dwie dolne linie) i roztwór z dużą zawartością neodymu kropkowaną linią (dwie środkowe linie)⁷⁵.

Jako alternatywną metodę do wyznaczania temperatury topnienia w układach, w których dochodzi do przechłodzenia podczas pomiarów DTA, zaproponowali Fedorov i Medvedeva⁷⁸ dla eutektyków. Metoda ta została również wykorzystana w niniejszej pracy dla kilku próbek. Polega ona na kolejnym powtarzaniu cykli grzanie-chłodzenie pomiędzy stałą niższą temperaturą T₀ oraz wyższą temperaturą T₁, która jest stopniowo podnoszona od T₂ > T₀ aż do granicznej temperatury znacznie ponad temperaturę likwidusu. Zależność przedstawionych temperatur można zapisać w następujący sposób:

$$T_1 = T_2 + n \Delta T \tag{5}$$

gdzie n = 0, 1, ... jest liczbą oznaczającą kolejny cykl, zaś ΔT oznacza przedział temperatury o jaką powiększył się kolejny krok.

Część wyników opisanego powyżej procesu została przedstawiona na rys. 52 dla pięciu kolejnych krzywych chłodzenia ($\Delta T = 5K$, n = 7,...,11) dla próbki Y_{0.65}Nd_{0.35}AlO₃.

Rys. 52. Krzywe DTA przedstawiające etap chłodzenia w cyklach pomiarowych grzaniechłodzenie dla próbki Y_{0.65}Nd_{0.35}AlO₃. Kolejne cykle od T_0 +35°C (dolna krzywa) do T_0 +55°C (górna krzywa) przeprowadzone co 5°C. Badania przeprowadzone w celu dokładniejszego określenia temperatury topnienia (likwidusu)⁷⁵.

Dopóki temperatura T_1 jest niższa niż temperatura krzepnięcia (poniżej linii solidusu), cała próbka jest w postaci proszku i nie jest obserwowany żaden widoczny efekt cieplny podczas chłodzenia od temperatury T_1 do T_0 . Jeżeli temperatura T_1 jest nieznacznie powyżej linii solidusu (krzepnięcia), następuje stopienie niewielkiej ilości próbki, a następnie jej skrystalizowanie podczas kolejnego chłodzenia do temperatury T_0 . Warto dodać, że krystalizacja ta następuje bez wyraźnego przechłodzenia. Dzieje się tak, dlatego

iż większa część próbki pozostaje w stanie stałym. Wynik ten jest przedstawiony na rys. 52 za pomocą dolnej krzywej, na której jest mało widoczny pik egzotermiczny w zakresie od $T_0 + 10^{\circ}$ C do $T_0 + 20^{\circ}$ C. Pik ten wyraźnie rośnie w kolejnych cyklach, ponieważ coraz większa ilość próbki ulega stopieniu wraz ze wzrostem temperatury. Pole A pod pikiem egzotermicznym, wraz z chłodzeniem w kolejnych cyklach, rośnie aż do momentu, gdy górna temperatura T_1 znajdzie się w obszarze, w którym występują dwie fazy pomiędzy liniami solidusu i likwidusu. W momencie, w którym temperatura T_1 przewyższa temperaturę topnienia, wartość A przestaje rosnąć i pozostaje mniej więcej na stałym poziomie, ponieważ ilość materiału krystalizującego już się nie zwiększa i jest taka sama w kolejnych cyklach. (W rzeczywistości wartości te mogą się nieco wahać ze względu na to, iż ciepło wydzielane podczas krystalizacji zależy od temperatury T i z powodu przechłodzenia temperatura krystalizacji często nie jest wartością stałą).

Rys. 53. Krzywe zależności pola A pod pikiem od temperatury T_1 w cyklach pomiarowych DTA grzanie-chłodzenie, dla etapu chłodzenia, dla dwóch próbek z dużą zawartością Y_2O_3 : 80 % - po lewo, 65 % - po prawo. Poziome linie oznaczają zakres temperatury, w którym pole pod pikiem rośnie od 10 do 90% swojej wartości maksymalnej⁷⁵.

W przypadku kilku próbek "cykliczne" pomiary DTA (grzanie-chłodzenie) zostały wykorzystane do określenia szerokości dwufazowego obszaru pomiędzy liniami solidusu i likwidusu. Krzywe zależności pola A pod pikiem (w trakcie chłodzenia) od temperatury T_1 przedstawione zostały na rys. 53 i wynika z nich, że wraz ze wzrostem temperatury T_1 rośnie wartość A, od zera aż do nasycenia. Kształt tych krzywych zależy między innymi od stopnia nachylenia krzywych solidusu i likwidusu, ale nie tylko. Również parametry doświadczalne, takie jak chociażby transport ciepła wewnątrz uchwytu próbek analizatora termicznego ma tu znaczenie. Funkcję A(T_1) w postaci krzywej w kształcie litery S można zapisać równaniem z trzema niewiadomymi:

$$A(T_1) = \frac{a}{1 + \exp\left[-\frac{T_1 - b}{c}\right]}$$
(6)

w którym poszczególne parametry oznaczają:

a - temperaturę poziomu nasycenia,

b – temperaturę, przy której nasycenie zostało osiągnięte w 50%,

c - zakres, w którym temperatura T₁ rośnie do maksimum.

Pole pod pikiem rośnie od 10 do 90% swojej wartości maksymalnej dla wartości 4.4 x c. Na rys. 53 zakres ten został zaznaczony za pomocą dwóch poziomych linii.

Z przeprowadzonych badań DTA wynika również, że dla układu fazowego YAIO₃-NdAIO₃ temperatura początku topnienia maleje od 2100°C dla niedomieszkowanego NAP, do przedziału 1880-1890°C dla mieszaniny 65 % NAP i 35 % YAP (rys. 54). W tym zakresie stężeń, to znaczy dla 0.65 $\leq x \leq 1$ (Y_{1-x}Nd_xAIO₃) obszar dwufazowy pomiędzy liniami solidusu i likwidusu osiąga szerokość aż na 140°C. Dla związków o zawartości fazy NAP poniżej 10 %, to znaczy z przedziału $0 \leq x \leq 0.10$, temperatura początku topnienia zaczyna powoli rosnąć, aż do temperatury topnienia niedomieszkowanego YAP (T = 1900°C). Z kolei dla wszystkich związków z przedziału od czystego YAIO₃ (x = 0) do Y_{0.65}Nd_{0.35}AIO₃ (x ≈ 0.35) piki pochodzące od topnienia są wąskie (< 25°C), zaś początek temperatury topnienia dla związków z przedziału $0 \leq x \leq 0.65$ zawiera się w zakresie 1880-1900°C. Jak już wcześniej wspomniano, temperatura początku topnienia czystego YAP jest około 10°C wyższa niż dla związków z dużym udziałem fazy YAP ($0.10 \le x \le 0.30$). Ponadto na rys. 54 można zauważyć, że w środku obszaru z dużą zawartością fazy YAP piki topnienia są bardzo wąskie, a w rzeczywistości nie są szersze niż piki pochodzące od czystego YAP, czy też czystego NAP.

Z pewnością można stwierdzić, że zarówno czysty NdAlO₃, jak i YAlO₃ topią się kongruentnie. Mieszanina w pobliżu $Y_{0.80}Nd_{0.20}AlO_3$ również topi się kongruentnie, jako że dwuskładnikowy diagram fazowy ma punkt azeotropowy pokrywający się z minimum krzywych krzepnięcia (solidus) i topnienia (likwidus). Należy zaznaczyć, że roztwór stały z większym udziałem fazy NAP, zawierający się w przedziale 0.30 < x < 0.65, topi się niekongruentnie. Proponowany diagram fazowy dla układu YAlO₃-NdAlO₃ został przedstawiony na rys. 54.

