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PREFACE
The subject-matter of this book is a historical summary oif the development of mathematics, illustrated by the lives and discoveries of those to whom the progress of the science is mainly due. It may serve as an introduction to more elaborate works on the subject, but primarily it is intended to give a short and popular account of those leading facts in the history of mathematics which many who are unwilling, or have not the time, to study it systematically may yet desire to know.The first edition was substantially a transcript of some lectures which I delivered in the year 1888 with the object of giving a sketch of the history, previous to the nineteenth century, that should be intelligible to any one acquainted with the elements of mathematics. In the second edition, issued in 1893, I rearranged parts of it, and introduced a good deal of additional matter. The third edition, issued in 1901, was revised, but not materially altered; and the present edition is practically a reprint of this, save for a few small corrections and additions.
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vi PREFACEThe scheme of arrangement will be gathered from he table of contents at the end of this preface. Shortly it is as follows. The first chapter contains a brief stae- ment of what is known concerning the mathematics of the Egyptians and Phoenicians; this is introductory to the history of mathematics under Greek influence. 'he subsequent history is divided into three periods" fist, that under Greek influence, chapters ιι to viι; s<ecαd, that of the middle ages and renaissance, chapters τιι to xιπ; and lastly that of modern times, chapters xιv to xιx.In discussing the mathematics of these period I have confined myself to giving the leading events in he history, and frequently have passed in silence over ιen or works whose influence was comparatively unimportnt. Doubtless an exaggerated view of the discoveries of tbse mathematicians who are mentioned may be caused by the non-allusion to minor writers who preceded nd prepared the way for them, but in all historical sketαes this is to some extent inevitable, and I have dome ny best to guard against it by interpolating remarks on he progress of the science at different times. Perhaps Iso I should here state that generally I have not refered to the results obtained by practical astronomers nd physicists unless there was some mathematical imteest in them. In quoting results I have commonly mde • use of modern notation ; the reader must th∣ere)re recollect that, while the matter is the same as tat of any writer to whom allusion is made, his proo is
www.rcin.org.pl



PREFACE viisometimes translated into a more convenient and familiar language.The greater part of my account is a compilation from existing histories or memoirs, as indeed must be necessarily the case where the works discussed are so numerous and cover so much ground. When authorities disagree I have generally stated only that view which seems to me to be the most probable; but if the question be one of importance, I believe that I have always indicated that there is a difference of opinion about it.I think that it is undesirable to overload a popular account with a mass of detailed references or the authority for every particular fact mentioned. For the history previous to 1758, I need only refer, once for all, to the closely printed pages of M. Cantor’s monumental 
Vorlesungen iiber die Geschichte der Mathematik (hereafter alluded to as Cantor), which may be regarded as the standard treatise on the subject, but usually I have given references to the other leading authorities on which I have relied or with which I am acquainted. My account for the period subsequent to 1758 is generally based on the memoirs or monographs referred to in the footnotes, but the main facts to 1799 have been also enumerated in a supplementary volume issued by Prof. Cantor last year. I hope that my footnotes will supply the means of studying in detail the history of mathematics at any specified period should the reader desire to do so.My thanks are due to various friends and corre-

www.rcin.org.pl



viii PREFACEspondents who have called my attention to points in thhe previous editions. I shall be grateful for notices cof additions or corrections which may occur to any of may readers. W. W. ROUSE BALL.
Trinity College, Cambridge,

May 1908.

NOTE TO THE FIFTH EDITIONNo material changes have been made in this edition.W. W. R. B„
Trinity College, Cambridge,

December 1911.
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CHAPTER I.

EGYPTIAN AND PHOENICIAN MATHEMATICS.

Ti'he history of mathematics cannot with certainty be traced 
baack to any school or period before that of the Ionian Greeks. 
TΓhe subsequent history may be divided into three periods, the 
distinctions between which are tolerably well marked. The first 
peeriod is that of the history of mathematics under Greek influ- 
ennce, this is discussed in chapters ιι to vil; the second is that 
off the mathematics of the middle ages and the renaissance, 
thhis is discussed in chapters vnι to xιn; the third is that of 
mαodern mathematics, and this is discussed in chapters xιv to 
XIIX.

Although the history of mathematics commences with that 
off the Ionian schools, there is no doubt that those Greeks who 
fiιrst paid attention to the subject were largely indebted to 
tlhe previous investigations of the Egyptians and Phoenicians. 
O)ur knowledge of the mathematical attainments of those races 
iss imperfect and partly conjectural, but, such as it is, it is here 
bι>riefly summarised. The definite history begins with the next 
clhapter.

On the subject of prehistoric mathematics, we may observe 
iιn the first place that, though all early races which have left 
reecords behind them knew something of numeration and 
rmechanics, and though the majority were also acquainted with 
tlhe elements of land - surveying, yet the rules which they 
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2 EGYPTIAN & PHOENICIAN MATHEMATICS [ch. ι 

possessed were in general founded only on the results of observa
tion and experiment, and were neither deduced from nor did 
they form part of any science. The fact then that various 
nations in the vicinity of Greece had reached a high state of 
civilisation does not justify us in assuming that they had studied 
mathematics.

The only races with whom the Greeks of Asia Minor 
(amongst whom our history begins) were likely to have come 
into frequent contact were those inhabiting the eastern littoral 
of the Mediterranean; and Greek tradition uniformly assigned 
the special development of geometry to the Egyptians, and 
that of the science of numbers either to the Egyptians or to the 
Phoenicians. I discuss these subjects separately.

First, as to the science of numbers. So far as the acquire
ments of the Phoenicians on this subject are concerned it is 
impossible to speak with certainty. The magnitude of the 
commercial transactions of Tyre and Sidon necessitated a con
siderable development of arithmetic, to which it is probable 
the name of science might be properly applied. A Babylonian 
table of the numerical value of the squares of a series of con
secutive integers has been found, and this would seem to indicate 
that properties of numbers were studied. According to Strabo 
the Tyrians paid particular attention to the sciences of numbers, 
navigation, and astronomy; they had, we know, considerable 
commerce with their neighbours and kinsmen the Chaldaeans; 
and Bbckh says that they regularly supplied the weights and 
measures used in Babylon. Now the Chaldaeans had certainly 
paid some attention to arithmetic and geometry, as is shown 
by their astronomical calculations; and, whatever was the 
extent of their attainments in arithmetic, it is almost certain 
that the Phoenicians were equally proficient, while it is likely 
that the knowledge of the latter, such as it was, was communi
cated to the Greeks. On the whole it seems probable that the 
early Greeks were largely indebted to the Phoenicians for their 
knowledge of practical arithmetic or the art of calculation, and 
perhaps also learnt from them a few properties of numbers. It
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ch. ι] EARLY EGYPTIAN ARITHMETIC 3

πuay be worthy of note that Pythagoras was a Phoenician; and 
according to Herodotus, but this is more doubtful, Thales was 
also of that race.

I may mention that the almost universal use of the abacus 
or swan-pan rendered it easy for the ancients to add and 
subtract without any knowledge of theoretical arithmetic. 
These instruments will be described later in chapter vιι; it 
will be sufficient here to say that they afford a concrete way 
off representing a number in the decimal scale, and enable the 
results of addition and subtraction to be obtained by a merely 
mechanical process. This, coupled with a means of represent
ing the result in writing, was all that was required for practical 
purposes.

We are able to speak with more certainty on the arithmetic 
of the Egyptians. About forty years ago a hieratic papyrus,1 
forming part of the Rhind collection in the British Museum, 
was deciphered, which has thrown considerable light on their 
mathematical attainments. The manuscript was written by a 
scribe named Alιmes at a date, according to Egyptologists, 
considerably more than a thousand years before Christ, and it 
is believed to be itself a copy, with emendations, of a treatise 
more than a thousand years older. The work is called “ direc
tions for knowing all dark things,” and consists of a collection of 
problems in arithmetic and geometry ; the answers are given, but 
in general not the processes by which they are obtained. It appears 
to be a summary of rules and questions familiar to the priests.

The first part deals with the reduction of fractions of the 
form 2/(2% + 1) to a sum of fractions each of whose numerators 
is unity: for example, Ahmes states that is the sum of 
⅛ Λ> τ⅛> and ⅛ 1 and ∕τ is the sum of A, A 9, aιld τ⅜-∙ 
In all the examples n is less than 50. Probably he had no 
rule for forming the component fractions, and the answers

1 See Ein mathematisches Handbuch der alten Aegypter, by A. Eisenlohr, 
second edition, Leipzig, 1891 ; see also Cantor, chap, i; and A Short 
History of Qreelc Mathematics, by J. Gow, Cambridge, 1884, arts. 12-14. 
Besides these authorities the papyrus has been discussed in memoirs by 
L. Rodet, A. Favaro, V. Bobynin, and E. Weyr.
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given represent the accumulated experiences of previous writers : 
in one solitary case, however, he has indicated his method, for, 
after having asserted that j is the sum of ⅜ and ⅜, he adds that 
therefore two-thirds of one-fifth is equal to the sum of a half of 
a fifth and a sixth of a fifth, that is, to 11σ + π⅛.

That so much attention was paid to fractions is explained by 
the fact that in early times their treatment was found difficult. 
The Egyptians and Greeks simplified the problem by reducing 
a fraction to the sum of several fractions, in each of which the 
numerator was unity, the sole exception to this rule being the 
fraction §. This remained the Greek practice until the sixth 
century of our era. The Romans, on the other hand, generally 
kept the denominator constant and equal to twelve, expressing 
the fraction (approximately) as so many twelfths. The Baby
lonians did the same in astronomy, except that they used sixty 
as the constant denominator; and from them through the Greeks 
the modern division of a degree into sixty equal parts is derived. 
Thus in one way or the other the difficulty of having to consider 
changes in both numerator and denominator was evaded. To-day 
when using decimals we often keep a fixed denominator, thus 
reverting to the Roman practice.

After considering fractions Ahmes proceeds to some examples 
of the fundamental processes of arithmetic. In multiplication 
he seems to have relied on repeated additions. Thus in one 
numerical example, where he requires to multiply a certain 
number, say α, by 13, he first multiplies by 2 and gets 2α, then 
he doubles the results and gets 4ct, then he again doubles the 
result and gets Sa, and lastly he adds together a, 4a, and 8α. 
Probably division was also performed by repeated subtractions, but, 
as he rarely explains the process by which he arrived at a result, 
this is not certain. After these examples Ahmes goes on to the 
solution of some simple numerical equations. For example, he 
says “heap, its seventh, its whole, it makes nineteen,” by which 
he means that the object is to find a number such that the sum 
of it and one-seventh of it shall be together equal to 19 ; and lie 
gives as the answer 16 +1 + ∣, which is correct.
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The arithmetical part of the papyrus indicates that he had 
soιme idea of algebraic symbols. The unknown quantity is 
always represented by the symbol which means a heap ; addition 
is sometimes represented by a pair of legs walking forwards, 
sulbtraction by a pair of legs walking backwards or by a flight 
of arrows; and equality by the sign .

