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The vascular model of the bio-heat transfer for soft living tissues is described,
along with its numerical implementation. Main concepts of the method are dis-
cussed and the proposed approach to the number of problems is described in
detail. These include: description and generation of the tissue vasculature, tissue
and blood domain discretization, method for calculation of temperatures in the
coupled tissue-blood system and its numerical aspects.

Alghoritms implemented in the computer programs are described and example
results are presented. Various aspects of numerical and practical nature are dis-
cussed, and the conclusions are indicated with examples and comparisons of gen-
erated structures and results.

The most important assumptions made are highlighted and the possibilities of
extending the presented method are indicated. Finally, the direction of further
rescarch and possibilities created by the presented method are discussed.
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1. Introduction

Transport of heat in living biological tissues is a very complex phe-
nomenon. The tissue is invariably an inhomogeneous, anisotropic material
and a scene for various processes influencing the heat balance. The mus-
cle contraction is the most notable example of heat-generating process. Also
there is a plethora of transport processes concerning various body fluids.
These fluids convect heat between domains of the tissue and supplement the
conductive mode of heat transfer.
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The influence of the circulating fluid on the heat balance is most promi-
nent in the case of soft tissue perfused with blood. The blood flows through
the vessels forming a circulatory system. The heart supplies the pressure
driving the blood through the branching system of vessels that get smaller
and smaller in size, until they reach the level of capillaries. At that point the
blood drains into the small venous vessel that drain into larger and larger
vessels ultimately bringing the blood to the heart to complete the circulation.

There are numerous refinements and exceptions to the simple picture
sketched above, but it is realistic enough to serve as a basis for the further
considerations of the influence of blood flow on the heat transfer in tissue. The
temperature of the blood as it traverses the vessels of subsequent generations
is schematically depicted in Fig. 1. The most important conclusion from this
figure is the fact that the temperature of the blood is significantly different
from that of the tissue only when the blood is in relatively large vessels. The
thermal equilibration between the tissue and the blood vessels becomes an
increasingly quicker process with the decreasing vessel diameter. This fact
is even more pronounced in the data presented in Table 1. In this table the
basic characteristic data for different generations of vessels are given along
with the thermal equilibration length defined as the vessel length required
for the difference of temperature between the blood (in the vessel) and the

surrounding tissue to drop by the factor of e.

TaBLE 1. Properties of different generations of blood vessels, after |7]; weq
thermal equilibration length.

% vascular  avg. radius avg. length Xeq
vessel volume [prm] [mm] [mm]
aorta 3.30 5000 380 190 000
large artery 6.59 1500 200 1000
arterial branch 5.49 500 90 300
terminal art. branch 0.55 300 8 30
arteriole 2.75 10 2 0.005
capillary 6.59 4 1.2 0.0002
venula 12.09 15 1.6 0.002
terminal vein 3.30 750 10 100
venous branch 29.67 1200 90 300
large vein 24.18 3000 200 5000
vena cava 5.49 6250 380 190000

The facts presented in Fig. 1 and Table 1 are sometimes simplified in or-
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that no heat transfer between blood vessels and tissue takes place until the
level of capillaries is reached, the heat exchange being immediate and com-
plete at that level (z., is large for large vessels because of their large heat
content). Conversely, the Wulff model of directed perfusion assumes that
blood is equilibrated thermally with tissue all the time (zeq = 0).

The models of heat transfer in perfused tissue (bio-heat equations) availa-
ble in literature can be basically divided in two classes, the continuum models
and the vascular models. The brief description of these is presented in the
following.

1.1. Continuum Models

The continuum models describe the perfused tissue without regarding
individual blood vessels, by means of a single tissue temperature. The bio-
heat equation describes the balance of energy in terms of that temperature,
taking into account the blood flow via additional source terms or effective
conductivity. We now review three most important continuum models.

BLOOD TEMPERATURE

FiGUure 1. The temperature of the blood as it traverses the generations of blood
vessels, The blood reaches two portions of tissue: colder than aorta blood tempe-
rature and hotter than aorta blood temperature. These two tissue temperatures

are schematically indicated by the dashed line, after [7].
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1.1.1. Pennes model. The Pennes model has been postulated by Harry
Pennes in 1948 as a result of series of experiments aimed at measuring the
temperature profile in a resting human forearm, [9]. To explain the mea-
surement results, Pennes assumed that the essential site of blood-tissue heat
exchange are capillary vessels. The blood was supposed to reach these vessels
at the so-called arterial supply temperature T,, and leave them at venous re-
turn temperature, which was postulated by Pennes to be equal to local tissue
temperature. In the most common form. the Pennes equation also assumes
that material is isotropic and material constants are independent of tempe-
rature

PC(£ = AVT + wen(To — T) + g (1.1)

ot

where p and ¢ denote tissue density and specific heat respectively, A is tissue
conductivity. wy,) and ¢, are blood perfusion rate and specific heat respec-
tively while g, is the volumetric heat source (of metabolical origin).

The most important parameter in the Pennes equation is the perfusion
rate, expressed in kgpooq per m:fissuu per second. It is characteristic for the
given type of tissue and varies in the considerable range.

There is a vast amount of literature concerning the Pennes equation. For
a detailed review the reader is referred to [12] and the references therein.
The Pennes equation is undoubtedly the most popular model of bio-heat
transfer and. without question. the simplest. Yet it often vields better agree-
ment with experiments than the more elaborate models. Final remark of
this brief introduction of Pennes equation: fifty years after the publication of
the original paper by Pennes, Eugene Wissler critically assessed the original
work of Pennes and his experimental results, [18]. Wissler concludes that the
procedure adopted by Pennes was faulty and his conclusions unfounded.
Therefore it would seem that the model called by many simply “the bio-heat

equation” was arrived at by chance.

1.1.2. Wulff model of directed perfusion. I[n 1974 Wullf raised several
critical objections to the Pennes model, [19]. The most important ones were
that thermal equilibration in the pre-capillary vessels should not be neglected.
and that the possibly directed character of the blood flow should be taken
to account.

Wulff postulated that the fow of the blood through the tissue region
should be modelled in terms of the Darcy velocity U. He also assumed that
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the blood is alwavs at the local tissue temperature. Resulting model is the
usual heat conduction equation with an advective term:

JaT :
/)(’E = \V?T — poicpiU - VT + g,

The Wulff model is not nearly as popular as Pennes equation. The as-
sumption of instantaneous equilibration is clearly not satisfied for every ves-
sel, cf. Fig. 1. Also blood flow is not always unidirectional, in fact this is
almost never the case, and vessels most often form countercurrent pairs. For
further discussion of the Wulff model the reader is referred to [12].