Rys. 54. Proponowany diagram fazowy układu YAP - NAP. Linie na granicy faz YAlO₃(ss)/NdAlO₃(ss) są tylko przybliżone. Początek temperatur topnienia został zaznaczony wypełnionymi symbolami, zaś koniec temperatur topnienia (likwidus) pustymi symbolami. Górna ciągła pozioma linia oznacza obszar dwufazowy zaobserwowany na podstawie badań z analizy rentgenowskiej XRD⁷⁵.

Dla mieszaniny o składzie poniżej 45 % udziału fazy NAP (0 < x < 0.45), na dyfraktogramach (rys. 47, 48) pojawiają się tylko piki pochodzące od ortorombowej fazy YAIO₃, zaś dla mieszaniny z udziałem fazy NAP powyżej 90 % (0.90 < x < 1) na dyfraktogramach obecne są tylko piki pochodzące od romboedrycznej fazy NdAIO₃. Wyniki te są zbliżone do limitu rozpuszczalności \approx 70 % NAP, gdzie zależność objętości komórki elementarnej od stężenia traci charakter liniowy (rys. 48). Wyniki badań termicznej analizy różnicowej DTA sugerują limit rozpuszczalności w pobliżu 65 % NAP (wzbogacony w neodym koniec linii eutektycznej na rys. 54). Należy jednak wziąć pod uwagę fakt, iż porównywanie wyników XRD i DTA nie może być jednoznaczne, ponieważ badania DTA opisują równowagi przebiegające w temperaturze eutektycznej, na poziomie 1900°C, podczas gdy badania dyfrakcji rentgenowskiej XRD były prowadzone w temperaturze pokojowej.

Wnioski

Układ YAlO₃-NdAlO₃ jest układem dwuskładnikowym i zawiera jedną fazę ciekłą (stopioną) i dwa roztwory stałe faz YAlO₃(ss) i NdAlO₃(ss). Faza YAlO₃(ss) posiada punkt azeotropowy w pobliżu 20 % zawartości NdAlO₃, z temperaturą topnienia około 20 stopni niższą od temperatury topnienia czystego YAlO₃. Homogeniczne i optycznie czyste monokryształy, o długości kilku centymetrów, były otrzymywane za pomocą metody mikrowyciągania z mieszaniny tlenków, poza obszarem dwufazowym $0.45 \le Nd/(Nd + Y) \le 0.85$, który został wyznaczony za pomocą badań XRD (rys. 48). Jeżeli chodzi o możliwość wprowadzenia jako domieszki jonów neodymu, to właściwości fazy perowskitu YAlO₃ w postaci monokryształu są bardziej korzystne, niż fazy granatu Y₃Al₅O₁₂. Otóż w granacie itrowo-glinowym rozpuszczalność jonów Nd³⁺ jest również wysoka, jednak segregacja jest na tyle duża, że poziom domieszkowania przekraczający kilka procent nie jest możliwy do osiągnięcia dla wzrostu kryształów z fazy roztopionej⁴¹.

W ramach niniejszej pracy po raz pierwszy została doświadczalnie zmierzona temperatura topnienia perowskitu neodymowego NAP wynosząca 2100°C – do tej pory w literaturze znane były tylko dane teoretyczne.

6.5. Badanie ukladu Y₄Al₂O₉ ---- Nd₄Al₂O₉ (YAM-NAM)

Brak jest danych literaturowych opisujących układ YAM-NAM. Zarówno Y₄Al₂O₉, jak i Nd₄Al₂O₉ mają strukturę jednoskośną. Wydawać by się zatem mogło, że ich wzajemna rozpuszczalność może być nieograniczona. Jednak YAM topi się kongruentnie, zaś NAM niekongruentnie. Nieliczne dane literaturowe opisujące związek Nd₄Al₂O₉ wskazują na jego niestabilność. W sieci przestrzennej Y₄Al₂O₉, jony metali ziem rzadkich (lantanowców) najprawdopodobniej podstawiają się wyłącznie pod jony itru. Jon Nd³⁺ jest przedstawicielem jonów z pierwszej połowy serii lantanowców i jego promień jonowy jest większy niż jonu Y³⁺. Badania strukturalne przedstawione w pracy Yamane i innych³⁰ dowodzą, że w strukturze przestrzennej Y₄Al₂O₉ znajdują się trzy jony itru o koordynacji siedmiokrotnej i jeden o sześciokrotnej. Domieszkowanie jonami Nd³⁺ reprezentuje układ z jednym poziomem metatrwałym.

Przygotowanie próbek

Do syntez nanokrystalicznych proszków z układu $Y_4Al_2O_9 - --- Nd_4Al_2O_9 [(Y_{1-x}Nd_x)_4Al_2O_9, 0 \le x \ge 1]$ użyto następujących odczynników:

- Y₂O₃ tlenek itru, o czystości cz.d.a.
- Nd₂O₃ tlenek neodymu, o czystości cz.d.a.
- Yb₂O₃ tlenek iterbu, o czystości cz.d.a.
- Al(NO₃)₃·9H₂O dziewięciowodny azotan glinu, o czystości cz.d.a.
- C₂H₄O₂ kwas octowy, o czystości cz.d.a.
- C₆H₈O₇ kwas cytrynowy, o czystości cz.d.a.
- C₄H₆O₆ kwas winowy, o czystości cz.d.a.
- HNO₃ kwas azotowy, o czystości cz.d.a.
- C₂H₆O₂ glikol etylenowy, o czystości cz.d.a.
- woda dejonizowana.

W sposób uproszczony reakcje otrzymywania Y₄Al₂O₉ oraz Nd₄Al₂O₉ można zapisać w następującej postaci:

$$2 Y_2 O_3 + Al_2 O_3 \rightarrow Y_4 Al_2 O_9 \tag{7}$$

$$2 \operatorname{Nd}_2 \operatorname{O}_3 + \operatorname{Al}_2 \operatorname{O}_3 \to \operatorname{Nd}_4 \operatorname{Al}_2 \operatorname{O}_9 \tag{8}$$

Nanokrystaliczne proszki o wzorze $(Y_{1-x}Nd_x)_4Al_2O_9$ ($0 \le x \le 1$) były syntezowane za pomocą zmodyfikowanej metody zol-żel (Pechini'ego) w sposób opisany poniżej.

Odpowiednią ilość tlenków itru oraz neodymu rozpuszczano w roztworze kwasu octowego w zlewce umieszczonej na mieszadle magnetycznym. Tlenki rozpuszczano w ciągu kilku godzin w temperaturze około 65°C. Osobno rozpuszczono azotan glinu w wodzie dejonizowanej i dodano do roztworu octanów, całość mieszano przez około 2 h. Następnie dodano glikolu etylenowego i mieszano przez kolejne 2 h. Zlewkę z klarownym roztworem umieszczono na maszynce elektrycznej, aż do całkowitego odparowania rozpuszczalnika. W kolejnym etapie syntezy przeprowadzono suszenie w temperaturze 120°C w ciągu 12 h. W ten sposób uzyskany kserożel poddano wypalaniu w temperaturze 1100°C przez 12 h. W ramach niniejszej pracy w celu przebadania układu (Y_{1-x}Nd_x)₄Al₂O₉, $0 \le x \ge 1$ otrzymano związki dla x = 0; 0.002; 0.005; 0.01; 0.03; 0.25; 0.30; 0.40; 0.50; 0.75; 1.

Podczas analizy krzywych czasu zaniku luminescencji dla próbek wypalanych w różnych temperaturach, zauważono, że resztkowa zawartość grup OH^- w proszkach $Y_4Al_2O_9$ wypalanych poniżej 1000°C jest na tyle duża, że ma wpływ na relaksację stanów wzbudzonych domieszek jonów ziem rzadkich. Dlatego w celu uniknięcia tego zjawiska postanowiono próbki YAM wypalać w temperaturze 1100°C.

