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Abstract

Adhesion of cells and extracellular vesicles (EVs) is ubiquitous in nature and plays
an important biological role in the functioning and sustenance of cells and the multi-
cellular organism as a whole. Shape transformations of cells, for example, as observed
during the fission and fusion processes, or during the morphological changes in the
red blood cell (RBC) structure while passing through the capillaries, or during the
interaction of cell with it’s environment, etc., are crucial to their functions. Thus,
the biological importance of adhesion and shape transformation makes it imperative
to probe for adhesion-induced shape changes of cells. Cell membranes are complex
and diverse structures with complex mechanisms of shape regulation, but a relatively
simple elastic theory has been found to be successful in describing red blood cell shape
and their transformations. In the thesis, we use a theoretical approach to study shape
transformations using a simple vesicle model system that can effectively describe the
necessary characteristics of a cell membrane.

In the thesis, we primarily study the shape transformations of lipid vesicles with
spherical topology induced by their adhesion to a flat surface. The aim is to inves-
tigate the shapes of vesicles stabilized by adhesion and study the shape transforma-
tions between different classes of vesicles. Apart from the study of vesicle where the
vesicle membrane is composed of a single kind of membrane component (single com-
ponent vesicle), we also investigate the adhesion of vesicle systems where the vesicle
membrane is composed of two kinds of membrane components (multi-component vesi-
cle), and the membrane components are characterized by their intrinsic spontaneous
curvatures. Experiments have suggested that the lateral distribution of membrane
components can influence the shape of the vesicle, and conversely, the shape of the
membrane can induce lateral segregation, with the components migrating to the mem-
brane regions which are more favourable to their intrinsic curvature. The main aim
here is to further our understanding of this hypothesis – which assumes a coupling
between the shape and the lateral distribution of components under the context of
adhesion. We study the vesicle system within the spontaneous curvature model and
numerically minimize the energy functional to obtain the equilibrium shapes and the
distribution of the components simultaneously. We have performed a detailed study
of the shape transformations between vesicles adhered to a flat surface. It was shown
that the most stable configuration of an adhered vesicle with the membrane composed
of a single kind of component and characterized by a relatively small spontaneous cur-
vature was oblate with the increase in adhesion. This situation can be more complex
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with the multi-component vesicle membrane, where there is an extra degree of free-
dom in the form of a non-homogeneous lateral distribution of components over the
vesicle surface. From the calculations, it followed that budding can be induced by
adhesion, and even a slight change in adhesion strength was found to be enough to
promote or suppress it. It has been shown that an increase in spontaneous curvature
of the vesicle membrane could encourage an easy adhesion of vesicles and that this
effect was different in concave oblate vesicles (vesicles that curve inwards on their
surface) than in the convex oblate vesicles (vesicles that curve outwards on their sur-
face). The relationship between the shape and the corresponding lateral distribution
of membrane components of the adhered vesicles has been investigated, and it has
been shown that a budded vesicle like a pear-shaped vesicle can support the mixing
of components, and a non-budded vesicle shape like oblate can support lateral segre-
gation of membrane components. Our calculations have suggested that an increase in
adhesion can promote both mixing and segregation of components, and this depends
strongly on the shape of the vesicle under adhesion. Similar behaviour was observed
when the vesicles were elongated by growing inner microtubule or when the vesicle
volume was changed by the change of trans-membrane osmotic pressure [1].
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Abstrakt

Adhezja komórek biologicznych i pęcherzyków lipidowych jest powszechnym
zjawiskiem w przyrodzie i odgrywa ważną rolę w funkcjonowaniu komórek biolog-
icznych i wielokomórkowych organizmów. Zmiany kształtu komórek biologicznych
obserwowane podczas ich łączenia się lub rozszczepienia, czy zmiany morfologiczne w
krwinkach czerwonych podczas ich przepływu przez naczynia krwionośne, czy podczas
oddziaływania komórki z jej otoczeniem są kluczowe dla ich normalnego funkcjonowa-
nia. Ze względu na dużą wagę zmian morfologicznych podczas adhezji niezmiernie
ważne jest dogłębne poznanie i zrozumienie tego zjawiska. Membrany biologiczne
są złożonymi i różnorodnymi strukturami ze złożonymi mechanizmami stosowanymi
do regulowani ich kształtu. Pomimo to można opisać kształty transformacje tak
złożonych obiektów biologicznych jak czerwone krwinki przez stosunkowo prostą teorię
opartą na elastyczności membran lipidowych. W pracy zbadano metodami teorety-
cznymi właściwości pęcherzyków lipidowych oraz ich transformacje stosując matem-
atyczny model pęcherzyków lipidowych. Zbadano przede wszystkim przekształcenia
pęcherzyków lipidowych o sferycznej topologii indukowane przez ich przyleganie do
płaskiej powierzchni. Celem było zbadanie kształtów pęcherzyków ustabilizowanych
przez adhezję a także zbadanie możliwych transformacji pomiędzy różnymi klasami
pęcherzyków przylegających do płaskich podłoży. Badane były zarówno pęcherzyki
jednoskładnikowe jak i wieloskładnikowe, gdzie składniki membrany były scharak-
teryzowane przez ich spontaniczne krzywizny. Zgodnie za badaniami eksperymen-
talnymi można założyć, że rozkład składników w membranach lipidowych wpływa
na kształt membrany oraz kształt membrany może indukować segregację składników
w taki sposób, że składniki migrują do obszarów membrany o podobnej krzywiźnie
do spontanicznej krzywizny danego składnika. Głównym celem było zbadanie tej
hipotezy w kontekście adhezji przy założeniu powiązania kształtu pęcherzyków i
rozkładu składników w membranie tworzącej ściany pęcherzyka. Obliczenia zostały
przeprowadzone w ramach rozszerzonego modelu funkcjonału Helfricha ze spontan-
iczną krzywizną. Funkcjonał był minimalizowany numerycznie, a wynikiem mini-
malizacji były funkcje opisujące kształt pęcherzyka i rozkład składników w mem-
branie tworzącej ściany pęcherzyka. Przeprowadzono szczegółową analizę transfor-
macji kształtów pęcherzyków przylegających do płaskich podłoży. Pokazano, że
najbardziej stabilne konfiguracje przylegających jednoskładnikowych pęcherzyków o
relatywnie małej spontanicznej krzywiźnie miały spłaszczony kształt. Stabilizacji
sprzyjał wzrost potencjału przyciągającego podłoża. W przypadku pęcherzyków
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wieloskładnikowych zmiany kształtu pęcherzyków spowodowane przyleganiem do
podłoża mogą powodować niejednorodny rozkład składników w membranie tworzącej
ściany pęcherzyka. Przeprowadzone obliczenia wskazywały na możliwość występowa-
nia wielu ciekawych zjawisk fizycznych w układach, w których pęcherzyki lipidowe
przylegały do płaskich podłoży. W szczególności pokazano, że zmieniając nieznacznie
właściwości podłoża można doprowadzić do pączkowania pęcherzyka. Pokazano, że
niewielka zmiana spontanicznej krzywizny pęcherzyka ułatwia jego przyleganie do
podłoża. Efekt ten inaczej przebiega dla pęcherzyków wklęsłych a inaczej dla wy-
pukłych. Zbadano zależność pomiędzy kształtem pęcherzyków przylegających do
podłoża i rozkładem składników. Pokazano, że w zmieniając właściwości podłoża
możliwe jest indukowanie zarówno mieszania się jak i rozmieszania się składników w
pęcherzykach. Kształt pęcherzyka decydował o tym czy składniki ulegały mieszaniu
czy rozmieszaniu. Podobne zachowanie było zaobserwowane w pęcherzykach zmieni-
ających kształt pod wpływem rosnących wewnątrz mikrotubuli lub zmian objętości
spowodowanych przez zmianę ciśnienia osmotycznego [1].
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Chapter 1

Introduction

This chapter presents a brief introduction to the membrane structure and it’s proper-
ties. It introduces the reader to the theory of adhesion and the importance of adhesion
and shape transformations in biological cells. The mechanism of segregation which
allows for the lateral redistribution of components in the multi-component membranes
has also been explained.

1.1 Phospholipid membranes

Membranes play a crucial role in the biology of cells. They divide the cell space into
sub-spaces or compartments of different compositions, and the outer layer to these
compartments and organelles is made of the bilayer membrane [2]. Membranes can
accommodate different proteins and therefore play an important role in the biochem-
ical reactions of the cells. Although the biological membranes are extremely soft
structures but they are resistant against disruption, and it is this stability that gives
a protective outer shell to the cells [3].

Phospholipids are the fundamental building blocks of a cell membrane. They
are amphiphilic molecules that consist of two hydrophobic fatty acid chains and a
phosphate-containing hydrophilic head group [4]. Our model system membrane is a
bilayer structure comprising of two monolayers where each monolayer is made out of
such amphiphilic molecules. When amphiphilic molecules are dispersed in a polar sol-
vent like water, they self-assemble spontaneously to form aggregates like vesicles called
liposomes which are closed structures with the hydrophilic heads in contact with water
and the hydrophobic tails embedded in the bilayer membrane of the vesicle, or they
could also aggregate to form bilayer structures which involve a large edge free energy,
etc. Due to the hydrophobic nature of the tail, whenever a hydrophobic molecule
comes in contact with water, it disrupts the H-bonding between the surrounding wa-
ter molecules. To compensate for the loss in H-bonds on disruption, the surrounding
water molecules now form ice-like cage structures which act as cavities to accommo-
date the hydrophobic molecule. This rearrangement of water molecules around the
hydrophobe, however, causes the entropy of the surrounding water molecules to re-
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duce [5], and to counter this effect, the lipid molecules aggregate to lower the free
energy of the system [6]. The critical length of the tail, the representative surface
area occupied by the amphiphile, and the volume occupied by the hydrophobic part
of the amphiphile determine the structure of the aggregate that it can form [7–9].

Figure 1.1: Schematic of a phospholipid molecule is shown with it’s hydrophobic and
hydrophilic parts. It acts as a fundamental building block of the bilayer membrane.
Image credit: The original image is taken from the ref. [10].

Figure 1.2: The self assembly of lipid molecules to form either a lipid micelle or a lipid
bilayer depending on their shape is shown. Cylinder shaped lipids form a bilayer while
the wedge shaped lipids form micelles. Image credit: The original image is taken from
the ref. [10].

Biologically, shape transformations of the membrane play an important role –
for e.g., in the formation of small buds on the plasma membrane of the cell during
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the process of exo- or endocytosis (see Fig. 1.3 which shows the budding transition
observed in giant phospholipid vesicle systems on the increase in temperature), or
during the formation of thin nanotubes [11] which connect the parent cell to the
daughter cell and are useful for transporting material through it, like for e.g., in the
red blood cells. These shape transformations are also useful in the locomotion of the
cell [2], while the shape of drug carriers can play an important role in their adhesion
to the target site and thereby in the drug delivery process. Shape transformations
can also help characterize diseases like Sickle cell anaemia, Alzheimers, etc. See
refs. [12–14] for further reading on the importance of shapes and shape transformations
of cells in nature.

The biological membranes comprise of many different kinds of lipids, other am-
phiphiles, and membrane proteins which are embedded in the bilayer and contribute
towards the functional properties of the bio-membrane [16]. The lipid compositions
in the two monolayers are generally very different from each other, and this kind
of lipid asymmetry is also functionally important [10]. Oftentimes there is a poly-
meric network anchored to the membrane, which further ensures structural stability
to the biological membranes. The artificial vesicle (devoid of polymeric network), in
comparison, is however a model system which can provide us useful insight into the
mechanisms that govern such complex bio-membranes [16].

The thickness of the membranes is about a few nanometers, but the size of the
vesicle can go up to 100 micrometers [16]. Thus membranes can be regarded as 2D
structures embedded in three-dimensional (3D) space when studied in length scales
much bigger than the bilayer thickness. Membranes are extremely soft structures, and
this is revealed by the thermally excited shape fluctuations which can be visible un-
der a microscope [16]. Such shape transitions can therefore be physically observed by
changing the temperature, or osmotic conditions [16]. The fluidity of bio-membranes
is an important characteristic and it is the reason behind the large variety of shapes
found [17]. Lipid molecules can laterally diffuse freely within the plane of the mem-
brane, can undergo flip-flops (rarely) between the two monolayers, and can undergo
rotation about it’s axis which can all contribute to the fluidity of the membrane.
Membranes can therefore change their local composition due to lateral redistribution
of different kinds of lipid molecules, and intra-membrane domains can be formed [17].
The configurations of the membrane are however different from interfaces as they are
not dictated by surface tension which is why there is a large variety of non-spherical
shapes [16]. Theoretically, the shape deformations are found to depend on fluid-elastic
parameters called the spontaneous curvature that describes the preferred curvature of
the membrane and the bending rigidity of the membrane that describes the resistance
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Figure 1.3: Budding transition is shown on increasing the temperature from 27.2,
36.0, 37.5, 39.1, 41.0 to 41.0 ◦C from left to right and top to bottom. Image credit:
Originally taken from Käs and Sackmann 1991 [15,16].
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of the membrane in bending away from it’s preferred curvature [17] (for our choice of
model as explained in chapter 2).

From the chemistry and thermodynamics point of view, the bilayer membranes can
exist in various phases and undergo phase transitions between these phases depending
upon the composition of the membrane and the temperature. The temperature about
which this transition occurs depends on the length and state of saturation of the
hydrocarbon chains [10]. The biological membranes are mostly found in the liquid
crystalline or the fluid phase (Lα phase), also called as a liquid-disordered phase
which is found at a higher temperature, whereas, at a lower temperature, the bilayer
undergoes a main transition to a 2D gel phase (Lβ phase) [16]. Phospholipids in the
presence of a high concentration of cholesterol can also form a liquid-ordered phase
(Lo) where the hydrocarbon chains are more ordered, although the membrane still
maintains it’s fluidity [18–20]. In the gel phase, cholesterol is found to disrupt the
ordering of the hydrocarbon chains [20]. The (Lo) represents kind of a mixed-phase
between the Lα phase and the Lβ phase [20]. The transition between the phases
is shown in Fig. 1.4. A bilayer membrane with a mixture of two types of lipid
components can be found in a coexistence phase that comprises a fluid and a gel
phase. However, a bilayer can also be in a phase that comprises of two coexisting
fluid phases like a coexistence of liquid-ordered and liquid-disordered phases. Such
coexisting fluid phases are found in a system, for example, that contains a mixture
of phospholipids and cholesterol [21, 22]. From the many different types of lipids
that constitute the biological membranes, the sphingolipids tend to have longer and
saturated hydrocarbon chains, and because of this, the attractive forces between the
adjacent molecules can be strong enough that they can be held tightly together to
form small microdomains or lipid rafts [10]. Lipid rafts are therefore thought to be
the phase-separated regions within the fluid bilayer where due to the concentration
of the molecules of longer and saturated chains, the thickness of rafts is larger than
the rest of the bilayer [10].

The constraints that we have considered in our model section are a reflection
of the physical properties of the studied system (vesicle). Due to the hydrophobic
tails of the lipid bilayer, the lipid molecules do not practically dissolve in a polar
solvent like water, and, therefore the number of lipid molecules within the bilayer
remain constant. This ensures that the surface area of the vesicle remains constant
and can adjust to its optimal value at a constant temperature. Also, the volume
enclosed by the vesicle can be assumed to be a constant. This is because the bending
energy is only capable of balancing small osmotic pressure differences generated due
to the presence of impermeable molecules like large ions and sugar molecules that are
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Figure 1.4: The different phases of a biological membrane and the transition between
them as a function of temperature is shown. The effect of the presence of sterol
molecules on the phases is also shown. Image credit: Originally taken from the
University of California Davis: Biophysics 241 - Membrane Biology notes [23].

inevitably present in the aqueous solution at low concentrations due to impurities.
Thus, as a good approximation, the volume can be considered to be constrained at
the value for which the osmotic pressure becomes zero [16]. Both these constraints of
constant surface area and volume are considered in chapter 2 later.

Fig. 1.5 shows the shapes obtained experimentally using giant phospholipid vesi-
cles which are reminiscent of some interesting shape transition sequences. For e.g.,
the shapes from 1 to 4 describe the shape transition of a red blood cell [24, 25] from
the disc shape on the far right of the row to the cup shape on the far left. Shapes
8 and 12-15 show the budded structures which have a narrow neck connecting two
spheres and are similar to the structures observed during endocytosis and exocytosis.
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1 2 3 4

5 6 7 8

9 10 11

12 13 14 15

Figure 1.5: Experimental determination of shapes of giant phospholipid vesicles with
different microscopy techniques. In the first row are three shapes belonging to the
cup-shape class (1–3) and a shape belonging to the disc-shape class (4). In the second
row are shapes belonging to the prolate (5) and pear-shape (6–8) classes. In the
third row, the first two shapes have a relatively small value of the vesicle reduced
volume. Shape 9 shows a codocyte on the left and a torocyte on the right, shape
10 is a starfish, and shape 11 is a cylindrical shape. The fourth row shows shapes
characterized by narrow necks connecting nearly spherical vesicle parts. Shape 12
has two invaginated spheres within a large sphere. Shape 13 is composed of a large
sphere and two small evaginated spheres. Shape 14 has a small sphere in between two
large spheres, whereas shape 15 has (in addition to a large mother sphere) eight small
spheres connected to it in a row. [25] Image credits: Image is assembled by taking
shapes from different references: shapes 1–4, 12, and 13 (originally from Käs and
Sackmann, 1991) [15,25], 5–8 (B. Mavčič et al., 2004) [26], 9 (Drab et al., 2021) [27],
10 (W. Wintz et al., 1996) [28], 11 (A. Iglič et al., 1999) [29], 14 (originally from Farge
and Devaux, 1992) [25, 30], 15 (Veronika Kralj-Iglič, 2012) [31].
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1.2 Adhesion of vesicles and biological cells

The adhesion of cells is biologically relevant. It is fundamentally important in the for-
mation and maintenance of tissues. Changes in the adhesion of the cell can help char-
acterize certain diseases like arthritis [32], cancer [33], osteoporosis [34] and atheroscle-
rosis [35]. For example, generally, it has been found that the cell adhesiveness is lower
in human cancers [36]. Adhesion also plays a vital role in wound healing, immune
responses, in the drug delivery process and also has applications in biosensors. The
shape of cells and its regulation can be influenced by their adhesion with each other
or to a substrate [37]. Thus, it may be biologically relevant to study the adhesion-
induced changes in the shapes of the vesicles. Our work in this regard allows us to
study the shape changes and the transformations induced by the adhesion of the vesi-
cles to a rigid surface. Experimentally, vesicle adhesion can be studied for, e.g., using
the micro-pipette aspiration technique [2, 38]. Theoretically, the adhesion of vesicles
can be studied as a competition between the elastic bending energy and the adhesion
energy [39].

Here the reader is introduced to the different regimes in which adhesion of mem-
branes can be studied, and some literature review has been presented about the work
done on shape transformations under adhesion – for vesicles with the vesicle mem-
brane composed of single and multi-components.

Ana-Sunčana Smith and Udo Seifert in their paper [40] have described the three
different length scales to study adhesion. At the macroscopic scale, the adhesion
interaction of the vesicle with the substrate can be introduced in the form of an
effective adhesion strength W [40]. When the vesicle is adhered to the surface, the
membrane segment which is closest to the surface experiences forces like the attractive
van der Waals force, the electrostatic force and also the structural forces [39]. The
vesicle membrane can be bound to this surface if the effective interaction potential
has a minimum at some distance say z. This range, z, of the potential is typically
small and of the order of nm while the radius of the vesicle is of the order of few
µm. As we are interested in the macroscopic property like the shape of the vesicle,
the spatial variations of the vesicle which are at a much smaller scale like that at
about z, are ignored and the microscopic interaction potential is thus replaced by
an effective contact potential which can be quantified by W [39]. In our work, the
adhesion interaction is considered in such a form of an effective adhesion strength.

At the mesoscopic length scale, the attraction potential is considered to be a
sum of van der Waals, electrostatic and structural forces. But at this scale, the
shape fluctuations also play a significant role in the interaction of the membrane
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with the surface. However due to the substrate present, the shape fluctuations are
restricted which results in an effective repulsion. This kind of vesicle interaction
with the substrate surface is called non-specific adhesion and this is a result of the
coupling between the adhesion potential with the membrane fluctuations and the
bending properties of the membrane.

At the microscopic scale, the interaction between the vesicle membrane and the
surface is defined as a contribution from the ligand-receptor pairs and the repelling
molecules which are embedded into the membrane. This kind of interaction is called
specific adhesion. However, the mesoscopic fluctuations affect the interaction of the
membrane with the substrate surface by affecting the distribution of the ligand-
receptor pairs. So at the microscopic level it is an inevitable prerequisite that the
non-specific interactions are made very small such that they do not interfere with the
binding of the ligand-receptor pairs.

For a macroscopic study of adhesion on flat surfaces, Seifert and Lipowsky in their
papers [39] and [41], had introduced adhesion interaction in the form of the effective
adhesion strength to study the shapes of the vesicles. In paper [41], they have shown
that in the (V, A) ensemble, a vesicle can undergo a nontrivial transition between
free and bound states and transition between two bound states, under a non-zero
value of this adhesion strength. They have identified a critical value of adhesion
strength, wa(v) value required to adhere the vesicles, and have predicted that for a
given W = Wa = (waκ/R

2), vesicles of size R > Ra will be bound and that of R
< Ra will be free. A similar study on the (P, A) ensemble was done in paper [39].
In paper [42], shape transformation sequences between free and bound states and
between two different bound states of different families of shapes have been shown
by changing the area of the vesicle. Topological changes in the shape like that of
vesicle fusion and vesicle rupture have also been studied and several regimes have
been identified for the bound vesicles, bound discs and free vesicles and these regimes
depend on the relative sizes of the two length scales described in the paper.

There has been an extensive study [43–53] on the interactions between the vesicle
membranes and the adhering nano structures. Different wrapping states and shape
transformations have been identified. In paper [43], membrane wrapping states of pro-
late and oblate ellipsoids are investigated and they have found that spherical particle
undergo complete wrapping and the ellipsoidal particles have an enhanced stability
in the partially wrapped states, thereby resulting in a lower uptake of ellipsoidal par-
ticles by cells. In paper [44], shape transformations of oblate shaped vesicles when
adhered by a spherical particle to the axisymmetric centre have been investigated. The
phase diagram calculated, allows for a better understanding of the shape transforma-
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tions in the biological systems like virus-vesicle endocytosis and nanoparticle-vesicle
complexes. The process of exocytosis or budding of a particle out of the vesicle is
studied theoretically in paper [45] and the relation between spontaneous curvature of
the vesicle and the full release of the nanoparticle has been investigated. Stable and
metastable states of full release, partial budding and no budding have been identified.
In paper [46], interaction of a membrane with parallel tubes has been studied and they
have identified three interaction pathways - membrane wrapping, tube-membrane fu-
sion and tube pearling respectively. The results further suggested that tube pearling
can be promoted under weak membrane-tube adhesion but a strong membrane-tube
adhesion can induce significant wrapping and prevent pearling. Such a study is im-
portant for understanding the formation of membrane tubes which originate from one
biological cell to connect with another cell.