The latter part of the book contains various geometrical 
problems to which I allude later. He concludes the work with 
some arithmetico-algebraical questions, two of which deal with 
arithmetical progressions and seem to indicate that he knew 
how to sum such series.

Second, as to the science of geometry. Geometry is supposed 
to have had its origin in land-surveying; but while it is difficult 
to say when the study of numbers and calculation—some know
ledge of which is essential in any civilised state—became a 
science, it is comparatively easy to distinguish between the 
abstract reasonings of geometry and the practical rules of the 
land-surveyor. Some methods of land-surveying must have 
been practised from very early times, but the universal tradition 
of antiquity asserted that the origin of geometry was to be 
sought in Egypt. That it was not indigenous to Greece, and 
that it arose from the necessity of surveying, is rendered the 
more probable by the derivation of the word from γη, the earth, 
and μετρeω, I measure. Now the Greek geometricians, as far as 
we can judge by their extant works, always dealt with the 
science as an abstract one : they sought for theorems which 
should be absolutely true, and, at any rate in historical times, 
would have argued that to measure quantities in terms of a 
unit which might have been incommensurable with some of the 
magnitudes considered would have made their results mere 
approximations to the truth. The name does not therefore 
refer to their practice. Γt is not, however, unlikely that it 
indicates the use which was made of geometry among the 
Egyptians from whom the Greeks learned it. This also agrees 
with the Greek traditions, which in themselves appear probable; 
for Herodotus states that the periodical inundations of the Nile 
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(which swept away the landmarks in the valley of the river, 
and by altering its course increased or decreased the taxable 
value of the adjoining lands) rendered a tolerably accurate 
system of surveying indispensable, and thus led to a systematic 
study of the subject by the priests.

We have no reason to think that any special attention was 
paid to geometry by the Phoenicians, or other neighbours of the 
Egyptians. A small piece of evidence which tends to show that 
the Jews had not paid much attention to it is to be found in 
the mistake made in their sacred books,1 where it is stated that 
the circumference of a circle is three times its diameter : the 
Babylonians 1 2 also reckoned that π∙ was equal to 3.

1 I. Kings, chap, vii, verse 23, and II. Chronicles, chap, iv, verse 2.
2 See J. Oppert, Journal Asiatique, August 1872, and October 1874.
3 See Eisenlohr; Cantor, chap, ii; Gow, arts. 75, 76; and Die 

Geometrie der alien Aegypter, by E. Weyr, Vienna, 1884.

Assuming, then, that a knowledge of geometry was first 
derived by the Greeks from Egypt, we must next discuss the 
range and nature of Egyptian geometry.3 That some geo
metrical results were known at a date anterior to Ahmes’s work 
seems clear if we admit, as we have reason to do, that, centuries 
before it was λvritten, the following method of obtaining a right 
angle was used in laying out the ground-plan of certain build
ings. The Egyptians were very particular about the exact 
orientation of their temples; and they had therefore to obtain 
with accuracy a north and south line, as also an east and west 
line. By observing the points on the horizon where a star rose 
and set, and taking a plane midway between them, they could 
obtain a north and south line. To get an east and west line, 
which had to be drawn at right angles to this, certain profes
sional “ rope-fasteners ” were employed. These men used a 
rope ABCD divided by knots or marks at B and C, so that the 
lengths AB, BC, CD were in the ratio 3:4:5. The length BC 
was placed along the north and south line, and pegs P and Q 
inserted at the knots B and C. The piece BA (keeping it 
stretched all the time) was then rotated round the peg P, and
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simιilarly the piece CD was rotated round the peg ζ>> until the 
emds A and D coincided; the point thus indicated was marked 
byr a peg R. The result was to form a triangle PQR whose 
sides RP, PQ, QR were in the ratio 3:4:5. The angle of the 
triiangle at P would then be a right angle, and the line PR 
would give an east and west line. A similar method is con
stantly used at the present time by practical engineers for 
measuring a right angle. The property employed can be 
deduced as a particular case of Euc. I, 48; and there is reason 
to think that the Egyptians were acquainted with the results of 
th.is proposition and of Euc. I, 47, for triangles whose sides are 
in the ratio mentioned above. They must also, there is little 
do>ubt, have known that the latter proposition was true for an 
isosceles right-angled triangle, as this is obvious if a floor be 
paved with tiles of that shape. But though these are interest
ing facts in the history of the Egyptian arts we must not press 
them too far as showing that geometry was then studied as a 
science. Our real knowledge of the nature of Egyptian geo
metry depends mainly on the Rhind papyrus.

Ahmes commences that part of his papyrus which deals with 
geometry by giving some numerical instances of the contents of 
barns. Unluckily we do not know what was the usual shape 
of an Egyptian barn, but where it is defined by three linear 
measurements, say α, b, and c, the answer is always given as 
if he had formed the expression a × b × (c + ∣c). He next 
proceeds to find the areas of certain rectilineal figures; if the 
text be correctly interpreted, some of these results are wrong. 
He then goes on to find the area of a circular field of diameter 
12—no unit of length being ∙ mentioned—and gives the result 
as (d - ⅞d)2, where d is the diameter of the circle : this is 
equivalent to taking 3,1604 as the value of π, the actual value 
being very approximately 3T416. Lastly, Ahmes gives some 
problems on pyramids. These long proved incapable of inter
pretation, but Cantor and Eisen lohr have shown that Ahmes 
was attempting to find, by means of data obtained from the 
measurement of the external dimensions of a building, the
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ratio of certain other dimensions which could not be directly 
measured : his process is equivalent to determining the trigono
metrical ratios of certain angles. The data and the results 
given agree closely with the dimensions of some of the existing 
pyramids. Perhaps all Ahmes’s geometrical results were intended 
only as approximations correct enough for practical purposes.

It is noticeable that all the specimens of Egyptian geometry 
which we possess deal only with particular numerical problems 
and not with general theorems ; and even if a result be stated 
as universally true, it was probably proved to be so only by a 
wide induction. We shall see later that Greek geometry was 
from its commencement deductive. There are reasons for think
ing that Egyptian geometry and arithmetic made little or no 
progress subsequent to the date of Ahmes’s work; and though 
for nearly two hundred years after the time of Thales Egypt 
was recognised by the Greeks as an important school of mathe
matics, it would seem that, almost from the foundation of the 
Ionian school, the Greeks outstripped their former teachers.

It may be added that Ahmes’s book gives us much that idea 
of Egyptian mathematics which we should have gathered from 
statements about it by various Greek and Latin authors, who 
lived centuries later. Previous to its translation it was commonly 
thought that these statements exaggerated the acquirements of 
the Egyptians, and its discovery must increase the weight to be 
attached to the testimony of these authorities.

We know nothing of the applied mathematics (if there were 
any) of the Egyptians or Phoenicians. The astronomical attain
ments of the Egyptians and Chaldaeans were no doubt consider
able, though they were chiefly the results of observation : the 
Phoenicians are said to have confined themselves to studying 
what was required for navigation. Astronomy, however, lies 
outside the range of this book.

I do not like to conclude the chapter without a brief mention 
of the Chinese, since at one time it was asserted that they were 
familiar with the sciences of arithmetic, geometry, mechanics, 
optics, navigation, and astronomy nearly three thousand years
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ajgo, ancl a few writers were inclined to suspect (for no evidence 
was forthcoming) that some knowledge of this learning had 
fill ter ed across Asia to the West. It is true that at a very early 
p∙eriod the Chinese were acquainted with several geometrical or 
nather architectural implements, such as the rule, square, com
passes, and level; with a few mechanical machines, such as the 
wheel and axle ; that they knew of the characteristic property 
o.>f the magnetic needle ; and were aware that astronomical events 
Ofccurred in cycles. But the careful investigations of L. A. 
S>edillot1 have shown that the Chinese made no serious attempt 
t<o classify or extend the few rules of arithmetic or geometry 
with which they were acquainted, or to explain the causes of 
the phenomena which they observed.

The idea that the Chinese had made considerable progress 
im theoretical mathematics seems to have been due to a mis
apprehension of the Jesuit missionaries who went to China 
im the sixteenth century. In the first place, they failed to 
distinguish between the original science of the Chinese and 
the views which they found prevalent on their arrival—the 
latter being founded on the work and teaching of Arab or 
Hindoo missionaries who had come to China in the course of 
the thirteenth century or later, and while there introduced a 
knowledge of spherical trigonometry. In the second place, 
finding that one of the most important government depart
ments was known as the Board of Mathematics, they supposed 
that its function was to promote and superintend mathematical 
studies in the empire. Its duties were really confined to the 
annual preparation of an almanack, the dates and predictions 
in which regulated many affairs both in public and domestic 
life. All extant specimens of these almanacks are defective 
and, in many respects, inaccurate.

The only geometrical theorem with which we can be certain 
that the ancient Chinese were acquainted is that in certain cases

1 See Boncompagni’s Bulletino di bibliografia e di storia delle scienze 
matematiche e fisiche for May, 1868, vol. i, pp. 161-166. On Chinese 
mathematics, mostly of a later date, see Cantor, chap, xxxi. 
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(namely, when the ratio of the sides is 3 : 4 : 5, or 1 : 1 : s∕2) 
the area of the square described on the hypotenuse of a right- 
angled triangle is equal to the sum of the areas of the squares 
described on the sides. It is barely possible that a few 
geometrical theorems which can be demonstrated in the quasi- 
experimental way of superposition were also known to them. 
Their arithmetic was decimal in notation, but their knowledge 
seems to have been confined to the art of calculation by means 
of the swan-pan, and the power of expressing the results in 
writing. Our acquaintance with the early attainments of the 
Chinese, slight though it is, is more complete than in the case 
of most of their contemporaries. It is thus specially instructive, 
and serves to illustrate the fact that a nation may possess con
siderable skill in the applied arts while they are ignorant of the 
sciences on which those arts are founded.

From the foregoing summary it will be seen that our know
ledge of the mathematical attainments of those who preceded 
the Greeks is very limited; but we may reasonably infer that 
from one source or another the early Greeks learned the use of 
the abacus for practical calculations, symbols for recording the 
results, and as much mathematics as is contained or implied in 
the Rhind papyrus. It is probable that this sums up their 
indebtedness to other races. In the next six chapters I shall 
trace the development of mathematics under Greek influence.
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FIRST PERIOD.

fKatfjematιc0 unbeτ ©reck ≡nfhιtnce.

This period begins with the teaching of Thales, circ. 600 b.c., 
and ends with, the capture of Alexandria by the Mohammedans 
in or about 641 a.d. The characteristic feature of this period 
is the development of Geometry.