W celu możliwości kontrolowania morfologii i wielkości ziaren otrzymywanych związków, w roli środka kompleksującego przebadano trzy różne kwasy organiczne: octowy, cytrynowy i winowy. Próby przeprowadzono dla czystego YAM. Przy użyciu każdego z wyżej wymienionych kwasów otrzymano materiał jednofazowy, różniący się nieznacznie morfologią powierzchni. Duże znaczenie miało tu stężenie kwasu. Otóż użycie każdego z kwasów w stężeniu 0.2 M (w ilości odpowiadającej stechiometrii reakcji) było niewystarczające do otrzymania jednofazowego związku Y₄Al₂O₉ i oprócz fazy YAM, pojawiała się niewielka ilość fazy granatu YAG w przypadku, gdy użyto kwasu octowego lub cytrynowego (rys. 57). Jeżeli zaś użyto kwasu winowego, w próbkach dodatkowo znajdowały się zanieczyszczenia Y₂O₃, YAlO₃ i Y₃Al₅O₁₂. Dopiero zwiększenie stężenia

do 0.4 M, w każdym przypadku spowodowało zanik obcych faz i otrzymanie jednofazowego materiału.

Badano również wpływ obecności środka polimeryzującego na skład fazowy otrzymywanych próbek na przykładzie czystego YAM. Okazało się, że brak tego czynnika nie pozwala na otrzymanie jednofazowego materiału i jako dodatkowe fazy pojawiają się Y_2O_3 i $Y_3Al_5O_{12}$. Dodatek glikolu etylenowego jako czynnika polimeryzującego spowodował, że otrzymano jednofazowy $Y_4Al_2O_9$ za pomocą zmodyfikowanej metody zolżel. Warunki prowadzenia syntez wybranych proszków oraz skład fazowy otrzymanych preparatów zostały przedstawione w tabeli 8.

Tabela 8. Warunki prowadzenia wybranych syntez nanokrystalicznych proszków o wzorze $(Y_{1-x}Nd_x)_4Al_2O_9 (0 \le x \le 1)$ oraz ich skład fazowy.

Domieszka [%mol]	Rozpuszczalnik kwas [M]	Związek polimeryzujący	Wypalanie: temp. [°C]/ czas [h]	Produkty syntezy
-	0.4 octowy	glikol	1100/12	$Y_4Al_2O_9$
-	0.4 octowy	-	1100/12	$Y_4Al_2O_9 + Y_2O_3 + Y_3Al_5O_{12}$
-	0.2 octowy	glikol	1100/12	$Y_4Al_2O_9 + Y_3Al_5O_{12}$
-	0.4 octowy	glikol	600°C + 1100/12	$Y_4Al_2O_9 + Y_3Al_5O_{12} + Y_2O_3$
-	0.2 cytrynowy	glikol	1100/12	$Y_4Al_2O_9 + Y_3Al_5O_{12}$
-	0.4 cytrynowy	glikol	1100/12	$Y_4Al_2O_9$
-	0.2 winowy	glikol	1100/12	$\begin{array}{c} Y_4Al_2O_9+Y_2O_3+YAlO_3+\\ Y_3Al_5O_{12} \end{array}$
-	0.4 winowy	glikol	1100/12	Y ₄ Al ₂ O ₉
3 Nd	0.4 octowy	glikol	1100/12	Y ₄ Al ₂ O ₉
25 Nd	0.4 octowy	glikol	1100/12	Y ₄ Al ₂ O ₉
30 Nd	0.4 octowy	glikol	1100/12	$Y_4Al_2O_9 + Nd_6O_{11}$
40 Nd	0.4 octowy	glikol	1100/12	$Y_4Al_2O_9 + Nd_6O_{11}$
50 Nd	0.4 octowy	glikol	1100/12	$Y_4Al_2O_9 + Nd_2O_3 + NdAlO_3$
75 Nd	0.4 octowy	glikol	1100/12	$Y_4Al_2O_9 + Y_2O_3 + NdAlO_3$
100 Nd	0.2 octowy	glikol	1000/12	$Nd_2O_3 + NdAlO_3$

Podczas wypalania proszków konieczna była ciągłość procesu. Przy próbie wypalania $Y_4Al_2O_9$ dwuetapowo - najpierw w temperaturze 600°C, a następnie schłodzeniu próbki i jej ponownym wypaleniu w temperaturze 1100°C - otrzymano materiał wielofazowy o składzie: $Y_4Al_2O_9$, $Y_3Al_5O_{12}$, Y_2O_3 .

Ostatecznie do otrzymywania nanokrystalicznych proszków YAM, zarówno czystych, jak i domieszkowanych jonami ziem rzadkich, za pomocą zmodyfikowanej metody zol-żel, użyto kwasu octowego i glikolu etylenowego. Próbki wypalano w 1100°C.

Badania XRD

Poniżej przedstawiono dyfraktogramy proszków z układu YAM-NAM otrzymanych za pomocą zmodyfikowanej metody zol-żel, przy różnych warunkach prowadzenia syntez.

Rys. 55. Dyfraktogramy proszków: jednofazowego YAM otrzymanego z roztworu z dodatkiem czynnika kompleksującego – dolna krzywa oraz wielofazowego YAM otrzymanego z roztworu bez dodatku czynnika kompleksującego – górna krzywa, wygrzewanych w 1100°C w ciągu 12 h.

Rys. 56. Dyfraktogramy proszków: jednofazowego YAM otrzymanego w bezpośrednim wygrzewaniu próbki w 1100°C w ciągu 12 h – dolna krzywa oraz wielofazowego YAM otrzymanego w dwuetapowym wygrzewaniu próbki w 600°C i w 1100°C w ciągu 12 h – górna krzywa.

Rys. 57. Dyfraktogram nanokrystalitów YAM otrzymanych z 0,2 M roztworu kwasu cytrynowego, wypalanych w 1100°C w ciągu 6 h; pionowe przerywane linie oznaczają wzorzec $Y_4Al_2O_9$, zaś pionowe ciągłe linie wzorzec $Y_3Al_5O_{12}$.

Rys. 58. Dyfraktogramy proszków o stechiometrii: 1) $Y_4Al_2O_9$; 2) $(Y_{0.97}Nd_{0.03})_4Al_2O_9$; 3) $(Y_{0.75}Nd_{0.25})_4Al_2O_9$; 4) $(Y_{0.25}Nd_{0.75})_4Al_2O_9$; 5) $Nd_4Al_2O_9$; otrzymanych za pomocą zmodyfikowanej metody zol-żel z roztworu kwasu octowego z dodatkiem glikolu etylenowego.

Badania składu fazowego za pomocą dyfrakcji rentgenowskiej wykazały, że (rys. 55 ÷ 58):

- otrzymano jednofazowy proszek Y₄Al₂O₉ z 0.4 M roztworu kwasu octowego z dodatkiem glikolu etylenowego jako czynnika kompleksującego,

- otrzymano niejednofazowy proszek o stechiometrii $Y_4Al_2O_9 \ge 0.4$ M roztworu kwasu octowego bez dodatku czynnika kompleksującego,

- otrzymano niejednofazowy proszek o stechiometrii $Y_4Al_2O_9 \ge 0.4$ M roztworu kwasu octowego z dodatkiem glikolu etylenowego w dwuetapowym wygrzewaniu próbki - najpierw w temperaturze 600°C, a następnie w 1100°C w ciągu 12 h,

- otrzymano jednofazowy materiał $(Y_{1-x}Nd_x)_4Al_2O_9 dla 0 \le x \le 0.25$,
- otrzymano niejednofazowe proszki $(Y_{1-x}Nd_x)_4Al_2O_9$ dla $0.30 \le x \le 1$.

Badania HRSEM

Na rys. 59 przedstawiono zdjęcia z wysokorozdzielczego skaningowego mikroskopu elektronowego próbek nanokrystalitów YAM, otrzymanych za pomocą zmodyfikowanej metody zol-żel z roztworów trzech różnych kwasów: octowego, cytrynowego i winowego.