Here we discuss some studies related to the multi-component vesicles. In [54],
adhesion of multi-component vesicles to flat and curved substrates is investigated.
The vesicle membranes are already composed of two distinct phases: liquid-ordered
and liquid-disordered. Stable shapes on increasing w have been identified and also
the difference in their stability has been studied when different phases are in contact
with the adhesion surface. Their numerical study suggests that adhesion can promote
phase separation with their composition function turning into a tanh like shape.

In [55], the authors suggest that adhesion leads to phase separation but impor-
tantly they convey that there are three mechanisms that lead to phase separation.
These mechanisms depend on the interactions between sticker molecules, repeller
molecules as well as on the entropic contributions from the shape fluctuations. Phase
diagrams for bound and unbound states are also studied.

In [56], Seifert has studied the spherical vesicles composed of two components
and their shape evolution with increase in temperature that leads to a formation of
a bud. The local concentration profile and the shape profile are both obtained on
minimization of the bending energy studied under the area difference elasticity model
(ADE). Shape change like budding was found to encourage phase segregation.

In [1], vesicles consisting of two components, where each component is character-
ized by a different spontaneous curvature, are studied. They show that the mixing
and segregation of membrane components can be achieved by changing the volume or
on elongation of the vesicle – if there is a complex formation of membrane component
with a macromolecule. Importantly, they have shown that the tubular protrusions
obtained on elongation can be completely occupied by the component with higher
spontaneous curvature.
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1.3 Formation of nanodomain and the possible

mechanism of segregation

In the earlier section, we have already seen that biological membranes are generally
made of many different types of lipids and molecules like proteins and other different
amphiphiles, which are embedded in the bilayer membrane and can contribute
towards the functional properties of the bio-membranes [16]. It has been found that
the segregation of such membrane components can be linked to various biological
mechanisms like membrane signaling, trafficking, endocytosis, protein sorting,
two-dimensional crystallization, etc [57–59]. Aggregation of certain proteins within
the cellular compartments can also be linked to certain neurodegenerative diseases
like Alzheimer’s disease, Parkinson’s disease and Huntington’s disease [60]. Thus
mixing and de-mixing of components is a biologically important mechanism to
investigate. This thesis involves the study of the adhesion of two-component vesicles
and the effect of adhesion on the shape and the lateral distribution of the components.

Mechanism of nanodomain formation:

In multi-component membranes, it is possible that a nanodomain is formed
on the aggregation of one kind of lipid molecules, two different kinds of lipid
molecules, lipid molecules with other amphiphiles (for e.g., proteins), different kinds
of molecules, etc. Such aggregation of components are possible due to the interactions
between the membrane components and due to the intrinsic shape of the membrane
components [10]. The nanodomains can be thought of as macromolecules (very
large molecules), and the area they occupy is much larger compared to the area
occupied by a single lipid molecule. These complexes can therefore be considered as
separate membrane components, which may induce some curvature [61] on the bilayer
membrane. Thus, each component can be characterized by a different spontaneous
curvature associated with it which describes the preferred curvature of the membrane
at the point where that component is present. The amount of the local spontaneous
curvature induced by the nanodomain may depend on the concentration of the
nanodomain component at that point.

Mechanism of segregation:

In a vesicle system, when the like components strongly attract each other as com-
pared to the interaction between the unlike components, then the loss in entropy
competes with the gain in energy. However, at lower temperatures, the entropy con-
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tribution is less significant, and the components phase separate. When the inter-
molecular interactions between the components are comparable or if the temperature
is very high, the thermodynamic phase separation is hindered. However, the compo-
nents might still segregate if there is a large difference in the spontaneous curvatures
by which the two components are characterized [1]. When these large and small spon-
taneous curvature components occupy the regions of the membrane characterized by
the large and small membrane curvatures respectively, then considering the Helfrich
bending energy [62] (explained in chapter 2), the elastic energy decreases compared
to the case of uniformly mixed components. Thus, the gain in bending energy due
to the lateral segregation of components competes with the loss of entropy of mixing.
This is analogous to the competition between entropy and the inter-molecular energy.
Many studies suggest a two-way relationship between the shape and the distribution
of components where it is possible that the shape of the membrane can influence the
lateral distribution of components, and conversely, the distribution of the components
within the plane of the membrane can influence the membrane shape [56, 63–65]. In
various biological works, they have hypothesized the segregation of components based
on the coupling between the local membrane curvature and the concentration of the
components [66–69]. Parthasarathy et al., have developed an experimental platform
which shows that for an already phase-separated membrane with Lo and Ld domains
existing at a temperature below the transition temperature, these domains get pref-
erentially positioned in the regions of low and high membrane curvatures respectively
due to membrane deformations. Thereby they have shown that lipid phases can spa-
tially organize themselves on sensing the gradients of membrane curvature [70,71].

1.4 Goal of the thesis

We have seen some interesting shapes and shape transitions that occur in nature,
and were also experimentally observed using giant phospholipid vesicles in Fig. 1.5.
Biologically, the shape of the cells and cell organelles can dictate their functional
properties. The broader goal of the thesis is to study the stability of such structures
and their shape transitions under adhesion using a simple vesicle system made up
of a lipid bilayer membrane. As seen before, the study of adhesion also holds great
biological importance for e.g., in the context of adhesion of cells in the tissue and
organ formation, but still, the theoretical studies related to the shape transformations
of vesicles adhered to a surface are scarce. This thesis is an attempt to further the
understanding of the adhesion-induced shape transformations of single and multi-
component vesicles.
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Our study on the stability of vesicle shapes and their possible shape transitions
induced due to adhesion is divided broadly into two parts. The first part of the thesis
pertains to the study of a single component vesicle, where it is assumed that the vesicle
membrane is only composed of lipid molecules of one kind. This single component
study is further sub-divided into two parts depending on how adhesion is introduced
in the system. Here, the aim is to identify stable structures and limiting structures on
increasing adhesion, and to also possibly identify new vesicle structures that may not
be stable in the free state of the vesicle. We plan to predict possible shape transitions
between adhered vesicles of different shape classes based on the total energy study of
the vesicle system. We want to probe the effect of change in spontaneous curvature
and the change in reduced volume on the adhesion of the vesicle to the flat surface.
We also want to study the effect of vesicle shape on the susceptibility of vesicles
to adhesion. The second part of the thesis involves the study of vesicles where the
vesicle membrane is assumed to be composed of two kinds of membrane components
which are characterized by their spontaneous curvatures. We attempt to study the
effect of shape change under adhesion on the lateral distribution of components inside
the membrane, and vice versa – by simultaneously minimizing for the shape and
component distribution. This will allow to further enhance our understanding of
the curvature-induced sorting of membrane components. Separation of components
inside the bio-membrane can help in the activation-deactivation of certain proteins,
which may help in the regulation of some cell functions. The goal here is to thus
study the effect of adhesion on the promotion or suppression of the segregation of
components and to elucidate the relationship between the shapes of the vesicles and
the distribution of components.

We hope that the results of this thesis help further our understanding of the
stability of the cell structures and their shape evolution under adhesion. We also hope
that the results herein help to promote our understanding of the lateral distribution
of components within the biological membranes under the effect of adhesion and their
relation with the shape of the cell.

1.5 Organization of the thesis

Chapter 2 introduces the reader to theoretical models like the spontaneous curvature
model (SC) and the area difference elasticity model (ADE) which are useful for the
study of biological and model lipid bilayer membranes.

Chapter 3 presents the mathematical description of the surface of an axisymmetric
vesicle membrane and further presents the mathematical framework of our model used
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for the single component as well as the multi-component study of vesicles under the
chosen parameterization.

Chapter 4 presents the results to the study of the adhesion of vesicles where the
vesicle membrane is composed of a single kind of component – by varying the size of
the membrane area attached to the flat surface. Stable shapes and complete stability
ranges of the different classes of adhered vesicle shapes have been identified for a range
of different parameters. New class of shapes has been obtained and described.

Chapter 5 presents the results to the study of the adhesion of vesicles where
the vesicle membrane is composed of a single kind of component – by varying the
adhesion strength of the flat surface. The influence of the spontaneous curvature,
adhesion strength and the reduced volume on the stability of the vesicle shapes under
adhesion has been examined. Minimum adhesion strength required for the transition
between the free vesicle state and it’s adhered state has been identified. Possible shape
transitions between adhered shapes of different classes have also been investigated. It
has been shown that the budding of an adhered vesicle may be induced by the change
of the adhesion strength. The importance of the free vesicle shape for its susceptibility
to adhesion has also been discussed.

Chapter 6 presents the results to the study of the adhesion of vesicles where the
vesicle membrane is composed of two kinds of components – by varying the size
of the membrane area attached to the flat surface. The curvature-induced lateral
distribution of components due to the shape transitions brought about by the adhesion
change has been studied. The close relationship between the shape of the vesicle
under adhesion and it’s lateral distribution of components has been investigated. In
particular, the effect of adhesion on the mixing/segregation of components for the
different classes of vesicle shapes stabilized, has been probed. It has been shown
that budded structures like pears can support the mixing of components, whereas
relatively simple and non-budded structures like oblates can support segregation of
components.

Chapter 7 presents the summary of the main conclusions of the thesis.
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Chapter 2

Mathematical modelling of membrane

systems

This chapter describes the importance of bending energy cost in the determination of
the vesicle shapes and takes the reader through different models developed for calcu-
lating the bending energy of a vesicle.

2.1 Theoretical models

Since the discovery of the red blood cells, researchers have tried to answer questions
related to the stability of their shape. In 1964, Rand and Burton assumed that there
are two kinds of stresses, which they called the "Tension forces" and the "Rigidity" of
the membrane. The first kind of force tends to increase the membrane area and the
other kind of force tends to change the curvature of the membrane (i.e. to bend it).
They did experiments which suggested a relation between the different deformations
of the cell and the resistance of the cell to the bending and stretching stresses. [72].
In 1966, Fung pointed out the importance of bending in the stability of the biconcave
shape of red blood cells when stressed [73,74]. After that, Canham in 1970 considered
that bending energy [75] was enough to explain the shape of discocyte erythrocytes,
and he used the following quadratic form of bending energy which is based on the
concepts of structural engineering, i.e., bending of a thin plate, and also assumed that
the shear stresses reduce to zero [75,76].

U =
κ

2

∫
area

(C2
1 + C2

2)dA (2.1.1)

where, κ = Eh3

12(1−ν2) is the bending rigidity of the membrane [75], and where, E is the
Young’s modulus of elasticity, h is the thickness of the membrane, ν is the Poisson’s
ratio, C1 = 1/R1 and C2 = 1/R2 are the principal curvatures with R1 and R2 being
the principal radii of curvatures.

However, in order to describe all shape changes of the erythrocyte, one should
take into account also the shear energy of the erythrocyte membrane [77]. The form
of bending energy was further derived by Helfrich in 1973. Helfrich assumed that
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the biological membranes could be considered homogeneous down to the molecular
level, and therefore, their mechanical properties can be described by a continuum-
mechanical approach. He further assumed that the membranes are fluid and thus
would lead to a zero shear stress. In this model, only a change in the curvature of
the membrane contributes to the bending energy. The contribution from the tilt of
the membrane molecules [78, 79] to the bending energy is negligible as it is assumed
that the average direction of the hydrocarbon chains is normal to the bilayer. For
the flaccid vesicles which have a volume less than the maximum volume possible for a
given surface area of the vesicle, i.e., v < 1, the membrane area changes negligibly as
the energy cost on compressing the membrane laterally is much larger compared to
the energy cost on bending, and the area can therefore be considered a constant [80].
He, too, assumed a quadratic dependence of the elastic energy on the curvature of
the membrane. The bilayer membrane is treated as a two dimensional fluid since the
height of the bilayer is very negligible compared to its lateral length dimension. In
Helfrich spontaneous curvature model (SC), the elastic energy of the bilayer is given
by [62],

F =
κ

2

∮
(C1 + C2 − C0)

2dA+ κG

∮
C1C2dA (2.1.2)

where, C0 is the spontaneous curvature or the preferred curvature of the bilayer mem-
brane [80] that accounts for any possible asymmetry in the bilayer, which may arise
due to different chemical compositions of the two monolayers or due to any difference
in the environment on either side of the bilayer. C1 = 1/R1 and C2 = 1/R2 are
the principal curvature values which describe the surface, κ is the bending rigidity
of the membrane and κG is the Gaussian bending rigidity. According to the Gauss-
Bonnet theorem, the second term in the Eq. 2.1.2 is invariant, unless, there are
changes in the topology of the closed vesicle shape. Bending energy, thus, arises
from the mismatch between the local curvature which dictates the shape of the vesi-
cle (given by C1 and C2) and the spontaneous curvature. Deuling and Helfrich in
their paper [80] introduced the reduced volume (v) as the model parameter within
the spontaneous curvature model, such that, v = V/Vs, and where V is the vesi-
cle volume, Vs = (4π/3)R3

s and Rs is defined by A = 4πR2
s. A denotes the surface

area of the vesicle. When the volume of a vesicle, V , is decreased below Vs, shape
transformations take place which then depend on reduced volume, v, and reduced
spontaneous curvature, c0 = C0Rs [62]. We know that A and V act as constraints to
the system under which equilibrium vesicle shapes are obtained. It was found that
the scale of the bending rigidity, κ is larger compared to the scale of thermal energy,
thus thermal fluctuations can be neglected and the average equilibrium shape of the
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vesicle corresponds to the minimum of the bending energy [2]. 

A more generalized model was later introduced that allows for a proper description 

of the bilayer nature of the membrane and describes the shapes of the closed vesi

cles. It is called the area difference elasticity model (ADE) , and was quantitatively 

described by Miao et al. (1994) [81] based on the previous theoretical considerations 

of Evans [74], Evans and Skalak [82], Stokke et al. [83] and Helfrich [84]. The timeline 

to the development of the ADE model (which is just a special case of Helfrich-Evans 

membrane bending energy including local and non-local bending energy [82,85]) is as 

follows: The very importance of the bilayer coupling on the shape of the vesicle was 

recognized early on by Evans (1974) [74], Helfrich (1974) [16,84] and Sheetz and Singer 

(1974) [86], which was qualitatively expressed as the bilayer couple hypothesis. The 

hypothesis suggests that the two monolayers of the closed bilayer membrane can react 

differently to the perturbations , while still being coupled to one another. Evans and 

Helfrich [74,84], further, have also quantitatively described the bilayer couple hypoth

esis. To which, Evans (1974) [74] and Evans and Skalak (1980) [82] have shown the 

relation between the geometry-induced area-difference b.A of the two monolayers and 

the average curvature of the bilayer surface, whereas, Helfrich (1974) [84] has shown 

the relation between the spontaneous curvature and the density difference between 

the two monolayers of the bilayer. Later, Svetina, Ottova-Leitmannova and Glaser 

(1982) [87], based on the work of Evans, Helfrich and Sheetz and Singer [86], intro

duced in the corresponding mathematical model a constraint on the area-difference 

parameter, b. A. 

If the bilayer is unconnected and there are no edge restrictions, then such a bilayer 

will not be resistant to bending because the two monolayers will just slide past each 

other on being bent. However , if there are some edge constraints or if it's a closed 

vesicle, then the two monolayers will bend simultaneously and are prevented from 

sliding past each other - which will cause one monolayer to be stretched and the 

other to be compressed, resulting in a generation of net area difference between the 

two monolayers when such a bilayer is bent [74, 82]. This suggests the importance of 

incorporating the bilayer nature of the lipid membrane in the model. An area differ

ence is generated because the lipids cannot always freely jump from one monolayer 

to the other due to the large timescale of flip-flop, thereby preventing the bilayer 

from reaching the equilibrium density of lipids after being bent. Lipid molecules are, 

however , observed to undergo flip-flops also through the 11 transient 11 pores or defects 

formed in the membrane to relieve the differential tension [88 , 89] . 

This model is based on the sum of the local and non-local bending energies [Helfrich 

(1973) [62];Evans (1974) [74], (1980) [85]; Helfrich (1974) [84]; Evans and Skalak 

:,~~, 
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Chapter 2. Mathematical modelling of membrane systems

(1980) [82]; Stokke et al. (1986) [83]]. The total free energy of the bilayer membrane
within the Helfrich-Evans model (where the non-local term is the consequence of
relative stretching of both lipid layers) can be described as [80–82,85],

F =
κ

2

∮
(C1 + C2 − C0)

2dA+
κr

2Ad2
(∆A−∆A0)

2 (2.1.3)

where, κr is the non-local bending constant. ∆A0 represents the difference between
the relaxed areas of the two monolayers, which depends on the difference in the number
of molecules between the two monolayers and also on the equilibrium areas of the
individual molecules of the two leaflets. ∆A is a variable quantity which depends on
the integral of membrane curvature (shape) over the whole vesicle surface and d is
the distance between the two monoloyers of the bilayer.

∆A = d

∮
(C1 + C2)dA (2.1.4)

Based on the relation between the average mean curvature,

< H >=
1

A

∫
1

2
(C1 + C2)dA (2.1.5)

and ∆A [90], which is: < H >= ∆A/2Ad, we could rewrite the Helfrich-Evans
bending energy (Eq. 2.1.3) into the form [89]:

F =
κ

2

∫
(C1 + C2 − C0)

2dA+ 2κrA(< H > −H0)
2 (2.1.6)

where, H0 = ∆A0/2Ad is the spontaneous average mean curvature.

The first term in Eqs. 2.1.3 and 2.1.6 is the local and the second term is the non-
local contribution to the bending energy [82]. As mentioned above, the scale of the
energy associated to bilayer stretching is several orders of magnitude larger than that
associated to bilayer bending, thus surface area, A, is effectively a constant. Volume,
V , also acts as a constraint to this model. The shapes depend only on the following
parameters: v, C0, ∆A0 or H0, κ and κr. The reduced volume parameter, v is defined
as before while C0 is the local spontaneous curvature. The non-local bending energy
term [82] is important in describing the shapes of the phospholipid vesicles [91,92].

This non-local bending energy term [82, 83] can be expressed as a function of the
effective spontaneous curvature or the effective spontaneous mean curvature [82, 89,
93, 94]. In the Helfrich-Evans energy (Eq. 2.1.3), the non-local bending energy term
can be approximately written as [90]: −κr∆A∆A0/Ad

2, therefore Eq. 2.1.3 can be
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written in the form of:

F =
κ

2

∮
(C1 + C2 − C0,eff )

2dA (2.1.7)

where,
C0,eff = C0 +

κr∆A0

κAd
(2.1.8)

In our study, we have therefore calculated the shapes of the vesicles using the
spontaneous curvature model where the spontaneous curvature is actually the effective
spontaneous curvature as described in Eq. 2.1.8 and that we consider this effective
spontaneous curvature as a constant. It was shown by Hwang and Waugh [95], that
for the unilamellar phospholipid vesicles, the ratio between the non-local and local
bending constants i.e., κr and κ have been estimated to be of the same order of
magnitude.

Further, Urbanija et al. [89], in their paper have shown that the energy contribu-
tion from the orientational ordering of the lipid molecules and the direct interaction
between them is responsible for explaining the continuous shape transitions of the
prolate vesicles to the pears vesicles with a narrow neck. In fact, the pears vesicles
are minimized at a lower energy minima when we consider these two contributions.
These considerations are also responsible for explaining the discontinuous transition
to the limiting pear structure. Both of these transitions are observed experimen-
tally but cannot be explained by the ADE model alone. Thus, individually, both the
ADE model and the SC model are insufficient in explaining certain shape transition
sequences.
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Chapter 3

Mathematical description of the vesicle

surface

Here the reader can get familiarized with the mathematical framework used in the de-
scription of the vesicle surface and derivation to some of the basic differential geometry
concepts that are used in our model. We further describe the total energy functionals
used for describing both the single component and the two-component vesicle systems
under adhesion.

3.1 Arc-length parameterization of the vesicle sur-

face

In our study, we focus on vesicle shapes that are axisymmetric about the z-axis. The
profile of such shapes can be represented using the arc-length parameterization, which
allows for a description of overhangs.

Due to the axisymmetry condition, it is sufficient to parameterize just the 1D
shape profile (defined in the x-z plane) which revolves around the z-axis (x = 0) to
generate a 2D vesicle surface. The angle of revolution is represented by ψ (range is
between 0 < ψ < 2π ).

Under this parameterization, the shape profile is represented by the function θ(s),
where s is the arc-length and θ(s) is the angle between the horizontal axis and the
tangent at a given point s on the vesicle profile.

The parametric equations which describe the height and the radius of the vesicle
are described in Eqs. 3.1.1 and 3.1.2 respectively.

z(s) =

∫ s

0

ds′ sin (θ(s′)) (3.1.1)

r(s) =

∫ s

0

ds′ cos (θ(s′)) (3.1.2)

To ensure that the vesicle shape profile is smooth, we impose the following con-
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r(Ls) = R

z

s = Ls

s = 0

s

r

Substrate

(r(s),z(s))

θ(s)

ψ

Figure 3.1: The parameterization of the shape profile is shown.

straints [96],
θ(0) = 0 (3.1.3)

θ(Ls) = π (3.1.4)

where, Ls represents the length of the shape profile.

The adhesion of the vesicle is also introduced in the form of a constraint as defined
by Eq. 3.1.5 – for the calculations done under the fixed radius of adhesion study.
However, when we study the vesicle adhesion under the constraint of fixed adhesion
strength, W , the constraint 3.1.5 is replaced with the constraint 3.1.6.

r(Ls) = R (3.1.5)

r(Ls) ≥ 0 (3.1.6)

Eq. 3.1.5, also allows us to define the contact area between the vesicle surface and
the flat substrate, also called the area of adhesion, Ac, given by, Ac = πR2. Thus, R
can be defined as the radius of adhesion of the vesicle. The contact area is circular
due to the axisymmetry assumption of our vesicles.
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The unknown function θ(s) which describes the shape profile of the vesicle is
assumed to be periodic and approximated using the Fourier sine series as shown in
Eq. 3.1.7,

θ(s) = θ0
s

Ls
+

N∑
i=1

ai sin[
πis

Ls
] (3.1.7)

where, N is the total number of Fourier modes and ai are the Fourier amplitudes. θ0
is the angle made by the profile when it touches the adhesion surface i.e. θ0 = θ(Ls).
We call this angle the contact angle and to ensure that the vesicle profile is smooth
at all points, we assume that it measures π i.e. θ0 = π.

3.2 Derivation of the expression for principal cur-

vatures under arc-length parameterization

Let us define a vector R(x, y, z) in the 3D Euclidean space, which can describe all the
points on the surface generated by the revolution of the parameterized curve (defined
in the x-z plane) about the z-axis. The coordinates of this vector written in terms of
ψ and s are given by,

R = {cos(ψ)r(s), sin(ψ)r(s), z(s)} (3.2.1)

where, r(s) is as defined in Eq. 3.1.2; ψ and s are the local coordinates on the
surface; x, y and z are the coordinates of the 3D Euclidean space.