1.1.3. Effective conductivity models. This class of models lumps all
the effects of the blood flow into an effective conductivity coefficient of the
tissue. Some models assume simply that this effective tissue conductivity is
proportional to first or second power of the perfusion-like parameter charac-
terizing blood How. The theoretical foundation for this class of models has
been provided by Weinbaum and Jiji in 1985.

In the model presented in [15] they assumed that all the vessels, important
to bio-heat transfer, take form of counter-current artery-vein pairs and there
exists a dominant direction m of these pairs at every point in the tissue.
They also assumed that the dominant mode of heat transfer is incomplete
counter-current exchange between the vessels in the pair, and the local tissue
temperature can be approximated by blood average temperature. These, and
a number of other assumptions served to derive the following equation:

: 2,212
JT TEnreA;) P

pe— =V (XetVT) + g — (m - VT)divin
ot 4o\
where n is a number density of vessel pairs in the tissue, r is the radius of
a single vessel, o is a constant shape coefficient of heat transfer and Pe is the
Péclet number of blood flow in the vessel. For a detailed derivation of the
equation and definition of the quantities involved, the reader is referred to
the original paper [15]. The quantity A is the effective conductivity tensor
and is defined by

nw?r? Ay Pe
= I+ ———m®
Aeff = A ( + po= m m)

where @ denotes tensor product.
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The introduction of Weinbaum-Jiji model has initiated a long-lasting dis-
cussion about the validity of the most important assumptions used. In their
later paper, Weinbaum and Jiji suggest that the areas of applicability of their
model are restricted to a range of vessel diameters and proposed a suitable
criterion, [16], see also [6]. For more complete review of the objections raised
against the Weinbaum-Jiji model and the remedies proposed, the reader is
referred to [12].

1.2. Vascular Models

Vascular models describe the process of heat transfer between the blood
in vessels, characterized by blood temperature and the tissue characterized
by the tissue temperature. No assumption is made a priori concerning the
possible equality of these two temperatures. Therefore the full range of the
thermal equilibration regimes, as depicted in the Fig. 1, can be reproduced.
This means however that the model needs to include the detailed information
about the structure of the circulatory system within the region of interest
and needs to keep track of all the blood temperatures throughout this system
in order to calculate the tissue temperature.

This high level of complexity results also in high computational power
needed to perform calculations on such models. In fact, the vascular model
presented by Brinck and Werner in 5] could only be formulated and solved
for very small region of tissue. For this reason the vascular models are not
common in the literature and the only one attempt of actual calculation,
known to the present author is the one presented in [5].

However, in addition to tissue temperature, it allows one to calculate all
the blood temperatures and model various physiological phenomena such as
vasodilation and vasoconstriction, blood viscosity changes ete. in the most
straightforward manner.

The actual formulation of the vascular model developed by the author
and its numerical implementation is the main topic of the present paper.

2. Method

We develop an implementation of the vascular model for calculating heat
exchange in vascularized, living tissue, under prescribed heat loading con-
ditions. The model contains a description of the complex blood circulation
system occupying the tissue region of interest. It is assumed that the blood
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travels through vessels that form a tree-like structure. The tree consists of
a number of interconnected segments. Each segment is composed of two ves-
sels lying in the counter-current arrangement. One of the vessels is the feeding
vessel (artery), the other is the draining vessel (vein). Such an arrangement
is found in a majority of blood vessels, [15]. The exceptions are the largest
vessels (aorta and vena cava) and capillaries. When the tissue domain of in-
terest does not contain the largest vessels (and this is the case in peripheral
circulation, which is most interesting here), the former exception does not
apply. Furthermore, as was shown in the preceding section, in usual thermal
loading conditions. the temperature equilibration between the blood vessels
and the surrounding tissue, takes place long before the blood reaches cap-
illaries. It is hypothesized here, that this will hold true, even in the most

extreme thermal loading scenarios.
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Ficure 2. The three basic steps employed in the presented method. They are
implemented in the three independent computer programs.
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If we furthermore assume, that the capillaries and other smallest vessels
are isotropic in their spatial arrangement, it becomes clear that the vascular
model needs to include detailed description of the architecture of only those
vessels that are not in the thermal equilibrium with tissue. Depending on
the severity of the thermal loading to which the tissue region is subjected,
different levels of detail will be needed (in the presence of steep gradients
of tissue temperature, the temperatures in small arterioles and venules need
to be calculated, whereas if the tissue temperature is more uniform, these
temperatures may be safely assumed equal to tissue temperature).

The architecture of the realistic vascular system is reconstructed accord-
ing to a number of rules. Then the tissue domain, in which the vascular tree
is embedded is discretized and the relation between this discretization and
the description of vasculature is established. Finally the heat exchange in
various pre-defined scenarios can be calculated. In Fig. 2. the basic steps of
the method are depicted.

3. Tree Generation

Generation of the vascular tree is performed by means of the algorithm
based on the one presented in [10]. It aims at generation of the hydraulically
balanced tree, which obeys additional bifurcation rule, and which minimizes
the volume of blood needed to vascularize the given domain. The algorithm
is a sequential one and consists of extending the existing tree branch after
branch. Before we pass to the description of the algorithm let us introduce

the relevant notions.

3.1. Notations

vessel-—a single conduit embedded in the domain of interest (be it two-
or three-dimensional), characterized by the starting and ending point,
which determine the local axis of the vessel. The flow of blood in the
model can take place through the vessels only. The vessel is the sim-
plest, one-dimensional domain. Several scalar fields are defined on the
vessel: vessel radius, blood velocity (measured in the direction of the lo-
cal axis of the vessel) and temperature. In the method described in the
present paper, both the blood velocity and vessel radius are assumed
constant along the vessel.
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segment—a pair of vessels, characterized by common starting and ending
points, identical radii and opposite blood flow velocities. The segment
is the basic building block of the vascular tree and it serves to model
a counter-current artery-vein vessel pair. The vessel with positive velo-
city is referred to as artery or the feeding vessel, while the vessel with
negative velocity is the vein (the draining vessel).

connected segments — two or more segments, arranged spatially in such
a way, that the end-point of one of them (the parent segment)) is the
start-point of all the others (the daughter segments). In the presented
model it is assumed. that the blood leaving the artery of the parent
segment enters the arteries of the daughter segments, also the blood
leaving the veins of the daughter segments is collected in the vein of
the parent segment.

bifurcation— the point, where two (or more) segments meet. The bifurcation
is the end-point of one parent segment and start-point of one or more
daughter segments (the bifurcation can be also called the junction.)

terminal segment — the segment which has no daughter segments. In the
model it is assumed that the blood leaving the artery of the terminal
segment enters directly the draining vessel of that segment (the vein).
The temperature of this blood is assumed to change to the local tissue
temperature upon entering the vein of the terminal segment. Terminal
segments are designed to model the ultimate blood-tissue equilibration
process in the capillaries.

root segment-—the segment which has no parent segment. The temperature
of the blood entering the feeding vessel of the root segment and its flow
(or pressure) are prescribed boundary conditions to the model, while
the temperature of the blood leaving the draining vessel of the root
segment is one of the most important results from the model.

vascular tree —a system of interconnected segments, stemming from one
root segment and bifurcating through a number of generations. The
sequence of bifurcations ends at the terminal segments. In the presented
method the generated vascular tree is initially (i.e. before it is processed
for further calculations) a binary tree i.e. each non-terminal vessel has
exactly two daughter vessels.

subtree—a tree formed by all descendant segments of a particular parent

segment.
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mesh-—a discretization of tissue domain of interest into appropriate elements
(for further use in finite differences, finite elements or other methods).
grid-—a combined and mutually compatible discretizations of the tissue do-
main (the mesh) and of the vascular tree into appropriate elements
and interconnected segments, supplemented with additional member-
ship information: suitable for further calculation of coupled tissue and
blood temperatures. The notion of grid is explained in detail in Sec. 4.