Rys. 59. Zdjęcia HRSEM powierzchni próbek YAM otrzymanych z 0,4 M roztworów kwasów: a) octowego, b) cytrynowego, c) winowego. Próbki wypalane w 1100°C w ciągu 6 h.

Porównując morfologię powierzchni (rys. 59) poszczególnych próbek otrzymanych z użyciem różnych kwasów jako czynników kompleksujących, można zauważyć, że próbki otrzymane z użyciem kwasu cytrynowego mają najwyższy stopnień aglomeracji ziaren, zaś z użyciem kwasu winowego najniższy. Ziarna tych ostatnich proszków tworzą przestrzenną strukturę. Z kolei ziarna proszku z roztworu kwasu octowego mają kształt najbardziej zbliżony do kulistego.

Rys. 60. Zdjęcia HRSEM powierzchni próbek: a) YAM; b) YAM: 3 % Nd wypalanych w temperaturze 1100°C w ciągu 12 h⁷⁹.

Na rys. 60 zostały przedstawione zdjęcia z wysokorozdzielczego skaningowego mikroskopu elektronowego przedstawiające morfologię powierzchni nanokrystalicznych proszków, zarówno czystego YAM, jak i domieszkowanego jonami neodymu. Ze zdjęć tych wynika, że proszek z domieszką ma luźniej ułożone ziarna, choć ich rozmiar wydaje się być nieco większy niż w przypadku próbki niedomieszkowanej. Pomimo tego średni rozmiar krystalitów, z których zbudowane są ziarna, obliczony na podstawie metody Warren-Averbacha wynosi około 70 nm dla wszystkich jednofazowych próbek YAM i YAM:Nd, które zostały otrzymane w ramach niniejszej pracy.

Badania luminescencji

Przeprowadzono badania luminescencyjne dla próbek $Y_4Al_2O_9$ domieszkowanych jonami Nd³⁺. Dla próbki, w której domieszka była na poziomie 3 %, widmo luminescencyjne dla

przejść ${}^{4}F_{3/2} - {}^{4}I_{11/2}$ i ${}^{4}F_{3/2} - {}^{4}I_{13/2}$ dla jonów Nd³⁺ było rejestrowane w temperaturze pokojowej (rys. 61). Ostre linie charakterystyczne dla widma emisyjnego jonów neodymu w uporządkowanych sieciach krystalicznych wskazują na brak faz amorficznych, co potwierdza wyniki badań strukturalnych. W sumie intensywność przejścia ${}^{4}F_{3/2} - {}^{4}I_{11/2}$ (~ 9200 cm⁻¹) jest około 5 razy większa niż dla przejścia ${}^{4}F_{3/2} - {}^{4}I_{13/2}$ (~ 7500 cm⁻¹). Natężenie emisji dla jonów Nd³⁺ w nanokrystalicznym proszku YAM:Nd jest bliskie natężeniu emisji jonów Nd³⁺ w monokrysztale YAG:Nd.

Rys. 61. Widmo emisyjne przejść ${}^{4}F_{3/2} - {}^{4}I_{11/2}$ i ${}^{4}F_{3/2} - {}^{4}I_{13/2}$ dla jonów Nd³⁺ w nanokrystalicznym proszku Y₄Al₂O₉: 3 % Nd, zarejestrowane w temperaturze pokojowej.

Rys. 62. Widma emisyjne przejścia ${}^{4}F_{3/2} - {}^{4}I_{9/2}$ dla jonów Nd³⁺ w nanokrystalicznym proszku Y₄Al₂O₉: 3 % Nd, zarejestrowane w temperaturze pokojowej i 77 K.

Rys. 63. Krzywa czasu zaniku emisji poziomu ${}^{4}F_{3/2}$ zarejestrowana dla nanokrystalicznego proszku Y₄Al₂O₉: 3 % Nd w temperaturze pokojowej.

Z rys. 62 wynika, że jony Nd³⁺ obsadzają dwa centra luminescencyjne. Na widmie możemy wyróżnić 10 pików, podczas gdy tylko 5 z nich jest przeznaczonych dla jonów Nd³⁺ obsadzających jedno centrum luminescencyjne.

Zgodnie z rys. 63 czas życia dla poziomu ${}^{4}F_{3/2}$ w YAM:Nd wynosi 299 μ s i jest zbliżony do czasu życia obserwowanego dla monokryształu YAG:Nd.

Rys. 64. Widma emisyjne przejścia ${}^{4}F_{3/2} - {}^{4}I_{9/2}$ dla jonów Nd³⁺ w Y₄Al₂O₉: 0.5 % Nd zarejestrowane w różnych temperaturach⁷⁹.
Na rys. 64 przedstawiono widma luminescencyjne odnoszące się do przejść ${}^{4}F_{3/2} - {}^{4}I_{9/2}$ jonów Nd³⁺ w Y₄Al₂O₉ zarejestrowane w różnych temperaturach. W odróżnieniu od odpowiednich widm dla YAG:Nd i YAP:Nd, widmo zarejestrowane w temperaturze pokojowej dla YAM:Nd składa się z szerokich, słabo rozdzielonych pasm rozciagających się w zakresie spektralnym $10660 \div 11670 \text{ cm}^{-1}$ z kilkoma lokalnymi maksimami emisji. Może to być spowodowane nakładaniem się linii związanych z indywidualnymi przejściami pomiedzy poziomami pola krystalicznego jonów Nd³⁺ rozmieszczonych w różnych pozycjach węzłowych, lub rozległe poszerzenie linii wywołane sprzężeniem elektron-fonon. Wraz ze spadkiem temperatury zmniejsza się intensywność części pasma odpowiadająca za przejścia z najwyższego poziomu pola krystalicznego multipletu ⁴F_{3/2}. Widmo emisji YAM: 0.5 % Nd zarejestrowane w temperaturze 10 K zawiera kilka dobrze wyodrębnionych linii o szerokościach połówkowych od 7 do 15 cm⁻¹. Wydaje się, że dla każdej pozycji wezłowej neodymu powinno pojawić się w widmie niskotemperaturowym pięć linii odpowiadających przejściom z najniższej składowej poziomu ${}^{4}F_{3/2}$ do pięciu składowych stanu podstawowego neodymu ⁴I_{9/2}. Zamiast tego jedynie pięć intensywnych linii przy 10834, 11142, 11221, 11315, 11431 cm⁻¹ i cztery słabe linie są obserwowane. Dla porównania zostało zarejestrowane widmo emisyjne w niskiej temperaturze dla próbki monokryształu Y₄Al₂O₉: 0.5 % Nd³⁺ otrzymanej za pomoca metody mikrowyciagania (rys. 65). Próbka monokryształu z powodu przejścia fazowego występującego pomiędzy temperatura topnienia YAM, a temperatura pokojowa była popekana. Na szczęście udało się wybrać niewielkie kawałki dobrej jakości, na których przeprowadzono pomiary emisji.

Rys. 65. Widma emisyjne przejścia ${}^{4}F_{3/2} - {}^{4}I_{9/2}$ dla jonów Nd³⁺ w Y₄Al₂O₉: 0.5 % Nd zarejestrowane dla monokryształu (górna krzywa) i nanokrysztalicznego proszku (dolna krzywa) w temperaturze 10 K⁷⁹.

Na rys. 65 można zauważyć, że położenie widma, szerokość i intensywność pięciu najintensywniejszych linii widma zarejestrowanego dla próbki monokryształu są bardzo zbliżone do odpowiadających im linii w widmie zarejestrowanym dla próbki nanokrystalicznej w postaci proszku.

Rys. 66. Widma emisyjne przejścia ${}^{4}F_{3/2} - {}^{4}I_{11/2}$ dla jonów Nd³⁺ w Y₄Al₂O₉: 0.5 % Nd zarejestrowane w temperaturze pokojowej dla nanokrystalicznego proszku (przerywana linia po lewej) i w 10 K (linia ciągła) oraz dla monokryształu YAM:Nd w 10 K (linia przerywana pokrywająca się z linią ciągłą)⁷⁹.