Following steps [97,98] should be taken to derive the equations defining the prin-
cipal curvatures of the surface under the arc-length parameterization:

First, we construct the metric tensor gij using the coefficients of the first funda-
mental form as,

gij =

[
∂R
∂s
.∂R
∂s

∂R
∂ψ
.∂R
∂s

∂R
∂s
.∂R
∂ψ

∂R
∂ψ
.∂R
∂ψ

]
=

[
1 0

0 (r(s))2

]
(3.2.2)

where,
∂R

∂s
= {cos(ψ) cos(θ(s)), cos(θ(s)) sin(ψ), sin(θ(s))} (3.2.3)

∂R

∂ψ
= {− sin(ψ)r(s), cos(ψ)r(s), 0} (3.2.4)
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The unit normal n is calculated as,

n = (
∂R

∂ψ
× ∂R

∂s
)/(det(gij))

1/2 = {− cos(ψ) sin(θ(s)),− sin(ψ) sin(θ(s)), cos(θ(s))}

(3.2.5)

Next, we define Y with second order derivatives of R and use it to generate Lij
which gives the coefficients to the second fundamental form.

Y =

[
∂2R
∂s∂s

∂2R
∂s∂ψ

∂2R
∂ψ∂s

∂2R
∂ψ∂ψ

]
(3.2.6)

Lij = Y · n
The Hij tensor which is also called the curvature tensor is given by,

Hij = gij
−1 Lij = [

dθ(s)
ds

0

0 sin(θ(s))
r(s)

]
(3.2.7)

The diagonal elements represent the two principal curvatures C1 and C2,

C1 =
dθ(s)

ds
(3.2.8)

C2 =
sin(θ(s))

r(s)
(3.2.9)

Thus, under the arc-length parameterization, the principal curvatures can be de-
fined as shown in Eqs. 3.2.8 and 3.2.9. But these steps can also be followed to define
principal curvatures under different parameterizations of the surface as well.

3.3 The energy functional for the adhered vesicle

system

The total energy of the adhered vesicle system can be written as follows,

Ftot = Fb + Fadh =
κ

2

∮
(C1 + C2 − C0)

2dA+ κG

∮
(C1C2)dA−WAc (3.3.1)

Where Fb is the bending energy of the Helfrich type and is defined for both the
single component and the multi-component vesicle studies in the following sections.
Adhesion is accounted for differently in different calculations – for e.g., either in the
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form of adhesion strength or adhesion radius, and is shown for different calculations
later on.

Under the arc-length parameterization, the total energy functional becomes,

Ftot = Fb[θ(s)] + Fadh =
κ

2
[

∫ 2π

0

dψ

∫ Ls+r(Ls)

0

H(s)r(s)ds]−Wπr(Ls)
2 (3.3.2)

The bending energy is described by the curvatures expressed in their parameterized
form as derived in section 3.2. When we substitute Eq. 3.1.7 into Eqs. 3.1.1 and 3.1.2
and further substitute them in Eq. 3.3.2, we can replace the functional minimization
by the minimization of the function of many variables [65,96,98]. The functional 3.3.2
turns into a function of many variables. The numerical minimization is done under
the constraints of fixed surface area, A and volume, V , which are implemented using
the Lagrange multipliers, where,

A = πr(Ls)
2 + 2π

∫ Ls

0

dsr(s) (3.3.3)

V = π

∫ Ls

0

dsr(s)2 sin θ(s) (3.3.4)

Minimization under the constraint of fixed adhesion radius, R, is done where,

R =

∫ Ls

0

ds cos θ(s) (3.3.5)

As briefly explained in the earlier chapter, we consider a sphere having the same
surface area, A, as that of the investigated vesicle system and derive the volume, Vs,
and the radius, Rs, of the sphere which act as the volume and the length units of our
system respectively,

Rs =
√
A/4π (3.3.6)

Vs =
4

3
πRs

3 (3.3.7)

The reduced volume, v, can then be defined as V/Vs. For the study of single
component vesicles, we do not consider any topological changes, and we have as-
sumed that the Gaussian bending rigidity is same for the adhered and free membrane
parts. Therefore the Gaussian energy contribution is constant. In the study of the
multi-component vesicles where the vesicle membrane is composed of two kinds of
components, the Gaussian bending rigidity of each component, κAG and κBG are as-
sumed to be same, and therefore, there is no contribution from the line integral of
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the geodesic curvature at the nanodomain boundary, but the energy contribution now
only depends on any topological changes of the closed vesicle [99]. We also assume
that the Gaussian bending rigidity of the bound and unbound membrane is same.
Thus, under our above assumptions and the fact that we do not consider any topo-
logical changes of the vesicles, the Gaussian energy term is a constant in this case as
well. For this reason, the Gaussian bending energy can be avoided in Eq. 3.3.2 and
in the future.

3.4 Energy functional for a single component vesi-

cle system

In our work, the study of adhesion-induced shape transformation of the vesicles is first
undertaken for a simple vesicle system where the vesicle membrane is assumed to be
built up of only one kind of membrane component. We study the equilibrium shapes
of the adhered vesicles, and the shape transitions are induced by either changing
the size of the adhesion area of the vesicle in contact with the flat surface or by
changing the adhesion strength of the substrate. The bending energy for the study of
single component vesicles is described using the Helfrich’s energy functional, where the
membrane component that makes up the vesicle is characterized by it’s spontaneous
curvature value C0.

We first study the adhesion of single component vesicles by changing the size of
the adhesion area of the vesicle, and the total energy of such a vesicle system where
the adhesion is incorporated in the form of a constraint on the adhesion radius is
given by,

F =
κ

2

∮
(C1 + C2 − C0)

2dA (3.4.1)

The reduced (dimensionless) form of this equation is obtained by dividing the en-
ergy functional F by the bending energy of a sphere – calculated for zero spontaneous
curvature, Fsphere = 8πκ,

F

Fsphere
=

1

4

∫
A

(c1 + c2 − c0)2da (3.4.2)

where, c0 = C0Rs, c1 = C1Rs and c2 = C2Rs are the reduced spontaneous curva-
ture and the reduced principal curvatures respectively, and a = A/4πR2

s is the reduced
area.

The energy functional of the vesicle when it is described under the arc-length
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parameterization is as follows,

F [θ(s)] =
κ

2
[πr(Ls)

2C2
0 + (2π)

∫ Ls

0

dsr(s)(
dθ(s)

ds
+
sin(θ(s))

r(s)
− C0)

2] (3.4.3)

The first part of the above equation is the bending energy contribution due
to the mismatch between the curvature of the flat adhered membrane surface and
the spontaneous curvature associated with the membrane component, while the
second part of the equation is the bending contribution from the shape of the
free membrane surface part of the vesicle. The energy functional is minimized
under the constraints of fixed surface area, A and volume, V , while the effective
adhesion is introduced in the form of a radius constraint, R, as described in
section 3.1. The shape profile, θ(s) is obtained on minimization. We have assumed
that the bending rigidity of the bound and unbound membrane segments is equal to κ.

In the second part of the study of the single component vesicle system, we char-
acterize this effective adhesion potential per unit area by the adhesion strength W of
the flat surface, which is an effective interaction contribution from the different mech-
anisms towards adhesion. The shape transformations of the vesicles are now carried
out by changing the adhesion strength, W . As before, the minimization is done under
the constraints of fixed surface area, A and volume, V . The shape profile θ(s) and
the area of adhesion (Ac), which can be calculated from the radius of adhesion, r(Ls),
are obtained on minimization.

The total energy of the system when the adhesion is incorporated in the form of
an effective adhesion strength, is given by,

F =
κ

2

∮
(C1 + C2 − C0)

2dA−WAc (3.4.4)

The reduced form of the total energy functional under the constraint of such an
effective adhesion potential can be written as,

F

Fsphere
=

1

4

∫
A

(c1 + c2 − c0)2da−
w

2
(
Ac
A

) (3.4.5)

where, w = WR2
s/κ is the reduced (dimensionless) adhesion strength. The ratio

(Ac

A
) = Ac

4πR2
s
is the reduced contact area. The values of (Ac

A
) are 0.5 for the pancake-like

shaped vesicles of very small reduced volume and 0 for a spherical vesicle (v = 1).

The total energy functional in the parameterized form which describes the vesicle
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under adhesion can be written as,

F [θ(s)] =
κ

2
[πr(Ls)

2C2
0 + (2π)

∫ Ls

0

dsr(s)(
dθ(s)

ds
+
sin(θ(s))

r(s)
− C0)

2]−Wπr(Ls)
2

(3.4.6)
The third term in the functional corresponds to the adhesion energy, where W

is the adhesion strength, and it is calculated over the contact area of adhesion,
Ac = πr(Ls)

2. The bound membrane segment experiences different attraction forces
because of the adhesion surface as compared to the unbound membrane part, and this
may result in the difference in the densities of the lipid molecules in both the mem-
brane parts and a corresponding difference in the bending properties of the membrane
parts. However, for simplicity purpose, we have assumed that the bending rigidity of
the bound and unbound vesicle membrane is same and equal to κ.

The total energy function of a single component vesicle system for both the first
and second part of our work – with contribution from both the bending and the
adhesion of the membrane surface is then numerically minimized with respect to the
Fourier amplitudes, ai, and the length of the shape profile, Ls.

3.5 Energy functional for a two-component vesicle

system

We further extend our study to the vesicles under adhesion which have a vesicle mem-
brane composed of two kinds of membrane components, and they are studied under
the framework of the Helfrich bending energy model. This kind of multi-component
system is more closer to the complex systems found in nature. The components A and
B in our model [1] are represented by the spontaneous curvatures CA

0 and CB
0 respec-

tively and their corresponding bending rigidities κA and κB. The lateral redistribution
of these components can influence the shape of the membrane and vice versa, the local
curvature can induce lateral redistribution of components to the region having a more
favourable curvature such that the overall bending energy is minimized [56, 63]. The
work done here aims to study such a direct coupling between the local curvature or the
shape of the membrane vesicle under adhesion, and the concentration of components.
The shape transformations are brought about by changing the size of the adhesion
area of the vesicle in contact with the flat surface. The physical significance of such
a system can be in a situation where the system consists of two similar kinds of lipid
molecules and where one kind of lipid forms a complex with a large molecule like that
of a macromolecule.
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The macromolecule complexed with the lipid nanodomain of one kind can be
considered to be the component A, and the nanodomain of the other kind of lipid
molecules can be considered to be the component B of our model system. Such a
model can also be useful for a vesicle system with the membrane composed of a sin-
gle kind of lipid molecules, where the macromolecule complexed with the lipid nan-
odomain forms the component A and the single lipid molecules form the component
B. Based on the discussion in section 1.3, the coupling of the macromolecule to the
lipid nanodomain may induce a large curvature to the membrane surface which can
be characterized by the local spontaneous curvature. Thus, this direct relationship
between the concentration of the complexed lipid nanodomain and the local spon-
taneous curvature is incorporated in the Helfrich bending energy functional of our
model. Such a bending energy functional as shown in Eq. 3.5.1 was first introduced
in [65].

The total energy functional which describes our two-component system is given
by,

F =
κ

2

∫
A

(C1 + C2 − C0(φ))2dA (3.5.1)

where C1 and C2 are the local principal curvatures and the function C0(φ) is the lo-
cal spontaneous curvature of the membrane which depends on the local concentration
of both the components, however, it can be expressed in terms of the concentration of
component A, φA(s) = φ(s), alone. This is because we know that the concentration
of component B at a given point s is given by, φB(s) = (1− φ(s)). The functional is
integrated throughout the surface area of the vesicle, and dA is the infinitesimal area
element. The individual rigidities of component A and component B are assumed to
be equal in our calculations i.e., κA = κB = κ.

The reduced form of the energy functional is given by,

F

Fsphere
=

1

4

∫
A

(c1 + c2 − c0(φ))2da (3.5.2)

where, c0(φ) and c1, c2 are the reduced spontaneous curvature and the reduced
principal curvatures respectively. c0(φ) can be further expressed as a function of
reduced spontaneous curvatures cA0 = CA

0 Rs and cB0 = CB
0 Rs (refer Eq. 3.5.4).

The parameterized form of the total energy functional can be written as,

F [θ(s), φ(s)] =
κ

2
[(2π)

∫ Ls+r(Ls)

0

dsr(s)[
dθ(s)

ds
+
sin(θ(s))

r(s)
− C0(φ(s))]2] (3.5.3)

The functional F is minimized under the constraints of constant surface area A,
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volume V and the constraint on the average concentration of the component A, φavg
= 1/A

∫
φdA. Note, that the function θ(s) describing the shape profile is composed of

two parts. For the range between 0 < s < Ls, θ(s) is approximated using the Fourier
sine series as explained in section 3.1 and for the range between Ls < s < Ls + r(Ls),
θ(s) = π, which means that the shape profile is a straight line extending from r = 0

to r(Ls). This allows us to define adhesion which is introduced in the form of a
constraint (refer Eq. 3.1.5).

It is assumed that the spontaneous curvature is a linear function of the concen-
tration φ(s) and can be expressed as,

C0(φ(s)) = (CA
0 − CB

0 )φ(s) + CB
0 (3.5.4)

Figure 3.2: The local concentration profile on the right corresponds to the vesicle
shape plotted on the left, and the colour code is presented where blue stands for
φ = 0 i.e. minimum concentration of component A and red stands for φ = 1 i.e. the
maximum concentration of component A.

The concentration profile, φ(s), is postulated to be described by the tanh function
in analogy to it’s use in the description of the phase separated mixtures.

φ(s) = (φA − φB)[tanh(ζ(s− s0))] + φB (3.5.5)

here, φA and φB are the upper and lower limits of φ(s) respectively, i.e., the
extremum concentrations of component A on either side of the interface region. When
0 < φA = φB < 1, then we can say that the component A is uniformly distributed
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throughout the surface as φ(s) becomes a constant function. A special case of this
uniformly distributed case is when φA = φB = 0.5, this is when the concentration of
component A is 50% and the concentration of component B is 50% at each point s
on the surface, and we call this the mixed state. The parameters ζ and s0 represent
the width and the position of the interface between the two regions.

In our study, we describe the distribution of the components using a colour code.
The region rich in component A is represented by the colour red where φ(s) = 1, and
the region which is devoid of component A completely and alternately is therefore rich
in component B is described by the colour blue, where φ(s) = 0. The green region
represents a mixed state where it is equally occupied by the components A and B i.e.
φ(s) = 0.5.

For the two-component bending energy functional, the functional is numerically
minimized not just with respect to the shape profile but also with respect to the
concentration profile. Hence along with ai and Ls, the multi-variable function is also
minimized with respect to variables φA, φB, ζ and s0 which describe the concentration
profile. After minimization, we obtain the shape profile θ(s) and the concentration
profile φ(s) corresponding to the minimum energy. Again for simplicity purpose,
there is no difference between the bending rigidity of the bound and unbound vesicle
membrane.
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Chapter 4

Study of the single component vesicle system

by varying the size of the area of adhesion

with the flat surface

Adhesion of cells and vesicles is biologically important for many cell functions and
plays an important role in many biotechnological applications like that in biosensors or
in the drug delivery systems, among others, as seen in chapter 1. Here we theoretically
study the adhesion of the lipid vesicle where the vesicle membrane is composed of a
single kind of lipid – by varying the size of the adhesion area of the membrane in
contact with the flat surface (substrate). We obtain the equilibrium shapes of the
vesicles which are stable or metastable under adhesion by minimizing the Helfrich
bending energy of the spontaneous curvature model for a few values of the reduced
volume and spontaneous curvature. The complete stability range of different families
of equilibrium shapes stabilized under adhesion has been studied, and solutions to a
new class of shapes have also been identified. Budding of vesicles was induced by
adhesion when the vesicles were pinned to the surface with a certain contact area of
adhesion.

4.1 Phase diagram of the spontaneous curvature

model for free vesicles

The phase diagram for the spontaneous curvature model of the single component
membrane has already been studied in detail by Seifert et al [92]. We have reproduced
this phase behavior, and it matches well with their obtained results. The phase
diagram was reproduced with 160 Fourier amplitudes for c0 = 0 as shown in Fig.
4.1 and with 80 Fourier amplitudes for non-zero reduced spontaneous curvatures as
shown in Fig. 4.2 and Fig. 4.3. The calculation of vesicle shapes for the free state of
vesicles for both zero and non-zero reduced spontaneous curvatures is a starting point
for our study of equilibrium vesicle shapes under adhesion. For c0 = 0, three families
of axisymmetric shapes are found to be stable i.e., the stomatocytes for lower, oblates
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for intermediate, and prolates for higher reduced volume. For c0 = 2.4 and c0 = 3,
prolates and pear shapes are the most stable for different ranges of reduced volume,
v. We investigate the stability of vesicle shapes under adhesion for a few values of
reduced volumes depending on their position in the phase diagram of the free-state
vesicles. We perform a detailed analysis of the shape transformations of the vesicles
due to their adhesion to a flat surface.

Figure 4.1: Phase diagram for the spontaneous curvature model for c0 = 0.

4.2 Study of vesicle adhesion by varying the size of

the area of adhesion

The adhesion of a vesicle to a substrate can be studied in different length scales.
To study the effect of adhesion on the shape of the vesicle, we study the system
under the macroscopic length scale, where the various mechanisms of adhesion can
be described under the umbrella of an effective interaction potential. There are many
different mechanisms of adhesion, like the adhesion due to the interaction of the sticker
molecules incorporated in the adhering surfaces [100, 101], or the adhesion due to an
external force which brings in contact the two adhering vesicles or a vesicle and a solid
substrate, etc. Many forces like the attractive van der Waals force, the electrostatic
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Figure 4.2: Phase diagram for the spontaneous curvature model for c0 = 2.4.

Figure 4.3: Phase diagram for the spontaneous curvature model for c0 = 3.0.
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force, and the structural forces can result in such an effective potential [40]. In our
study, we do not distinguish the different mechanisms that contribute individually to
adhesion but consider the effect of such an effective interaction potential on the size
of the membrane area adhered to the flat surface.

In our study, we are therefore interested in the shapes of the vesicles with different
sizes of the vesicle surface in contact with the flat surface (substrate). We assume
that the vesicle is already attached, and that part of the vesicle, which is attached to
the adhesive surface – is fixed. In experiments, this can be achieved for example, by
the sticker molecules. We can also imagine that the vesicle is kept in place by laser
tweezers. We are not investigating the situation where the vesicle can freely move
over the adsorbing surface and change its orientation. The ensemble that mimics the
experimental situations is the one with the constant surface area, A and volume, V .
We numerically minimize the bending energy functional 3.4.3 to obtain equilibrium
shapes. The integral of the energy functional is taken over the complete surface area,
A, of the closed vesicle. No topology changes are assumed, therefore the integral
over the Gaussian curvature contributes a constant value. We parameterize the shape
of the rotationally symmetric vesicle as shown in Eq. 3.1.7 and introduce adhesion
in the form of a constraint as shown in Eq. 3.1.5. The region of the adhered vesicle
membrane is circular because of our assumption of axial symmetry of the vesicle shape.
The size of the adhered membrane can be indicated by the radius, R, of this circular
patch attached to the adhesion surface. We change the radius R from 0 to Rmax where
R = 0 corresponds to a free vesicle and Rmax corresponds to the maximum possible
adhesion. Beyond Rmax, a vesicle is ruptured.

Under the assumptions that we have made, all the shapes studied are stable or
metastable. We are convinced that within the assumed parameterization of the vesicle
membrane, we have found all the solutions. We study the stability range and the shape
transformations of the adhered vesicles.

In our calculations, E/8πκ is the reduced bending energy, c0 = C0Rs is the
reduced spontaneous curvature, R/Rs = r is the reduced adhesion radius.

In Fig. 4.4, we show four families of shapes obtained for the reduced spontaneous
curvature c0 = 0 and the reduced volume v = 0.545, calculated for different values of
the reduced adhesion radius, r. The reduced volume was chosen as v = 0.545 because
for this value, solutions for three different types of vesicle shapes exist in their free
state. Thus, three of these families originate from the solutions obtained for free
vesicles. They are shown in the second, third, and fourth rows of Fig. 4.4. The first
shape profile in each row represents the stable solution for the smallest and the last
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Figure 4.4: Shape profiles for the reduced volume, v = 0.545 and reduced spontaneous
curvature, c0 = 0.0 and different values of the reduced adhesion radius, r. (a) new
branch of the solutions: oblate-bead, (b) prolate, (c) stomatocyte, (d) oblate branch.
(e) Elastic energy, E/(8πκ), as a function of the reduced adhesion radius, r, for
different families of solutions for the reduced volume, v = 0.545 and the reduced
spontaneous curvature, c0 = 0.0. The inset shows that the bending energy does
not change smoothly when the membrane at the north pole of the vesicle touches the
membrane at the south pole.

37http://rcin.org.pl



Chapter 4. Study of the single component vesicle system by varying the size of the
area of adhesion with the flat surface

Figure 4.5: 3D shapes for the reduced volume, v = 0.545 and reduced spontaneous
curvature, c0 = 0.0 and different values of the reduced adhesion radius, r. (a) new
branch of solutions: oblate-bead, (b) prolate, (c) stomatocyte, (d) oblate branch.
The area with a lighter shade shows the region of the membrane attached to the flat
surface.
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one for the largest value of the reduced adhesion radius, r. In the middle, the solutions
for the intermediate values are presented. For the prolate and stomatocyte branches,
the first profiles are plotted for r = 0. Thus, they are identical to the free vesicle. For
the oblate branch, the first profile is plotted for r = 0.39. It has to be recalled that
the solution for free vesicles of the oblate branch for the small values of the reduced
volume self-intersect or have concave shapes, which makes it impossible to maintain
this shape when the vesicle adheres to a flat surface – at least when the adhesion
radius is small. When the adhesion radius for oblate and stomatocyte vesicles is
sufficiently large, we obtain the solutions where the membrane at the south pole and
the north pole of the vesicle touches each other. This is reflected in the values of the
elastic energy where we observe a cusp in the curve plotted for the elastic energy as a
function of the reduced adhesion radius, as shown in the inset of Fig. 4.4e for oblates.
However, for stomatocytes, this transition is smooth. The new family of shapes shown
in Fig. 4.4a is stable only in the case of adhered vesicles. Thus, the first stable solution
is obtained for the reduced adhesion radius greater than zero. It is worth stressing
that adhesion may induce such a new transformation of a vesicle which leads to the
shape not observed in the case of free vesicles and is shown in Fig. 4.4a.