It will be remembered that I commenced the last chapter by 
saying that the history of mathematics might be divided into 
three periods, namely, that of mathematics under Greek influence, 
that of the mathematics of the middle ages and of the renaissance, 
and lastly that of modern mathematics. The next four chapters 
(chapters ιι, in, ιv and v) deal with the history of mathe
matics under Greek influence : to these it will be convenient to 
add one (chapter vι) on the Byzantine school, since through it 
the results of Greek mathematics were transmitted to western 
Europe ; and another (chapter vπ) on the systems of numeration 
which were ultimately displaced by the system introduced by the 
Arabs. I should add that many of the dates mentioned in these 
chapters are not known with certainty, and must be regarded as 
only approximately correct.
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CHAPTER II.

THE IONIAN AND PYTHAGOREAN SCHOOLS.1

ciRC. 600 b.c.-400 b.c.

With the foundation of the Ionian and Pythagorean schools we 
emerge from the region of antiquarian research and conjecture 
into the light of history. The materials at our disposal for 
estimating the knowledge of the philosophers of these schools 
previous to about the year 430 b.c. are, however, very scanty 
Not only have all but fragments of the different mathematical 
treatises then written been lost, but we possess no copy of the 
history of mathematics written about 325 b.c. by Eudemus (who 
was a pupil of Aristotle). Luckily Proclus, who about 450 a.d. 
wrote a commentary on the earlier part of Euclid’s Elements, 
was familiar with Eudemus’s work, and freely utilised it in his 
historical references. We have also a fragment of the General 
View of Mathematics written by Geminus about 50 B.c., in which 
the methods of proof used by the early Greek geometricians are 
compared with those current at a later date. In addition to 
these general statements we have biographies of a few of the

1 The history of these schools has been discussed by G. Loria in his Le Scienze 
Esatte nelΓ Antica Grecia, Modena, 1893-1900 ; by Cantor, chaps, v-viii; 
by G. J. Allman in his Greek Geometry from Thales to Euclid, Dublin, 1889; 
by J. Gow, in his Greek Mathematics, Cambridge, 1884 ; by C. A. Bret- 
schneider in his Die Geometrie und die Geometer vor Eukleides, Leipzig, 1870 ; 
and partially by H. Hankel in his posthumous Geschichte der Mathematik, 
Leipzig, 1874.
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leading mathematicians, and some scattered notes in various 
writers in which allusions are made to the lives and works of 
others. The original authorities are criticised and discussed at 
length in the works mentioned in the footnote to the heading of 
the chapter.

The Ionian School.

Thales.1 The founder of the earliest Greek school of mathe
matics and philosophy was Thales, one of the seven sages of 
Greece, who wτas born about 640 b.c. at Miletus, and died in the 
same town about 550 b.c. The materials for an account of his 
life consist of little more than a few anecdotes which have been 
handed down by tradition.

During the early part of his life Thales was engaged partly 
in commerce and partly in public affairs; and to judge by two 
stories that have been preserved, he was then as distinguished 
for shrewdness in business and readiness in resource as he was 
subsequently celebrated in science. It is said that once when 
transporting some salt which was loaded on mules, one of the 
animals slipping in a stream got its load wet and so caused 
some of the salt to be dissolved, and finding its burden thus 
lightened it rolled over at the next ford to which it came; to 
break it of this trick Thales loaded it with rags and sponges 
which, by absorbing the water, made the load heavier and soon 
effectually cured it of its troublesome habit. At another time, 
according to Aristotle, when there was a prospect of an 
unusually abundant crop of olives Thales got possession of all 
the olive-presses of the district; and, having thus “cornered” 
them, he was able to make his own terms for lending them out, 
or buying the olives, and thus realized a large sum. These 
tales may be apocryphal, but it is certain that he must have 
had considerable reputation as a man of affairs and as a gool 
engineer, since he was employed to construct an embankment so 
as to divert the river Halys in such a way as to permit of the 
construction of a ford.

1 See Loria, book I, chap, ii ; Cantor, chap, v ; Allman, chap. i.
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Probably it was as a merchant that Thales first went to 
Egypt, but during his leisure there he studied astronomy and 
g'eometry. He was middle-aged when he returned to Miletus ; 
hte seems then to have abandoned business and public life, 
a.nd to have devoted himself to the study of philosophy and 
s<cience — subjects which in the Ionian, Pythagorean, and 
p>erhaps also the Athenian schools, were closely connected : 
hιis views on philosophy do not here concern us. He continued 
t<o live at Miletus till his death circ. 550 B.c.

We cannot form any exact idea as to how Thales presented 
hds geometrical teaching. We infer, however, from Proclus that 
itt consisted of a number of isolated propositions which were 
mot arranged in a logical sequence, but that the proofs were 
dleductive, so that the theorems were not a mere statement of 
am induction from a large number of special instances, as 
p>robably was the case with the Egyptian geometricians. The 
dleductive character which he thus gave to the science is his 
chief claim to distinction.

The following comprise the chief propositions that can now 
with reasonable probability be attributed to him; they are 
concerned with the geometry of angles and straight lines.

(i) The angles at the base of an isosceles triangle are equal 
(Euc. I, 5). Proclus seems to imply that this was proved by 
taking another exactly equal isosceles triangle, turning it over, 
and then superposing it on the first—a sort of experimental 
demonstration.

(ii) If two straight lines cut one another, the vertically 
opposite angles are equal (Euc. ι, 15). Thales may have 
regarded this as obvious, for Proclus adds that Euclid was the 
first to give a strict proof of it.

(iii) A triangle is determined if its base and base angles be 
given (c∕. Euc. I, 26). Apparently this was applied to find the 
distance of a ship at sea—the base being a tower, and the base 
angles being obtained by observation.

(iv) The sides of equiangular triangles are proportionals 
(Euc. vι, 4, or perhaps rather Euc. vι, 2). This is said to 
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have been used by Thales when in Egypt to find the height of 
a pyramid. In a dialogue given by Plutarch, the speaker, 
addressing Thales, says, “ Placing your stick at the end of 
the shadow of the pyramid, you made by the sun’s rays two 
triangles, and so proved that the [height of the] pyramid was 
to the [length of the] stick as the shadow of the pyramid to 
the shadow of the stick.” It would seem that the theorem was 
unknown to the Egyptians, and we are told that the king 
Amasis, who was present, was astonished at this application of 
abstract science.

(v) A circle is bisected by any diameter. This may have 
been enunciated by Thales, but it must have been recognised as 
an obvious fact from the earliest times.

(vi) The angle subtended by a diameter of a circle at any 
point in the circumference is a right angle (Euc. ill, 31). 
This appears to have been regarded as the most remarkable 
of the geometrical achievements of Thales, and it is stated that 
on inscribing a right-angled triangle in a circle he sacrificed an 
ox to the immortal gods. It is supposed that he proved the 
proposition by joining the centre of the circle to the apex of the 
right angle, thus splitting the triangle into two isosceles 
triangles, and then applied the proposition (i) above : if this be 
the correct account of his proof, he must have been aware that 
the sum of the angles of a right-angled triangle is equal to two 
right angles.

It has been ingeniously suggested that the shape of the 
tiles used in paving floors may have afforded an experimental 
demonstration of the latter result, namely, that the sum of the 
angles of a triangle is equal to two right angles. We know 
from Eudemus that the first geometers proved the general 
property separately for three species of triangles, and it is not 
unlikely that they proved it thus. The area about a point can 
be filled by the angles of six equilateral triangles or tiles, hence 
the proposition is true for an equilateral triangle. Again, any 
two equal right-angled triangles can be placed in juxtaposition so 
as to form a rectangle, the sum of whose angles is four right
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amgles ; hence the proposition is true for a right-angled triangle; 
anιd it will be noticed that tiles of such a shape would give an 
ocιular demonstration of this case. It would appear that this 
prωof was given at first only in the case of isosceles right-angled 
triiangles, but probably it was extended later so as to cover any 
right-angled triangle. Lastly, any triangle can be split into the 
suιm of two right-angled triangles by drawing a perpendicular 
from the biggest angle on the opposite side, and therefore again 
tine proposition is true. The first of these proofs is evidently 
in<cluded in the last, but there is nothing improbable in the 
suggestion that the early Greek geometers continued to teach 
th<e first proposition in the form above given.

Thales wrote on astronomy, and among his contemporaries 
was more famous as an astronomer than as a geometrician. A 
story runs that one night, when walking out, he was looking so 
imtently at the stars that he tumbled into a ditch, on which an 
old woman exclaimed, “ How can you tell what is going on in 
the sky when you can’t see what is lying at your own feet ? ” 
—an anecdote which was often quoted to illustrate the un
practical character of philosophers.

Without going into astronomical details, it may be mentioned 
that he taught that a year contained about 365 days, and not 
(a,s is said to have been previously reckoned) twelve months of 
thirty days each. It is said that his predecessors occasionally 
intercalated a month to keep the seasons in their customary 
places, and if so they must have realized that the year contains, 
on the average, more than 360 days. There is some reason to 
think that he believed the earth to be a disc-like body floating 
on water. He predicted a solar eclipse which took place at or 
about the time he foretold; the actual date was either May 28, 
585 b.c., or September 30, 609 b.c. But though this prophecy 
and its fulfilment gave extraordinary prestige to his teaching, 
and secured him the name of one of the seven sages of Greece, 
it is most likely that he only made use of one of the Egyptian 
or Chaldaean registers which stated that solar eclipses recur 
at intervals of about 18 years 11 days. c
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Among the pupils of Thales were Anaximander, Anaximenes, 
Mamercus, and Mandryatus. Of the three mentioned last we 
know next to nothing. Anaximander was born in 611 b.c., 
and died in 545 b.c., and succeeded Thales as head of the 
school at Miletus. According to Suidas he wrote a treatise on 
geometry in which, tradition says, he paid particular attention 
to the properties of spheres, and dwelt at length on the philo
sophical ideas involved in the conception of infinity in space and 
time. He constructed terrestrial and celestial globes.

Anaximander is alleged to have introduced the use of the 
style or gnomon into Greece. This, in principle, consisted only 
of a stick stuck upright in a horizontal piece of ground. It 
was originally used as a sun-dial, in which case it was placed 
at the centre of three concentric circles, so that every two 
hours the end of its shadow passed from one circle to another. 
Such sun-dials have been found at Pompeii and Tusculum. It 
is said that he employed these styles to determine his meridian 
(presumably by marking the lines of shadow cast by the style 
at sunrise and sunset on the same day, and taking the plane 
bisecting the angle so formed); and thence, by observing the 
time of year when the noon-altitude of the sun was greatest 
and least, he got the solstices; thence, by taking half the sum 
of the noon-altitudes of the sun at the two solstices, he found 
the inclination of the equator to the horizon (which determined 
the altitude of the place), and, by taking half their difference, 
he found the inclination of the ecliptic to the equator. There 
seems good reason to think that he did actually determine the 
latitude of Sparta, but it is more doubtful whether he really 
made the rest of these astronomical deductions.