Na rys. 66 zestawiono widma odpowiadające przejściu emisyjnemu z poziomu ${}^{4}F_{3/2}$ na pierwszy stan wzbudzony ${}^{4}I_{11/2}$ jonu Nd³⁺, na przykładzie próbek proszkowych i monokryształu YAM:Nd. Oczekuje się, że dla każdej symetrii miejscowej węzła domieszki Nd³⁺, sześć linii powinno pojawić się na widmie zarejestrowanym w niskiej temperaturze. Niestety tylko cztery wąskie i intensywne piki przy 9246, 9300, 9335, 9463 cm⁻¹ są widoczne. Najbardziej zauważalną różnicą pomiędzy niskotemperaturowymi widmami zarejestrowanymi dla monokryształu i nanokrystalicznego proszku jest mniejsza intensywność części widma tego drugiego zarejestrowana przy 9376 cm⁻¹. Spektroskopowe właściwości badanych materiałów wskazują na brak widocznych różnic w najbliższej sferze koordynacji luminescencyjnego aktywatora, jakim są jony Nd³⁺.

Rys. 67. Krzywe czasów zaniku emisji poziomu ${}^{4}F_{3/2}$ zarejestrowane dla nanokrystalicznych proszków YAM domieszkowanych 0.2 %, 0.5 % i 3 % Nd^{3+ (79)}.

Na rys. 67 przedstawiono krzywe zaniku luminescencji zarejestrowane w temperaturze pokojowej dla nanokrystalicznych proszków $Y_4Al_2O_9$ domieszkowanych jonami neodymu. Czas zaniku emisji przy domieszce Nd³⁺ na poziomie 0.5 % jest nieznacznie krótszy niż dla domieszkowania na poziomie 0.2 %, co może oznaczać, że już na tak niewielkim poziomie domieszkowania (poniżej 1 %) rozpoczął się proces samowygaszania luminescencji. Przy 3 % domieszki czas zaniku emisji z poziomu ${}^4F_{3/2}$ ulega już znacznemu skróceniu i jest około dwa razy krótszy niż dla stężenia 0.2 %. Wyliczone czasy zaniku emisji dla próbek YAM:Nd wynoszą odpowiednio dla stężeń Nd³⁺: 0.2 % - 670 µs, 0.5 % - 588 µs, 3 % - 261 µs.

Wnioski

Za pomocą zmodyfikowanej metody zol-żel (Pechini'ego) otrzymano związki z układu Y₄Al₂O₉ ---- Nd₄Al₂O₉. Dodatek jonów neodymu Nd³⁺ na poziomie aż 25 % nie powoduje zaburzenia struktury YAM. Przy wyższych stężeniach jonów neodymu, nanokrystaliczne

próbki w postaci proszków są wielofazowe i oprócz głównej fazy jednoskośnej, pojawia się faza Nd_6O_{11} (przy udziale jonów Nd^{3+} na poziomie 30 i 40 %), a także faza perowskitu $NdAlO_3$, bądź tlenków neodymu lub itru. Przy próbie otrzymania fazy jednoskośnej neodymowo-glinowej $Nd_4Al_2O_9$ otrzymano perowskit neodymowo-glinowy oraz tlenek neodymu.

Otrzymane wyniki luminescencyjne dla próbek YAM:Nd potwierdzają, że zastosowana zmodyfikowana metoda zol-żel pozwala na otrzymanie jednofazowych nanokrystalicznych proszków o właściwościach spektroskopowych zbliżonych do ich odpowiedników w postaci monokryształów.

Jony Nd^{3+} znajdujące się w matrycy $Y_4Al_2O_9$ obsadzają dwa centra luminescencyjne, zaś czas zaniku luminescencji jest zbliżony do czasu obserwowanego dla kryształu YAG:Nd. Już przy bardzo małych stężeniach domieszki (około 0.5 %) zauważalna jest obecność procesu samowygaszania luminescencji.

7. Podsumowanie wyników i wnioski końcowe

- Zbadano układ fazowy Y-Nd-Al-O. W tym celu zsyntezowano związki i roztwory stałe przewidywane w tym układzie. Syntezy prowadzono za pomocą zmodyfikowanej metody zol-żel (Pechinie'go). Wyniki przeprowadzonych w pracy badań potwierdziły tezę, że metoda zol-żel jest odpowiednią do syntezy tlenków wieloskładnikowych (binarnych, potrójnych i domieszkowanych). Potwierdzono efektywność podstawień i dobrą jakość struktury badanych związków z układu Y-Nd-Al-O poprzez zaobserwowanie zjawiska luminescencji po domieszkowaniu (pojedynczym i podwójnym) jonami ziem rzadkich. Otrzymano jednofazowe, o małej ilości defektów materiały do zastosowań w optoelektronice.
- Sprawdzono skuteczność znanych metod syntez chemicznych, a mianowicie: zmodyfikowanej zol-żel, współstrącania, spaleniowej oraz syntezy w fazie stałej, na przykładzie związku YAM: 1 % Nd. Materiał jednofazowy otrzymano tylko w przypadku dwóch metod. Krystality otrzymane metodą zol-żel charakteryzowały się najmniejszym rozmiarem ziaren i najdłuższym czasem zaniku luminescencji.
- Wyniki przeprowadzonych badań dla tlenku itru wykazały, że temperatura obróbki cieplnej proszków ma wpływ na rozmiary krystalitów i stałe sieci badanych materiałów, co jest zgodne z zasadami rekrystalizacji. Rodzaj użytego związku kompleksującego, czas wypalania oraz domieszkowanie jonami Nd³⁺, Yb³⁺, Nd³⁺ + Yb³⁺ nie mają wpływu na rozmiary krystalitów oraz na morfologię tlenku itru w warunkach przeprowadzonych badań. Wyniki badań strukturalnych wykazały, że tlenek itru po rekrystalizacji za pomocą zmodyfikowanej metody zol-żel ma bardzo uporządkowaną strukturę i mniej defektów niż materiał wyjściowy o znacznie większych rozmiarach ziaren. Wykazano, że rozpuszczalność Nd₂O₃ w Y₂O₃ nie przekracza 20 %. Przy większym udziale jonów neodymowych w strukturze tlenku itru obserwuje się na dyfraktogramach XRD obecność pików pochodzących od tlenku neodymu.
- W pracy doświadczalnej z tlenkiem neodymu stwierdzono, że produkt handlowy i otrzymany przez rekrystalizację metodą zol-żel i wygrzewany w temperaturze 1000°C zawierał grupy OH.