The plot of the values of the elastic energies as a function of the reduced adhesion
radius for all four branches and for the full range of stability is shown in Fig. 4.4e.
Considering the values of the elastic energy, we can conclude that the most prob-
able configurations for the adhered vesicles with the reduced spontaneous curvature
c0 = 0 and the reduced volume v = 0.545 are the configurations which originated from
the stomatocyte branch for low adhesion radius and oblate vesicle for large adhesion
radius. Since the adhesion radius depends on the strength of the adhesion, we can
expect that for the small adhesion strength, we should observe stomatocyte-like con-
figurations (Fig. 4.4c), and for large adhesion strength we should observe oblate-like
configurations (Fig. 4.4d). It is also worth noting that prolate-like (Fig. 4.4b) vesicles
are not likely to survive in an adhered state. We have performed a series of calcu-
lations for oblate vesicles with a few values of the reduced volume and zero reduced
spontaneous curvature to check how much of the vesicle membrane can adhere to
the flat surface. We have found that despite large values of the reduced volume, the
vesicles can be deformed in such a way that a relatively large part of the membrane
can adhere to a flat surface. We have calculated that the maximal adhesion radius
can be as large as r = 0.70 in the case of the reduced volume v = 0.98, and for
v = 0.90, it is as large as r = 0.96. The shape of the non adhered part of the vesicles
is approximately spherical near the end of their stability range. It is interesting to
note that the height of the vesicle increases when larger and larger part of the vesicle
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membrane is attached to the flat surface. The relation between the height of the
vesicle and the adhesion process may be useful in the analysis of experimental results.
The changes in the height of a vesicle may indicate potential changes in the strength
of the adhesion.

The solutions for oblate and prolate shapes with the reduced spontaneous cur-
vature c0 = 0 always have up-down symmetry. When the spontaneous curvature is
sufficiently different from zero, this up-down symmetry is broken, and the solutions
with pear-like shape are obtained. In such a case, the adhered vesicle may behave
in a different way depending on whether the smaller or, the larger spherical part of
the membrane adheres to the flat surface. In Fig. 4.6, we present the calculations
performed for the reduced spontaneous curvature c0 = 2.4 and the reduced volume
v = 0.80.

In the first row (Fig. 4.6a), we present the shape transformations caused by the
attachment of the smaller spherical part of the vesicle to the flat surface. It can be
noticed that the neck which connects the two spherical parts of the vesicle gets smaller
when the adhered surface area of the vesicle membrane gets larger and larger, i.e.,
the adhesion radius is increasing. It has been estimated that r = 0.51 is the limiting
reduced adhesion radius for the stability of the vesicle. The limiting shape of the
vesicle at r = 0.51 is shown in the last column of Fig. 4.6a. We can speculate that
such behavior may lead to the budding of the vesicle due to its adhesion. The vesicle
behaves in quite the opposite way when it is attached to the surface from the other
end, the larger spherical part. When the adhesion radius is increased, the neck widens
until the limiting configuration is obtained for r = 0.61, as shown in Fig.4.6b. Thus,
the vesicles which have a pear shape may behave in a different way when adhered,
depending on which part of the vesicle is attached to the adhesion surface. In Fig. 4.6c,
we present the shape transformation of a prolate vesicle when the adhesion radius is
increased. It is worth noting that the attached prolate vesicles are stable for a wide
range of the reduced adhesion radius 0 < r < 0.82. The second interesting feature of
the adhered prolate vesicle is it’s unique shape which is different from any free vesicle
shape obtained in the spontaneous curvature model (see the rightmost configuration
in Fig. 4.6c). It can be expected that it will be more probable to change the shape
from prolate to oblate for adhered vesicles with such a large reduced volume when
the radius of adhesion is high, and indeed this is what we can deduce from the plot
of the elastic energy (see Fig. 4.6e ). However, it is still surprising that metastable
adhered prolate vesicles exist for 0.6 < r < 0.82.

In Fig. 4.8, the possible shape transformation of vesicles for the reduced volume
v = 0.7277 and the reduced spontaneous curvature c0 = 2.4 are presented. They
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Figure 4.6: Shape profiles for the reduced volume, v = 0.80 and reduced spontaneous
curvature, c0 = 2.4 and different values of the reduced adhesion radius, r. The pear
branch with the vesicle attached to the surface with smaller (a) and larger (b) bead,
the prolate (c) and oblate (d) branch. (e) Elastic energy, E/(8πκ), as a function
of the reduced adhesion radius, r, for different families of solutions for the reduced
volume, v = 0.80 and the reduced spontaneous curvature, c0 = 2.4. The inset shows
the values of the bending energy for different configurations at the intersection.
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Figure 4.7: 3D shapes for the reduced volume, v = 0.80 and reduced spontaneous
curvature, c0 = 2.4 and different values of the reduced adhesion radius, r. The pear
branch with the vesicle attached to the surface with smaller (a) and larger (b) bead,
the prolate (c) and oblate (d) branch. The area with a lighter shade shows the region
of the membrane attached to the flat surface.
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look similar to the transformations presented in Fig. 4.6, which are performed for the
same reduced spontaneous curvature and larger reduced volume. However, there is a
significant difference. For the smaller reduced volume, the stability range of adhered
pear vesicles is increased to as large a reduced adhesion radius as r = 0.9. Surprisingly,
the stability range of the prolate vesicle is substantially decreased. We have obtained
adhered prolate vesicles only for the reduced adhesion radius in the range 0 < r < 0.14.
For this range of the reduced adhesion radius, the shape of the vesicle does not change
significantly. There are no longer even metastable configurations obtained which are
significantly different from the shapes of free vesicles as it was in the case of larger
reduced volume. For v = 0.8, the stability range of pear-like shape was smaller than
the stability range of prolate-like vesicles, but for v = 0.7277 it is reversed. We may
speculate that budding of the vesicles due to adhesion is more probable for the vesicles
with lower reduced volume, v. The adhered oblate vesicles are stabilized for larger
reduced adhesion radii as shown in the elastic energy plot in Fig. 4.8e.

The prolate vesicles are stabilized by larger spontaneous curvature. Here, we would
like to examine how such prolate vesicles behave when attached to a flat surface.
The shape profiles calculated for the reduced volume v = 0.545 and the reduced
spontaneous curvature c0 = 3.0 are shown in Fig. 4.10. We can see that the range
of the reduced adhesion radius for attached stable prolate vesicle is quite wide 0 <

r < 0.8. For sufficiently large r, the vesicle is composed of two parts connected by a
small neck. One part attached to the surface has an oblate shape, and the second part
forms a prolate-shape bud. It is interesting to note that for the same values of the
reduced adhesion radius, two different configurations of vesicles composed of two parts
connected by a small neck can exist. In the first configuration, this bud has a spherical
shape (Fig. 4.10a), and in the second configuration, this bud has a prolate shape
(Fig. 4.10b). The configuration with the spherical bud is more stable for larger values
of the reduced adhesion radius, and the configuration with the prolate bud is stable for
smaller values of the reduced adhesion radius as shown in the plot of the elastic energy
in Fig. 4.10d. There is a value of the reduced adhesion radius, r, at which these two
configurations with buds have the same elastic energy. It might indicate the possibility
of an easy transformation from one configuration to the other. Similarly, at a larger
value of the reduced adhesion radius, the oblate vesicle (Fig. 4.10c) and the oblate
vesicles with a bud (Fig. 4.10a), have the same energy. We can also notice that the
spherical bud changes its shape with the increasing reduced adhesion radius, r. The
bud gets smaller and smaller until it disappears approximately at r = 1.12. It is also
interesting to note that the neck radius increases with the increase in adhesion of the
oblate vesicles with a spherical bud, but the opposite happens for the oblate vesicles
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Figure 4.8: Shape profiles for the reduced volume, v = 0.7277 and reduced sponta-
neous curvature, c0 = 2.4 and different values of the reduced adhesion radius, r. The
pear branch with the vesicle attached to the surface with smaller (a) and larger (b)
bead, the prolate (c) and the oblate (d) branch. (e) Elastic energy, E/(8πκ), as a
function of the reduced adhesion radius, r, for different families of solutions for the
reduced volume, v = 0.7277 and the reduced spontaneous curvature, c0 = 2.4. The
inset shows the values of the bending energy for small reduced adhesion radii.
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Figure 4.9: 3D shapes for the reduced volume, v = 0.7277 and reduced spontaneous
curvature, c0 = 2.4 and different values of the reduced adhesion radius, r. The pear
branch with the vesicle attached to the surface with smaller (a) and larger (b) bead,
the prolate (c) and the oblate (d) branch. The area with a lighter shade shows the
region of the membrane attached to the flat surface.
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Figure 4.10: Shape profiles for the reduced volume, v = 0.545 and reduced sponta-
neous curvature, c0 = 3.0 and different values of the reduced adhesion radius, r. (a)
the oblate with a bead branch, (b) the prolate branch, (c) the oblate branch. (d)
Elastic energy, E/(8πκ), as a function of the reduced adhesion radius, r, for different
families of solutions for the reduced volume, v = 0.545 and the reduced spontaneous
curvature, c0 = 3.0. The inset shows the values of the bending energy for small
reduced adhesion radii.
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Figure 4.11: 3D shapes for the reduced volume, v = 0.545 and reduced spontaneous
curvature, c0 = 3.0 and different values of the reduced adhesion radius, r. (a) the
oblate with a bead branch, (b) the prolate branch, (c) the oblate branch. The area
with a lighter shade shows the region of the membrane attached to the flat surface.
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with a prolate-like bud. The prolate bud also gets smaller in length on increasing
adhesion. For the largest values of r, the only stable configurations are adhered
vesicles with oblate shape (Fig. 4.10c). There is a range of values of the reduced
adhesion radius where the stable solutions for all three configurations of adhered
vesicles are obtained as shown in Fig. 4.10d.

In the calculations for v = 0.545, we have shown that the increasing reduced
adhesion radius, r causes the decrease in the size of the spherical bead for the vesicles
composed of two parts connected by a small neck. Here, we would like to examine
the shape transformations when we start with the free vesicle composed of two equal
spherical beads separated by a small neck. Such free vesicles are obtained for the
reduced volume v = 0.705 and the reduced spontaneous curvature c0 = 3.0. In
Fig. 4.12, we present possible transformations of a symmetric prolate and oblate
vesicle for v = 0.705 and c0 = 3.0. We can see that also in this case when the reduced
adhesion radius r is increasing, the bead which is not attached to the surface stays
spherical and gets smaller. The bead which is attached to the surface becomes oblate
and gets larger. For sufficiently large r, the spherical bead disappears and the only
stable solutions are the adhered oblate vesicles. We can see from the plot of the elastic
energy (Fig. 4.12c) that the adhered prolate vesicles are stable for quite a wide range
of the reduced adhesion radius 0 < r < 1.0. The adhered oblate vesicles are obtained
only for larger values of the reduced adhesion radius 0.55 < r < 1.2.

In the case of pear-shaped adhered vesicles, we have observed so far that the
configurations with a larger spherical part attached to the flat surface have a wider
range of stability. In Fig. 4.14, we present the vesicle shapes for the reduced volume
v = 0.89 and the reduced spontaneous curvature c0 = 3.0. It is quite surprising that
for such choice of parameters, the pear-shaped configurations with the smaller sphere
attached to the surface (Fig. 4.14a) have a wider range of stability than the pear-
shaped configurations with the larger bead attached to the surface (Fig. 4.14b). The
latter solutions are stable only up to r = 0.02. For larger r, adhered prolate vesicles
become stable up to r = 0.68 (Fig. 4.14c). The adhered oblate vesicles are stable
for the full range of the reduced adhesion radius, r as shown in the plot of the elastic
energy in Fig. 4.14e.
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Figure 4.12: Shape profiles for the reduced volume, v = 0.705 and the reduced spon-
taneous curvature, c0 = 3.0 and different values of the reduced adhesion radius, r.
(a) prolate and (b) oblate branch. (c) Elastic energy, E/(8πκ), as a function of the
reduced adhesion radius, r, for different families of solutions for the reduced volume,
v = 0.705 and the reduced spontaneous curvature, c0 = 3.0. The inset shows the
values of the bending energy for small reduced adhesion radii.
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Figure 4.13: 3D shapes for the reduced volume, v = 0.705 and the reduced sponta-
neous curvature, c0 = 3.0 and different values of the reduced adhesion radius, r. (a)
prolate and (b) oblate branch. The area with a lighter shade shows the region of the
membrane attached to the flat surface.
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Figure 4.14: Shape profiles for the reduced volume, v = 0.89 and the reduced spon-
taneous curvature, c0 = 3.0 and different values of the reduced adhesion radius, r.
The pear branch with the vesicle attached to the surface with smaller (a) and larger
(b) bead, the prolate (c) and oblate (d) branch. (e) Elastic energy, E/(8πκ), as a
function of the reduced adhesion radius, r, for different families of solutions for the
reduced volume, v = 0.89 and the reduced spontaneous curvature, c0 = 3.0. The inset
shows the values of the bending energy for small reduced adhesion radii.
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Figure 4.15: 3D shapes for the reduced volume, v = 0.89 and the reduced spontaneous
curvature, c0 = 3.0 and different values of the reduced adhesion radius, r. The pear
branch with the vesicle attached to the surface with smaller (a) and larger (b) bead,
the prolate (c) and oblate (d) branch. The area with a lighter shade shows the region
of the membrane attached to the flat surface.
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Figure 4.16: Comparison of elastic energy, E/(8πκ), as a function of the reduced ad-
hesion radius, r, for different families of solutions and across few reduced spontaneous
curvatures c0 = 0, 2.4, 3. The reduced volume v = 0.545.

In Fig. 4.16, we compare the stability range of different families of solutions like
oblates, prolates, and oblate-bead for different values of c0. We can see that as the c0
increases, the stability range of the oblate reduces with the largest range obtained for
c0 = 0 and the lowest for c0 = 3. The range of the prolate branch however increases
with the increase in c0, suggesting an increase in the probability of obtaining prolate
shapes with the increase of c0 under adhesion. For the oblate-bead branch, the increase
in c0 causes the oblate-bead shapes to be stable for larger reduced adhesion radii.

In Fig. 4.17, we have shown the shape profiles of vesicles obtained on changing the
c0 for a given value of reduced adhesion radius, r. On comparing the shape transitions
observed by increasing the spontaneous curvature with that obtained by increasing
the area of adhesion for a given branch of vesicle shape, we notice that both these
kinds of shape transitions are qualitatively similar in the case of prolate and oblate
vesicles but are different for the oblate-bead shapes. An increase in c0 leads to the
closing of the neck at the lower part of the prolate vesicle. Closing of the neck is
also induced on an increase in c0 for the oblate-bead vesicles. This is unlike what
is observed for the oblate-bead branch on increasing the reduced adhesion radius r,
for a given v and c0. An increase of c0 therefore promotes budding in prolate-like
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Figure 4.17: Effect of change in c0 from c0 = 0 to c0 = 3 on the shape profiles of (a)
prolate vesicles for r = 0.4 (b) oblate vesicles for r = 0.8 and (c) oblate-bead vesicles
for r = 0.8. The reduced volume v = 0.545.

and oblate-bead-like vesicles. The trend of the bending energy within the range of
c0 values studied in Fig. 4.16 shows that an increase in c0 for a constant adhesion
area lowers the bending energy of the prolate shapes – thereby suggesting an increase
in stability and an increased probability of obtaining prolates for larger c0 under
fixed adhesion potential. c0 = 2.4 and c0 = 3, however, are the preferred reduced
spontaneous curvature values for the adhered oblate and adhered oblate-bead (small
r region) vesicles respectively – for which they have the lowest bending energy in the
range of the investigated spontaneous curvatures.

4.3 Summary and Conclusions

We have studied the behavior of lipid vesicles adhered to a flat surface within the
framework of the spontaneous curvature model. The calculations were performed for
a few values of the reduced spontaneous curvature and reduced volume. We have
identified the stability range of different branches of solutions as a function of the
reduced adhesion radius. We have observed the formation of new structures caused
by the adhesion of a vesicle to a flat surface. We have discovered that the adhesion
of a vesicle may cause the formation of a spherical or a prolate bud connected by a
small neck to the vesicle adhered to the flat surface. Such a shape transformation may
lead to budding, which may be important in biological processes. It is important to
note that we were able to observe budding for c0 = 0 under adhesion, which has not
been observed for this spontaneous curvature for the free state of vesicles. We have
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observed that the width of the neck connecting the bud depends on the size of the
vesicle patch attached to the surface. Thus, it may be possible to induce or arrest the
budding of the vesicles or biological cells with the change of the adhesion potential.
We have also observed that the tendency of neck widening or neck closure with the
increase in adhesion depends on the shape of the vesicle. Thus, adhesion can either
induce fusion or fission, depending on the shape. The shape of the vesicle and the
adhesion potential strength can thus influence the budding process. In many cases, we
have obtained multiple solutions with the same energy for the same set of parameters.
Such degeneracy may result in an interesting phenomenon where the adhered vesicle
can be transformed from one state to another state of the same energy. We have also
identified that the behavior of oblate-bead shapes is different under the change of c0
for a given r than under the change of r for a given c0. In the former case, it leads to
the narrowing, and in the latter, it leads to the widening of the neck.

The adhesion of a membrane surrounding biological cells is a phenomenon that
may be important in many biological processes. Thus, it will be valuable to under-
stand such processes based on the studies performed within relatively simple theoret-
ical models of membranes. We have demonstrated that adhesion may lead to many
qualitatively different shape transformations depending on the reduced volume and
the reduced spontaneous curvature. We may speculate that such versatile behavior
may be exploited in many biological processes. We hope that the results presented
here will help understand the behavior of the biological systems observed in experi-
ments and will help design new experiments.
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Chapter 5

Study of the single component vesicle system

by varying the adhesion strength of the flat

surface

This chapter explores the study of the vesicle system under adhesion where the adhe-
sion is introduced in the form of adhesion strength, W of the flat surface by which it
attracts the vesicle membrane touching the surface. The calculations have been car-
ried out under the Helfrich spontaneous curvature model. Here, we have examined the
influence of the spontaneous curvature, adhesion strength and the reduced volume on
the stability of the vesicle shapes under adhesion. We have identified the minimum
adhesion strength required to obtain a transition between a free vesicle state and it’s
adhered state for vesicles belonging to the different shape classes. We have also inves-
tigated possible shape transitions between different classes of adhered vesicles which is
a step forward in our investigation of the single component systems under adhesion
– from our previous calculations in chapter 4. It has been shown that the budding of
an adhered vesicle may be induced by the change of the adhesion strength. Interest-
ingly, an increase in spontaneous curvature of the vesicle membrane has been found
to encourage adhesion. The importance of the free vesicle shape for it’s susceptibility
to adhesion has been discussed.

5.1 Study of vesicle adhesion by changing the adhe-

sion strength of the substrate

In this second part of our study, the vesicles are not constrained to be adhered to
the surface with some enforced value of the contact area, but instead, the system can
choose to be either in a free state (non-adhered state) or an adhered state depending
on the adhesion strength value associated to the flat substrate. Here, we therefore
quantify the effective adhesion potential by the adhesion strength of the substrate.
Different values of the adhesion strength may be related to different materials used to
build the substrate or different compositions of the vesicle membrane. The change of
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the adhesion strength may also result from the change of thermodynamic parameters
[102]. The size of the surface area of a vesicle which is in contact with the surface due
to adhesion may depend on the strength of the interactions or on the concentration
of the sticker molecules [103, 104]. We investigate the stability of vesicles adhered to
a flat and rigid substrate with different values of reduced adhesion strength, w of this
underlying substrate. We have examined the shapes of adhered vesicles characterized
by different values of reduced spontaneous curvature, c0 for a few values of the reduced
volume, v. We have determined the minimal reduced adhesion strength, w for which
adhered vesicles become more stable than a free vesicle. The range of stability of
different classes of vesicle shapes for different reduced adhesion strength, w was also
examined. Possible shape transitions between adhered vesicles were also studied.

The ensemble which mimics the experimental conditions that we investigate is the
one with a fixed topology, constant surface area, A and constant volume, V . Such a
physical situation is described by the energy functional 3.4.6 which we numerically
minimize to obtain the equilibrium shapes of the vesicles. Again, as no topology
changes are considered, the integral of the Gaussian curvature contribution to the total
energy is a constant value and is therefore neglected. The shapes are parameterized
as shown in Eq. 3.1.7 and the adhesion is introduced in the form of adhesion strength
as explained in the earlier sections.

The reduced free energy is denoted by f = F/8πκ, the reduced adhesion radius
is denoted as radh = R/Rs, the reduced spontaneous curvature is c0 = C0Rs and the
reduced adhesion strength is denoted as w = WR2

s/κ.

The vesicles with zero membrane spontaneous curvature are investigated first.
Compared to former studies [39] of adhesion of vesicles with the reduced spontaneous
curvature c0 = 0, we keep the reduced volume of the vesicle fixed. Without adhesion,
for low reduced volume and c0 = 0, the stable vesicles are stomatocytes. Free stoma-
tocytes, however become unstable for larger values of reduced spontaneous curvature
and reduced volume. For the reduced volume v = 0.545, it is possible to obtain
three different solutions for free vesicles: stomatocyte, oblate, and prolate. Multiple
solutions can be obtained not only for v = 0.545, but also for a wide range of the
reduced volume. We have investigated how the stability of stomatocyte and oblate
vesicles changes with the change of the adhesion strength. We have not been able to
obtain stable adhered prolate vesicles when the calculations were performed for fixed
reduced adhesion strength, w, and the radius of adhesion was free to change. Instead,
the solution obtained from the numerical calculations was that of a free vesicle for the
range of the reduced adhesion strength, w studied by us. In Fig. 5.1a, we show the
change of the reduced free energy, f as a function of the reduced adhesion strength,
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w. In Fig. 5.1b, the change of the reduced adhesion radius, radh as a function of the
reduced adhesion strength, w is shown. From the dependence of the reduced free
energy, f on the reduced adhesion strength, w, we can determine when the adhered
vesicle becomes more stable than the free vesicle as shown in insets of Fig. 5.1a. In
Fig. 5.1c and Fig. 5.1d, we show the evolution of the shapes for adhered oblate and
stomatocyte vesicles with the change of the reduced adhesion strength, w. In the first
column, the vesicles in a free state are shown as a reference point to the vesicles in
adhered states. In the second column, the stable adhered vesicle shapes for the oblate
and stomatocyte branch are presented (stable for the lowest reduced adhesion strength
w). If we consider the states with the lowest energy, we can infer from Fig. 5.1a that
initially for low adhesion strength, the stable vesicles are stomatocytes that are not
adhered. However, the first stable adhered vesicles are oblate ones. The energy of the
free stomatocytes is marked by the black dashed horizontal line, which is below the
solid red line which denotes the energy of adhered oblate vesicles. These two lines
intersect before the adhered stomatocytes (denoted by the solid black curve) become
stable. Thus, we may speculate that adhesion may be accompanied by a change
of vesicle shape from stomatocyte to oblate. This change of the shape takes place
between the vesicles pictured in the last column of Fig. 5.1c and Fig. 5.1d – where the
configurations with the same free energy are shown. The arrow indicates the direction
of a possible energetically favorable shape transition where the stomatocyte vesicle
would be flattened and transformed into an adhered oblate vesicle. In the fourth
column of Fig. 5.1c and Fig. 5.1d, we show the limiting configurations which result
from very large reduced adhesion strength, w. In the third column, the intermediate
configurations are shown. As expected, we also notice that in the range of small w,
smaller changes of the adhesion strength induce large changes of the adhesion radius
for the oblate adhered vesicles as compared to that in the case of stomatocyte vesicles
shown in Fig. 5.1b.