3.2. Generation Algorithm

The generation algorithm employed is based on the one introduced in
[10]. The modifications introduced by the present author will be indicated at
the end of the presentation.

It is assumed that the tissue receives the nutrients from the blood on the
capillary level, which corresponds to the terminal segment in the presented
model. It is furthermore assumed that exists an elementary quantity of tissue
(terminal area in 2D setting or terminal volume in 3D setting), whose demand
is satisfied by prescribed, elementary blood flow Qiern through the single
terminal segment. The generation consists basically of the following steps:

1. scale the tissue region of interest until it has the elementary area or

volume,

2. plant the single root terminal vessel with the start point on the bound-

ary and end point inside this scaled region,

3. scale the tissue region, so its area/volume can accommodate one more
terminal area/volume; the region needs now one more terminal segment

to satisfy its demands,
4. add a new terminal segment to the tree,

5. check if a desired tissue region size tree complexity has been attained,
if not—proceed to the step (3).

Each time, before step (3) is entered, and at the end of the whole pro-
cedure, the tree complies with all the assumptions. All steps of the above
algorithm. except the step (4) are simple and require no further explana-
tions.

Step (4)— the procedure of adding the new terminal segment to the tree

is executed by means of the following algorithm:
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(4.1) find a satisfactory location for the end point of prospective, new ter-
minal segment,

(4.2) find the best segment to act as a parent segment to the new terminal,

(4.3) create the new terminal segment temporarily connecting the arbitrary
point on the parent segment (the present implementation uses the point
in the geometric center of the parent segment) with the end-point cho-
sen in step (4.1),

(4.4) adjust segment radii throughout the tree to adjust the hydraulic re-
sistance to the increased blood flow, and optimize the location of the
bifurcation point based on minimization of corresponding blood vol-
ume.

We begin the detailed description of these steps with explanation of step
(4.3) and (4.4). The disturbed order of the presentation is motivated by the
fact that some of the preceding steps can be easily described in terms of the
functionality of these steps.

3.2.1. Adding a new terminal segment to the vascular tree. The
method presented in [10] (and adopted here) assumes that there are two
laws, governing the sizes of the blood vessels in the vascular tree. The first
is that the hydraulic balance must be achieved, i.e. the flow and pressure at
the end point of each terminal vessel must be the same. This means that
the ratio of total hydraulic resistances of two subtrees in the tree is inversely
proportional to the ratio of the number of terminal segments in those sub-
trees. The hydraulic resistance of the single vessel is calculated according to
the Hagen-Poiseulle law:

wr
where v is blood viscosity, L is the length of the segment and r is its radius.
The hydraulic resistance of the binary subtree, where the segment S is a root
segment is:

8UL(S)

i i S is a terminal segment,

BuL(S) + R(S.)R(SRr)
77(3) T R(Sp)+R(SL)

R(S) =

where the notation S; and Sk has been used to denote both daughter seg-
ments of the segment S.

http://rcin.org.pl



462 M. STANCZYK

The second law governing the growth of the modeled vascular tree is the

bifurcation law. It is an empirical, physiological law, |10]
r7(8) =77(SL) + v (SR) (3.1)

where 7 is the prescribed bifurcation exponent, which is assumed to be 2.7 [10].

Equation (3.1) is known in the literature as the Murray’s law. It is based
on the hypothesis that the bifurcations in the vasculature are designed in
such a way as to minimize the pumping power required and metabolic en-
ergy expense to drive and maintain the system [11]. It has also been proved
that, this condition is equivalent to ensuring that the wall shear stress is
homogeneous throughout the vascular system, |11, 13]. This latter fact is
important because it gives clue to the mechanism of growth of blood vessels.

Value of the exponent ~ obtained by means of theoretical study is three.
Its derivation is based on several assumpions, among others of laminar blood
flow obeying the Hagen-Poiseuille law and constant blood viscosity. Estima-
tion of the v exponent for the cases where these assumptions are relaxed
vields only slight decrease in its value [11].

The optimality condition used as a starting point for construction of the
transport systems (where fluid, heat, or other media is transported) under-
lies the so-called constructal theory, developed by A. Bejan in late 1990’s [3].
While it is based on universal concepts, the constructal theory finds applica-
tions in the modelling of vascular systems [4]. The theoretical considerations
of optimality lead to numerous quantitative scaling laws which are satisfied
by the actual living organisms in surprisingly wide range of scales [17].

In the presented model both the hydraulic balance law and bifurcation
rule are sufficient to determine vessel radii throughout the tree. The process of
updating the radii after the new terminal segment is added will be from now
on called balancing of the tree. Numerical implementation of this procedure
is greatly facilitated by using the bifurcation ratios (e.g. ratios of segment
radius to the radius of parent segment) instead of the actual radii. The whole
subtree described by the bifurcation ratios can be scaled very easily.

The location of the start point of the new vessel is then optimized. As
we recall it is first set to be an arbitrary point along the parent segment
of the newly inserted terminal segment (midpoint of this segment in the
implementation developed by the present author). The optimization aims at
establishing the start point of the new segment, that minimizes the overall
blood volume in the tree. The optimization procedure is described here in
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a 2D setting. If we denote the blood volume in the entire tree as a function of

start point of a new segment as B(x, y) the optimization proceeds as follows:

(i)

(ii)

(1ii)

estimate the size of the spatial step of the optimization Al by taking it
to be the smallest of the following numbers: 30% length of the new seg-
ment, 30% length of its sibling and difference in their lengths (provided
it is nonzero),

calculate B(z.y). B(x + Al,y) and B(x.y + Al) (should any of these
points be outside the tissue domain, then the sign of Al is reversed),

the start point of the new segment is then moved in the direction of
lowering B, the spatial step is reduced and the procedure starting at
step (ii) is repeated until B does not change significantly with each new
iteration or maximum iteration number is exceeded.