- Z kolei ilość neodymu, jaką udaje się wprowadzić do struktury granatu itrowoglinowego, zależy od zastosowanej metody syntezy. Podczas badania układu Y₃Al₅O₁₂
 ---- Nd₃Al₅O₁₂ ustalono, że maksymalna ilość Nd₂O₃, jaka rozpuszcza się w granacie YAG wynosi aż 27.5 %. Przy próbie otrzymania granatu neodymowo-glinowego Nd₃Al₅O₁₂ otrzymano perowskit neodymowo-glinowy oraz tlenek glinu. Faza Nd₃Al₅O₁₂ prawdopodobnie nie istnieje i nie udało się jej otrzymać w ramach niniejszej pracy. Nie ma również w literaturze potwierdzenia na istnienie fazy o wzorze chemicznym odpowiadającym granatowi itrowo-glinowemu.
- W ramach badań równowagowych (DTA/DTG) niniejszej rozprawy został wyznaczony wykres fazowy YAlO₃-NdAlO₃, który do tej pory nie był opisany w literaturze. Również temperatura topnienia perowskitu NdAlO₃ po raz pierwszy została zmierzona doświadczalnie do tej pory znane były tylko jej wyliczenia teoretyczne. Dla proszku YAlO₃ domieszkowanego jonami neodymowymi, oprócz głównej fazy perowskitu, występuje niewielka ilość fazy granatu (Y₃Al₅O₁₂). Fakt ten może być tłumaczony niestabilnością fazy YAP w niższych temperaturach.
- Stwierdzono, że w układzie Y₄Al₂O₉ ---- Nd₄Al₂O₉ dodatek jonów neodymowych Nd³⁺ na poziomie aż 25 % nie powoduje zaburzenia struktury YAM. Przy próbie otrzymania fazy jednoskośnej neodymowo-glinowej Nd₄Al₂O₉ otrzymano perowskit neodymowo-glinowy oraz tlenek neodymu. Jony Nd³⁺ znajdujące się w matrycy Y₄Al₂O₉ obsadzają dwa centra luminescencyjne, zaś czas zaniku luminescencji jest zbliżony do czasu obserwowanego dla monokryształu YAG:Nd.
- Wyniki przeprowadzonych w ramach niniejszej pracy badań luminescencyjnych pokazały, że w nanokrystalicznych proszkach domieszkowanych jonami neodymowymi następuje samowygaszanie się luminescencji wraz ze wzrostem stężenia domieszki już na poziomie około 5 %. Uzasadnionym więc wydaje się stosowanie małych stężeń jonów pierwiastków ziem rzadkich w celu otrzymania wydajnych materiałów do zastosowań w optoelektronice. W próbkach współdomieszkowanych jonami neodymu i iterbu występuje bardzo wydajny bezpromienisty transfer energii od jonów neodymu do jonów iterbu. W strukturze Y₂O₃ wydajność jego przekracza 90 % dla względnie niskich stężeń jonów Nd³⁺ (0.5 %) i jonów iterbu Yb³⁺ na poziomie 2 %.

- Wykazano, że odpowiedni dobór warunków syntez pozwala wytwarzać nanokrystaliczne materiały luminescencyjne o właściwościach charakterystycznych dla ich odpowiedników monokrystalicznych. Co ciekawe, wytworzone nanokrystaliczne proszki mogą być wykorzystane w postaci materiałów wyjściowych do wzrostu monokryształów, zapewniając tym samym jednorodność materiału wsadowego w całej objętości. W ten sposób można wprowadzić większe ilości domieszki do monokryształu, niż w przypadku stosowania mieszaniny tlenków jako materiału wsadowego.
- Na podstawie wyników przeprowadzonych badań luminescencyjnych stwierdzono, że stopień zdefektowania struktury otrzymywanych nanokrystalitów za pomocą zmodyfikowanej metody zol-żel jest zbliżony do obserwowanego w kryształach objętościowych. Metoda ta pozwala wytwarzać nanokrystaliczne materiały o wysokiej czystości fazowej i chemicznej. Odpowiedni dobór warunków syntez zol-żel zapewnia ich powtarzalność i w konsekwencji niezawodność oczekiwanych właściwości emisyjnych.

8. Literatura

¹ F. Hanic, M. Hartmanová, G.G. Knab, A.A. Urusovskaya, K.S. Bagdasarov, "Real structure of undoped Y₂O₃ single crystals" Acta Cryst. B40 (1984) 76-82.

² L. Fornasiero, E. Mix, V. Peters, K. Petermann, G. Huber, "Czochralski growth and laser parameters of RE^{3+} - doped Y₂O₃ and Sc₂O₃" Ceram. Int. 26 (2000) 589-592.

³ K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rareearth-doped sesquioxides" J. Lumin. 87-89 (2000) 973-975.

⁴ K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments" Opt. Mater. 19 (2002) 67-71.

⁵ J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii, "Nd³⁺:Y₂O₃ Ceramic Laser" Jpn. J. Appl. Phys. 40 (2001) L1277-1279.

⁶ J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii, "Yb³⁺:Y₂O₃ ceramics – a novel solid-state laser material" Jpn. J. Appl. Phys. 41 (2002) L1373-L1375.

 7 J.H. Mun, A. Novoselov, A. Yoshikawa, G. Boulon, T. Fukuda, "Growth of Yb³⁺-doped Y₂O₃ single crystal rods by the micro-pulling-down method" Mater. Res. Bull. 40 (2005) 1235-1243.

⁸ A.M. Pires, O.A. Serra, M.R. Davolos, "Morphological and luminescent studies on nanosized Er,Yb–Yttrium oxide up-converter prepared from different precursors" J. Lumin. 113 (2005) 174-182.

⁹ N. Rakov, W. Lozano B, G.S. Maciel, C.B. de Araujo, "Nonlinear luminescence in Eu³⁺doped Y₂O₃ powders pumped at 355 nm" Chem. Phys. Lett. 428 (2006) 134-137.

¹⁰ C.H. Lee, K.Y. Jung, J.G. Choi, Y.C. Kang, "Nano-sized Y₂O₃:Eu phosphor particles prepared by spray pyrolysis" Mater. Sci. Eng. B 116 (2005) 59-63.

¹¹ S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini, G. Fagherazzi, "Investigation on lanthanide-doped Y₂O₃ nanopowders obtained by wet chemical synthesis" J. Mater. Chem. 12 (2002) 742-747.

 12 J.X. Boucherle, J. Schweizer, "Refinement of the Nd₂O₃ structure and determination of the neutron scattering length of neodymium" Acta Cryst. B31 (1975) 2745-2746.

¹³ J.M. Badie, "High-Temperature Phases and Phase-Transitions in the Systems Sc_2O_3 - Ln_2O_3 (Ln = Lanthanide and Yttrium)" Rev. Int. Hautes Temp. Refract. 15 (1978) 183-199.

¹⁴ A.C.C. Esteves, J. Brokken-Zijp, J. Laven, H.P. Huinink, N.J.W. Reuvers, M.P. Van, G. de With, "Garnet particles effect on the cross-linking of PDMS and the network structures formed" Polymer 51 (2010) 136-145.

¹⁵ L. Lipińska, L. Łojko, A. Kłos, S. Ganschow, R. Diduszko, W. Ryba-Romanowski, A. Pajączkowska, "Nanopowders and crystals in (Y_{1-x}Nd_x)₃Al₅O₁₂ system: Preparation and properties" J. Alloys Compd. 432 (2007) 177–182.

¹⁶ D.E. Eakins, M. Held, M.G. Norton, D.F. Bahr, "A study of fracture and defects in single crystal YAG" J. Cryst. Growth 267 (2004) 502-509.

¹⁷ J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminski, "Neodymium doped yttrium aluminum garnet $(Y_3Al_5O_{12})$ nanocrystalline ceramics–a new generation of solid state laser and optical materials" J. Alloys. Compd. 341 (2002) 220-225.

¹⁸ R.V. Bakradze, L.M. Kovba, G.P. Kuznetsova, V.K. Trunov, "Phase equilibria in an yttria-alumina-neodymia system" Dokl. Akad. Nauk SSSR 179 (1968) 849-851.

¹⁹ B. Ferrand, D. Pelenc, I. Chartier, Ch.Wyon, "Growth by LPE of Nd: YAG single crystal layers for waveguide laser applications" J. Cryst. Growth 128 (1993) 966–969.

²⁰ R. Diehl, G. Brandt "Crystal structure refinement of YAlO₃, a promising laser material" Mater. Res. Bull. 10 (1975) 85-90.

²¹ M.G. Brik, I. Sildos, M. Berkowski, A. Suchocki, "Spectroscopic and crystal field studies of YAlO₃ single crystals doped with Mn ions" J. Phys. Condens. Matter 21 (2009) 025404.

²² J.S. Abell, I.R. Harris, B. Cockayne "High temperature phase instability in yttrium orthoaluminate" J. Mat. Sci. Lett. 7 (1972) 1088-1090.