We need not here concern ourselves further with the 
successors of Thales. The school he established continued to 
flourish till about 400 b.c., but, as time went on, its members 
occupied themselves more and more with philosophy and less 
with mathematics. We know very little of the mathematicians 
comprised in it, but they would seem to have devoted most of 
their attention to astronomy. They exercised but slight in-

www.rcin.org.pl



chi. ii] PYTHAGORAS 19

fluιence on the further advance of Greek mathematics, which 
w.ras made almost entirely under the influence of the Pytha
goreans, who not only immensely developed the science of 
geι.oπιetry, but created a science of numbers. If Thales was the 
first to direct general attention to geometry, it was Pythagoras, 
says Proclus, quoting from Eudemus, who “changed the study 
of geometry into the form of a liberal education, for he ex
amined its principles to the bottom and investigated its 
theorems in an...intellectual manner”; and it is accordingly 
tθ' Pythagoras that we must now direct attention.

The. Pythagorean School.
Pythagoras.1 Pythagoras, was born at Samos about 569 B.c., 

perhaps of Tyrian parents, and died in 500 B.c. He was thus a 
contemporary of Thales. The details of his life are somewhat 
doubtful, but the following account is, I think, substantially 
correct. He studied first under Pherecydes of Syros, and then 
under Anaximander; by the latter he was recommended to go 
to Thebes, and there or at Memphis he spent some years. 
After leaving Egypt he travelled in Asia Minor, and then 
settled at Samos, where he gave lectures but without much 
success. About 529 b.c. he migrated to Sicily with his mother, 
and with a single disciple who seems to have been the sole fruit 
of his labours at Samos. Thence he went to Tarentum, but 
very shortly moved to Croton, a Dorian colony in the south of 
Italy. Here the schools that he opened were crowded with 
enthusiastic audiences; citizens of all ranks, especially those 
of the upper classes, attended, and even the women broke a law 
which forbade their going to public meetings and flocked to hear 
him. Amongst his most attentive auditors was Theano, the

1 See Loria, book I, chap, iii ; Cantor, chaps, vi, vii; Allman, chap, ii; 
Hankel, pp. 92-111 ; Hoefer, Histoire des mathenιatiques, Paris, third edition, 
1886, pp. 87-130 ; and various papers by S. P. Tannery. For an account of 
Pythagoras’s life, embodying the Pythagorean traditions, see the biography 
by Iamblichus, of which there are two or three English translations. Those 
who are interested in esoteric literature may like to see a modern attempt 
to reproduce the Pythagorean teaching in Pythagoras, by E. Schure, Eng. 
trans., London, 1906.
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young and beautiful daughter of his host Milo, whom, in spite 
of the disparity of their ages, he married. She wrote a biography 
of her husband, but unfortunately it is lost.

Pythagoras divided those who attended his lectures into 
two classes, whom we may term probationers and Pythagoreans. 
The majority were probationers, but it was only to the Pytha
goreans that his chief discoveries were revealed. The latter 
formed a brotherhood with all things in common, holding the 
same philosophical and political beliefs, engaged in the same 
pursuits, and bound by oath not to reveal the teaching or 
secrets of the school; their food was simple ; their discipline 
severe; and their mode of life arranged to encourage self
command, temperance, purity, and obedience. This strict 
discipline and secret organisation gave the society a temporary 
supremacy in the state which brought on it the hatred of various 
classes; and, finally, instigated by his political opponents, the 
mob murdered Pythagoras and many of his followers,

Though the political influence of the Pythagoreans was thus 
destroyed, they seem to have re-established themselves at once 
as a philosophical and mathematical society, with Tarentum as 
their headquarters, and they continued to flourish for more than 
a hundred years.

Pythagoras himself did not publish any books ; the assump
tion of his school was that all their knowledge was held in 
common and veiled from the outside world, and, further, that the 
glory of any fresh discovery must be referred back to their 
founder. Thus Hippasus (circ. 470 B.c.) is said to have been 
drowned for violating his oath by publicly boasting that he had 
added the dodecahedron to the number of regular solids enume
rated by Pythagoras. Gradually, as the society became mere 
scattered, this custom was abandoned, and treatises containing 
the substance of their teaching and doctrines wrere written. 
The first book of the kind was composed, about 370 b.c., by 
Philolaus, and we are told that Plato secured a copy of it. We 
may say that during the early part of the fifth century befere 
Christ the Pythagoreans were considerably in advance of their
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cointemporaries, but by the end of that time their more 
prominent discoveries and doctrines had become known to the 
ouιtside world, and the centre of intellectual activity was 
transferred to Athens.

Though it is impossible to separate precisely the discoveries 
of Pythagoras himself from those of his school of a later date, 
we know from Proclus that it was Pythagoras who gave 
geometry that rigorous character of deduction which it still 
be;ars, and made it the foundation of a liberal education ; and 
there is reason to believe that he was the first to arrange the 
leading propositions of the subject in a logical order. It was 
also, according to Aristoxenus, the glory of his school that they 
raised arithmetic above the needs of merchants. It was their 
boast that they sought knowledge and not wealth, or in the 
language of one of their maxims, “a figure and a step forwards, 
not a figure to gain three oboli.”

Pythagoras was primarily a moral reformer and philosopher, 
but his system of morality and philosophy was built on a 
mathematical foundation. His mathematical researches were, 
however, designed to lead up to a system of philosophy whose 
exposition was the main object of his teaching. The Pythago
reans began by dividing the mathematical subjects with which 
they dealt into four divisions : numbers absolute or arithmetic, 
numbers applied or music, magnitudes at rest or geometry, and 
magnitudes in motion or astronomy. This “ quadrivium ” was 
long considered as constituting the necessary and sufficient 
course of study for a liberal education. Even in the case of 
geometry and arithmetic (which are founded on inferences 
unconsciously made and common to all men) the Pythagorean 
presentation was involved with philosophy; and there is no 
doubt that their teaching of the sciences of astronomy, 
mechanics, and music (which can rest safely only on the 
results of conscious observation and experiment) was inter
mingled with metaphysics even more closely. It will be con
venient to begin by describing their treatment of geometry and 
arithmetic.
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First, as to their geometry. Pythagoras probably knew and 
taught the substance of what is contained in the first two books 
of Euclid about parallels, triangles, and parallelograms, and was 
acquainted with a few other isolated theorems including some 
elementary propositions on irrational magnitudes; but it is 
suspected that many of his proofs were not rigorous, and in 
particular that the converse of a theorem was sometimes assumed 
without a proof. It is hardly necessary to say that we are un
able to reproduce the whole body of Pythagorean teaching on 
this subject, but we gather from the notes of Proclus on Euclid, 
and from a few stray remarks in other writers, that it included 
the following propositions, most of which are on the geometry 
of areas.

(i) It commenced with a number of definitions, which prob
ably were rather statements connecting mathematical ideas 
with philosophy than explanations of the terms used. One 
has been preserved in the definition of a point as unity having 
position.

(ii) The sum of the angles of a triangle was shown to be 
equal to two right angles (Euc. I, 32); and in the proof, which 
has been preserved, the results of the propositions Euc. ι, 13 and 
the first part of Euc. I, 29 are quoted. The demonstration is 
substantially the same as that in Euclid, and it is most likely 
that the proofs there given of the two propositions last mentioned 
are also due to Pythagoras himself.

(iii) Pythagoras certainly proved the properties of right- 
angled triangles which are given in Euc. I, 47 and I, 48. We 
know that the proofs of these propositions which are found in 
Euclid were of Euclid’s own invention; and a good deal of 
curiosity has been excited to discover what was the demon
stration which was originally offered by Pythagoras of the first 
of these theorems. It has been conjectured that not improbab y 
it mayshave been one of the two following.1

1 A collection of a hundred proofs of Euc. I, 47 was published in 
the American "Mathematical Monthly Journal, vols. iii. iv. v. vi. 1895- 
1899.

www.rcin.org.pl



ch. π] PYTHAGORAS 23

(a) Any square ABCD can be split up, as in Euc. ιι, 4, into 
two squares BK and DK and two equal rectangles √l∕f and CK: 
that is, it is equal to the square on FK, the square on EK, and

four times the triangle AEF. But, if points be taken, G on 
BC, 11 on CD, and E on DA, so that BG, CH, and DE are 
each equal to AF, it can be easily shown that EFGII is a 
square, and that the triangles AEF, BFG, CGH, and DUE are 
equal: thus the square ABCD is also equal to the square on 
EF and four times the triangle AEF. Hence the square on EF 
is equal to the sum of the squares on FK and EK.

(β) Let ABC be a right-angled triangle, A being the right 
angle. Draw AD perpendicular to BC. The triangles ABC

and DBA are similar,

.∙. BC : AB = AB : BD. 

Similarly BC : AC = AC : DC.

Hence AB'i + ACi= BC(BD + DC) = BC∖
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This proof requires a knowledge of the results of Euc. ∏, 2, 
vι, 4, and vι, 17, with all of which Pythagoras was acquainted.

(iv) Pythagoras is credited by some writers with the discovery 
of the theorems Euc. I, 44, and I, 45, and with giving a solution 
of the problem Euc. ιι, 14. It is said that on the discovery of 
the necessary construction for the problem last mentioned he 
sacrificed an ox, but as his school had all things in common the 
liberality was less striking than it seems at first. The Pythagoreans 
of a later date were aware of the extension given in Euc. vι, 25, 
and Allman thinks that Pythagoras himself was acquainted with 
it, but this must be regarded as doubtful. It will be noticed that 
Euc. ii, 14 provides a geometrical solution of the equation x2 = ab.

(v) Pythagoras showed that the plane about a point could be 
completely filled by equilateral triangles, by squares, or by regular 
hexagons—results that must have been familiar wherever tiles of 
these shapes were in common use.

(vi) The Pythagoreans were said to have attempted the quad
rature of the circle : they stated that the circle was the most 
perfect of all plane figures.

(vii) They knew that there were five regular solids inscrib
able in a sphere, which was itself, they said, the most perfect 
of all solids.

(viii) From their phraseology in the science of numbers and 
from other occasional remarks, it would seem that they were 
acquainted with the methods used in the second and fifth books 
of Euclid, and knew something of irrational magnitudes. In 
particular, there is reason to believe that Pythagoras proved 
that the side and the diagonal of a square were incommensur
able, and that it was this discovery which led the early Greeks 
to banish the conceptions of number and measurement from 
their geometry. A proof of this proposition which may be that 
due to Pythagoras is given below.1

1 See below, page 60.
2 See the appendix »Swr 1’arithmetique pythagorienne to S. P. Tannery’s 

La science hellene, Paris, 1887.