[t is worth noticing, that each evaluation of the function B(x,y) requires

that the tree is rebalanced, ensuring that bifurcation rule holds and the

hydraulic balance is preserved throughout the tree.

3.2.2. Determining the location of end point of new terminal seg-

ment. We return presently to the description of algorithm for adding the

new terminal vessel into the tree (step 4 of the generation algorithm). Step

(4.1)

of that procedure consists of finding the location for the prospective

new terminal segment. To this end a semi-random procedure is employed. It

can be briefly described as follows:

(i)
(i)

(iii)

choose a random location P inside the region of interest,

calculate the minimum distance between P and every segment in the

tree;

if the above-calculated distance falls below a prescribed threshold ep
the procedure is repeated from step (i); if the number of repetitions
exceeds a prescribed threshold, then e is lowered by a constant ratio
and the sequence is started afresh,

if the prospective location is sufficiently distant to each segment in the
tree, it is accepted.
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It should be remarked that the presented algorithm offers several possi-
bilities for further improvements and extensions. These can be exploited to
enable modelling of the features of real biological tissues. Let us describe two
such potential directions of improvement.

The vasculature in living tissue is seldom homogenous on a large scale.
Fatty tissue is relatively poorly vascularized, the blood circulation system of
muscles is more developed and some internal organs have very complex and
dense vascularity (e.g. liver or kidney). The possible way to model these in-
homogeneities is to prescribe a nonhomogeneous probability density function
which favours areas of higher tissue perfusion during the procedure of selec-
tion of an end point of the prospective new terminal vessel. The threshold
e can also be assigned different values for different tissues.

The other idea is to allow the threshold ep to be function of spatial
variable. In this way, in certain areas, smaller distances between the segments
would be allowed, while, in others, larger clearance between segments would

have to be preserved.

3.2.3. Determining the parent segment for the new terminal seg-
ment. To complete the description procedure we now describe the algo-
rithm for selecting the parent segment of the new terminal segment. It is the
most time-consuming and-—at the same time —probably the simplest part
of the segment addition algorithm. The new terminal segment is added to
cach existing tree segment as its daughter segment in a manner described in
Sec.3.2.1. The total tree blood volume is calculated and the new terminal
segment is removed. Finally the segment vielding the lowest blood volume is
selected to be the parent for a new terminal segment.

It is worth noticing that each action of adding of the terminal segment
involves numerous iterations of geometric optimization of the start point lo-
cation procedure and the segment removal from the tree requires rebalancing
of the tree. Furthermore, the selection algorithm slows down dramatically, as
the number of segments in the tree increases.

For these reasons, the present author has proposed an improvement to
the above-described procedure (which, in its general form, has been described
in [10]). Instead of verifyving suitability of every segment in the tree in the
role of parent segment of the new terminal. only the one closest to the new
terminal end point is tried, as well as only those others, whose distance to this
point does not exceed twice the distance to the closest one. Then, the usual
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procedure selects the one that yields the lowest blood volume in the tree.
This improvement will be called the preselection in the following discussion.

The preselection narrows the search considerably and the procedure does
not slow down very much with increasing number of segments in the tree.
The reason for this behaviour is that, for any given point there is usually
the same number of segments that are within twice the distance to the one
closest to this point.

3.3. Example Results of Tree Generation

The described algorithm has been implemented in the form of the grower
program. In the present version the program handles only two-dimensional,
rectangular tissue regions. However, in principle, there are no significant
obstacles to extending the functionality to other, convex 2D domains. The
present author believes also, contrary to the opinion expressed by authors of
[10], that the extension of the presented algorithm to nonconvex and three-
dimensional domains is also possible.

3.3.1. Influence of geometric optimization and effectiveness of pre-
selection procedure. Figure 3 presents the 101- and 301-terminal trees
generated with optimization of the new terminal start-point (geometric op-
timization) turned on and off. In the non-optimized trees, not only the new
segment is always inserted in the midpoint of the parent segment, but also
the process of selecting the parent segment is conducted by means of com-
parison of the blood volumes in various non-optimized potential new trees.
The results clearly do not resemble vascular trees. However, one must bear in
mind that the geometrical optimization is the most time-consuming element
of the algorithm. In Table 2 the times of tree generation with optimization
turned on and off are compared for two trees (101 and 301 terminal seg-
ments). As one can see, including optimization slows the generation process
considerably.

TasLe 2. Time (in seconds) of generation of 100 and 300 new terminals in the 2D
vascular tree consisting initially of one segment. The generated trees are presented

in Fig. 3.
number of | no optimization optimization no optimization | optimization
terminals | no preselection | no preselection preselection preselection
100 4 121 <1 6
300 193 4773 5 86
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FiGure 3. The trees generated with geometric optimization turned off (left) and

on (right). Top: trees containing 101 terminal segments, bottom: trees with 301

terminal segments.

Table 2 gives also some idea about the effectiveness of the innovation
introduced by the present author to the parent segment selection algorithm
(preselection). Since the number of the potential possibilities to verify, in each
segment addition step, does not grow significantly with the tree complexity,
the preselection gives much smaller generation times, when compared to the
full search. The generation rate does not drop so dramatically when the
preselection method is used. which enables one to generate larger trees, such
as the one presented in Fig. 4. The generation time of this tree was below
sixty hours on 3 GHz PC. Without the preselection procedure, the generation
of this tree would not be possible.

Also it should be remarked that the comparison of total blood volume
in the generated trees was found to yield exactly the same value for trees
generated with and without the preselection algorithm. It confirms the as-
sumption that none of the potential parent vessels eliminated by preselec-
tion would have been selected by the full search procedure. For example the
301-terminal tree depicted in Fig. 3, bottom, right contains 32.2923 mm? of
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Figure 4. The tree containing 6000 terminal segments, generated using the
geometric optimization and preselection procedures. The generation time was
below 60 hours on 3 GHz PC.

blood and is generated during well over one hour by full search procedure.
The preselection yields exactly the same volume, after almost one and a half
of a minute. The verification of the blood volumes between the two methods
was not tried for larger trees because the time necessary for a full search

becomes excessivel) .

3.3.2. Influence of the bifurcation exponent. The bifurcation expo-
nent v, introduced in Eq. (3.1) is a purely empirical parameter, estimated
to be equal 2.7 for normal circulation system. However, it can be varied in
the relatively wide range, vielding distorted vascular trees. Comparison of

a number of results obtained for various values of v are depicted in Fig. 5.

YAs the tree generation involves a random element, one would expect that the volumes
of two 301-terminal trees would never be precisely equal. However quasi-random procedure
employed in the actual implementation uses a random number generator that yields always
the same sequence of pseudo-random numbers, which facilitates comparisons.
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FIGURE 5. The 301-terminal trees generated using various non-standard values
of the bifurcation exponent 7. The corresponding tree. generated with v = 2.7 is
depicted in Fig. 3, bottom, right.