The transition from a free state to an adhered state depends on the reduced volume
of a vesicle [39]. In order to examine this dependence, we have studied oblate vesicles
for several values of the reduced volume, v. We have investigated the range of the
reduced volume close to the limiting spherical shape. In Fig. 5.2, we present the plots
which illustrate the dependence of the reduced adhesion radius, radh, the reduced
free energy, f , and the smallest value of the reduced adhesion strength for which the
adhered vesicles become more stable than the free vesicles, wmin, as a function of
the reduced volume, v. The reduced adhesion radius corresponding to the reduced
adhesion strength, wmin is denoted as rmin. It can be noted that the radius of adhesion
does not change monotonically with v in the range 0.80 ≤ v ≤ 0.99. For the smaller

59http://rcin.org.pl



Chapter 5. Study of the single component vesicle system by varying the adhesion
strength of the flat surface

Figure 5.1: The dependence of (a) the reduced free energy, f , and (b) the reduced
adhesion radius, radh, on the reduced adhesion strength, w, for the reduced vol-
ume, v = 0.545 and reduced spontaneous curvature, c0 = 0.0. The crosses de-
note the points where the stable adhered vesicles for the smallest value of the ad-
hesion strength w are formed. These points are obtained from the intersection of
the reduced free energy curves visualized at larger scale in the insets. Shape pro-
files for oblate and stomatocyte vesicles are shown for the following sets of the
parameters: (c) adhesion strength, w = 0.0, 0.26, 32.0, w →∞, 1.7367, adhe-
sion radius, radh = 0.0, 0.6611, 1.1596, 1.2999, 0.8656. (d) adhesion strength,
w = 2.46, 2.50, 4.0, 15.10 (limiting shape), 1.7367, adhesion radius, radh =
0.0, 0.0636, 0.4229, 0.9827, 0.0. The shapes at the intersection of dashed black
(free stomatocyte) and solid red (adhered oblate) curves are shown in the blue frame.
The profiles pictured in red are the stable adhered configurations obtained for the
lowest adhesion strength w.
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values of v in this range, rmin decreases with increasing v and for the larger values
of v, rmin increases with v. These two tendencies can be explained when we look at
the shape profiles of the adhered vesicles shown in Fig. 5.2. In the range of smaller v,
the adhered vesicle has a concave shape, while in the range of larger v, it’s shape is
convex. In the intermediate range at about v = 0.90, both free and adhered vesicles
are almost flat at the top and the bottom. We can see in the plot of the reduced
adhesion strength, wmin, that in this region with almost flat vesicles, the adhered
vesicles can be stabilized with the smallest values of wmin. This can be attributed to
the fact that in this middle region, only small deformations of the vesicle are needed
to stabilize vesicles adhered to a flat surface. We may also notice that for the smaller
reduced volume, v, smaller value of the reduced adhesion strength, wmin is needed to
stabilize adhered vesicles than for the larger values of v. The smaller values of the
reduced adhesion strength, wmin, can be related to the larger values of the adhesion
radius. It implies that the adhesion surface is larger, and thus the adhesion energy
is significant even for small values of the reduced adhesion strength, wmin. Such
behavior is possible for lower reduced volume, v since in this case the vesicles have
more freedom to be deformed and the increase of the elastic energy of the vesicles due
to adhesion can be compensated by the gain of the adhesion energy which depends
on the square of adhesion radius. This mechanism does not apply to the vesicles with
larger reduced volume, v because they have less freedom to be deformed. If v ≈ 1.0,
the loss of elastic energy is compensated by the adhesion energy in such a way that the
radius of adhesion remains small and the adhesion strength is continuously increased
as shown in Fig. 5.2a,c. The shape at v = 1.0 (sphere) cannot be deformed at all.

With increasing spontaneous curvature of vesicles, their shapes are more and more
complex [96]. We have investigated how the complexity of a vesicle shape influences
the process of adhesion. We have performed the calculations for the reduced volume,
v = 0.545, and the reduced spontaneous curvature, c0 = 2.4. For these parameters,
we have not obtained adhered stomatocyte vesicles, but rather, we have obtained
adhered oblate vesicles and two additional types of vesicles as compared to the case
with the same reduced volume and the reduced spontaneous curvature, c0 = 0. These
two additional solutions are oblate vesicles with a bead and prolate vesicles. The
solutions with the lowest energy are either free prolate or adhered oblate vesicles. In
the second column in Fig. 5.3c and Fig. 5.3e, the first stable (with respect to the free
state of the same kind) adhered oblate and prolate vesicles are shown respectively.
In the insets in Fig. 5.3a, we show the energy at the transition point between stable
adhered and free states of oblate and prolate vesicles. The oblate vesicles with a bead
shown in Fig. 5.3d exist only in an adhered state. If we consider only the stability of
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Figure 5.2: The dependence of (a) reduced adhesion radius, rmin, (b) reduced free
energy, f , and (c) the minimal reduced adhesion strength, wmin, on the reduced
volume, v. fmin denotes the reduced free energy calculated for wmin obtained through
linear regression and f0 is the reduced free energy calculated for free vesicle. The
reduced spontaneous curvature is c0 = 0.0. The shape profiles represent the stable
adhered vesicles for the smallest reduced adhesion strength, wmin, for different values
of the reduced volume, v.
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adhered states, we notice that for low adhesion strength, the oblate vesicles with a
bead are stable and for larger adhesion strength, oblates without a bead are stable.
Sufficiently large non-zero spontaneous curvature favors free prolate shapes. Oblate
shapes are favored when a vesicle adheres to a flat substrate. The adhered oblate
vesicles with a bead are the result of a compromise between these two classes of
shapes.

We have also investigated the vesicles with the same non-zero reduced spontaneous
curvature as in the previous case, c0 = 2.4, but larger reduced volume, v = 0.8. For
this set of parameters, we obtain three different solutions for the shapes of free vesicles:
prolate, pear, and oblate. Prolate and oblate vesicles have up-down symmetry. In the
case of pear vesicles, we have two different states of adhered vesicles due to the lack of
up-down symmetry. The first one when the smaller bead is attached to the substrate,
and the second one when the larger bead is attached to the surface as shown in Fig. 5.4e
and Fig. 5.4d respectively. The first stable adhered vesicles for oblate, pear, and
prolate branches are shown in the second column of Fig. 5.4c-f. In the first column, the
solutions for the vesicles in a free state are presented. In the third and fourth columns,
the intermediate and limiting solutions for a large value of the adhesion strength, w
are shown. When we consider the solutions with the lowest energy, the free prolate
vesicles are stable for lower adhesion strength, w and adhered oblate vesicles are
stable for larger w. In the fifth column, we present the configurations with the same
free energy for free prolate and adhered oblate vesicles at the possible transformation
from free to adhered vesicles for this set of parameters. This is similar to the previous
case with smaller reduced volume, v = 0.545 and positive spontaneous curvature c0,
where the shape of the stable free state is prolate and the shape of the adhered state
is oblate. When we consider only adhered states with the lowest energy, we have a
very interesting situation. The adhered oblate vesicles have lower energy except for
a small range of the adhesion strength 2.69 < w < 3.11 where the solution with the
lower energy are adhered pear-like vesicles attached with a larger bead to the flat
surface. Based on the free energy calculations as shown in Fig. 5.4a, we may expect
the existence of two transitions. At w = 3.11, the energy of adhered oblate and
pear-like vesicles is equal. Thus, by increasing or decreasing the adhesion strength w,
the transition between adhered pear-like and adhered oblate vesicles can be induced.
The adhered oblate vesicles are already metastable at w = 0.05, but adhered pear-like
vesicles are metastable only for w > 2.69. However, the energy of the adhered pear-
like vesicles is significantly smaller at w = 2.69 than the energy of adhered oblate
vesicles. Thus, we may expect that by increasing the adhesion strength, the adhered
oblate vesicles could be transformed to adhered pear-like vesicles. Based on this
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Figure 5.3: The dependence of the reduced free energy, f , on (a) the reduced adhesion
strength, w, and (b) reduced adhesion radius, radh, for the reduced volume, v = 0.545
and reduced spontaneous curvature, c0 = 2.4. The crosses denote the points where
the stable adhered vesicles for the smallest value of the adhesion strength w are
formed. These points are obtained from intersection of the reduced free energy curves
visualized at larger scale in the insets.
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Figure 5.3: Shape profiles for oblate, oblate-bead and prolate vesicles are
shown for the following sets of parameters: (c) adhesion strength, w =
0.0, 0.55, 35.0, w →∞ (limiting shape), 7.7498, adhesion radius, radh =
0.0, 0.8447, 1.1666, 1.2940, 1.0446. (d) adhesion strength, w = 0.00125, 11.5, 22.50,
adhesion radius, radh = 0.5769, 0.9121, 1.0832. (e) adhesion strength,
w = 9.150, 9.250, 10.50, 11.475, 7.7498, adhesion radius, radh =
0.0, 0.0967, 0.3796, 0.6791, 0.0. The shapes at the intersection of dashed blue
(free prolate) and solid red (adhered oblate) curves are shown in the blue frame. The
profiles pictured in red are the stable adhered configurations obtained for the lowest
adhesion strength w.

result, we can speculate that in biological systems, budding may be induced by a very
small variation in the adhesion strength, and it can be easily reversed. It should be
stressed here that no change in the distribution of the components or the spontaneous
curvature is needed to induce budding. It is enough to increase the surface area of
adhesion of the vesicle, for example, by the change of the adhesion strength as shown
in Fig. 5.5. We can observe a different behavior depending on whether the pear-
like vesicle is attached to the substrate with its smaller spherical part or the larger
spherical part. When the smaller bead is attached to the surface, the neck in the
middle becomes smaller and smaller on increasing the adhesion strength. Such a
process may lead to budding in the end. When the larger part is attached to the
surface, the neck widens and the vesicle is transformed to an adhered oblate. Thus,
depending on which part of the vesicle is attached to the substrate, it is possible to
open or close the gate which is formed by the neck in the central part of the vesicle.
This way, by changing the radius of the neck, it is possible for example to prohibit or
enhance the mixing of the fluids which are contained in these two parts of the vesicles.

Finally, we have examined how the increase of the spontaneous curvature would
influence the adhesion of oblate vesicles with relatively large reduced volumes. We
have studied the vesicles with relatively small spontaneous curvatures to ensure the
stability of oblate vesicles. We have examined the vesicles with a concave, v = 0.80,
and a convex, v = 0.99 shape and also with the shape which is approximately flat at
the poles of the vesicle, v = 0.85. For this range of the reduced volume 0.80 ≤ v ≤
0.99, we were able to examine simple vesicle shapes which did not undergo significant
shape transformations with the change of the reduced spontaneous curvature, c0.
We have calculated the adhesion strength wmin for which the adhered vesicle has
the same energy as the free vesicle, for different values of the reduced spontaneous
curvature. The value of wmin was determined by calculating the reduced free energy,
f for several values of the reduced adhesion strength, w and reading off wmin for the
value of the reduced free energy equal to that of the free vesicle. It follows from the
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Figure 5.4: The dependence of the reduced free energy, f , on (a) the reduced adhesion
strength, w, and (b) reduced adhesion radius, radh, for the reduced volume, v = 0.80,
and the reduced spontaneous curvature, c0 = 2.4. The crosses denote the points
where the stable adhered vesicles for the smallest value of the adhesion strength w
are formed. These points are obtained from the intersection of the reduced free energy
curves visualized at larger scale in the insets.
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Figure 5.4: The shape profiles for oblate, pears (up/down), prolate vesicles
are plotted in each row for the following parameters: (c) adhesion strength,
w = 0.0, 0.05, 40.0, w →∞ (limiting shape), 3.9173, adhesion radius,
radh = 0.0, 0.5248, 1.0313, 1.1097, 0.8531. (d) adhesion strength, w =
2.65, 2.69, 3.5, 7.75, adhesion radius, radh = 0.0, 0.0492, 0.2182, 0.6121.
(e) adhesion strength, w = 11.85, 12.025, 25.0, w →∞ (limiting shape),
adhesion radius, radh = 0.0, 0.0478, 0.2747, 0.5122. (f) adhesion
strength, w = 6.025, 6.055, 7.0, 8.4, 3.9173, adhesion radius, radh =
0.0, 0.1699, 0.5187, 0.7276, 0.0. The shapes at the intersection of dashed black
(free prolate) and solid red (adhered oblate) curves are shown in the blue frame. The
profiles pictured in red are the stable adhered configurations obtained for the lowest
adhesion strength w.

plots in the first row of Fig. 5.6 that the concave vesicles are stabilized for smaller
and smaller values of the adhesion strength with increasing values of the reduced
spontaneous curvature, c0. Contrary to the concave (v = 0.80) vesicles, for the convex

Figure 5.5: Budding of adhered vesicles induced by decreasing the adhesion strength,
w. The adhered oblate and adhered pear-like vesicles have equal energy at w = 3.11
for the reduced volume, v = 0.80, and the reduced spontaneous curvature, c0 = 2.4.

vesicles (v = 0.99), the adhesion strength wmin increases with the increasing reduced
spontaneous curvature c0. We should stress that the convex vesicle is almost spherical
close to the limiting shape with the reduced volume v = 1.0. These features may play
a significant role in the process of adhesion. In all the cases, the radius of adhesion
rmin decreases with the increase in reduced spontaneous curvature within the studied
range of c0. The changes are very small and can hardly be noticed in the shape profiles
of the vesicles. However, the tendencies in the changes induced by the increase of the
reduced spontaneous curvature are clearly illustrated. It is interesting to note that
the increase of the spontaneous curvature promotes the adhesion of oblate vesicles to
a flat substrate. Smaller adhesion strength wmin is needed to obtain stable adhered
vesicles. It should be noted that at the same time, the radius of adhesion rmin is
decreasing with the increasing spontaneous curvature. This suggests that an increase
in c0 encourages an increase in the stability range of adhered oblates towards the
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lower adhesion radius. An increase in c0 ensures the ease of adhesion of the concave
and almost flat oblates by reducing the wmin values compared to the convex oblates.
Intuitively, one would expect an opposite behavior since it should be favorable for the
vesicles with the spontaneous curvature close to zero to adhere to a flat surface with
zero mean curvature. But, when we consider the local mean curvature on a surface
of an adhered vesicle, we find out that the surface of the membrane attached to a
flat substrate is small compared to the remaining surface area of the vesicle which is
characterized by a non-zero mean curvature.

Figure 5.6: The change of the reduced adhesion radius, rmin, and the minimal reduced
adhesion strength, wmin, induced by the change of the reduced spontaneous curvature,
c0, for oblate vesicles with relatively large reduced volume, v = 0.8, 0.85, 0.99.
The shape profiles represent free vesicles in the first row and adhered vesicles in the
second row with the reduced spontaneous curvature, c0 = 2.4, for the reduced volume,
v = 0.8, 0.85, 0.99 in each column respectively.
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We have also investigated the susceptibility of vesicles to adhesion for different
shapes of the vesicles. The susceptibility to adhesion may be quantified by the size of
the surface area of the vesicle membrane attached to the substrate. In our case where
we have rotational symmetry, the amount of the vesicle membrane attached to the
rigid planar surface can be measured by the adhesion radius, radh. In Fig. 5.7, we show
the rate of change dradh/dw of the adhesion radius radh as a function of the adhesion
strength w for oblate vesicles with different reduced volume v = 0.80, 0.7277, 0.545

and the same spontaneous curvature c0 = 2.4. As expected, for these values of
the reduced volume, the rate dradh/dw decreases monotonically when the adhesion
strength is increased for all three values of the reduced volume, v. We can say that it
is more and more difficult to attach larger and larger pieces of the vesicle membrane
on increasing the adhesion strength by the same value ∆w. It should be noted that a
linear increase of the radius is equivalent to the increase of the adhered surface area
proportional to the radius squared. We can infer from Fig. 5.7b that for the same
adhesion strength, the largest surface area of adhesion is obtained for the vesicles
with smaller reduced volume. The vesicles with smaller reduced volume, v, have more
freedom to be deformed since they have smaller inner volume surrounded by the same
surface area of a membrane. However, larger adhesion strength is required to obtain
stable adhered vesicles with larger reduced volume.

It is interesting to note that for smaller values of the adhesion strength, the rate of
change of the adhesion radius, dradh/dw is higher for the vesicles with larger reduced
volume as shown in Fig. 5.7a. For larger adhesion strength, this tendency is reversed
at about w = 9. Such behavior might be related to the value of the limiting adhesion
radius, which is larger for the vesicles with smaller reduced volume. Thus, we might
expect that the rate of change of the adhesion radius could slow down more for the
vesicles with larger reduced volume when the radius is closer and closer to the limiting
value.

In Fig. 5.8, we show how the increase of the adhesion strength, w influences the
rate of change of the adhesion radius, radh for prolate vesicles with the spontaneous
curvature c0 = 2.4 and the reduced volumes v = 0.80 and v = 0.545. We would
like to investigate how the shape of an adhered vesicle influences its susceptibility
to adhesion. We have chosen two vesicles with relatively simple (v = 0.80) and
complex (v = 0.545) shapes. It has to be noted that in the case of adhesion to a
flat substrate, the vesicles can assume horizontal configurations as the most stable.
However, to investigate the role of the shape on the adhesion process, we can safely
study metastable configurations. Moreover, when a sticker molecule is attached to a
pole of a vesicle, it is possible to realize the scenario presented by our calculations.
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Figure 5.7: (a) The rate of change of the reduced adhesion radius, dradh/dw, and (b)
the reduced adhesion radius, radh, as a function of the reduced adhesion strength,
w, for the oblate vesicles with three reduced volumes, v = 0.80, 0.7277 and 0.545
and reduced spontaneous curvature, c0 = 2.4. The shape profile of oblate vesicles
are plotted for w = 0.0, 1.0, 12.0 in subsequent columns for different values of the
reduced volume: (c) v = 0.545 (d) v = 0.7277 and (e) v = 0.80.

The stable adhered prolate vesicles with different reduced volumes exist for different
ranges of the adhesion strength. Moreover, smaller adhesion strength is sufficient to
stabilize adhered prolate vesicles with larger reduced volume. When prolate vesicles
adhere to a flat substrate, the rate of change of the adhesion radius is not monotonous,
as shown in Fig. 5.8a. For the prolate vesicles with large reduced volume, the rate
decreases for smaller values of w and increases for larger values of w. In Fig. 5.8c, we
present the shapes of the vesicles at small and large w, and at the minimum of the rate
of change of the adhesion radius radh. For larger values of w, the adhesion leads to the
transformation of an adhered prolate vesicle to an adhered oblate vesicle. Initially,
the vesicle has almost up-down symmetry, but with the increase of the adhesion
strength, it’s shape resembles a pear. Finally, the vesicle with a pear-like shape is no
longer stable and it is transformed into an adhered oblate vesicle. The rate of change
of the adhesion radius increases when the prolate vesicle resembles more and more
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the oblate vesicle. Thus, before the transformation of the adhered prolate vesicle
into the adhered oblate vesicle due to the increase of the adhesion strength, we may
expect higher susceptibility to adhesion for the vesicle which is being transformed.
Small changes in the adhesion strength may induce large changes in the adhesion
radius. Such behavior may be encountered in the vicinity of the shape transformations
between different classes of shapes. In such cases, we can expect that the adhesion
may trigger the transformation of vesicles between two different classes of shapes.

Figure 5.8: (a) The rate of change of the reduced adhesion radius, dradh/dw, and (b)
the reduced adhesion radius, radh, as a function of the reduced adhesion strength,
w, for the prolate vesicles with the reduced volume, v = 0.80 and 0.545 and the
reduced spontaneous curvature, c0 = 2.4. The shape profiles are plotted in each row
for following parameters: (c) v = 0.80, w = 6.10, 7.75, 8.3875 (d) v = 0.5450, w =
9.175, 10.10, 11.025, 11.325, 11.4625.

The shape transformations due to the adhesion of prolate vesicles with a smaller
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reduced volume are more complex. The adhesion induces the formation of a narrow
neck which separates the oblate part of the vesicle at the bottom from the upper
prolate part, as shown in Fig. 5.8d. The existence of the narrow neck influences the
rate of change of the adhesion radius caused by the increase of the adhesion strength,
as shown in Fig. 5.8a. With the increasing adhesion strength, the volume of the
prolate part becomes smaller, and the volume of the oblate part becomes larger. The
process ends in a discontinuous transformation of the prolate part into a spherical
one. Similarly, as in the previous case, the rate of change of the adhesion radius
increases just before the transformation, as shown in Fig. 5.8a. However, unlike in the
previous case, this increase is not monotonous. We may attribute this behavior to the
existence of the small neck which may stabilize the shape before the transformation.
The sequence of shapes which illustrate that process is shown in Fig. 5.8d.

5.2 Summary and Conclusions

We have studied the lipid vesicles which adhere to a flat and rigid substrate. We
have investigated the influence of the adhesion strength on the stability and shape
transformations of several types of vesicles. They were characterized by different re-
duced volume and reduced spontaneous curvature. The minimal strength of adhesion
required to stabilize different classes of vesicle shapes has been determined. The min-
imal strength of adhesion determines the transition from a free vesicle to an adhered
vesicle. The knowledge of the minimal adhesion strength should be helpful in Atomic
Force Microscopy studies where the cantilever touching a cell or a vesicle may cause its
detachment. We may suspect that our calculations can have biotechnological applica-
tions in the drug-delivery process where it is important for the drug-carrying vesicle
to get attached to the target site and therefore the knowledge about wmin becomes
important to ensure it’s safe adhesion.

We propose a mechanism to segregate vesicles based on their shape by creating
the adhesion materials with the shape compatible with the vesicle’s geometry. The
vesicles which are locally flat can adhere to flat surfaces even with very small adhesion
energy. We may expect that when the surface is locally curved in such a way that
it fits to the shape of a vesicle, it will be easy to obtain structures with adhered
vesicles. With being able to engineer surfaces with regions of well-defined shapes,
it will be possible to segregate the collections of different vesicles according to a
preferred shape code in the structure of the adhesive material. We can speculate that
such segregation governed by adhesion can be used in biotechnological applications
to collect nanoparticles like scavengers (leukocytes) do in the human body.
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Our results also suggest that an increase in spontaneous curvature of the vesicle
membrane can encourage adhesion and allow us to access adhered vesicle states of
lower adhesion radii. It also allows for an easy adhesion due to the decrease in wmin
values with the increase in c0. Such a phenomenon may suggest that biologically cells
may show aggregation or de-aggregation of high curvature components on the surface
to induce or arrest adhesion, or it may suggest that biological cells constituting of
high spontaneous curvature components may undergo easy adhesion as compared to
cells made of low spontaneous curvature components and in this way cells that are
required to undergo stronger adhesion are likely to have a different composition than
the cells that are not required to undergo adhesion.