Next, as to their theory of numbers.2 In this Pythagoras 1 2 
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was chiefly concerned with four different classes of problems 
which dealt respectively with polygonal numbers, with ratio and 
proportion, with the factors of numbers, and with numbers in 
series; but many of his arithmetical inquiries, and in particular 
the questions on polygonal numbers and proportion, were treated 
by geometrical methods.

Pythagoras commenced his theory of arithmetic by dividing 
all numbers into even or odd : the odd numbers being termed 
gnomons. An odd number, such as 2n + 1, was regarded as the 
difference of two square numbers (n + 1)2 and n2; and the sum 
of the gnomons from 1 to 2n + 1 was stated to be a square 
number, viz. (n+ 1)2, its square root was termed a side. Pro
ducts of two numbers were called plane, and if a product had

no exact square root it was termed an oblong. A product of 
three numbers was called a solid number, and, if the three 
numbers were equal, a cube. All this has obvious reference to 
geometry, and the opinion is confirmed by Aristotle’s remark 
that when a gnomon is put round a square the figure remains 
a square though it is increased in dimensions. Thus, in the 
figure given above in which n is taken equal to 5, the 
gnomon AKC (containing 11 small squares) when put round the 
square AC (containing 52 small squares) makes a square HL 
(containing 62 small squares). It is possible that several of 
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the numerical theorems due to Greek writers were discovered 
and proved by an analogous method : the abacus can be used 
for many of these demonstrations.

The numbers (2n2 + 2n + 1), (2n2 + 2n), and (2n+1) pos
sessed special importance as representing the hypotenuse and 
two sides of a right - angled triangle: Cantor thinks that 
Pythagoras knew this fact before discovering the geometrical 
proposition Euc. I, 47. A more general expression for such 
numbers is (m2 + n2), 2mn, and (m2 - n2) : it will be noticed 
that the result obtained by Pythagoras can be deduced from 
these expressions by assuming m = n + 1 ; at a later time 
Archytas and Plato gave rules which are equivalent to taking 
n = 1 ; Diophantus knew the general expressions.

After this preliminary discussion the Pythagoreans pro
ceeded to the four special problems already alluded to. 
Pythagoras was himself acquainted with triangular numbers; 
polygonal numbers of a higher order were discussed by later 
members of the school. A triangular number represents the 
sum of a number of counters laid in rows on a plane; the 
bottom row containing n, and each succeeding row one less: 
it is therefore equal to the sum of the series

n + (n - 1) + (n - 2) + ... + 2 + 1,

that is, to ⅜n(%+l). Thus the triangular number corre
sponding to 4 is 10. This is the explanation of the language 
of Pythagoras in the well-known passage in Lucian where the 
merchant asks Pythagoras what he can teach him. Pythagoras 
replies “ I will teach you how to count.” Merchant, “ I know 
that already.” Pythagoras, “ How do you count 1 ” Merchant, 
“ One, two, three, four—” Pythagoras, “ Stop ! what you take 
to be four is ten, a perfect triangle, and our symbol.” As to 
the work of the Pythagoreans on the factors of numbers we 
know very little : they classified numbers by comparing them 
with the sum of their integral subdivisors or factors, calling a 
number excessive, perfect, or defective, according as it was 
greater than, equal to, or less than the sum of these subdivisors.
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Thιese investigations led to no useful result. The third class of 
problems which they considered dealt with numbers which 
formed a proportion; presumably these were discussed with the 
ai(d of geometry as is done in the fifth book of Euclid. Lastly, 
th∣e Pythagoreans were concerned with series of numbers in 
arithmetical, geometrical, harmonical, and musical progressions. 
Tlhe three progressions first mentioned are well known ; four 
integers are said to be in musical progression when they are in 
the ratio a : 2ab∣(a + 6) : ⅜ (α + δ) : b, for example, 6, 8, 9, and 
12 are in musical progression.

Of the Pythagorean treatment of the applied subjects of the 
quadrivium, and the philosophical theories founded on them, 
w<e know very little. It would seem that Pythagoras was much 
impressed by certain numerical relations which occur in nature. 
It has been suggested that he was acquainted with some of the 
simpler facts of crystallography. It is thought that he was 
aware that the notes sounded by a vibrating string depend on 
the length of the string, and in particular that lengths which 
gave a note, its fifth and its octave were in the ratio 2:3:4, 
fo>rming terms in a musical progression. It would seem, too, 
that he believed that the distances of the astrological planets 
from the earth were also in musical progression, and that the 
heavenly bodies in their motion through space gave out 
harmonious sounds: hence the phrase the harmony of the 
spheres. These and similar conclusions seem to have suggested 
to him that the explanation of the order and harmony of the 
universe was to be found in the science of numbers, and that 
numbers are to some extent the cause of form as well as 
essential to its accurate measurement. He accordingly pro
ceeded to attribute particular properties to particular numbers 
and geometrical figures. For example, he taught that the cause 
of colour was to be sought in properties of the number five, 
that the explanation of fire was to be discovered in the nature 
of the pyramid, and so on. I should not have alluded to this 
were it not that the Pythagorean tradition strengthened, or 
perhaps was chiefly responsible for the tendency of Greek 
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writers to found the study of nature on philosophical con
jectures and not on experimental observation—a tendency to 
which the defects of Hellenic science must be largely attributed.

After the death of Pythagoras his teaching seems to have 
been carried on by Epicharmus and Hippasus, and subse
quently by Philolaus (specially distinguished as an astronomer), 
Archippus, and Lysis. About a century after the murder of 
Pythagoras we find Archytas recognised as the head of the 
school.

Archytas.1 Archytas, circ. 400 b.c., was one of the most 
influential citizens of Tarentum, and was made governor of 
the city no less than seven times. His influence among his 
contemporaries was very great, and he used it with Dionysius 
on one occasion to save the life of Plato. He was noted for the 
attention he paid to the comfort and education of his slaves and 
of children in the city. He was drowned in a shipwreck near 
Tarentum, and his body washed on shore—a fit punishment, in 
the eyes of the more rigid Pythagoreans, for his having departed 
from the lines of study laid down by their founder. Several 
of the leaders of the Athenian school were among his pupils 
and friends, and it is believed that much of their work was due 
to his inspiration.

The Pythagoreans at first made no attempt to apply their 
knowledge to mechanics, but Archytas is said to have treated it 
with the aid of geometry. He is alleged to have invented and 
worked out the theory of the pulley, and is credited with the 
construction of a flying bird and some other ingenious mechanical 
toys. He introduced various mechanical devices for construct
ing curves and solving problems. These were objected to by 
Plato, who thought that they destroyed the value of geometry 
as an intellectual exercise, and later Greek geometricians con-

1 See Allman, chap. iv. A catalogue of the works of Archytas is given 
by Fabricius in his Bibliotheca Graeca, vol. i, p. 833 : most of the fragments 
on philosophy were published by Thomas Gale in his Opuscula Mythologia, 
Cambridge, 1670 ; and by Thomas Taylor as an Appendix to his translation 
of Iamblichus’s Life of Pythagoras London, 1818. See also the references 
given by Cantor, vol. i, p. 203.
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fined themselves to the use of two species of instruments, 
namely, rulers and compasses. Archytas was also interested in 
astronomy; he taught that the earth was a sphere rotating 
round its axis in twenty-four hours, and round which the 
heavenly bodies moved.

Archytas was one of the first to give a solution of the 
problem to duplicate a cube, that is, to find the side of a cube 
whose volume is double that of a given cube. This was one of 
the most famous problems of antiquity.1 The construction 
given by Archytas is equivalent to the following. On the 
diameter OA of the base of a right circular cylinder describe a 
semicircle whose plane is perpendicular to the base of the 
cylinder. Let the plane containing this semicircle rotate round 
the generator through 0, then the surface traced out by the 
semicircle will cut the cylinder in a tortuous curve. This curve 
will be cut by a right cone whose axis is OA and semivertical 
angle is (say) 60° in a point P, such that the projection of OP 
on the base of the cylinder will be to the radius of the cylinder 
in the ratio of the side of the required cube to that of the given 
cube. The proof given by Archytas is of course geometrical;2 
it will be enough here to remark that in the course of it he 
shews himself acquainted with the results of the propositions 
Euc. in, 18, Euc. in, 35, and Euc. xι, 19. To shew analytically 
that the construction is correct, take OA as the axis of x, and 
the generator through 0 as axis of z, then, with the usual 
notation in polar co-ordinates, and if a be the radius of 
the cylinder, we have for the equation of the surface described 
by the semicircle, r = 2αsin0j for that of the cylinder, 
r sin θ = 2α cos φ ∙, and for that of the cone, sin θ cos φ = ∣. These 
three surfaces cut in a point such that sin3 θ = J, and, therefore, 
if p be the projection of OP on the base of the cylinder, then 
pi = (r sin 0)3 = 2α3. Hence the volume of the cube whose side is 
ρ is twice that of a cube whose side is a. I mention the problem 
and give the construction used by Archytas to illustrate how

1 See below, pp. 37, 41, 42.
2 It is printed by Allman, pp. 111-113.
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considerable was the knowledge of the Pythagorean school at 
the time.

Theodoras. Another Pythagorean of about the same dιte as 
Archytas was Theodorus of Gyrene, who is said to have p,oved 
geometrically that the numbers represented by χ∕3, s∕6,
√7, √8, √10, √11, √12, √13, √14, √15, and √17 are in
commensurable with unity. Theaetetus was one of his pupils.

Perhaps Timaeus of Locri and Bryso of Heraclea shorld be 
mentioned as other distinguished Pythagoreans of this time. It 
is believed that Bryso attempted to find the area of a cirde by 
inscribing and circumscribing squares, and finally obtained 
polygons between whose areas the area of the circle lay ; but it 
is said that at some point he assumed that the area of the circle 
wτas the arithmetic mean between an inscribed and a crcum- 
scribed polygon.

Other Greek Mathematical Schools in the Fifth Century ι.c.
It would be a mistake to suppose that Miletus and Tarentum 

were the only places where, in the fifth century, Greeks were 
engaged in laying a scientific foundation for the study of mathe
matics. These towns represented the centres of chief act.vity, 
but there were few cities or colonies of any importance vhere 
lectures on philosophy and geometry were not given. Anong 
these smaller schools I may mention those at Chios, Elea and 
Thrace.

The best known philosopher of the School of Chios was 
Oenopides, who was born about 500 b.c., and died about 430 
B.c. He devoted himself chiefly to astronomy, but he had 
studied geometry in Egypt, and is credited with the solutbn of 
two problems, namely, to draw a straight line from a given 
external point perpendicular to a given straight line (Euc. I 12), 
and at a given point to construct an angle equal to a given ingle 
(Euc. ι, 23).