4. Mesh and Grid Creation

Once the description of the vascular tree embedded in the tissue regon
of interest is available, the next step is to create discretization (mesh) of the
tissue matrix and develop such spatial discretization of the vascular tree, that
would be compatible with that mesh, i.e. that would facilitate the calculation
of the coupled tissue and blood temperature problems. In practice, the mesh
of the tissue domain has to be created and then the vascular tree is subdiviced
in such a way, that each tree segment can be assigned to a single element
of tissue discretization (e.g. finite element). Usually, the tree is no longer
a binary tree after such subdivision (parent segments are created. that have
a single daughter segment).

A tissue domain mesh can be created by any method. It would probably be
advantageous to devise method for simultaneous tissue domain mesh creation
and vascular tree subdivision. That would allow one to control the size of the
resulting tree segments and tissue elements. In the implementation employed
in the grower program a simpler technique is adopted. The 2D rectangular
tissue domain is subdivided into a prescribed number of elements and then,

the vascular tree is subdivided.
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The subdivided vascular tree and meshed tissue domain are called the
grid in the following text. Each segment in the grid is embedded entirely in
a single tissue domain element, and each element is assigned a list of segments
embedded in it. In this way. the subsequent calculation of the heat exchange
between the vascular tree and the tissue domain is greatly facilitated.

Apart from establishing a direct relation between the tissue domain and
the vascular tree, the process of creating the grid allows one to calculate
a number of parameters. These are:

e the number of segments per element,

e the number of terminal segments per element,

e blood fraction in the element.

Distribution of these parameters, calculated for the sparse grid, is depicted
in the Fig. 6. The shades of gray in the figure are used to denote the absolute
value of the blood fraction (white= 100%, black= 0%) or, for other param-
eters, the value relative to the maximum attained in the grid (white=maxi-
mum, black—0).

segment number terminal number

FiGure 6. The grid created out of 301-terminal tree and a 20 x 20 mesh
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segment number terminal number
Fiaure 7. The grid cereated out of 7201-terminal tree and a 50 x 50 mesh.

The tree in Fig. 6 features 301 terminal segments and the number of
segments before subdivision was 601 (the number of segments in any binary
tree is twice the number of its terminals minus one). The tree was subjected
to further division to match the tissue region mesh of 20 x 20 elements. After
the subdivision the number of segments was 1137.

The example of a relatively complex grid is presented in the Fig. 7. The
initial number of terminals was 7201 (14401 segments) and, after division
suitable for 50 x 50 mesh of tissue domain, the number of segments increased
to 20894.

5. Blood Temperature Calculations

5.1. Introduction

In the present section the geometrical model of the vasculature and tis-
sue, whose generation and preparation has been described in the preceding
sections, is used for calculation of the blood and tissue temperatures and

heat fluxes.
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As we recall, the vascular system is described by means of the complex
tree of simple blood vessel pairs (segments). The tree is embedded in the
surrounding tissue. A single vessel pair consists of artery and vein of circular
cross-sections, lying in countercurrent arrangement. Apart from geometrical
data. such as vessel radius r (common to both vessels and assumed constant
throughout the length of the vessel), starting and ending points, the pair is
characterized by the two temperatures (of arterial and venous blood): T,(s)
and T, (s) respectively, that are dependent on the axial coordinate of the pair
s. and by the blood velocity, that is assumed constant throughout the vessel.
The tissue temperature along the vessel is denoted Ti(s). Figure 8 depicts
the single segment.

Yo

O | P vein ) o
|

Ficure 8. Primitive building block of vascular tree: countercurrent vessel pair
segment

The condition of constant blood velocity along each segment corresponds
to the assumption that no mass transfer takes place through the vessel walls.
It may seem that this assumption excludes the phenomenon of the so-called
large vessel bleed-off from considerations using the presented method. In fact,
the present model allows very small vessels to branch off the large ones, and
the flow through these very small vessels can be regarded as the model of
bleed-off effect. In the opinion of the author, it is a valid. albeit numerically
expensive, method of modelling the large-vessel bleed-off effect.

In the presented method. employed in the flower program (bottom in
Fig. 1), the vessels are treated as one-dimensional entities immersed in the
space of higher dimension (two or three). Therefore, whenever reference
is made to vessel (arterial venous) temperature, it is understood that the
mixing-cup temperature is meant. The spatial variable for the vessel (axial

coordinate) is denoted s.
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5.2. Single Vessel Equilibrium

The considerations similar to those presented here can be found in |2, 1].
Let us consider the energy balance equation for the single vessel, embedded
in medium, subject to heat flux along its length as depicted in Fig. 9.

s
—_—

0 o> vessel ) Izr

Ficure 9. Single vessel embedded in medium

The energy balance equation reads:

20q(s) 5 IT(s) ;
s T PBICHIV = (5.1)

r'2LE(S) = 27rqw(s) — mr

™ -
ot

where gw(s) denotes the heat flux received through the vessel wall, ¢(s) is
the conduction heat flux in the vessel and pp; and ¢, are the density and
specific heat of the fluid (blood) respectively.

In most physiological situations, the axial conduction in the blood can
be neglected, also the internal energy of the blood can be expressed in tarms
of the temperature. Also the heat exchange through the vessel wall can be
described by gw(s) = 27rqy(s), a quantity of heat exchanged by the unit
length of the vessel in unit time.

oT(s) 1 a7 (s) -
PRICHI—— = mqw(s) ~ PHICHIV (5.2)

The heat flux received by the unit length of the vessel wall at s can be
conceptually divided into two portions: the one received from the counter-
current vessel g.. and the one received from the surrounding tissue ¢,. The
former is proportional to the temperature difference between the vessels and
to the conductivity of the tissue. The latter is proportional to the tempera-
ture difference between the vessel and the tissue and the conductivity of the
tissue. Formally one has:

Gec = 5(‘('/\I(Tc~r(3) - T(")) (-).3)
G = oM (Ti(s) — T(s)). (5.4)
qw = (I('(‘ + G- (35)
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Here oo and oy are constant, dimensionless, shape coefficients for heat
conduction between the vessels and between the vessel and the tissue re-
spectively. They are assumed to depend on the geometry of the system only
(vessel radius and spacing between vessels). A number of dimensional shape
factors, determined for various geometries are given in [8]. For two parallel
cylinders of diameters D) and Ds, lying a distance w apart (w is measured
axis-to-axis) Incropera and DeWitt propose the following expression for the
shape factor:

27

= qw2—=D?2-D2\ °
cosh ]("—1—1)

a =
2D, Do

For the cylinders of the same diameter Dy = Do = D lying two diameters
apart w = 2D one has:

27 2m

= ~ 2.3855.
cosh™ (7)  In(7 + V/48)

g =

For convenience of notation, we introduce shape coefficients per unit cross-
sectional area of the vessel:

o 6(‘(‘ ) gt

e EA—k
5.3. Equilibrium of the Vessel Pair

We assume that the s-axis (axis of the vessel) is oriented in the direction
of the blood flow in the artery and opposite to the flow in vein. We then have
for the artery (for convenience, the dependence on s is not indicated):

9Ty ) T,
poichl e = OecXie(Ty — Th) + ot A(Th — T3) — poicsiv——. (5.6)
ot s

The corresponding equation for the vein is:

T, . T, -
poichl—— = TecAt(Ta — Tv) + oeM(Ty — Ty) + poicoiv——. (5.7)
ot s

The heat transported into tissue from the unit length of the vessel pair is
therefore:

v _ —— ‘ Ta+ T
@ = =0 A((Tt = Ta) + (Tt — 1v)) = 200X (T—Tt,)v (5.8)
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5.4. Numerical Formulation

We now reformulate the heat transfer problem in the framework of finite
differences. Since each vessel pair segment is connected on one side to the
parent segment. and on the other, it feeds one or two daughter segments it
Is convenient to consider a single vessel pair segment to be basic unit of the
discretization. In the following derivations we denote the length of the seg-
ment by L, the time step of the simulation by At; the values at the start and
end of the segment are denoted by superscript s and e. Spatial derivatives
arc calculated by forward-difference for vein and by backward-difference for
artery. The reason for this choice is clarified below. The temperature gradi-
ents in both vessels of the pair are approximated to be constant throughout

the segment.

5.4.1. Explicit Method In the explicit formulation all heat flow rates are
calculated using the blood temperature values at the beginning of the time
step. This method is significantly cheaper numerically, although it imposes
severe limitation on the size of time step used. The artery and vein temper-
atures in segments are calculated sequentially, in the selected order.

Equation (5.6). yields the following algebraic equation for the end-segment
temperature of arterial blood:

T (t+ At) =T (?)

At . . ‘ . T
+’—\f( — (Oce(Ty (t) — T, (1) + oo (T (t) = T (1)) — v—=2
PblChl L

7

Similarly, equation (5.7), yields the following algebraic equation for the start-

segment temperature of venous blood:

TH(t + At) = T4 (t)

+ A ( (ol T30 ~ THO) + (T3 — To(1))) + v 2T T\'?"”) |
PbiCh] L
(5.10)

The chosen method for spatial gradient approximation requires that ad-

ditional equations for the start-segment artery temperature and end-segment
vein temperature are specified to complete the formulation. These equations
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are simply the miring conditions expressing the fact, that there is no accu-
mulation of energy at the junctions between segments. The mixing condition
for artery expresses the fact that the blood entering daughter vessels has the

end-segment arterial temperature of the parent segment:

T

i ]Hltl)l)]_\'
To(t+At) = o
P(T(t+ At)) for non-root segment.

for root segment,

Here T4,pp1y is the prescribed arterial supply temperature, i.e. the tempe-
rature of the blood entering the arterial circulation in the considered tissue
region; the operator P returns value of its argument for the parent of the
considered segment (i.e. while T7(#) denotes the segment start-point arte-
rial temperature at time 7. P(7(t)) denotes the segment start-point arterial
temperature of the parent of the present segment at time ¢). We recall that
there is only one segment (root segment) in the vascular tree that has no
parent segment.

The mixing condition for venous blood expresses the fact that the end-
segment temperature of the venous blood can be calculated as a result of

mixing of two venous blood flows from the daughter segments:

T; for terminal segment,
d s 3
L S0 Di(vr T (t + At))  for non-terminal segment.
(5.12)
Here we denote by d the number of daughter segments to the considered

TE(t+ At) =

segment and introduce the operator D; that refers to the variables of the ith
daughter segment of the considered segment. This operator is analogous to
P. We recall that the segments having no daughter segments are referred to
as termanal segments. In the model it is assumed that the blood in terminal
segients is in thermal equilibrium with surrounding tissue and therefore any
blood draining into venular vessels of those segments is at the local tissue
temperature.

For stability of the presented numerical scheme for the artery (5.9), the

following condition must hold:

X —i
Ar<( A (am.+n,)+‘_)_ (5.13)

PhiChl L

[t can be readily verified that the formulation for vein (5.10) yields an iden-
tical criterion. Since the first term in the parenthesis on the r.h.s. of (5.13)
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is of several orders of magnitude smaller than the second term, one can infer
that the condition pertinent to the blood advection determines stability.
Unfortunately, the brief inspection of the grid creation method described
in the Sec. 4 shows that the vascular tree segments can get arbitrarily small
in the course of subdivision. There are two kinds of situations, where such
unusually short vessels arise. They are schematically depicted in Fig. 10.

Due to these anomalous tree segments the direct application of the explicit
method is untenable. The calculation of the shortest segment length for the
sparse grid in Fig. 6 and dense grid in Fig. 7 yvielded the lengths of the order of
107 and 10~ m respectively. Calculation of the maximum time step ensuring
stability of the numerical formulation, according to Eq. (5.13) resulted in
times of the order 107" and 107 s respectively. Clearly these values are
too small for simulation.

Three solutions to this problem can be proposed:

e preconditioning of the grid prior to calculations (see middle rectangle in
Fig. 2); The shortest vessel segments can be eliminated by appropriate
repositioning of the nodes of the tissue region mesh and — possibly by
slight corrections of the shape of the tree. Using the latter method, one
needs to ensure that the hydraulic balance and the bifurcation rule are
not violated, also the changes of the shape of the tree have to be very
small so that the optimality ensured by the growth algorithm is not

disturbed much. These two approaches are illustrated in Fig. 11. The

Ficure 10. Two kinds of situation. where arbitrarily short segments arise in
subdivision during the creation of the grid: 1. segment traverses the mesh element
boundary with its end-point very close to this boundary; 2. segment traverses the

mesh element very close to its corner.
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drawback of this method is the fact that the appropriate algorithm for
repositioning the tissue region mesh nodes seems to be rather difficult
to devise.

(a) (b) (c)

Firaure 11. Two ways of improving an initial grid (a), which contains two very
short terminal segments. In (b) the tissue region mesh is deformed and in (c) the
vascular tree is truncated, the vessel radii being adjusted to obey the bifurcation
rule and hydraulic balance law.

e omitting the shortest segments in the numerical formulation; If the
shortest segment is the only daughter segment of its parent or is a par-
ent to only one daughter segment (most of the shortest segments are ex-
pected to fall in that category), then it can be treated together with its
parent (daughter) segment as a single segment in the numerical scheme.
All heat exchanged with the tissue elements would be distributed be-
tween the tissue elements surrounding the segments according to the
lengths ratio of the segments. This situation is schematically depicted
in Fig. 12.

e application of the numerical scheme that imposes no limit (such as
Eq. (5.13)) on the time step used, e.g. implicit finite differences method.