The susceptibility to adhesion for different classes of vesicles (oblate, prolate) has
also been studied. Even in such a simple model where the vesicles of simple topology
adhere to a flat substrate, it is possible to discover many interesting phenomena.
We have also shown that changing the adhesion strength leads to the formation of a
spherical bud or it’s disappearance.

The adhesion of cells may induce novel and very interesting phenomena in large
collection of cells in biological tissue or in artificial cell cultures. The results of our
calculations may be useful in the explanation of the behavior of cell cultures confined
and grown on a flat substrate [105], as well as in biomedical applications such as
protection from the adhesion of platelets to vascular stents [106,107]. In real biological
systems such as animal tissues, cells’ membrane can adhere to surfaces that are not
flat and not rigid, for example, to the neighboring cells. Considering the relative
simplicity of our system, we may anticipate to discover many new phenomena related
to the adhesion of biological cells to themselves or to rigid objects.
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Chapter 6

Study of the multi-component vesicle system

by varying the size of the area of adhesion

with the flat surface

This chapter talks about the study of vesicles adhered to a flat surface where the
vesicle membrane is made up of two kinds of membrane components. Biological cell
membranes are a complex architecture and comprise of many different kinds of lipids,
proteins and other non-lipid molecules which contribute to the functionality of the cell.
The distribution of these membrane components within the membrane can greatly affect
the working of the cell. In this chapter, we theoretically study the curvature-induced
lateral distribution of components brought about by the shape transitions due to the
change in adhesion. The calculations are performed under the Helfrich spontaneous
curvature model. We investigate the close relationship between the shape of the vesi-
cle under adhesion and the lateral distribution of it’s components. In particular, we
probe the effect of adhesion on the segregation/mixing of components for the different
classes of vesicle shapes stabilized for the studied parameters. Our calculations show
that budded structures like pears can support the mixing of components, whereas rel-
atively simple and non-budded structures like oblates can support the segregation of
components.

6.1 Results

Mixing and de-mixing of components are important for the cell to carry out it’s
normal functions. Segregation of components based on curvature-induced sorting is
the guiding hypothesis behind our work, and this hypothesis has been hypothesized
to be at play in many experimental studies as discussed in section 1.3. Studies have
shown that the vesicle shape can influence the lateral distribution of components, and
conversely, the lateral distribution of components can influence the shape. In our
work, we study such a two-way relationship between the shape of the vesicles adhered
to the flat surface and the lateral distribution of components. We identify the effect
of adhesion on the shape-transition of the two-component vesicles and calculate the
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equilibrium shapes of these vesicles. Further, we elucidate the effect of adhesion on
the promotion and suppression of component segregation. We investigate the stability
of the vesicles and the lateral distribution of the components, φ(s), by changing the
adhesion radius, R.

Such a multi-component vesicle system can be modeled by the Eq. 3.5.3 which
is numerically minimized to simultaneously obtain the shape and the corresponding
concentration profile of the components on the vesicle surface. The role of the entropy
of mixing is neglected. The experimental conditions can be replicated by ensuring the
constraints of constant surface area A, constant volume V , and a fixed topology. The
Gaussian bending rigidity of the two components is assumed to be the same, κAG = κBG.
This leads to a constant contribution from the Gaussian bending energy and is thus
not taken into account in the calculations. The bending rigidity of components A and
B is also assumed to be the same, i.e., κA = κB = κ. Adhesion is introduced in the
form of a radius constraint as explained in Eq. 3.1.5.

f = F/8πκ is the reduced bending energy, r = R/Rs is the reduced adhesion
radius, and cA0 = CA

0 Rs and cB0 = CB
0 Rs are the reduced spontaneous curvature values

corresponding to each kind of membrane component. The area of adhesion for our
rotationally symmetric vesicles – is a circle.

The calculations are done for the average concentration, φavg = 0.5 of the com-
ponent A over the surface. The reduced spontaneous curvatures associated with the
membrane components A and B respectively are, cA0 = 8 and cB0 = 0. Such a large
difference in the spontaneous curvature facilitates the curvature-induced segregation
of components. We present the results for the reduced volume v = 0.95. We have
decided to investigate vesicles with relatively large reduced volume because for such
vesicles, the number of different classes of shapes is relatively small, yet the system is
still interesting to investigate.

6.1.1 Free vesicles for cA0 = 8, cB0 = 0, φavg = 0.5 and v = 0.95

For this set of parameters, we obtain a few different classes of free vesicle as shown in
Fig. 6.1. In the solutions corresponding to Fig. 6.1a and Fig. 6.1b, the component
with the larger spontaneous curvature is accumulated at the north pole of the vesicle,
forming a spherical bud or a circular caplet respectively. The lowest energy shape
for the free vesicles at the reduced volume v = 0.95 is the one with a spherical
bud (Fig. 6.2). We have also obtained a shape with completely mixed components
and a very interesting solution with the region at the north pole occupied mainly
by the component having lower spontaneous curvature as shown in Fig. 6.1c. The
distribution of components of the latter kind is accommodated in the concave shape
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at the north pole of the vesicle.

Figure 6.1: Shapes of the vesicles obtained at r = 0 and for the parameters v = 0.95,
cA0 = 8, cB0 = 0 and φavg = 0.5.

The membrane components are segregated because the equilibrium vesicle shapes
have regions of different mean curvature. Thus, this allows the components with larger
and smaller spontaneous curvatures to be accumulated in the high and low mean
curvature regions, respectively. It should be noted that in the case of free vesicles, the
regions with high and low mean curvatures are formed spontaneously in the process
where the shape of the vesicle and the lateral distribution of the components are
driven by the minimization of the bending energy. However, during the adhesion to a
flat substrate, the shape of the vesicle changes in such a way that near the substrate,
both low and high mean curvature regions are formed. The membrane part that is

77http://rcin.org.pl



Chapter 6. Study of the multi-component vesicle system by varying the size of the
area of adhesion with the flat surface

attached to a flat substrate has zero mean curvature, whereas the bilayer at the rim of
the adhered region has a non-zero mean curvature. The value of the mean curvature
at the rim is related to the size of the adhered region. In general, the larger is the
size of the adhered membrane, the higher is the mean curvature generated at the
rim. Thus, by varying the size of the adhered membrane region, the proportion of the
regions with low and high mean curvatures is varied.

6.1.2 Study of vesicle adhesion by varying the size of the area

of adhesion

Figure 6.2: Reduced bending energy, f = F/8πκ, as a function of reduced adhesion
radius, r is shown for all the solutions obtained at v = 0.95, and for the parameters
cA0 = 8, cB0 = 0 and φavg = 0.5.

The bending energy of the solutions obtained for the two-component vesicles is
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shown in Fig. 6.2. There are eight classes of solutions obtained under adhesion which
can be uniquely described by their shape and the distribution of components over the
vesicle surface. These solutions correspond to the different branches of the bending
energy diagram (Fig. 6.2). Six out of these eight solutions originate from the solutions
of the free state vesicles. The energies corresponding to the limiting structures of the
pears-down (Fig. 6.20) and pears-down-2 (Fig. 6.7) branches are not presented in the
bending energy diagram as they are large and therefore can be avoided for the clarity
of presentation.

From the bending energy trends of Fig. 6.2, we may conclude that the adhesion
induced shape change and the corresponding lateral distribution of components is
causing the oblate-1 (Fig. 6.3), oblate-2 (Fig. 6.5), pears-down-2 (Fig. 6.7) and
prolate (Fig. 6.14a) shapes to be benefited more from the redistribution of compo-
nents with the increase in adhesion radius, r. This is because, for these branches
in the bending energy diagram, the bending energy decreases with the increase in
r, and since the adhesion energy is always a negative quantity, the adhered shapes
of these vesicles become more stable than the free state solutions. This emphasizes
that the lateral distribution of components in these shapes under adhesion is helpful
for stabilizing these vesicles over their free state solutions. The lateral distribution
of components indicates segregation or mixing, and we can conclude that the mech-
anism of adhesion induced component segregation is favorable to the stability of, for
e.g., oblate-2 (Fig. 6.5) and pears-down-2 (Fig. 6.7) vesicles. Interestingly, adhesion
induced, both mixing and segregation of components can stabilize oblate-1 vesicles
(Fig. 6.3) for different ranges of adhesion radii. Whereas, adhesion induced mixing of
components can stabilize for e.g., pears-up (Fig. 6.18) and pears-up-3 vesicles (Fig.
6.12).

The pears-down-2 vesicle (Fig. 6.7) has the longest stability range which may
suggest that the shapes which show strong segregation of components, such that there
is a component A rich domain on one side and the other side depleted in component
A, are favored most by adhesion, and interestingly those shapes have the component
with a larger spontaneous curvature towards the base of the vesicle. The pears-up
vesicle (Fig. 6.18) also has a relatively long range of stability under adhesion, thereby
suggesting that adhesion also promotes shapes that can transition towards a mixed
component state for this reduced volume, v. For small adhesion radius, r, pears-
up vesicles have the lowest bending energy and for higher r, pears-down-2 vesicles
have the lowest bending energy except for a small range. This means that these two
configurations with their corresponding concentration profiles are most stable for this
set of parameters.
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Oblate-1 and oblate-2 vesicles

Free oblate vesicles are not expected to be stable when the concentration of the
component with a large spontaneous curvature is more in the membrane, usually
prolate vesicles are the stable ones. However, oblate vesicles are expected to be
stable when the surface area of adsorption is large. We have found two types of
adsorbed oblate-shaped vesicles which can be characterized by the oblate-1 and oblate-
2 branches of the bending energy diagram. The oblate-1 branch originates from a free
vesicle and is stable for low adhesion radii between r = 0 to r = 0.59, whereas the
oblate-2 branch has shapes stable only for large adhesion radii between r = 0.57 to
r = 0.76. These two kinds of oblate shapes have different distributions of components.
The oblate-1 vesicles have domains that are well defined and have a sharper boundary
between them, whereas the oblate-2 vesicles do not have very pronounced domains
due to the gradual change in the concentration of components across the surface.

Figure 6.3: Shapes and 2D shape profiles of the oblate-1 vesicles are shown for r =
0, r = 0.36, r = 0.59. The regions in the 2D profile marked by different colours
correspond to the two domains separated by an interface.

In Fig. 6.3, we show the shapes corresponding to the stability range of oblate-1
vesicles in 3D and the corresponding 2D shape profiles. In Fig. 6.4, we show the
concentration profiles corresponding to the distribution of component A obtained on
minimization. We see that at r = 0, the oblate shape is already slightly segregated
with the lack of highly curved component A at the north pole of the vesicle forming a
circular domain and the rest of the vesicle is in an almost mixed state with φ(s) ≈ 0.5.
The components are distributed uniformly in each domains. We see that as the
adhesion radius r increases, the difference in the concentration of the high curvature
components between the two domains, increases for small r. The high spontaneous
curvature components get more and more depleted in the domain at the north pole
of the vesicle as compared to the free state of the vesicle, with the increase in r

- for small r. Thus, segregation is encouraged for smaller values of r. However,
with the further increase in r, this concentration difference between the domains
becomes smaller and at the limiting shape, the domains of constant concentration
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Figure 6.4: Local concentration profiles of the component A, φ(s) over the total vesicle
length are shown for the oblate-1 vesicles for different values of reduced adhesion radii.

are no more well defined. The shapes transition from a concave shape to a convex
shape as the adhesion radius increases. From Fig. 6.4, we can see that for small
adhesion radii, the local concentration, φ(s) changes quickly within a short distance
between the domain with high concentration and the domain with low concentration
of the high curvature components. At larger adhesion radii, the change of the local
concentration is gradual. The width of the boundary region between the domains
becomes wider with the increase in r. The interplay between the vesicle’s shape and
the concentration of components is clearly illustrated in this case. The change of
the concentration at the north pole of the vesicle is correlated with the variation of
the vesicle’s shape induced by adhesion. Thus, we can conclude that the increase in
the interface region (characterized by a gradual change in the concentration of high
curvature components on the vesicle surface) along the branch for larger values of
adhesion radius, r, encourages mixing of components towards the north pole and an
accumulation of high curvature components at the south pole.

The oblate-2 vesicle shapes are stable only at large adhesion radii. The shapes
for the stability range of the oblate-2 vesicles in 3D are shown in Fig. 6.5 along with
their corresponding 2D shape profiles. The changes in the local concentration profile
of component A over the surface with the increasing adhesion radius r have been
shown in Fig. 6.6. From Fig. 6.5, we can conclude that the shapes of this branch
have a wide region along which the concentration changes and therefore a gradual
gradient of the distribution of component A on the vesicle surface. However, as the
adhesion radius increases along the branch, we see that the adhesion actually promotes
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Figure 6.5: Shapes and 2D shape profiles of the oblate-2 vesicles are shown for r =
0.57, r = 0.65, r = 0.73, r = 0.76.

Figure 6.6: Local concentration profiles of component A, φ(s) over the total vesicle
length are shown for the oblate-2 vesicles for different values of reduced adhesion radii.

segregation. This can be concluded from the increase in the slope of the φ(s) profile
from r = 0.57 to r = 0.76 in Fig. 6.6. Along the oblate-2 branch, the segregation is a
result of the migration of the high curvature components from the north to the south
pole which causes an increase in the concentration of high spontaneous curvature
components towards the base of the vesicle with the increase in adhesion, as seen
from the concentration curve, φ(s).

It should be noted that there is a range of adhesion radius, r, where the solutions
of both kinds of oblate vesicles can be obtained and there is one value of the adhesion
radius, where the oblate vesicles of both these kinds have the same energy. This
implies a possibility of a very interesting phenomenon where there is an easy transition
between these two branches. In our model, the distribution of components influences
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the shape of the vesicle and vice versa. Thus, we can speculate that small changes in
the shape of the vesicle may result in the change of the distribution of the components
that is equivalent to the transition from one type of adhered oblate vesicle to another.

Pears-down-2 vesicles

It can be expected that for sufficiently large values of adhesion radius, the adhered
vesicles have oblate shapes. However, it is not obvious what the evolution of the vesicle
shape will look like with the increase in adhesion radius if we begin from a non-oblate
vesicle. For the case of the pear-like configuration attached to the substrate at the
narrower end, where the component with high spontaneous curvature forms a circular
domain, the transformation is smooth and is shown in Fig. 6.7 along with their 2D
shape profiles. The vesicle smoothly transforms from a pear-like to a prolate and

Figure 6.7: Shapes and 2D shape profiles of the pears-down-2 vesicles are shown for
r = 0, r = 0.2, r = 0.5, r = 0.65, r = 0.70, r = 0.82. The regions in the 2D profile
marked by different colours correspond to the two domains separated by an interface.

finally to an oblate shape. We see that an initially segregated pears-down-2 vesicle
shape at r = 0 undergoes stronger and stronger segregation of components with the
increase in adhesion. This leads to the formation of one of the domains comprising of
high curvature components and the other domain comparatively depleted of them at
the limiting structure. From Fig. 6.8, we can see that the value of φ(s) decreases for
the northern region of the vesicle with the increase in adhesion. This suggests that
the high spontaneous curvature component A migrates towards the base of the vesicle
and accumulates at the rim of the adhered region and at the substrate to minimize
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Figure 6.8: Local concentration profiles of component A, φ(s) over the total vesicle
length for different values of reduced adhesion radii are shown on the left and the
change in the upper and lower limits of φ(s), as a function of r is shown on the right
for the pears-down-2 vesicles. The crosses correspond to the values of radii for which
the vesicle shapes are shown.

the overall bending energy with the increase in adhesion. It is interesting to note
that the concentration of the high spontaneous curvature components always remains
larger in the region of the vesicle attached to the substrate than the rest of the vesicle,
even for very large adhesion radii. In fact, this domain of high spontaneous curvature
component keeps on increasing for significantly large adhesion radius as seen from
the φ(s) curves in the Fig. 6.8. The mean curvature at the rim becomes larger for
a larger adhesion radius and also the area of the vesicle with larger mean curvature
increases. Thus, it becomes natural for the high spontaneous curvature components
to be accumulated more and more near the substrate.

The depletion of the high curvature components from the domain at the north
pole is also reflected in the decrease of the φB value with the increase of adhesion
radius, r, as seen in the curves of max/min[φ(s)] vs. r in the Fig. 6.8. However, at
high enough adhesion radius, i.e., near the limiting structure, we see that the φB value
increases weakly. This suggests that the high curvature components slightly migrate
towards the north pole of the vesicle as it approaches it’s limiting shape. The limiting
structure is almost a section of a sphere and a similar configuration was obtained for
one component vesicles which have a uniform distribution of spontaneous curvature
throughout the surface. Red blood cells also show such a structure under strong
adhesion [108–110]. It should be noted that the increase of the spontaneous curvature
enhances adhesion of one component vesicles to the flat substrate [111]. Thus along
the branch, the segregation of components is favored with an increase in adhesion, and
the domains are separated by a well-defined narrow boundary. It is interesting to see

84http://rcin.org.pl



Chapter 6. Study of the multi-component vesicle system by varying the size of the
area of adhesion with the flat surface

that such a non-budded structure can support such a strongly segregated distribution
of components. Such shapes can be therefore biologically important for activating
various biological functions.

For a very small range between about 0.65 ≤ r ≤ 0.70, it is interesting to note
that the oblate-2 shapes (gradual change in the concentration of components) have
lower energy than the pears-down-2 shapes which have a sudden and a sharp change
in concentration of components. Comparison of their energies within this range is
shown in the inset of Fig. 6.2 and a corresponding comparison of their shapes is
shown in Fig. 6.9. The branches corresponding to these two shapes intersect each
other at two points in the bending energy diagram where it is possible to obtain
shapes of the same energies but significantly different component distributions. Thus,
cells can use adhesion to alternate between two different component distributions by
increasing or decreasing adhesion. In such a case, we may suspect that the increase
of adhesion above r ≈ 0.65 may allow the cell to achieve a gradual distribution of
protein components and deactivate cell activities that are only sustained through the
aggregation of certain proteins.

Figure 6.9: Shapes for the oblate-2 (row a) and pears-down-2 (row b) vesicles are
shown for r = 0.65 and r = 0.70.

Pears-up-2 and pears-up-3 vesicles

The pears-up-2 branch has the same origin as that of the pears-down-2 branch at
r = 0 in the energy diagram, and it is attached to the surface from the wider end.
From the Fig. 6.10 and the concentration profiles of Fig. 6.11, we see that there is
a negligible change in the distribution of components with the increase in adhesion
along the branch and it remains almost similar to that at r = 0. The distribution of
components in the domains is uniform and the boundary region between the domains
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is narrow. The stability range of this branch is very small and the limiting shape is
reached at r = 0.126.

Figure 6.10: Shapes and 2D shape profiles of the pears-up-2 vesicles are shown for
r = 0, r = 0.116, r = 0.126. The regions in the 2D profile marked by different colours
correspond to the two domains separated by an interface.

Figure 6.11: Local concentration profiles of component A, φ(s) over the total vesicle
length are shown for the pears-up-2 vesicles for different values of reduced adhesion
radii.

This branch has shapes similar to the pears-up-3 vesicles shown in Fig. 6.12, but
the configuration profiles supported by the shapes of these two branches vary signif-
icantly. For example, let’s consider the shapes at r = 0.116 for these two branches.
The pears-up-2 vesicle can support a stronger accumulation of high curvature compo-
nents at the north pole and a narrow neck in contrast to the pears-up-3 vesicle which
supports a slightly wider upper end and a weaker accumulation of high curvature com-
ponents in the circular domain at it’s north pole. The boundary between the domains
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Figure 6.12: Shapes and 2D shape profiles of the pears-up-3 vesicles are shown for
r = 0.116, r = 0.15, r = 0.34. The regions in the 2D profile marked by different
colours correspond to the two domains separated by an interface.

Figure 6.13: Local concentration profiles of component A, φ(s) over the total vesicle
length for different values of reduced adhesion radii are shown on the left and the
change in the upper and lower limits of φ(s) as a function of r is shown on the right
for the pears-up-3 vesicles. The crosses correspond to the values of radii for which
the vesicle shapes are shown.

is still narrow and well defined for pears-up-3 vesicle. As adhesion increases, the shape
and the distribution of components change significantly and mixing of components is
encouraged in the shapes corresponding to the pears-up-3 branch with a widening of
it’s upper end, which is in contrast to the shapes of the pears-up-2 branch. A mixed
state is observed for the limiting structure at r = 0.34 of the pears-up-3 branch despite
the shape asymmetry, and this can be confirmed from the concentration profile curve
φ(s) in Fig. 6.13. The max/min[φ(s)] vs. r curves in Fig. 6.13 show the variation
in the φB and φA values along the branch. There is a decay in the high curvature
components from the domain rich in them, and this domain merges with the other
domain to form a homogeneous one component system at the limiting structure. Our
calculations thus suggest a possibility of a very interesting phenomenon where adhe-
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sion can promote the complete mixing of components. This also makes pears-up-3 the
only vesicles where due to a change in adhesion, the vesicle can go from a segregated
state to a mixed state under adhesion. The energy difference (Fig. 6.2) between these
two branches is very small and the vesicle can transition from the pears-up-2 branch
to the pears-up-3 branch and vice versa with a discontinuous transition reflected in
bending energy. The intersection point of these two branches at the adhesion radius
r = 0.118 signifies two different shapes with different concentration profiles but having
the same energy and thus an easy possibility of transition between them.

Prolate and pears-up-3 vesicles

We have shown the shapes of prolate branch in Fig. 6.14a and pears-up-3 branch in the
Fig. 6.14b for comparison. The prolate branch starts as a mixed state at r = 0 which
can be seen from Fig. 6.16, and then undergoes slight segregation under adhesion at
the north pole with the rest of the vesicle still in a mixed state. The 2D shape profiles
are shown in Fig. 6.15 where the transition between the shapes corresponding to the
mixed and segregated distribution profile is marked. This segregation is not visible in
the 3D prolate shapes but is clearly visible in the concentration profiles (Fig. 6.16).
For r = 0, the vesicle has up-down symmetry and the distribution of the components is
uniform. Breaking this up-down symmetry induces non-uniformity in the distribution
of the components. This shows how sensitive the distribution of components can be,
even to small changes in the shape. It is also interesting to note that at r = 0.34, the
prolate and the pears-up-3 branches have similar overall shapes, but the difference in
the concentration profiles and mean curvature at the north pole accounts for the large
energy difference between them. This difference in mean curvature can be identified
from Fig. 6.17.

We thus observe that the equally mixed configuration, which is only available for
prolate-like shapes at r = 0 and r = 0.01 (of the prolate branch), can be stabilized
under significant adhesion only at r = 0.34 (of the pears-up-3 branch). Thus for
this reduced volume, v, there are only two configurations of a mixed state obtained
under adhesion. Adhesion only weakly affects the distribution of components in the
prolate vesicles, where an increase in adhesion promotes weak segregation, but leads
to mixing in already segregated pears-up-3 vesicles.

Pears-up and pears down vesicles

Here we study vesicles composed of two approximately spherical parts of different
sizes connected by a narrow neck. These vesicles have the lowest energy for small
values of the adhesion radius, r, under the parameters that we have studied. We see
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Figure 6.14: Row (a): Shapes of the prolate vesicles are shown for r = 0, r = 0.01, r =
0.02, r = 0.20, r = 0.34, r = 0.53. Row (b): Shapes of the pears-up-3 vesicles are
shown for r = 0.116, r = 0.15, r = 0.34.