²³ G.T. Adylov, G.V. Voronov, E.P. Mansurova, L.M. Sigalov, E.P. Urazaeva, "The system
Y₂O₃-A1₂O₃ above 1473 K" Zh. Neorg. Khim. 33 (1988) 1867-1869. (*po rosyjsku*)

²⁴ O. Fabrichnaya, H.J. Seifert, T. Ludwig, F. Aldinger, A. Navrotsky, "The assessment of thermodynamic parameters in the Al₂O₃-Y₂O₃ system and phase relations in the Y-Al-O system" Scand. J. Metallurg. 30 (2001) 175-183.

²⁵ K. Yasuda, S. Usuda, H. Gunji, "Properties of a YAP powder scintillator as alpha-ray detector" Appl. Radiat. Isot. 52 (2000) 365-368.

²⁶ Y. Zhydachevskii, A. Durygin, A. Suchocki, A. Matkovskii, D. Sugak, P. Bilski, "Mndoped YAlO₃ crystal: a new potential TLD phosphor" Nucl. Instrum. Methods Phys. Res. B 227 (2005) 545–550.

²⁷ M. Harada, M. Goto, "Synthesis of Y-Al-O compounds by a polymer complex method"
J. Alloys Compd. 408-412 (2006) 1193-1195.

²⁸ J.W. Reed, A.B. Chase, "The unit cell and space group of 2Y₂O₃.Al₂O₃" Acta Cryst.15 (1962) 812-812.

 29 H. Yamane, M. Omori, T. Hirai, "Twin structure of Y₄Al₂O₉" J. Mater. Sci. Lett 14 (1995) 561-563.

³⁰ H. Yamane, M. Shimada, B.A. Hunter, "High-Temperature Neutron Diffraction Study of Y₄Al₂O₉" J. Solid State Chem. 141 (1998) 466-474.

³¹ M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson, "High temperature neutron diffraction study of the $Al_2O_3-Y_2O_3$ system" J. Eur. Ceram. Soc. 26 (2006) 3515-3524.

³² R.S. Roth, "Phase Equilibria Diagrams: Phase Diagrams for Ceramics, vol. XI" The American Ceramic Society, Westville, OH (1995) 107.

³³ I. Warshaw, R. Roy, "Stable and metastable equilibria in the systems Y_2O_3 -Al₂O₃ and Gd₂O₃-Fe₂O₃" J. Am. Ceram. Soc. 42 (1959) 434-438.

 34 Z. Jin, Q. Chen, "An assessment of the AlO_{1.5} – YO_{1.5} system" Calphad 19 (1995) 69-79.

³⁵ J.S. Abell, I.R. Harris, B. Cockayne, B. Lent, "An investigation of phase stability in the Y₂O₃-Al₂O₃ system" J. Mater. Sc. 9 (1974) 527-537.

 36 O. Fabrichnaya, H.J. Seifert, R. Weiland, T. Ludwig, F. Aldinger, A. Navrotsky, "Phase equilibria and thermodynamics in the Y₂O₃-Al₂O₃-SiO₂ system" Z. Metallkd. 92 (2001) 1083-1097.

 37 I. Papadopoulos, "On the Existence and Formation of Y₄Al₂O₉" Cryst. Res. Technol. 26 (1991) 409-411.

 38 S. Liu, Q. Su, "Sol-gel Synthesis and Luminescence of $Y_4Al_2O_9$:RE $^{3+}\,$ (Re=Eu, Tb)" J. Alloys Compd. 255 (1997) 102-105.

 39 J.R. Lo, T.Y. Tseng, "Phase development and activation energy of the Y₂O₃-Al₂O₃ by a modified sol-gel process" Materials Chem. Phys. 56 (1998) 56-62.

⁴⁰ G. Xia, S. Zhou, J. Zhang, S. Wang, H. Wang, J. Xu, "Sol–gel combustion synthesis and luminescence of Y₄Al₂O₉:Eu³⁺ nanocrystal" J. Non-Cryst. Sol. 351 (2005) 2979-2982.

⁴¹ D. Klimm, S. Ganschow, A. Pajączkowska, L. Lipińska, "On the solubility of Nd^{3+} in $Y_3Al_5O_{12}$ " J. Alloys Compd. 436 (2007) 204-208.

⁴² S. Geller, P.M. Raccah, "Phase Transitions in Perovskitelike Compounds of the Rare Earths" Phys. Rev. B 2 (1970) 1167-1172.

⁴³ P. Wu, A.D. Pelton, "Coupled thermodynamic phase diagram assessment of the rare earth oxide - aluminum oxide binary systems" J. Alloys Compd. 179 (1992) 259-287.

⁴⁴ S. Mathur, M. Veith, H. Shen, N. Lecerf, S. Hüfner, "Effect of Al₂O₃ matrix on the optical properties of NdAlO₃ in NdAlO₃/Al₂O₃ ceramic-ceramic composite" Scripta Mater.
44 (2001) 2105-2109.

⁴⁵ J.P. Coutures, E. Antic, P. Caro, "Obtention of a new phase in the Al_2O_3 -Nd₂O₃ system by splat cooling of liquid mixtures-comparative study with Nd₄Ga₂O₉" Mater. Res. Bull. 11 (1976) 699-706.

⁴⁶ J.P. Coutures, "The Al₂O₃-Nd₂O₃ Phase Diagram" J. Am. Ceram. Soc. 68 (1985) 105-107.

⁴⁷ L. Li, Z. Tang, W. Sun, P. Wang, "Calculation of Phase Diagrams of Al₂O₃-SiO₂-R₂O₃ systems" Phys. Chem. Glasses 38 (1997) 323-326.

⁴⁸ Handbook of sol-gel science and technology, Editor: Sumio Sakka, Volume 1 "Sol-Gel Processing" Volume editor: Prof. Hiromitsu Kozuka, Kluwer Academic Publishers (2005).

⁴⁹ Sol-gel optics: processing and application. Edited by Lisa C. Klein. "Kluwer Academic Publishers" (1994).

⁵⁰ M.P. Pechini "Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor" US Patent No 3.330.697, July 11 (1967).

⁵¹ E. Caponetti, M.L. Saladino, F. Serra, S. Enzo, "Co-precipitation synthesis of Nd:YAG nano-powders: the effect of Nd dopant addition with thermal treatment" J. Mater. Sci. 42 (2007) 4418-4427.

⁵² X. Li, W. Wang, "Preparation of uniformly dispersed YAG ultrafine powders by coprecipitation method with SDS treatment" Powder Technol. 196 (2009) 26-29. ⁵³ H. Węglarz, A. Wajler, H. Tomaszewski, Z. Librant, R. Diduszko, "Nanoproszki YAG domieszkowane cerem o właściwościach luminescencyjnych" Materiały Elektroniczne 36 (2008) 5-18.

⁵⁴ "Chemiczne metody analizy ilościowej" pod red. M. Wesołowskiego, AMG, Gdańsk (1998).

⁵⁵ A.S. Mukasyan, P. Dinka, "Novel Approaches to Solution-Combustion Synthesis of Nanomaterials" Int. J. Self-Propag. High-Temp. Synth. 16 (2007) 23-35.

⁵⁶ M. Biswas, K. Prabhakaran, N.M. Gokhale, S.C. Sharma, "Synthesis of nanocrystalline yttria doped ceria powder by urea-formaldehyde polymer gel auto-combustion process" Mater. Res. Bull. 42 (2007) 609-617.

⁵⁷ S. Dyjak, S. Cudziło, A. Szysiak "Spaleniowa synteza granatu itrowo-glinowego domieszkowanego jonami neodymu" Materiały Elektroniczne 38 (2010) 32-41.

⁵⁸ A. Yoshikawa, V. Chani, "Growth of Optical Crystals by the Micro-Pulling-Down Method" MRS Bulletin 34 (2009) 266-270.