This method will be discussed in the next subsection.

5.4.2. Implicit method. In the implicit method, the artery and vein tem-
peratures in segments are calculated simultancously. The tissue temperatures
are still calculated separately so heat flow rates are calculated on the basis of
the blood temperatures at the end of the current step and current (start of
the step) tissue temperatures. The method requires solving the appropriate
system of equations, whose size is determined by the number of segments.
It is unconditionally stable, so a time step size larger than the one used in

explicit formulation may be selected.
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Temperature
appjt\:ximation

end point of the
daughter segment

-
downstream
end point of the coordinate s
parent segment,

start point of the

only daughter

segment

start point of the
parent segment

Ficure 12, In the numerical scheme, treating the parent-single daughter succes-
sion of segments as a single segment means that the intermediate node will be
omitted and the approximation of the temperature will be the one denoted with
dotted line as opposed to the example of original one (solid line). In this example,
the parent segment AB lies within the element 1 of tissue domain mesh, while
its only daughter vessel—in the element 1I. The heat exchanged by the combined
segment AC with the tissue is split between the elements I and II in proportion
to the lengths AB and BC. Temperatures at nodes A, B, and C are set arbitrarily

in this example.

Equation (5.6), yields the following algebraic equation for the end-segment

temperature of arterial blood:

AtOce J . AtOce At
TE(t + At) (1 + At (L 4 l—)) _TE(t + A) (L)

poicul L PbiChl
vAt ) Ao At ‘
— T3t + Aty — = T5(t) + =—— (L) - T5(1) . (5.14)
4 PblChbl

Similarly, equation (5.7), yields the following algebraic equation for the start-

segment temperature of venous blood:

T{f(f -+ AT) (] 4+ AL (ﬂ 4+ i)) o T(:(f & At)’\tgccAf

poicwr L PoiChl
. At . Ao At |
— T+ Af) 2 = T + 2220 (1 () — TR (). (5.15)
L PblChl

Equations (5.11) and (5.12) hold also in the case of the implicit method.
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5.4.3. Summary The pair of equations (5.9) and (5.10), or (5.14) and
(5.15), along with (5.11). and (5.12) enable the calculation of arterial and
venous temperatures at time t + At The tissue temperature is caleulated
independently. by means of the suitable numerical procedure for integration
of nonstationary heat conduction equation. Each segment of the vascular tree
embedded in the tissue provides local line heat source of intensity described
by Eq. (5.8). Furthermore, each terminal segment provides point heat source
of intensity

Gterm = Trrzpblchll'(jﬂ;‘\. ' ’T\() (516)

located at its end-point. It should be noted that the vascular tree embedded in
the tissue domain of interest, should be sufficiently complex (the vasculature
should be modeled to a sufficient level of detail), so that the blood reaching
terminal vessels is in thermal equilibrium with tissue and ggepr, is small. In real
organisms the artery-vein connection takes place at the level of capillaries,
where the blood is in full equilibrium with the tissue, even on the most
extreme thermal loadings. In most cases, the temperature equilibrating takes
place several branching generations earlier, cf. |7].

5.4.4. Implementation of the Implicit Method In order to implement
the above-mentioned finite difference scheme an appropriate numbering is
adopted. Each tree segment is assigned a number i being an integer multiple
of 3. so that the segments are indexed with the numbers 0,3,6,... The fol-

lowing degrees of freedom are then introduced for each segment:

number | meaning
0 Te
1 T
. g
2 i

The global number of the degree of freedom is then obtained by adding the
local number of the degree of freedom to the segment number. For example
the end-of-segment venous temperature in the segment 21 (that is the eight
segment) will be denoted #2* (21 for segment and 2 for 7).

The start-of-segment arterial temperature need not to be treated as an
unknown variable, since. by Eq.(5.11) it can be replaced by appropriate
parent segment temperature, therefore we have three temperature degrees of
freedom per segment.
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Before the matrix form of the implicit method is derived we introduce
some convenient notations:
M AL g v(n)At
PbICHI ‘ L(n)

o =

where the variable n denotes the segment number, e.g. v(n) is the blood velo-
city in the nth segment. Furthermore, by 7" we denote tissue temperature
at the location of start-point of the n-th segment while by 77" we denote
tissue temperature at the location of end-point of the n-th segment.

The global matrix for nodal temperature calculation is constructed by
inserting three equations for every segment in the tree. That is. for every

segment 1 we proceed as follows:
1. if the segment n is a root segment:

(a) enter the following equation no. n into the constructed system:

0™ (t + At)(1 + aoe + A7) — 072t + At)aoee
= g ( )(l — (l(f‘) + (l(T[T“ ((’) -+ Tquph[.\-ﬁ".

(b) enter the following equation no. n+ 1 into the constructed system:

0" (t + At)(1 + aoee + A7) — "2 (t + At)3"
= "t ()(1 — aoy) + ao T7°(t) + T eupply @G sc,

2. if the segment n is not a root segment:

(a) determine the number m of the parent segment of n.

(b) enter the following equation no. n into the constructed system:

6" (t + At)(1 + a0ee + B7) — 0"2(t + At)ade — 6™ (t + AHF"
=0"(t)(1 — acy) + ac T (1),

(¢) enter the following equation no. n+ 1 into the constructed system:

0" (¢t + At)(1 + aoee + B™) — 0™ (t + At)ao — 0™H2(t + At)B"
= 0" (1) (1 — aay) + ao T} (1),

3. determine numbers of the daughter segments p and o (or just p if there
1s only one daughter segment ),
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4. if there are no daughter segments (n is a terminal segment) enter the

following equation no. n + 2 into the constructed system,

9"+2(1‘ + Af) - T;n.(‘(t)

ot

if there is one daughter segment p of the segment n enter the following
equation no. n + 2 into the constructed system

6" 2(t + At) — 0Pt + At) =0,

6. if there are two daughter segments p and o of the segment n enter the
following equation no. n + 2 into the constructed system

v(n)r(n)0" T2 (t+At) —v(p)r? (p)#P L (t4+-At)—v(0)r (0)0° T (t+At) =0.

In the resulting set of equations the equation having the same number k
as some segment corresponds to Fe. (5.14) for that segment, equation with
number k& + 1 corresponds to Eq. (5.15) for that segment and equation num-
bered & + 2 corresponds to the mixing condition Eq. (5.12) for that segment.
Temperature continuity condition for that segment Eq. (5.11) is already used
in the formulation (three temperature DOFs per segment instead of four).