Figure 6.15: 2D shape profiles of the prolate vesicles are shown for r = 0, r = 0.01, r =
0.02, r = 0.20, r = 0.34, r = 0.53.

Figure 6.16: Local concentration profiles of component A, φ(s) over the total vesicle
length are shown for the prolate vesicles for different values of reduced adhesion radii.
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Figure 6.17: Overlay of c1 + c2 and c0 profiles for prolate and pears-up-3 vesicles at
r = 0.34.

that the component with the higher curvature is preferentially accumulated in the
smaller spherical part of the vesicle and the components are uniformly distributed in
both parts of the vesicle. The shapes and the 2D shape profiles of the pears branch
with a larger bead and that of the pears branch with a smaller bead attached to the
surface are shown in Fig. 6.18 and Fig. 6.20 respectively. Both these branches share
the same origin in the bending energy diagram at r = 0. The pears-up branch exists
for a reasonably large range up to r = 0.44 while the pears-down branch exists for a
smaller range up to r = 0.22.

Figure 6.18: Shapes and 2D shape profiles for the pears-up vesicles are shown for
r = 0, r = 0.3, r = 0.44. The regions in the 2D profile marked by different colours
correspond to the two domains separated by an interface.

An already segregated pears-up shape at r = 0 undergoes mixing with an increase
in adhesion as seen from the concentration profiles, φ(s) in the Fig. 6.19. Thus
adhesion can overcome the segregation of components that can be encouraged by a
shape change like budding as reported by ref. [56]. It is very interesting to note that
adhesion can encourage mixing in a pears-up shape that has two different curvatures
in it’s two spheres. Interestingly, for these vesicles, the boundary between the high
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Figure 6.19: Local concentration profiles of component A, φ(s) over the total vesicle
length for different values of reduced adhesion radii are shown on the left and the
change in the upper and lower limits of concentration φ(s) as a function of r is shown
on the right for the pears-up vesicles. The crosses correspond to the values of radii
for which the vesicle shapes are shown.

and low concentration regions of the high curvature components is placed in the neck
throughout the branch, and the concentration remains uniform in the two parts of the
vesicle. Adhesion causes the smaller sphere to get smaller while the neck gets bigger.
The change in the shape is however negligible for small adhesion radius, r. Initially,
in the range of the adhesion radius, 0 ≤ r ≤ 0.26, there is almost no change in the
concentration profile. However, when the change of the shape due to the adhesion
becomes sufficient, the concentration of the high curvature component in the smaller
sphere decreases as seen in the max/min[φ(s)] vs. r curves of Fig. 6.19. This can
be explained by the high mean curvature region formed at the rim of the adhered
vesicle’s surface. This causes the high spontaneous curvature components to move to
the rim of the adhered vesicle from the small spherical part. With the increase in
adhesion radius, this region of high mean curvature increases and attracts these high
curvature components. In other words, we may suggest that an increase in adhesion
likely promotes the migration of high spontaneous curvature components towards
the base of the vesicle. Pears-up-2 are the only vesicle shapes which allow the high
spontaneous curvature component to be present at the north pole of the vesicle with
the increase in adhesion. However, this kind of vesicles are stable only up to small
adhesion radius values.

Biologically, adhesion can be a useful mechanism to help the cell undergo mixing
of components. This mechanism may be used by the cell to de-aggregate it’s
environment when a very high concentration of components can jam the cell and
thereby make it unconducive to any chemical reactions [112].
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Figure 6.20: Shapes and 2D shape profiles for the pears-down vesicles are shown at
r = 0, r = 0.15, r = 0.16, r = 0.22. The regions in the 2D profile marked by different
colours correspond to the two domains separated by an interface.

Figure 6.21: Local concentration profiles of component A, φ(s) over the total vesicle
length are shown for the pears-down vesicles for different values of reduced adhesion
radii.

The pears-down branch has the same origin as the pears-up branch at r = 0 in the
bending energy diagram. Based on the shapes shown in Fig. 6.20, we can conclude
that with the increase in adhesion, the components still prefer to be segregated. A
negligible change is seen in the concentration profile of the components, and only
the position of the boundary between the high and low concentration region of the
high curvature components changes with the increase in adhesion, as seen from Fig.
6.21. We see that mainly the smaller spherical part of the vesicle attached to the
surface changes it’s shape. The larger upper spherical part separated by a narrow
neck, remains unchanged, and the neck gets narrower when the radius of adhesion
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increases. Such transformations result in an increase of energy. This is because the
deformations lead to an increase in bending energy, and it’s rise is not compensated
by the adhesion energy since the size of the adhesion radius is constrained by the size
of the smaller sphere attached to the substrate. It is also interesting to note that
despite significant deformations in the small spherical part attached to the substrate,
the distribution of components remains almost unchanged. These deformations cause
the increase of the mean curvature at the rim of the adhered part of the vesicle and
are restricted to a very small part of it. Thus, there isn’t a sufficient driving force
to induce the redistribution of the components due to adhesion. The concentration
of the high curvature component at the substrate remains high for all values of the
adhesion radius. Here, the increase in adhesion supports an overall segregation of
components.

Thus, depending on whether a large or a small sphere is attached to the adhe-
sion surface, the changes in the cell shape and the mixing/de-mixing mechanism are
strongly dependent. The bending energy rise is rapid for the pears shape attached
to the surface with a smaller spherical part as compared to the pears shape attached
with the larger spherical part. The widening or narrowing of the neck can also be
manipulated depending on whether a larger or a smaller spherical part of the vesicle
is attached with the surface.

6.2 Summary and Conclusions

We may speculate that whenever a high curvature component is accumulated at the
north pole of the vesicle, an increase in adhesion is likely to promote mixing and vice
versa when the high curvature component is accumulated at the base of the vesicle,
adhesion may likely promote segregation. Our calculations suggest that it may be
likely to observe mixing of components in prolate-like shapes (including pears-up and
pears-up-3) as compared to oblate-like shapes under adhesion. Interestingly, both
budded (pears-up shapes) and non-budded (pears-up-3 shapes) shapes can encour-
age mixing of components, and non-budded oblate vesicles can encourage stronger
segregation of components than the budded pears-like vesicles. We have shown that
a vesicle with an initially segregated distribution of components can undergo mix-
ing and vice versa with the increase in adhesion. It is interesting to observe such a
complex behaviour for such a simple system at these parameter values.

In conclusion, we show that adhesion in particular can also promote the mixing of
components in some, apart from the segregation of components in certain shapes. We
have elucidated the close relationship between the shape and distribution of compo-
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nents. Adhesion thus can be used as a tool to transition between different distributions
of components with a change in shape. We hope these results can signify the role of
adhesion as a mechanism for component redistribution in the cell systems.
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Summary and Conclusions

We have studied the adhesion of axisymmetric vesicles where the vesicle mem-
brane is composed of either a single or two different kinds of membrane components.
The vesicles were studied under the spontaneous curvature model. We focused on the
shape transformations of vesicles caused by their adhesion to a flat surface. Different
stable shapes of the adhered vesicles have been identified and the stability range of
the different classes of vesicle shapes has been investigated. We have also investigated
the coupling effect between the lateral distribution of membrane components and the
shape of the adhered vesicles.

Main conclusions:

1) Shape transformations for different types of vesicles characterized by the re-
duced volume, v, and the reduced spontaneous curvature, c0 have been investigated.
It was found that adhesion can promote budding of vesicles, and that budding was
more probable for vesicles with lower reduced volume than the vesicles with the larger
reduced volume in their pinned adhesion state. In fact, the total energy calculations
with fixed reduced adhesion strength, w as the parameter have shown that a very
small change in adhesion strength can either induce or suppress budding without the
change in spontaneous curvature.

2) It has been shown that there is a strong link between the local curvature of
the adhered membrane surface and the ease of vesicle adhesion. Vesicles with the
local curvature of the adhered membrane very close to the local curvature of the
substrate can easily adhere to the substrate. Such a mechanism can be used for many
biotechnological applications, for e.g., to collect nanoparticles just the way scavengers
(leukocytes) do in our body.

3) It has been shown that the adhesion of concave oblate vesicles obtained at
smaller reduced volumes is different than that of the convex oblate vesicles obtained
for larger reduced volumes. Concave oblate vesicles can be easily stabilized for smaller
adhesion strengths and large adhesion radii as they have more freedom to be deformed,
whereas convex oblate vesicles are stabilized for larger adhesion strengths and smaller
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adhesion radii as they have less freedom to be deformed.

4) The calculations done with the fixed reduced adhesion strength, w as a param-
eter have also shown that an increase in spontaneous curvature could enhance the
adhesion of vesicles. The increase in the reduced spontaneous curvature, c0 increases
the stability range of adhered vesicles. The higher ease of adhesion can be related
to a lower value of wmin (minimum adhesion strength required to obtain an adhered
vesicle stable with respect to it’s free state).

5) Oblate vesicles are found to be the most favoured and stable solutions for
both zero and non-zero reduced spontaneous curvatures studied with the increase in
adhesion strength – for the vesicles where the vesicle membrane is composed of a
single kind of membrane component.

6) We have calculated the shapes and their corresponding distribution of compo-
nents under adhesion. We have shown that adhesion can promote both mixing and
lateral segregation of components depending on the shape of the adhered vesicle. The
mixing and de-mixing of components can be induced by the change of adhesion ra-
dius. Non-budded structures like oblate vesicles were found to support segregation of
components whereas budded structures like pears-up (pear structure attached to the
surface with the larger sphere) vesicles could support mixing of components with the
increase in adhesion radius. Complete mixing was observed for the limiting structure
of the initially segregated pears-up-3 (pear-like vesicles with a wider upper end com-
pared to pears-up-2 vesicles) branch under an increase in adhesion radius. This is the
only vesicle shape to show complete mixing under significant adhesion.

7) It has been shown that an increase in adhesion radius is likely to promote
migration of high curvature components towards the base of the vesicle – for the
majority of shapes stabilized under the investigated set of parameters.

The additional conclusions of the thesis include:

1) New family of vesicle shapes called the "oblate-bead" (oblate-like vesicle at-
tached to the surface with a spherical protrusion on it’s free membrane part) shapes
have been discovered for v = 0.545 and c0 = 0. It is to be noted that a budded
structure like oblate-bead could be stabilized under adhesion for zero spontaneous
curvature which was not possible under free state at zero spontaneous curvature.

2) It was observed that a small change in reduced adhesion radius, r is necessary
to change the distribution of components from the diffuse interface state of weak
segregation to a sharp interface state corresponding to strong segregation. Thus, we
may speculate that adhesion can be a mechanism by which cells can alternate between
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strong and weak segregation in order to regulate the activation or de-activation of cell
activities.

3) The complexity of the relation between the susceptibility to adhesion and the
shape of the vesicle was found to depend upon the complexity of the vesicle shape.
Even for simple shapes like oblates, it has been shown that the vesicles with larger
reduced volumes are likely to have a high susceptibility to adhesion for small adhesion
strengths, whereas, the vesicles with smaller reduced volumes (in comparison to
the vesicles with larger reduced volumes) are likely to have a high susceptibility to
adhesion at large adhesion strengths.

The results in the thesis elucidate the importance of cell adhesion as the mechanism
responsible for cell shape transitions and various lateral distributions of components
in cell membranes. Our results can be useful in biological scenarios, for e.g. in under-
standing the mechanism of cell/vesicle budding and transfer of membrane components
between the daughter and the mother cell during such fission or fusion processes.
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Appendix A

A.1 Gauss-Bonnet theorem

Gauss-Bonnet theorem [113,114] essentially connects the geometry of the surface (the
curvature) to the topology (Euler characteristic) of the surface.

Let R ⊂ S be a regular region of an oriented surface and let C1, ...., Cn be the
piecewise regular curves that form the boundary ∂R of R. Then, let us suppose that
each Ci is positively oriented and let θ1, ...., θp be the set of all external angles of the
curves C1, ...., Cn. Then we have,

n∑
i=1

∫
Ci

kg(s)ds+

∫ ∫
R

Kdσ +

p∑
i=1

θi = 2πχ(R) (A.1.1)

whereK is the Gaussian curvature, kg is the geodesic curvature along the boundary
curve Ci and χ(R) is the Euler characteristic of the surface. s is the arc-length of
curve Ci.

Now, if the surface S is an orientable compact surface without a boundary, then
we have, ∫ ∫

S

Kdσ = 2πχ(S) (A.1.2)

where, χ(S) is a topological invariant, which means as long as the topology does
not change on deformation, the Euler characteristic of the surface remains constant.
The above relation then suggests that even though the curvatures at individual points
on the surface will change on deformation, but the total sum of all the Gaussian
curvatures will remain constant under this deformation. The Euler characteristic
becomes 2-2g for an orientable compact surface with no boundary, where ’g’ is the
genus or the measure of the number of holes of the surface.
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B.1 Basics of differential geometry used to describe

a surface

Biological surfaces have a very diverse molecular nature but at the first approximation,
we can consider them to be homogeneous and smooth surfaces. We can therefore
employ tools of differential geometry [94,115,116] to describe such smooth surfaces.

Let us consider an arbitrary point P on the surface and the position of this point
with respect to the 3D Euclidean space is given by the position vector r(u, v) which
is a function of the surface parameters u and v.

r(u, v) = [x(u, v), y(u, v), z(u, v)] (B.1.1)

The first and second order partial derivatives of the position vector r(u, v) along
u and v,

ru = ∂r/∂u (B.1.2)

rv = ∂r/∂v (B.1.3)

ruu = ∂2r/∂u2 (B.1.4)

rvv = ∂2r/∂v2 (B.1.5)

ruv = ∂2r/∂u∂v (B.1.6)

Then, the vector dr between two neighbouring points on the surface can be defined
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as,

dr = r(u+ du, v + dv)− r(u, v) = rudu+ rvdv (B.1.7)

The length ds of this vector dr can now be calculated from,

I = ds2 = dr · dr = Edu2 + 2Fdudv +Gdv2 (B.1.8)

where, E = ru
2, F = ru · rv, G = rv

2.

The equation B.1.8 represents the first fundamental form which defines the surface
metric. E, F and G represent the coefficients to this first fundamental form.

The length,
ds =

√
(Edu2 + 2Fdudv +Gdv2) =

√
I (B.1.9)

Now, in order to define a curvature, let us again define the distance between two
neighbouring points on the surface as,

dr = r(u+ du, v + dv)− r(u, v) = rudu+ rvdv +
1

2
(ruudu

2 + 2ruvdudv + rvvdv
2) + ...

(B.1.10)

n · dr =
1

2
(Ldu2 + 2Mdudv +Ndv2) (B.1.11)

where, L = n · ruu,M = n · ruv, N = n · rvv.

Equation B.1.11 represents the second fundamental form which allows us to define
the curvature of the surface at a point, and the coefficients L, M and N are the
coefficients to this second fundamental form.

First, let us describe the curvature of a space curve at a given point s. We can
introduce the following triple unit vectors as follows,

Tangent vector:

t(s) =
dr(s)

ds
(B.1.12)

Main normal vector:
m(s) =

d2r(s)

ds2
(B.1.13)

Bi-normal vector:
b(s) = t(s)×m(s) (B.1.14)

These triple unit vectors constitute the Frenet frame at a point s on the space
curve.

The curvature at a given point on the curve can then be described by the rate of
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Figure B.1: The illustration of the principal curvatures C1 and C2 is shown at a given
point s on the surface.

change of the tangent vector,

ts =
dt

ds
= k(s)m (B.1.15)

and

t(s) =
dr(s)

ds
= rs (B.1.16)

therefore we get,

ts =
d2r(s)

ds2
= k(s)m (B.1.17)

where k(s) is the curvature of the curve at a given point s.

Now, let the angle between the main normal m of the curve and the surface normal
n be Θ.

We get,

n · d
2r(s)

ds2
= k(s) cos Θ (B.1.18)

but,

n · d
2r(s)

ds2
= (n · ruu)du2 + 2(n · ruv)dudv + (n · rvv)dv2 (B.1.19)
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therefore,

kn(s) = k(s) cos Θ =
Ldu2 + 2Mdudv +Ndv2

Edu2 + 2Fdudv +Gdv2
(B.1.20)

where, kn(s) is the normal curvature of the surface. The maximum and the mini-
mum of the normal curvature correspond to the two principal curvatures C1 and C2

at each point on the surface.

The Mean curvature is defined as,

H =
1

2
(C1 + C2) (B.1.21)

and the Gaussian curvature as,
K = C1C2 (B.1.22)

B.2 Derivation of the general form of bending en-

ergy

The general form [94, 117] of the bending energy is derived first and is then reduced
to obtain the isotropic form of the bending energy in this section.

We have seen earlier that the isotropic form of bending energy (per unit area)
describing isotropic thin films and membranes is given by,

Fb =
κ

2
(2H − C0)

2 + κGK (B.2.1)

where, H = C1+C2

2
is the mean curvature, C0 is the spontaneous curvature, K =

C1C2 is the Gaussian curvature, while κ and κG are the bending and Gaussian bending
rigidities of the membrane respectively.

This expression of the isotropic bending energy can be generalized for the
anisotropic membranes (using a continuum-mechanics approach) where the anisotropy
may result from the tilt [79] or the in-plane orientational ordering [118] of the mem-
brane components. We consider that in general, the 2D surface is anisotropic in two
dimensions. This means that there is a possibility of two values of the principal curva-
tures and two values of the intrinsic (spontaneous) principal curvatures over the small
area element dA. A lipid molecule is called anisotropic when the intrinsic principal
curvatures are not identical, C1m 6= C2m. If, the principal curvatures C1 and C2 are
equal to the intrinsic principal curvatures C1m and C2m and also if the orientations
of the principal systems of the actual local membrane curvature tensor C and the
intrinsic membrane curvature tensor Cm coincide, then the bending energy of that
small area element becomes zero.
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Thus, the elastic energy per unit area of a small area element dA of the thin plate
can be defined as the mismatch between the intrinsic curvature of this surface element
and it’s actual local membrane curvature. In their respective principal systems, the
curvature tensor matrices include only the diagonal elements.

C =

[
C1 0

0 C2

]
(B.2.2)

Cm =

[
C1m 0

0 C2m

]
(B.2.3)

In general, the principal systems of these two tensors (Cm and C) make an angle ω
with respect to each other in the tangent plane of the surface. This mismatch between
the intrinsic membrane curvature and the actual local membrane curvature in the
absence of any external forces can be represented by the tensor M = RCmR

−1 − C,
where

R =

[
cosω − sinω

sinω cosω

]
(B.2.4)

is the rotation matrix.

Since the elastic energy per unit area (Fb) is a scalar quantity, i.e. it must be
invariant with respect to all the transformations of the local coordinate system. We,
therefore, consider only the invariants of the tensor M of the second order to define
it.

Thus the elastic energy is represented as,

Fb =
K1

2
(TrM)2 +K2DetM (B.2.5)

where K1 and K2 are the constants. On considering the equations from B.2.2 to B.2.5,
the Eq. B.2.5 can be written as follows [119],

Fb = (2K1 +K2)(H −Hm)2 −K2(D
2 − 2DDm cos 2ω +D2

m) (B.2.6)

where, D = C1−C2

2
is the curvature deviator and it is the invariant of the curva-

ture tensor (D2 = (Tr(C)/2)2 − Det(C) = H2 − C1C2), Dm = (C1m − C2m)/2 is
the intrinsic (spontaneous) curvature deviator and Hm = (C1m + C2m)/2 is the in-
trinsic (spontaneous) mean curvature. Hm and Dm represent the anisotropic material
properties of the membrane.

For the isotropic membranes (i.e. Dm = 0), the Eq. B.2.6 transforms (up to the
constant terms independent of H and D) into the Helfrich expression as shown in Eq.
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Appendix B.

B.2.1, where κ = K1 and κG = K2 and

C0 = (2K1 +K2)Hm/K1 = (2κ+ κG)Hm/κ (B.2.7)

105http://rcin.org.pl



http://rcin.org.pl



List of Publications

Publications related to the thesis:

[1] J. Raval, and W. T. Góźdź. Shape transformations of vesicles induced by their
adhesion to flat surfaces. ACS omega, 5(26):16099-16105, 2020.

[2] J. Raval, A. Iglič, and W. T. Góźdź. Investigation of shape transformations of
vesicles, induced by their adhesion to flat substrates characterized by different
adhesion strength. International Journal of Molecular Sciences, 22(24):13406,
2021.

[3] J. Raval, A. Iglič, and W. T. Góźdź. Shape transformations of two-component
vesicles, induced by their adhesion to flat surfaces.
(under preparation)

Other publications:

[1] N. Bibissidis, K. Betlem, G. Cordoyiannis, F. Prista-von Bonhorst, J. Goole,
J. Raval, M. Daniel, W. T. Góźdź, A. Iglič and P. Losada-Pérez. Correla-
tion between adhesion strength and phase behaviour in solid-supported lipid
membranes. Journal of Molecular Liquids, 320:114492, 2020.

[2] J. Raval, E. Gongadze, M. Benčina, I. Junkar, N. Rawat, L. Mesarec, V. Kralj-
Iglič, W. T. Góźdź, and A. Iglič. Mechanical and electrical interaction of biolog-
ical membranes with nanoparticles and nanostructured surfaces. Membranes,
11(7):533, 2021.

107http://rcin.org.pl



http://rcin.org.pl



Bibliography
[1] W. T. Góźdź, N. Bobrovska, and A. Ciach. Separation of components in lipid

membranes induced by shape transformation. The Journal of chemical physics,
137(1):015101, 2012.

[2] U. Seifert and R. Lipowsky. Morphology of vesicles. Handbook of biological
physics, 1:403–464, 1995.

[3] E. Sackmann, J. Käs, and J. Rädler. On shape transformations and shape fluctu-
ations of cellular compartments and vesicles. Physica Scripta, 1993(T49A):111,
1993.

[4] G. M. Cooper. The Cell: A Molecular Approach. 2nd edition. Sinauer Asso-
ciates, Sunderland (MA), 2000.

[5] T. P. Silverstein. The real reason why oil and water don’t mix. Journal of
chemical education, 75(1):116, 1998.

[6] D. Lombardo, M. A. Kiselev, S. Magazù, and P. Calandra. Amphiphiles self-
assembly: basic concepts and future perspectives of supramolecular approaches.
Advances in Condensed Matter Physics, 2015, 2015.

[7] M. Deserno. Fluid lipid membranes–a primer. See http://www. cmu.
edu/biolphys/deserno/pdf/membrane_theory. pdf, 2007.

[8] G. L. Mosley, C. D. Yamanishi, and D. T. Kamei. Mathematical modeling of
vesicle drug delivery systems 1: vesicle formation and stability along with drug
loading and release. Journal of laboratory automation, 18(1):34–45, 2013.

[9] J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham. Theory of self-assembly
of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical
Society, Faraday Transactions 2: Molecular and Chemical Physics, 72:1525–
1568, 1976.