Another important centre was at Elea in Italy. Thu was 
founded in Sicily by Xenophanes. He was followed by 
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Parmenides, Zeno, and Melissus. The members of the JEleatic 
School were famous for the difficulties they raised in connection 
with questions that required the use of infinite series, such, for 
example, as the well-known paradox of Achilles and the tortoise, 
enunciated by Zeno, one of their most prominent members. 
Zeno was born in 495 b.c., and was executed at Elea in 435 b.c. 
in consequence of some conspiracy against the state; he was a 
pupil of Parmenides, with whom he visited Athens, circ. 455- 
450 b.c.

Zeno argued that if Achilles ran ten times as fast as a 
tortoise, yet if the tortoise had (say) 1000 yards start it could 
never be overtaken: for, when Achilles had gone the 1000 
yards, the tortoise would still be 100 yards in front of him; by 
the time he had covered these 100 yards, it would still be 10 
yards in front of him; and so on for ever : thus Achilles would 
get nearer and nearer to the tortoise, but never overtake it. The 
fallacy is usually explained by the argument that the time 
required to overtake the tortoise, can be divided into an infinite 
number of parts, as stated in the question, but these get smaller 
and smaller in geometrical progression, and the sum of them all 
is a finite time : after the lapse of that time Achilles would be 
in front of the tortoise. Probably Zeno would have replied that 
this argument rests on the assumption that space is infinitely 
divisible, which is the question under discussion : he himself 
asserted that magnitudes are not infinitely divisible.

These paradoxes made the Greeks look with suspicion on the 
use of infinitesimals, and ultimately led to the invention of the 
method of exhaustions.

The Atomistic School, having its headquarters in Thrace, was 
another important centre. This was founded by Leucippus, 
who was a pupil of Zeno. He was succeeded by Democritus 
and Epicurus. Its most famous mathematician was Democritus, 
born at Abdera in 460 b.c., and said to have died in 370 b.c., 
who, besides philosophical works, wrote on plane and solid 
geometry, incommensurable lines, perspective, and numbers. 
These works are all lost. From the Archimedean MS., discovered 
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by Heiberg in 1906, it would seem that Democritus enunciated, 
but without a proof, the proposition that the volume of a 
pyramid is equal to one-third that of a prism of an equal base 
and of equal height.

But though several distinguished individual philosophers may 
be mentioned who, during the fifth century, lectured at different 
cities, they mostly seem to have drawn their inspiration from 
Tarentum, and towards the end of the century to have looked to 
Athens as the intellectual capital of the Greek world -, and it is 
to the Athenian schools that we owe the next great advance in 
mathematics.
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CHAPTER III.

THE SCHOOLS OF ATHENS AND CYZICUS.1

1 The history of these schools is discussed at length in G. Loria’s Le 
Scienze Esatte nelΓ Antica Grecia, Modena, 1893-1900 ; in G. J. Allman’s 
Greek Geometry from Thales to Euclid, Dublin, 1889 ; and in J. Gow’s Greek 
Mathematics, Cambridge, 1884 ; it is also treated by Cantor, chaps, ix, x, 
and xi; by Hankel, pp. 111-156; and by C. A. Bretschneider in his Die 
Geometrie und die Geometer vor Eukleides, Leipzig, 1870 ; a critical account 
of the original authorities is given by S. P. Tannery in his Geometrie Grecque, 
Paris, 1887, and other papers.

D

ciRC. 420 b.c.-300 b.c.

It was towards the close of the fifth century before Christ that 
Athens first became the chief centre of mathematical studies. 
Several causes conspired to bring this about. During that 
century she had become, partly by commerce, partly by appro
priating for her own purposes the contributions of her allies, the 
most wealthy city in Greece; and the genius of her statesmen 
had made her the centre on which the politics of the peninsula 
turned. Moreover, whatever states disputed her claim to poli
tical supremacy her intellectual pre-eminence was admitted by 
all. There was no school of thought which had not at some 
time in that century been represented at Athens by one or 
more of its leading thinkers; and the ideas of the new science, 
which was being so eagerly studied in Asia Minor and Graecia 
Magna, had been brought before the Athenians on various 
occasions.
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Anaxagoras. Amongst the most important of the philoso
phers who resided at Athens and prepared the way for the 
Athenian school I may mention Anaxagoras of Clazom,enae, 
who was almost the last philosopher of the Ionian school. He 
was born in 500 b.c., and died in 428 b.c. He seems to have 
settled at Athens about 440 b.c., and there taught the results of 
the Ionian philosophy. Like all members of that school he was 
much interested in astronomy. He asserted that the sun was 
larger than the Peloponnesus : this opinion, together with some 
attempts he had made to explain various physical phenomena 
which had been previously supposed to be due to the direct 
action of the gods, led to a prosecution for impiety, and he was 
convicted. While in prison he is said to have written a treatise 
on the quadrature of the circle.

The Sophists. The sophists can hardly be considered as 
belonging to the Athenian school, any more than Anaxagoras 
can ; but like him they immediately preceded and prepared the 
way for it, so that it is desirable to devote a few words to them. 
One condition for success in public life at Athens was the power 
of speaking well, and as the wealth and power of the city in
creased a considerable number of “ sophists ” settled there who 
undertook amongst other things to teach the art of oratory. 
Many of them also directed the general education of their pupils, 
of which geometry usually formed a part. We are told that two 
of those who are usually termed sophists made a special study 
of geometry—these were Hippias of Elis and Antipho, and one 
made a special study of astronomy—this was Meton, after whom 
the metonic cycle is named.

Hippias. The first of these geometricians, Hippias of Elis 
(circ. 420 b.c.), is described as an expert arithmetician, but he 
is best known to us through his invention of a curve called the 
quadratrix, by means of which an angle can be trisected, or 
indeed divided in any given ratio. If the radius of a circle 
rotate uniformly round the centre 0 from the position OA 
through a right angle to OB, and in the same time a straight 
line drawn perpendicular to OB move uniformly parallel to
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itself from the position 0Λ to BC, the locus of their intersection 
willi be the quadratrix.

Let OR and MQ be the position of these lines at any time; 
and let them cut in P, a point on the curve. Then

angle A OP : angle A OB = OM: OB.
Similarly, if OR' be another position of the radius,

angle AOP : angle AOB = 0M': OB.
. ’. angle A OP : angle A 0P' = OM : OM ;
.∙. angle AOP: angle P'OP = 0M': MM.

Hence, if the angle AOP be given, and it be required to divide 
it in any given ratio, it is sufficient to divide OM in that ratio 
at M, and draw the line MP'; then 0P' will divide A OP in 
the required ratio.

If 0A be taken as the initial line, OP = r, the angle AOP = θ, 
and 0A = a, we have θ : ⅜7r = r sin θ : α, and the equation of the 
curve is πr = 2aθ cosec θ.

Hippias devised an instrument to construct the curve mechani
cally ; but constructions which involved the use of any mathe
matical instruments except a ruler and a pair of compasses were 
objected to by Plato, and rejected by most geometricians of a 
subsequent date.
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Antipho. The second sophist whom I mentioned was 
Antiplιo (circ. 420 b.c.). He is one of the very few writers 
among the ancients who attempted to find the area of a circle 
by considering it as the limit of an inscribed regular polygon 
with an infinite number of sides. He began by inscribing an 
equilateral triangle (or, according to some accounts, a square); 
on each side he inscribed in the smaller segment an isosceles 
triangle, and so on ad infinitum. This method of attacking the 
quadrature problem is similar to that described above as used by 
Bryso of Heraclea.

No doubt there were other cities in Greece besides Athens 
where similar and equally meritorious work was being done, 
though the record of it has now been lost; I have mentioned 
here the investigations of these three writers, chiefly because they 
were the immediate predecessors of those who created the 
Athenian school.

The Schools of Athens and Cyzicus. The history of the 
Athenian school begins with the teaching of Hippocrates about 
420 B.c.; the school was established on a permanent basis by 
the labours of Plato and Eudoxus; and, together with the 
neighbouring school of Cyzicus, continued to extend on the lines 
laid down by these three geometricians until the foundation 
(about 300 b.c.) of the university at Alexandria drew thither 
most of the talent of Greece.

Eudoxus, who was amongst the most distinguished of the 
Athenian mathematicians, is also reckoned as the founder of the 
school at Cyzicus. The connection between this school and that 
of Athens was very close, and it is now impossible to disentangle 
their histories. It is said that Hippocrates, Plato, and 
Theaetetus belonged to the Athenian school; while Eudoxus, 
Menaechmus, and Aristaeus belonged to that of Cyzicus. There 
was always a constant intercourse between the two schools, the 
earliest members of both had been under the influence either of 
Archytas or of his pupil Theodoras of Cyrene, and there was no 
difference in their treatment of the subject, so that they may be 
conveniently treated together.
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Before discussing the work of the geometricians of these 
schools in detail I may note that they were especially interested 
in three problems :1 namely (i), the duplication of a cube, that 
is, the determination of the side of a cube whose volume is 
doπιble that of a given cube ; (ii) the trisection of an angle; and 
(iiiι) the squaring of a circle, that is, the determination of a 
square whose area is equal to that of a given circle.

1 On these problems, solutions of them, and the authorities for their 
history, see my Mathematical Recreations and Problems, London, fourth 
edition, 1905, chap, viii.

Now the first two of these problems (considered analytically) 
require the solution of a cubic equation; and, since a con
struction by means of circles (whose equations are of the form 
x2 A-?/2 + ax + fy∕ + c = 0) and straight lines (whose equations are 
of the form ax + βy + y = 0) cannot be equivalent to the solution 
of a cubic equation, the problems are insoluble if in our con
structions we restrict ourselves to the use of circles and straight 
lines, that is, to Euclidean geometry. If the use of the conic 
sections be permitted, both of these questions can be solved in 
many ways. The third problem is equivalent to finding a 
rectangle whose sides are equal respectively to the radius and to 
the semiperimeter of the circle. These lines have been long 
known to be incommensurable, but it is only recently that it has 
been shewn by Lindemann that their ratio cannot be the root of 
a rational algebraical equation. Hence this problem also is 
insoluble by Euclidean geometry. The Athenians and Cyzicians 
were thus destined to fail in all three problems, but the attempts 
to solve them led to the discovery of many new theorems and 
processes.

Besides attacking these problems the later Platonic school 
collected all the geometrical theorems then known and arranged 
them systematically. These collections comprised the bulk of 
the propositions in Euclid’s Elements, books l-ix, xι, and xπ, 
together with some of the more elementary theorems in conic 
sections.