6. Tissue Temperature Calculations

For the calculations of tissue temperature the usual Fourier-Kirchhoff
conduction equation is used:

T

t

Prey Oy B = }\tvat + G + ghl- (6.1)

Here ¢y, is a constant metabolic volumetric heat source, while ¢ is the local
volumetric tissue fraction and ¢, is the net heat exchanged by the tissue
with the blood vessels per tissue clement volume. Its calculation procedure
is described in the following.

Equation (6.1) is solved numerically using the finite element method for
discretization in space and finite difference method for time discretization.
The vascular tree model is subdivided as described in Sec.4, so that each
segment of the tree is contained in a single tissue element. In other words,
cach tissue element & can be assigned a set of 7y tree segments located inside

it and a set of my terminals located inside it (obviously ng > my). It is
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pointed out that the tissue fraction ¢ can be readily calculated (see Figs. 6
and 7) and remains constant in time (unless one takes the thermoregulation
effects into account).

The blood-flow-related volumetric heat source gy, is calculated for each

clement and is subdivided in two components:

) = o (6 + i) (6.2)
Here V%) is the volume of the kth element, (}I(M is the heat conducted from
the walls of all vessels embedded in the kth element to the tissue matrix (see
Eq. (5.8)). and rj,(ffr)m is the heat transported at the tips of all the terminal
vessels embedded in the kth element to the tissue matrix (this heat accounts
for the possible temperature difference between arterial end-of-terminal tem-
perature and the end-of-terminal venous temperature, see Eq. (5.16)). The
first term in parentheses in Eq. (6.2) is calculated as follows (see Eq. (5.8)):

end(i

g om,Z/ (—T"(Z)—Tt(i))dl (6.3)

b= st«ut(r)

where start(i) and end(z) denote the starting and ending point of the ith
segment contained within the considered element, [ being the local coordinate
of the segment.

The second term in parentheses in Eq. (6.2) is obtained (see Eq. (5.16)):

T g

(]“]m TPLICH] E - Ti). (6.4)
1=1
In the course of numerical calculations all temperatures on the r.h.s. of
Eqgs. (6.3.6.4) are taken from the previous time step (explicit formulation).

7. Example Results— Steady-state Temperature Distribution

The presented method was implemented in a computer program and used
in a number of example simulations. Here we pass to the description of the
selected results. The simulations were done on the moderately dense grid
consisting a vascular tree comprising of 301 terminals (601 segments, 1137
segments after tree meshing) and 20 x 20 tissue mesh (441 nodes). The linear
dimension of the region was 22.31 mm. The setup is depicted in Fig. 13.
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Ficure 13. Vascular tree model and tissue mesh used in the calculations

Since no thermoregulatory loop was introduced (blood flow is independent
of temperature), the hydraulic calculations were performed just once, at the
beginning of the simulation.

For the simulation adiabatic boundary conditions were assumed on lower,
left and right boundaries of the tissue region. The top boundary was main-
tained at 25°C. The initial tissue temperature was assumed to be 25°C. The
blood feeding the system via arterial vessel of the root segment was kept at
37°C. Obviously, the return blood temperature in the root was calculated by
the model. The metabolic heat generation rate was set to be 7000 W /m?*.

The steady-state was obtained by computing subsequent steps of time-
transient simulation until temperatures did no longer change.

Figure 14 displays the calculated temperature of the blood particle as
it traverses the region of interest, starting in the arterial vessel of the root
segment. making its way to the most distant terminal in the tree, and. after
entering the venous circulation, returning to the draining vessel of the root
segment. The scale on the horizontal axis is in arbitrary units (1 corresponds
to the width (height) of the square domain of interest).

The data in Fig. 14 have clear physical interpretation. The warm blood,
perfusing cool region of tissue gets cooler as it flows through arterial part of
the tree. The temperature variations are continuous. At the furthest point of
the selected circulation loop (at the end of the terminal vessel) the blood at-
tains the local body temperature, which happens to be 25.25°C (the terminal
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Ficure 14. Blood temperature along the circulation path feeding the terminal
most distant to the root segment; Horizontal axis corresponds to the length (in

arbitrary units) along that path.

lies close to the isothermal outer boundary, kept at 25°C). The blood then
enters the venous circulation and travels towards the root. On its way it is
rewarmed by the counter-current artery and its temperature rises. The pro-
cess is discontinuous in this case as the blood streams mix in every junction.
Finally the root segment is reached, the return venous temperature being
ca. 31.8°C.

Since the temperature in the venous tree is discontinuous through the
branchings, the vessel-to-vessel heat flow and consequently the slope of the
arterial temperature curve can also be expected to be discontinuous. Indeed
careful inspection of Fig. 14 reveals that there are no discontinuities on the
arterial side, although the slope is sometimes very high. Summarizing: the
temperature curve of the arterial circulation continuous but nonsmooth due
to discontinuous vessel-to-vessel heat flux. The vessel-to-vessel flux is, in turn,
discontinuous due to venous blood temperature jumps at branchings where
mixing takes place. This feature of the model is a consequence of assumption
that blood mixing in the branchings of the venous circulation is immediate.

It is noteworthy that the rough scheme in Fig. 1 and the calculated results
of the model, presented in Fig. 14 are similar.

The steady-state averaged temperature distribution in the vertical direc-
tion is presented in Fig. 15.
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Ficure 15. Horizontally-averaged tissue temperature profile.

8. Conclusions

The presented method allows one to take account of the impact of coun-
tercurrent blood flow through the vascular tree of prescribed geometry on
the heat transfer in soft tissue. It uses three independent temperatures: arte-
rial blood temperature, venous blood temperature, and tissue temperature.
Therefore, no simplifying assumptions regarding the relation between these
are needed (in contrast to e.g. model presented in [15]). This advantage is
attained at the expense of model complication and numerical cost of the
calculations.

Possibly the most serious limitation of the presented results is the fact
that they were obtained with a 2D implementation. Extension to fully three-
dimensional case is required if clinically-relevant calculations are to be at-
tempted. It should be pointed out that the method is not intrinsically two-
dimensional and the 2D implementation developed to obtain results pre-
sented here was chosen on the basis of its simplicity and clarity of presenta-
tion.

The presented method is well suited to the investigation of thermoregu-
lation phenomena. It is known that, among other mechanisms of thermoreg-
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ulation, the vasodilation and vasoconstriction plays a prominent role. For
that purpose the model needs to be supplemented with the additional law
relating the relative vessel radius to the local temperature. The pressure/flow
calculation is then performed at every step of time-transient analysis.

Nonhomogeneously-perfused tissues can be described by the presented
model as well. The vascular tree generation algorithm can be adjusted to
vield small vessel density in some tissue regions (e.g. adipose tissue) and large
vessel density in the others, for example by introducing a spatial variation
of probability density for growing a new terminal. It should be remarked
however that for clinically-applicable simulations of effect of large vessels on
local hyperthermia, use of real, measured vessel geometry would probably be
better [14].
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