[10] B. Alberts, A. Johnson, J. Lewis, and et al. Molecular Biology of the Cell. 4th
edition. Garland Science, New York, 2002.

[11] A. Iglič, H. Hägerstrand, M. Bobrowska-Hägerstrand, V. Arrigler, and V. Kralj-
Iglič. Possible role of phospholipid nanotubes in directed transport of membrane
vesicles. Physics Letters A, 310(5-6):493–497, 2003.

109http://rcin.org.pl



Bibliography

[12] P. Chugh. Cells: why shape matters. Science in School, 46:8–13, 2019.

[13] O. M. Lancaster, M. Le Berre, A. Dimitracopoulos, D. Bonazzi, E. Zlotek-
Zlotkiewicz, R. Picone, T. Duke, M. Piel, and B. Baum. Mitotic rounding alters
cell geometry to ensure efficient bipolar spindle formation. Developmental cell,
25(3):270–283, 2013.

[14] O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo,
S. Pagliara, A. Ekpenyong, A. Jacobi, et al. Real-time deformability cytometry:
on-the-fly cell mechanical phenotyping. Nature methods, 12(3):199–202, 2015.

[15] J. Käs and E. Sackmann. Shape transitions and shape stability of giant phos-
pholipid vesicles in pure water induced by area-to-volume changes. Biophysical
journal, 60(4):825–844, 1991.

[16] U. Seifert. Configurations of fluid membranes and vesicles. Advances in physics,
46(1):13–137, 1997.

[17] R. Lipowsky. Remodeling of membrane compartments: some consequences of
membrane fluidity. Biological chemistry, 395(3):253–274, 2014.

[18] O. G. Mouritsen. The liquid-ordered state comes of age. Biochimica et Bio-
physica Acta (BBA)-Biomembranes, 1798(7):1286–1288, 2010.

[19] M. Cebecauer, M. Amaro, P. Jurkiewicz, M. J. Sarmento, R. Sachl, L. Cwiklik,
and M. Hof. Membrane lipid nanodomains. Chemical reviews, 118(23):11259–
11297, 2018.

[20] S. Komura and D. Andelman. Physical aspects of heterogeneities in multi-
component lipid membranes. Advances in colloid and interface science, 208:34–
46, 2014.

[21] D. Needham, T. J. McIntosh, and E. Evans. Thermomechanical and transition
properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry,
27(13):4668–4673, 1988.

[22] U. Seifert. Fluid membranes – theory of vesicle conformations. Habilitation
theses Ludwig-Maximilians-Universitäat Müunchen, 1994.

[23] Membrane Phase Transitions. https://phys.libretexts.org/@go/page/1352, mar
28 2021. Online.

110http://rcin.org.pl



Bibliography

[24] L. Mesarec, W. Góźdź, A. Iglič, V. Kralj-Iglič, E. G. Virga, and S. Kralj. Normal
red blood cells’ shape stabilized by membrane’s in-plane ordering. Scientific
reports, 9(1):1–11, 2019.

[25] S. Svetina and B. Žekš. Shape behavior of lipid vesicles as the basis of some
cellular processes. The Anatomical Record: An Official Publication of the Amer-
ican Association of Anatomists, 268(3):215–225, 2002.

[26] B. Mavcic, B. Babnik, A. Iglic, M. Kanduser, T. Slivnik, and V. Kralj-Iglic.
Shape transformation of giant phospholipid vesicles at high concentrations of
c12e8. Bioelectrochemistry, 63(1):183–188, 2004.

[27] M. Drab, Ž. Pandur, S. Penič, A. Iglič, V. Kralj-Iglič, and D. Stopar. A monte
carlo study of giant vesicle morphologies in nonequilibrium environments. Bio-
physical Journal, 120(20):4418–4428, 2021.

[28] W. Wintz, H. G. Döbereiner, and U. Seifert. Starfish vesicles. EPL (Europhysics
Letters), 33(5):403, 1996.

[29] A. Iglič, V. Kralj-Iglič, and J. Majhenc. Cylindrical shapes of closed lipid bilayer
structures correspond to an extreme area difference between the two monolayers
of the bilayer. Journal of biomechanics, 32(12):1343–1347, 1999.

[30] E. Farge and P. F. Devaux. Shape changes of giant liposomes induced by an
asymmetric transmembrane distribution of phospholipids. Biophysical journal,
61(2):347–357, 1992.

[31] V. Kralj-Iglic. Stability of membranous nanostructures: a possible key mech-
anism in cancer progression. International journal of nanomedicine, 7:3579,
2012.

[32] L. A. Lasky, M. S. Singer, D. Dowbenko, Y. Imai, W. J. Henzel, C. Grimley,
C. Fennie, N. Gillett, S. R. Watson, and S. D. Rosent. An endothelial ligand
for l-selectin is a novel mucin-like molecule. Cell, 69(6):927–938, 1992.

[33] S. Huang and D. E. Ingber. The structural and mechanical complexity of cell-
growth control. Nature cell biology, 1(5):E131–E138, 1999.

[34] H. Perinpanayagam, R. Zaharias, C. Stanford, R. Brand, J. Keller, and
G. Schneider. Early cell adhesion events differ between osteoporotic and non-
osteoporotic osteoblasts. Journal of orthopaedic research, 19(6):993–1000, 2001.

111http://rcin.org.pl



Bibliography

[35] C. N. Serhan and J. Savill. Resolution of inflammation: the beginning programs
the end. Nature immunology, 6(12):1191–1197, 2005.

[36] A. A. Khalili and M. R. Ahmad. A review of cell adhesion studies for biomed-
ical and biological applications. International journal of molecular sciences,
16(8):18149–18184, 2015.

[37] E. Paluch and C-P. Heisenberg. Biology and physics of cell shape changes in
development. Current Biology, 19(17):R790–R799, 2009.

[38] E. A. Evans. Analysis of adhesion of large vesicles to surfaces. Biophysical
journal, 31(3):425–431, 1980.

[39] U. Seifert and R. Lipowsky. Adhesion of vesicles. Physical Review A, 42(8):4768,
1990.

[40] A-S. Smith and U. Seifert. Vesicles as a model for controlled (de-) adhesion of
cells: a thermodynamic approach. Soft Matter, 3(3):275–289, 2007.

[41] R. Lipowsky and U. Seifert. Adhesion of membranes: a theoretical perspective.
Langmuir, 7(9):1867–1873, 1991.

[42] R. Lipowsky and U. Seifert. Adhesion of vesicles and membranes. Molecular
crystals and liquid crystals, 202(1):17–25, 1991.

[43] S. Dasgupta, T. Auth, and G. Gompper. Wrapping of ellipsoidal nano-particles
by fluid membranes. Soft Matter, 9(22):5473–5482, 2013.

[44] S. Cao, G. Wei, and J. Z. Y. Chen. Transformation of an oblate-shaped vesicle
induced by an adhering spherical particle. Physical Review E, 84(5):050901,
2011.

[45] X. Yi and H. Gao. Budding of an adhesive elastic particle out of a lipid vesicle.
ACS Biomaterials Science & Engineering, 3(11):2954–2961, 2017.

[46] T. Yue, Y. Xu, M. Sun, X. Zhang, and F. Huang. How tubular aggregates
interact with biomembranes: wrapping, fusion and pearling. Physical Chemistry
Chemical Physics, 18(2):1082–1091, 2016.

[47] M. Deserno and W. M. Gelbart. Adhesion and wrapping in colloid- vesicle
complexes. The Journal of Physical Chemistry B, 106(21):5543–5552, 2002.

112http://rcin.org.pl



Bibliography

[48] J. Agudo-Canalejo and R. Lipowsky. Critical particle sizes for the engulfment
of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS nano,
9(4):3704–3720, 2015.

[49] W. T. Góźdź. Deformations of lipid vesicles induced by attached spherical
particles. Langmuir, 23(10):5665–5669, 2007.

[50] K. A. Smith, D. Jasnow, and A. C. Balazs. Designing synthetic vesicles that
engulf nanoscopic particles. The Journal of chemical physics, 127(8):08B612,
2007.

[51] M. Deserno. Elastic deformation of a fluid membrane upon colloid binding.
Physical Review E, 69(3):031903, 2004.

[52] J. Agudo-Canalejo and R. Lipowsky. Stabilization of membrane necks by
adhesive particles, substrate surfaces, and constriction forces. Soft Matter,
12(39):8155–8166, 2016.

[53] Z. Wu and X. Yi. Structures and mechanical behaviors of soft nanotubes confin-
ing adhesive single or multiple elastic nanoparticles. Journal of the Mechanics
and Physics of Solids, 137:103867, 2020.

[54] Y. Zhao, S. Das, and Q. Du. Adhesion of multicomponent vesicle membranes.
Physical Review E, 81(4):041919, 2010.

[55] T. R. Weikl and R. Lipowsky. Adhesion-induced phase behavior of multicom-
ponent membranes. Physical Review E, 64(1):011903, 2001.

[56] U. Seifert. Curvature-induced lateral phase segregation in two-component vesi-
cles. Physical review letters, 70(9):1335, 1993.

[57] K. Simons and E. Ikonen. Functional rafts in cell membranes. nature,
387(6633):569–572, 1997.

[58] E. Ikonen. Roles of lipid rafts in membrane transport. Current opinion in cell
biology, 13(4):470–477, 2001.

[59] D. L. Parton, J. W. Klingelhoefer, and M. S. P. Sansom. Aggregation of model
membrane proteins, modulated by hydrophobic mismatch, membrane curvature,
and protein class. Biophysical journal, 101(3):691–699, 2011.

[60] K. A. Burke, E. A. Yates, and J. Legleiter. Biophysical insights into how sur-
faces, including lipid membranes, modulate protein aggregation related to neu-
rodegeneration. Frontiers in neurology, 4:17, 2013.

113http://rcin.org.pl



Bibliography

[61] H. T. McMahon and J. L. Gallop. Membrane curvature and mechanisms of
dynamic cell membrane remodelling. Nature, 438(7068):590–596, 2005.

[62] W. Helfrich. Elastic properties of lipid bilayers: theory and possible experi-
ments. Zeitschrift für Naturforschung C, 28(11-12):693–703, 1973.

[63] T. Baumgart, S. T. Hess, and W. W. Webb. Imaging coexisting fluid do-
mains in biomembrane models coupling curvature and line tension. Nature,
425(6960):821–824, 2003.

[64] T. Baumgart, S. Das, W. W. Webb, and J. T. Jenkins. Membrane elasticity in
giant vesicles with fluid phase coexistence. Biophysical journal, 89(2):1067–1080,
2005.

[65] W. T. Góźdź. The interface width of separated two-component lipid membranes.
The Journal of Physical Chemistry B, 110(43):21981–21986, 2006.

[66] B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. G. Butler, P. R. Evans,
and H. T. McMahon. Bar domains as sensors of membrane curvature: the
amphiphysin bar structure. Science, 303(5657):495–499, 2004.

[67] A. Roux, D. Cuvelier, P. Nassoy, J. Prost, P. Bassereau, and B. Goud. Role of
curvature and phase transition in lipid sorting and fission of membrane tubules.
The EMBO journal, 24(8):1537–1545, 2005.

[68] M. C. Heinrich, B. R. Capraro, A. Tian, J. M. Isas, R. Langen, and T. Baumgart.
Quantifying membrane curvature generation of drosophila amphiphysin n-bar
domains. The journal of physical chemistry letters, 1(23):3401–3406, 2010.

[69] A. Callan-Jones, B. Sorre, and P. Bassereau. Curvature-driven lipid sorting in
biomembranes. Cold Spring Harbor perspectives in biology, 3(2):a004648, 2011.

[70] S. Katz and S. Givli. Curvature-induced spatial ordering of composition in lipid
membranes. Computational and mathematical methods in medicine, 2017, 2017.

[71] R. Parthasarathy, C-H. Yu, and J. T. Groves. Curvature-modulated phase
separation in lipid bilayer membranes. Langmuir, 22(11):5095–5099, 2006.

[72] R. P. Rand and A. C. Burton. Mechanical properties of the red cell membrane:
I. membrane stiffness and intracellular pressure. Biophysical journal, 4(2):115–
135, 1964.

114http://rcin.org.pl



Bibliography

[73] Y. C. Fung. Theoretical considerations of the elasticity of red cells and small
blood vessels. Federation Proceedings, 25(6):1761–1772, 1966.

[74] E. A. Evans. Bending resistance and chemically induced moments in membrane
bilayers. Biophysical journal, 14(12):923–931, 1974.

[75] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Vol. 7. Pergamon press,
Oxford (England), 1959 (1st ed.), 1970 (2nd ed.).

[76] P. B. Canham. The minimum energy of bending as a possible explanation of
the biconcave shape of the human red blood cell. Journal of theoretical biology,
26(1):61–81, 1970.

[77] A. Iglič. A possible mechanism determining the stability of spiculated red blood
cells. Journal of biomechanics, 30(1):35–40, 1997.

[78] M. Fošnarič, A. Iglič, and S. May. Influence of rigid inclusions on the bending
elasticity of a lipid membrane. Physical review E, 74(5):051503, 2006.

[79] W. Helfrich and J. Prost. Intrinsic bending force in anisotropic membranes
made of chiral molecules. Physical Review A, 38(6):3065, 1988.

[80] H. J. Deuling and W. Helfrich. The curvature elasticity of fluid membranes: a
catalogue of vesicle shapes. Journal de Physique, 37(11):1335–1345, 1976.

[81] L. Miao, U. Seifert, M. Wortis, and H-G Döbereiner. Budding transitions of
fluid-bilayer vesicles: the effect of area-difference elasticity. Physical Review E,
49(6):5389, 1994.

[82] E. A. Evans and Skalak R. Mechanics and thermodynamics of biomembranes.
CRC press, Boca Raton, 1980.

[83] B. T. Stokke, A. Mikkelsen, and A. Elgsaeter. The human erythrocyte mem-
brane skeleton may be an ionic gel. European Biophysics Journal, 13(4):203–218,
1986.

[84] W. Helfrich. Blocked lipid exchange in bilayers and its possible influence on the
shape of vesicles. Zeitschrift für Naturforschung C, 29(9-10):510–515, 1974.

[85] E. A. Evans. Minimum energy analysis of membrane deformation applied to
pipet aspiration and surface adhesion of red blood cells. Biophysical journal,
30(2):265–284, 1980.

115http://rcin.org.pl



Bibliography

[86] M. P. Sheetz and S. J. Singer. Biological membranes as bilayer couples. a molec-
ular mechanism of drug-erythrocyte interactions. Proceedings of the National
Academy of Sciences, 71(11):4457–4461, 1974.

[87] S. Svetina, A. Ottova-Leitmannová, and R. Glaser. Membrane bending energy
in relation to bilayer couples concept of red blood cell shape transformations.
Journal of theoretical biology, 94(1):13–23, 1982.

[88] R. M. Raphael and R. E. Waugh. Accelerated interleaflet transport of phos-
phatidylcholine molecules in membranes under deformation. Biophysical Jour-
nal, 71(3):1374–1388, 1996.

[89] J. Urbanija, B. Babnik, M. Frank, N. Tomšič, B. Rozman, V. Kralj-Iglič, and
A. Iglič. Attachment of β 2-glycoprotein i to negatively charged liposomes may
prevent the release of daughter vesicles from the parent membrane. European
Biophysics Journal, 37(7):1085–1095, 2008.

[90] V. Kralj-Iglič, A. Iglič, H. Hägerstrand, and P. Peterlin. Stable tubular mi-
croexovesicles of the erythrocyte membrane induced by dimeric amphiphiles.
Physical Review E, 61(4):4230, 2000.

[91] L. Miao, B. Fourcade, M. Rao, M. Wortis, and R. Zia. Equilibrium budding
and vesiculation in the curvature model of fluid lipid vesicles. Physical Review
A, 43(12):6843, 1991.

[92] U. Seifert, K. Berndl, and R. Lipowsky. Shape transformations of vesicles: Phase
diagram for spontaneous-curvature and bilayer-coupling models. Physical review
A, 44(2):1182, 1991.

[93] R. Mukhopadhyay, H. W. G. Lim, and M. Wortis. Echinocyte shapes: bending,
stretching, and shear determine spicule shape and spacing. Biophysical Journal,
82(4):1756–1772, 2002.

[94] A. Iglič, D. Drobne, and V. Kralj-Iglic. Nanostructures in biological systems:
theory and applications. CRC Press, 2015.

[95] W. C. Hwang and R. E. Waugh. Energy of dissociation of lipid bilayer from
the membrane skeleton of red blood cells. Biophysical journal, 72(6):2669–2678,
1997.

[96] W. T. Góźdź. Influence of spontaneous curvature and microtubules on
the conformations of lipid vesicles. The Journal of Physical Chemistry B,
109(44):21145–21149, 2005.

116http://rcin.org.pl



Bibliography

[97] J. Stoker. Differential geometry. volume XX of Pure and Applied Mathematics.
Wiley, New York, 1969.

[98] W. T. Góźdź. Spontaneous curvature induced shape transformations of tubular
polymersomes. Langmuir, 20(18):7385–7391, 2004.

[99] R. Lipowsky. Understanding giant vesicles: a theoretical perspective. In The
Giant Vesicle Book, pages 73–168. CRC Press, 2019.

[100] G. I. Bell, M. Dembo, and P. Bongrand. Cell adhesion. competition between
nonspecific repulsion and specific bonding. Biophysical Journal, 45:1051–1064,
1984.

[101] F. Brochard-Wyart and P. G. de Gennes. Adhesion induced by mobile binders:
Dynamics. Proceedings of the National Academy of Sciences, 99(12):7854–7859,
2002.

[102] J. Steinkühler, J. Agudo-Canalejo, R. Lipowsky, and R. Dimova. Modulating
vesicle adhesion by electric fields. Biophysical journal, 111(7):1454–1464, 2016.

[103] P. S. Swain and D. Andelman. The influence of substrate structure on membrane
adhesion. Langmuir, 15(26):8902–8914, 1999.

[104] T. R. Weikl, M. Asfaw, H. Krobath, B. Różycki, and R. Lipowsky. Adhesion of
membranes via receptor–ligand complexes: Domain formation, binding cooper-
ativity, and active processes. Soft Matter, 5:3213–3224, 2009.

[105] J-Q. Lv, P-C. Chen, W. T. Góźdź, and Li. B. Mechanical adaptions of collective
cells nearby free tissue boundaries. Journal of Biomechanics, 104:109763, 2020.

[106] J. Raval, E. Gongadze, M. Benčina, I. Junkar, N. Rawat, L. Mesarec, V. Kralj-
Iglič, W. T. Góźdź, and A. Iglič. Mechanical and electrical interaction of biolog-
ical membranes with nanoparticles and nanostructured surfaces. Membranes,
11(7), 2021.

[107] M. Benčina, N. Rawat, K. Lakota, S. Sodin-Šemrl, A. Iglič, and I. Junkar. Bio-
performance of hydrothermally and plasma-treated titanium: The new gener-
ation of vascular stents. International Journal of Molecular Sciences, 22(21),
2021.

[108] T. Rouhiparkouhi, T. R. Weikl, D. E. Discher, and R. Lipowsky. Adhesion-
induced phase behavior of two-component membranes and vesicles. Interna-
tional journal of molecular sciences, 14(1):2203–2229, 2013.

117http://rcin.org.pl



Bibliography 

[109] A. Hategan, R. Law, S. Kahn, and D. E. Discher. Adhesively-tensed cell mem

branes: lysis kinetics and atomic force microscopy probing. Biophysical journal, 

85(4):2746- 2759, 2003. 

[110] A. Hategan, K. Sengupta, S. Kahn, E. Sackmann, and D. E. Discher. Topo

graphical pattern dynamics in passive adhesion of cell membranes. Biophysical 

Journal, 87(5):3547- 3560, 2004. 

[111] J. Raval, A. Iglic, and W. T. G6zdz. Investigation of shape transformations of 

vesicles, induced by their adhesion to fiat substrates characterized by different 

adhesion strength. International Journal of Molecular Sciences, 22(24):13406, 

2021. 

[112] A. A. Hyman, C. A. Weber, and F. Ji.ilicher. Liquid-liquid phase separation in 

biology. Annual review of cell and developmental biology, 30:39- 58, 2014. 

[113] K. Butt. The gauss-bonnet theorem. 2015. 

[114] M. P. do Carmo. Differential geometry of curves and surfaces: revised and 

updated second edition. Courier Dover Publications, 2016. 

[115] M. Voinova. Geometrical methods in the theory of lipid membranes' and cells' 

shapes. lectures 1-2. introduction to the differential geometry of surface. 

[116] M. Deserno. Notes on differential geometry, 2004. 

[117] A. Iglic, B. Babnik, U. Gimsa, and V. Kralj-Iglic. On the role of membrane 

anisotropy in the beading transition of undulated tubular membrane structures. 

Journal of Physics A: Mathematical and General, 38( 40):8527, 2005. 

[118] R. Oda, I. Hue, M. Schmutz, S. J. Candau, and F. C. MacKintosh. Tuning 

bilayer twist using chiral counterions. Nature, 399(6736) :566- 569, 1999. 

[119] A. Iglic, M. Tzaphlidou, M. Remskar, B. Babnik, M. Daniel, and V. Kralj

Iglic. Stable shapes of thin anisotropic nano-strips. Fullerenes, Nanotubes, and 

Carbon Nonstructures, 13(3):183- 192, 2005. 

118 http://rcin.org.pl



Biblioteka lnstytutu Chemii Fizycznej PAN 

http://rcin.org.pl


	Acknowledgments
	Funding
	Declaration of originality
	Dedication
	Abstract
	Abstrakt
	List of Figures
	Introduction
	Phospholipid membranes
	Adhesion of vesicles and biological cells
	Formation of nanodomain and the possible mechanism of segregation
	Goal of the thesis
	Organization of the thesis

	Mathematical modelling of membrane systems
	Theoretical models

	 Mathematical description of the vesicle surface 
	Arc-length parameterization of the vesicle surface
	Derivation of the expression for principal curvatures under arc-length parameterization
	The energy functional for the adhered vesicle system
	Energy functional for a single component vesicle system
	Energy functional for a two-component vesicle system

	Study of the single component vesicle system by varying the size of the area of adhesion with the flat surface
	Phase diagram of the spontaneous curvature model for free vesicles
	Study of vesicle adhesion by varying the size of the area of adhesion
	Summary and Conclusions

	Study of the single component vesicle system by varying the adhesion strength of the flat surface
	Study of vesicle adhesion by changing the adhesion strength of the substrate
	Summary and Conclusions

	Study of the multi-component vesicle system by varying the size of the area of adhesion with the flat surface
	Results
	Free vesicles for c0A=8, c0B=0, avg=0.5 and v=0.95
	 Study of vesicle adhesion by varying the size of the area of adhesion

	Summary and Conclusions

	Summary and Conclusions
	
	Gauss-Bonnet theorem

	
	Basics of differential geometry used to describe a surface
	Derivation of the general form of bending energy

	List of Publications
	Biblography