Hippocrates. Hippocrates of Chios (who must be carefully 
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distinguished from his contemporary, Hippocrates of Cos, the 
celebrated physician) was one of the greatest of the Greek 
geometricians. He was born about 470 b.c. at Chios, and began 
life as a merchant. The accounts differ as to whether he was 
swindled by the Athenian custom - house officials who were 
stationed at the Chersonese, or whether one of his vessels wτas 
captured by an Athenian pirate near Byzantium; but at any 
rate somewhere about 430 b.c. he came to Athens to try to 
recover his property in the law courts. A foreigner was not 
likely to succeed in such a case, and the Athenians seem only to 
have laughed at him for his simplicity, first in allowing himself 
to be cheated, and then in hoping to recover his money. While 
prosecuting his cause he attended the lectures of various 
philosophers, and finally (in all probability to earn a livelihood) 
opened a school of geometry himself. He seems to have been 
well acquainted with the Pythagorean philosophy, though there 
is no sufficient authority for the statement that he was ever 
initiated as a Pythagorean.

He wrote the first elementary text-book of geometry, a text
book on which probably Euclid’s Elements was founded; and 
therefore he may be said to have sketched out the lines on 
which geometry is still taught in English schools. It is supposed 
that the use of letters in diagrams to describe a figure was made 
by him or introduced about this time, as he employs expressions 
such as “ the point on which the letter A stands ” and “ the line 
on which AB is marked.” Cantor, however, thinks that the 
Pythagoreans had previously been accustomed to represent the 
five vertices of the pentagram-star by the letters v y ι θ a; 
and though this was a single instance, perhaps they may have 
used the method generally. The Indian geometers never 
employed letters to aid them in the description of their figures. 
Hippocrates also denoted the square on a line by the word 
δiu'α∕Λts, and thus gave the technical meaning to the word 
ρoιver which it still retains in algebra : there is reason to think 
that this use of the word was derived from the Pythagoreans, 
who are said to have enunciated the result of the pro-
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position Euc. ι, 47, in the form that “ the total power of the 
sides of a right-angled triangle is the same as that of the 
hypotenuse.”

In this text-book Hippocrates introduced the method of 
“reducing” one theorem to another, which being proved, the 
thing proposed necessarily follows; of this method the reductio 
ad absurdum is an illustration. No doubt the principle had 
been used occasionally before, but he drew attention to it as 
a legitimate mode of proof which was capable of numerous 
applications. He elaborated the geometry of the circle : proving, 
among other propositions, that similar segments of a circle 
contain equal angles; that the angle subtended by the chord of 
a circle is greater than, equal to, or less than a right angle as 
the segment of the circle containing it is less than, equal to, or 
greater than a semicircle (Euc. in, 31); and probably several 
other of the propositions in the third book of Euclid. It is 
most likely that he also established the propositions that [similar] 
circles are to one another as the squares of their diameters 
(Euc. xn, 2), and that similar segments are as the squares of 
their chords. The proof given in Euclid of the first of these 
theorems is believed to be due to Hippocrates.

The most celebrated discoveries of Hippocrates were, how
ever, in connection with the quadrature of the circle and the 
duplication of the cube, and owing to his influence these 
problems played a prominent part in the history of the Athenian 
school.

The following propositions will sufficiently illustrate the 
method by which he attacked the quadrature problem.

(a) He commenced by finding the area of a lune contained 
between a semicircle and a quadrantal arc standing on the same 
chord. This he did as follows. Let ABC be an isosceles right- 
angled triangle inscribed in the semicircle ABOC, whose centre 
is 0. On √17j and AC as diameters describe semicircles as in 
the figure. Then, since by Euc. ι, 47,

sq. on BC — sq. on AC + sq. on AB,
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therefore, by Euc. xιι, 2,

Take away the common parts

.∙. area Δ√lAC, = sum of areas of lunes AECD and ΛFB7.

Hence the area of the lune AECD is equal to half that ol the 
triangle ABC.

(/3) He next inscribed half a regular hexagon ABCD in a

semicircle whose centre was 0, and on OA, AB, BC, and CD as 
diameters described semicircles of which those on OA and AB 
are drawn in the figure. Then AD is double any of the .ines 
OA, AB, BC, and CD,
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.∙. sq. on AD = sum of sqs. on 0A, AB, BC, and CD,
.∙. area ∣0 ABCD = sum of areas of J0son OA,AB, BC, and CD. 
Take away the common parts

.∙. area trapezium ABCD = 3 lune AEBF + ∣ 0 on 0A.
If therefore the area of this latter lune be known, so is that of 
the semicircle described on 0A as diameter. According to 
Simplicius, Hippocrates assumed that the area of this lune was 
the same as the area of the lune found in proposition (a); if 
this be so, he was of course mistaken, as in this case he is deal
ing with a lune contained between a semicircle and a sextantai 
arc standing on the same chord; but it seems more probable 
that Simplicius misunderstood Hippocrates.

Hippocrates also enunciated various other theorems connected 
with lunes (which have been collected by Bretschneider and by 
Allman) of which the theorem last given is a typical example. 
I believe that they are the earliest instances in which areas 
bounded by curves were determined by geometry.

The other problem to which Hippocrates turned his attention 
was the duplication of a cube, that is, the determination of 
the side of a cube whose volume is double that of a given 
cube.

This problem was known in ancient times as the Delian 
problem, in consequence of a legend that the Delians had con
sulted Plato on the subject. In one form of the story, which 
is related by Philoponus, it is asserted that the Athenians in 
430 b.c., when suffering from the plague of eruptive typhoid 
fever, consulted the oracle at Delos as to how they could stop 
it. Apollo replied that they must double the size of his altar 
which was in the form of a cube. To the unlearned suppliants 
nothing seemed more easy, and a new altar was constructed 
either having each of its edges double that of the old one (from 
which it followed that the volume was increased eightfold) or 
by placing a similar cubic altar next to the old one. Where
upon, according to the legend, the indignant god made the 
pestilence worse than before, and informed a fresh deputation 
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that it was useless to trifle with him, as his new altar must 
be a cube and have a volume exactly double that of his old 
one. Suspecting a mystery the Athenians applied to Plato, 
who referred them to the geometricians, and especially to 
Euclid, who had made a special study of the problem. The 
introduction of the names of Plato and Euclid is an obvious 
anachronism. Eratosthenes gives a somewhat similar account 
of its origin, but with king Minos as the propounder of the 
problem.

Hippocrates reduced the problem of duplicating the cube to 
that of finding two means between one straight line (a), and 
another twice as long (2α). If these means be x and y, we 
have a ,.x = x ∙. y = y : 2a, from which it follows that x3 = 2α3. 
It is in this form that the problem is usually presented now. 
Hippocrates did not succeed in finding a construction for these 
means.

Plato. The next philosopher of the Athenian school who 
requires mention here was Plato. He was born at Athens in 
429 b.c., and was, as is well known, a pupil for eight years of 
Socrates; much of the teaching of the latter is inferred from 
Plato’s dialogues. After the execution of his master in 399 B.c. 
Plato left Athens, and being possessed of considerable wealth 
he spent some years in travelling; it was during this time that 
he studied mathematics. He visited Egypt with Eudoxus, and 
Strabo says that in his time the apartments they occupied at 
Heliopolis were still shewn. Thence Plato went to Cyrene, 
where he studied under Theodoras. Next he moved to Italy, 
where he became intimate with Archytas the then head of the 
Pythagorean school, Eurytas of Metapontum, and Timaeus of 
Locri. He returned to Athens about the year 380 b.c., and 
formed a school of students in a suburban gymnasium called 
the “ Academy.” He died in 348 B.c.

Plato, like Pythagoras, was primarily a philosopher, and 
perhaps his philosophy should be regarded as founded on the 
Pythagorean rather than on the Socratic teaching. At any 
rate it, like that of the Pythagoreans, was coloured with the
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idea that the secret of the universe is to be found in number 
and in form; hence, as Eudemus says, “ he exhibited on every 
occasion the remarkable connection between mathematics and 
philosophy.” All the authorities agree that, unlike many later 
philosophers, he made a study of geometry or some exact 
science an indispensable preliminary to that of philosophy. 
The inscription over the entrance to his school ran “ Let none 
ignorant of geometry enter my door,” and on one occasion an 
applicant who knew no geometry is said to have been refused 
admission as a student.

Plato’s position as one of the masters of the Athenian 
mathematical school rests not so much on his individual dis
coveries and writings as on the extraordinary influence he 
exerted on his contemporaries and successors. Thus the objec
tion that he expressed to the use in the construction of curves 
of any instruments other than rulers and compasses was at once 
accepted as a canon which must be observed in such problems. 
It is probably due to Plato that subsequent geometricians 
began the subject with a carefully compiled series of definitions, 
postulates, and axioms. He also systematized the methods 
which could be used in attacking mathematical questions, and 
in particular directed attention to the value of analysis. The 
analytical method of proof begins by assuming that the theorem 
or problem is solved, and thence deducing some result: if the 
result be false, the theorem is not true or the problem is in
capable of solution : if the result be true, and if the steps be 
reversible, we get (by reversing them) a synthetic proof; but 
if the steps be not reversible, no conclusion can be drawn. 
Numerous illustrations of the method will be found in any 
modern text-book on geometry. If the classification of the 
methods of legitimate induction given by Mill in his work on 
logic had been universally accepted and every new discovery in 
science had been justified by a reference to the rules there laid 
down, he'would, I imagine, have occupied a position in refer
ence to modern science somewhat analogous to that which Plato 
occupied in regard to the mathematics of his time.
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The following is the only extant theorem traditionally ιttri- 
buted to Plato. If CAB and DAB be two right-aιgled 
triangles, having one side, AB, common, their other sides AD 
and BC, parallel, and their hypotenuses, AC and Bl, at 
right angles, then, if these hypotenuses cut in P, we have 
PC : PB = PB : 7 LI = PA : PD. This theorem was use! in 
duplicating the cube, for, if such triangles can be constricted 
having PD = 2PC, the problem will be solved. It is easy 
to make an instrument by which the triangles can be con
structed.

Eudoxus.1 Of Eudoxus, the third great mathematician of 
the Athenian school and the founder of that at Cyzicus we 
know very little. He was born in Cnidus in 408 B.c. Like 
Plato, he went to Tarentum and studied under Archytas the 
then head of the Pythagoreans. Subsequently he travelled 
with Plato to Egypt, and then settled at Cyzicus, where he 
founded the school of that name. Finally he and his pιpils 
moved to Athens. There he seems to have taken some part in 
public affairs, and to have practised medicine; but the hostility 
of Plato and his own unpopularity as a foreigner made his 
position uncomfortable, and he returned to Cyzicus or Cndus 
shortly before his death. He died while on a journey to Ejypt 
in 355 b.c.

His mathematical work seems to have been of a high o,der 
of excellence. He discovered most of what we now knov as 
the fifth book of Euclid, and proved it in much the same form 
as that in which it is there given.