⁵⁹ D.H. Yoon, I. Yonenaga, N. Ohnishi, T. Fukuda, "Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method" J. Cryst. Growth 142 (1994) 339–343.

⁶⁰ Y.M. Yu, V.I. Chani, K. Shimamura, K. Inaba, T. Fukuda, "Growth of vanadium garnet fiber crystals and variations of lattice parameter" J. Cryst. Growth 177 (1997) 74–78.

⁶¹ V.I. Chani, A. Yoshikawa, H. Machida, T. Fukuda, "Melt growth of $(Tb,Lu)_3Al_5O_{12}$ mixed garnet fiber crystals" J. Cryst. Growth 212 (2000) 469–475.

 62 A. Nakamura, N. Nambu, H. Saitoh, "Effect of boron concentration in Y₂O₃:(Eu,B) phosphor on luminescence property" Sci. Tech. Adv. Mater. 6 (2005) 210-214.

⁶³ B.E. Warren, B.L. Averbach, The Effect of Cold-Work Distortion on X-Ray Patterns"
J. Appl. Phys. 21 (1950) 595-599.

⁶⁴ "Scanning Electron Microscopy and X-Ray Microanalysis" J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael, str. 1, wydanie trzecie, KLUWER ACADEMIC/PLENUM PUBLISHERS, 2003.

⁶⁵ A. Kozłowska, M. Nakielska, D. Podniesiński, H. Węglarz, A. Wajler, Z. Librant, T. Łukasiewicz, A. Maląg, "Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al₂O₃, Y₂O₃ and

Nd₂O₃ and by synthesis of nanocrystalline Nd:YAG powders" Optical Components and Materials VIII, 7934 (2011) 79341B-79341B-6.

⁶⁶ A. Rzepka, W. Ryba-Romanowski, R. Diduszko, L. Lipińska, A. Pajączkowska "Growth and characterization of Nd, Yb – yttrium oxide nanopowders obtained by sol-gel method" Crystal Research and Technology 42 (2007) 1314-1319.

⁶⁷ http://www.fee-io.com/

⁶⁸ E.M. Loiko, L. Lipińska, J.C. Dobrowolski, A. Rzepka "Studies on sol-gel processes accompanying formation of the yttrium aluminum garnet nanocrystals" Materiały Elektroniczne 34 (2006) 74-88.

⁶⁹ E. Luria, S.R. Rotman, J.A. Mares, G.Boulon, A. Brenier, L. Lou "Energy transfer between Cr³⁺ and Nd³⁺ in Cr,Nd:YAP" J. Lumin. 72-74 (1997) 951-953.

⁷⁰ H. Zhu, C. Huang, G. Zhang, Y. Wei, L. Huang, J. Chen, W. Chen, Z. Chen "Highpower CW diode-side-pumped 1341 nm Nd:YAP laser" Opt. Commun. 270 (2007) 296-300.

⁷¹ M. Tardocchi, A. Pietropaolo, C. Andreani, G. Gorini, S. Imberti, E. Perelli-Cippo, R. Senesi, N. Rhodes, E.M. Schooneveld "Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy" Nucl. Instr. and Meth. A 567 (2006) 337-340.

⁷² M. Harada, A. Ue, M. Inoue, X. Guo, K. Sakurai "Synthesis of YAP:Ce phosphor through a complex polymerizing reaction" Scripta Mater. 44 (2001) 2243-2246.

⁷³ Y. Marinowa, J.M. Hohemberger, E.Cordoncillo, P. Escribano, J.B. Carda "Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments" J. Eur. Ceram. Soc. 23 (2003) 213-220.

⁷⁴ M. Marezio, P.D. Dernier, J.P. Remeika "The crystal structures of orthorhombic SmAlO₃ and of trigonal NdAlO₃" J. Solid State Chem. 4 (1972) 11-19.

⁷⁵ A. Szysiak, D. Klimm, S. Ganschow, M. Mirkowska, R. Diduszko, L. Lipińska, A. Kwasniewski, A. Pajączkowska "The investigation of YAlO₃-NdAlO₃ system, synthesis and characterization" J. Alloys Compd. 509 (2011) 8615-8619.

⁷⁶ P.A. Tanner, P.T. Law, K.L. Wong, L. Fu "Preformed sol-gel synthesis and characterization of YAlO₃" J. Mater. Sci. 38 (2003) 4857-4861.

⁷⁷ R.D. Shannon "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides" Acta Cryst. A 32 (1976) 751-767.

⁷⁸ P.P. Fedorov, L.V. Medvedeva "Thermographic determination of liquidus temperatures"
Zh. Neorg. Khim. 34 (1989) 2674-2677. (*po rosyjsku*)

⁷⁹ W. Ryba-Romanowski, R. Lisiecki, A. Rzepka, L. Lipińska, A. Pajączkowska "Luminescence and excitation energy transfer in rare earth-doped Y₄Al₂O₉ nanocrystals"-Optical Materials 31 (2009) 1155-1162.

WAŻNIEJSZE SKRÓTY I SYMBOLE STOSOWANE W PRACY

DTA/TG – Differential Thermal Analysis/Thermogravimetric Analysis, termiczna analiza różnicowa/analiza termograwimetryczna,

HRSEM – High Resolution Scanning Electron Microscopy, wysokorozdzielcza skaningowa mikroskopia elektronowa,

mPD – Micro-Pulling Down Method, metoda mikrowyciągania kryształów,

NAG – Neodymium Aluminum Garnet, Nd₃Al₅O₁₂, granat neodymowo-glinowy,

NAM – Neodymium Aluminum Monoclinic, Nd₄Al₂O₉, faza jednoskośna neodymowoglinowa,

NAP – Neodymium Aluminum Perovskite, NdAlO₃, perowskit neodymowo-glinowy,

XRD - X-Ray Diffraction, dyfraktometria rentgenowska,

YAG - Yttrium Aluminum Garnet, Y3Al5O12, granat itrowo-glinowy,

YAM – Yttrium Aluminum Monoclinic, Y4Al2O9, faza jednoskośna itrowo-glinowa,

YAP – Yttrium Aluminum Perovskite, YAlO₃, perowskit itrowo-glinowy.

PUBLIKACJE AUTORKI ZWIĄZANE Z NINIEJSZĄ PRACĄ

- A. Szysiak, D. Klimm, S. Ganschow, M. Mirkowska, R. Diduszko, L. Lipińska, A. Kwasniewski, A. Pajączkowska "The investigation of YAlO₃-NdAlO₃ system, synthesis and characterization" Journal of Alloys and Compounds 509 (2011) 8615-8619.
- 2. S. Dyjak, S. Cudziło, A. Szysiak "Spaleniowa synteza granatu itrowo-glinowego domieszkowanego jonami neodymu" Materiały Elektroniczne 38 (2010) 32-41.
- L. Lipińska, A. Rzepka, R. Ryba-Romanowski, D. Klimm, S. Ganschow, R. Diduszko "Nd(III) and Yb(III) ions incorporated in Y₄Al₂O₉ (YAM) obtained by sol-gel method: synthesis, structure, crystals and luminescence" Crystal Research and Technology 44 (2009) 146-152.
- W. Ryba-Romanowski, R. Lisiecki, A. Rzepka, L. Lipińska, A. Pajączkowska "Luminescence and excitation energy transfer in rare earth-doped Y₄Al₂O₉ nanocrystals" Optical Materials 31 (2009) 1155-1162.
- A. Rzepka, W. Ryba-Romanowski, R. Diduszko, L. Lipińska, A. Pajączkowska "Growth and characterization of Nd, Yb – yttrium oxide nanopowders obtained by solgel method" Crystal Research and Technology 42 (2007) 1314-1319.
- E.M. Loiko, L. Lipińska, J.C. Dobrowolski, A. Rzepka "Studies on sol-gel processes accompanying formation of the yttrium aluminum garnet nanocrystals" Materiały Elektroniczne 34 (2006) 74-88.