He discovered some theorems on what was called ‘ the 
golden section.” The problem to 
cut a line AB in the golden section, 
that is, to divide it, say at II, in
extreme and mean ratio (that is, so that AB .All — All .HD> is 
solved in Euc. II, 11, and probably was known to the Pytlιa-

1 The works of Eudoxus were discussed in considerable detail by 
H. Kiinssberg of Dinkelsbiihl in 1888 and 1890 ; see also the authorities 
mentioned above in the footnote on p. 33.
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goreans at an early date. If we denote AB by I, AH by a, and 
HB by δ, the theorems that Eudoxus proved are equivalent 
to the following algebraical identities. (i) (α + ∣Z)2 = 5(⅜Z)2. 
(ii) Conversely, if (i) be true, and AH be taken equal to α, 
then AB will be divided at H in a golden section, (iii) 
(δ + ∣α)2 = 5(∣α2). (iv) l2 + b2 = 3α2. (v) l + a:l = l:a, which
gives another golden section. These propositions were subse
quently put by Euclid as the first five propositions of his 
thirteenth book, but they might have been equally well, placed 
towards the end of the second book. All of them are obvious 
algebraically, since l = a + b and a2 = bl.

Eudoxus further established the “method of exhaustions”; 
which depends on the proposition that “ if from the greater 
of two unequal magnitudes there be taken more than its half, 
and from the remainder more than its half, and so on, there 
will at length remain a magnitude less than the least of the 
proposed magnitudes.” This proposition was placed by Euclid 
as the first proposition of the tenth book of his Elements, but 
in most modern school editions it is printed at the beginning of 
the twelfth book. By the aid of this theorem the ancient 
geometers were able to avoid the use of infinitesimals: the 
method is rigorous, but awkward of application. A good illus
tration of its use is to be foui)d in the demonstration of Euc. 
xιι. 2, namely, that the square of the radius of one circle is to 
the square of the radius of another circle as the area of the first 
circle is to an area which is neither less nor greater than the 
area of the second circle, and which therefore must be exactly 
equal to it: the proof given by Euclid is (as was usual) com
pleted by a reductio ad absurdum. Eudoxus applied the 
principle to shew that the volume of a pyramid or a cone is 
one-third that of the prism or the cylinder on the same base and 
of the same altitude (Euc. xιι, 7 and 10). It is believed that 
he proved that the volumes of two spheres were to one another 
as the cubes of their radii; some writers attribute the proposi
ti m Euc. xιι, 2 to him, and not to Hippocrates.

Eudoxus also considered certain curves other than the circle. 
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There is no authority for the statement macle in some old looks 
that these were conic sections, and recent investigations have 
shewn that the assertion (which I repeated in the earlier editions 
of this book) that they were plane sections of the anchor-riιg is 
also improbable. It seems most likely that they were tortuous 
curves; whatever they were, he applied them in explaining the 
apparent motions of the planets as seen from the earth.

Eudoxus constructed an orrery, and wrote a treatise on 
practical astronomy, in which he supposed a number of mcving 
spheres to which the sun, moon, and stars were attached, and 
which by their rotation produced the effects observed, lι all 
he required twenty-seven spheres. As observations became nore 
accurate, subsequent astronomers who accepted the theorj had 
continually to introduce fresh spheres to make the theory ιgree 
with the facts. The work of Aratus on astronomy, which was 
written about 300 B.c. and is still extant, is founded on thιt of 
Eudoxus.

Plato and Eudoxus were contemporaries. Among Pato’s 
pupils were the mathematicians Leodamas, Neocle.des, 
Amyclas, and to their school also belonged Leon, Theιdius 
(both of whom wrote text-books on plane geometry), Cyzictnus, 
Thasus, Hermotimus, Philippus, and Theaetetus. Anong 
the pupils of Eudoxus are reckoned Menaechmus, his brother 
Dinostratus (who applied the quadratrix to the duplication and 
trisection problems), and Aristaeus.

Menaechmus. Of the above - mentioned mathemati<ians 
Menaechmus requires special mention. He was born about 
375 B.c., and died about 325 b.c. Probably he succeeded 
Eudoxus as head of the school at Cyzicus, where he acqιired 
great reputation as a teacher of geometry, and was for that 
reason appointed one of the tutors of Alexander the G,eat. 
In answer to his pupil’s request to make his proofs shcrter, 
Menaechmus made the well-known reply that though in the 
country there are private and even royal roads, yet in geonetry 
there is only one road for all.

Menaechmus was the first to discuss the conic sections, which
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were long called the Menaechmian triads. He divided them 
into three classes, and investigated their properties, not by 
taking different plane sections of a fixed cone, but by keeping 
his plane fixed and cutting it by different cones. He shewed 
that the section of a right cone by a plane perpendicular to 
a generator is an ellipse, if the cone be acute-angled ; a parabola, 
if it be right-angled; and a hyperbola, if it be obtuse-angled ; 
and he gave a mechanical construction for curves of each class. 
It seems almost certain that he was acquainted with the funda
mental properties of these curves ; but some writers think that 
he failed to connect them with the sections of the cone which he 
had discovered, and there is no doubt that he regarded the 
latter not as plane loci but as curves drawn on the surface of a 
cone.

He also shewed how these curves could be used in either of 
the tλvo following ways to give a solution of the problem 
to duplicate a cube. In the first of these, he pointed out that 
two parabolas having a common vertex, axes at right angles, 
and such that the latus rectum of the one is double that of the 
other will intersect in another point whose abscissa (or ordinate) 
will give a solution; for (using analysis) if the equations of the 
parabolas be yi — 2ax and x2 — ay, they intersect in a point 
whose abscissa is given by x3 = 2a3. It is probable that this 
method was suggested by the form in which Hippocrates had cast 
the problem; namely, to find x and y so that a ∙.x = x ∙.y = y : 2a, 
whence we have x2 = ay and y2 — 2ax.

The second solution given by Menaechmus was as follows. 
Describe a parabola of latus rectum I. Next describe a rect
angular hyperbola, the length of whose real axis is 4Z, and 
having for its asymptotes the tangent at the vertex of the para
bola and the axis of the parabola. Then the ordinate and the 
abscissa of the point of intersection of these curves are the 
mtan proportionals between I and 21. This is at once obvious 
by analysis. The curves are x2 = ly and xy = 2l2. These 
cut in a point determined by x3 = 2l3 and - y3 = 4∕3. Hence 
I :x = x :y = y :21.
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Aristaeus and Theaetetus. Of the other members of these 
schools, Aristaeus and Theaetetus, whose works are entirely lost, 
were mathematicians of repute. λVe know that Aristaeus wrote 
on the five regular solids and on conic sections, and that Theae
tetus developed the theory of incommensurable magnitudes. 
The only theorem we can now definitely ascribe to the latter 
is that given by Euclid in the ninth proposition of the tenth 
book of the Elements, namely, that the squares on two commen
surable right lines have one to the other a ratio which a square 
number has to a square number (and conversely); but the 
squares on two incommensurable right lines have one to the 
other a ratio which cannot be expressed as that of a square 
number to a square number (and conversely). This theorem 
includes the results given by Theodoras.1

The contemporaries or successors of these mathematicians 
wrote some fresh text-books on the elements of geometry and 
the conic sections, introduced problems concerned with finding 
loci, and systematized the knowledge already acquired, but they 
originated no new methods of research.

Aristotle. An account of the Athenian school would be 
incomplete if there were no mention of Aristotle, who was born 
at Stagira in Macedonia in 384 B.c. and died at Chaicis in 
Euboea in 322 b.c. Aristotle, however, deeply interested 
though he was in natural philosophy, was chiefly concerned 
with mathematics and mathematical physics as supplying illus
trations of correct reasoning. A small book containing a few 
questions on mechanics which is sometimes attributed to him 
is of doubtful authority; but, though in all probability it is 
not his work, it is interesting, partly as shewing that the 
principles of mechanics were beginning to excite attention, and 
partly as containing the earliest known employment of letters 
to indicate magnitudes.

The most instructive parts of the book are the dynamical 
proof of the parallelogram of forces for the direction of the 
resultant, and the statement, in effect, that if α be a force, β the 

1 Sωω αlιmτΩ γy Q∩
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mass to which it is applied, γ the distance through which it is 
moved, and δ the time of the motion, then a will move ⅛β 
through 2γ in the time δ, or through γ in the time ⅜δ : but the 
author goes on to say that it does not follow that ⅜α will move 
β through ⅜γ in the time δ, because ∣α may not be able to move 
β at all; for 100 men may drag a ship 100 yards, but it does 
not follow that one man can drag it one yard. The first part 
of this statement is correct and is equivalent to the statement 
that an impulse is proportional to the momentum produced, but 
the second part is wrong.

The author also states the fact that what is gained in power 
is lost in speed, and therefore that two weights which keep a 
[weightless] lever in equilibrium are inversely proportional to 
the arms of the lever; this, he says, is the explanation why it 
is easier to extract teeth with a pair of pincers than with the 
fingers. Among other questions raised, but not answered, are 
why a projectile should ever stop, and why carriages with large 
wheels are easier to move than those with small.

I ought to add that the book contains some gross blunders, 
and as a whole is not as able or suggestive as might be inferred 
from the above extracts. In fact, here as elsewhere, the Greeks 
did not sufficiently realise that the fundamental facts on which 
the mathematical treatment of mechanics must be based can 
be established only by carefully devised observations and 
experiments.
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CHAPTER IV.

THE FIRST ALEXANDRIAN SCHOOL.1

1 The history of the Alexandrian Schools is discussed by G. Loriι in his 
Le Scienze Esatte nell' Antica Grecia, Modena, 1893-1900 ; by Cantor, 
chaps, xii-xxiii; and by J. Gow in his History of Greek Math>.matics, 
Cambridge, 1884. The subject of Greek algebra is treated by E. H. F. 
Nesselmann in his Die Algebra der Griechen, Berlin, 1842 ; see also L. 
Matthiessen, Grundzuge der antiken und modernen Algebra der ltteralen 
Gleichungen, Leipzig, 1878. The Greek treatment of the conic sectioιs forms 
the subject of Die Lehre von den Kegelschnitten in Altertum, by H. G. 
Zeuthen, Copenhagen, 1886. The materials for the history of these schools 
have been subjected to a searching criticism by S. P. Tannery, and most of 
his papers are collected in his Geometrie Grecque, Paris, 1887.

ciRC. 300 b.c.-30 b.c.

The earliest attempt to found a university, as we understand 
the word, was made at Alexandria. Richly endowed, supplied 
with lecture rooms, libraries, museums, laboratories, and 
gardens, it became at once the intellectual metropolis of the 
Greek race, and remained so for a thousand years. It was 
particularly fortunate in producing within the first centur7 of its 
existence three of the greatest mathematicians of antiquity— 
Euclid, Archimedes, and Apollonius. They laid down thi lines 
on which mathematics subsequently developed, and treatel it as 
a subject distinct from philosophy : hence the foundation of the 
Alexandrian Schools is rightly taken as the commencemeιt of a 
new era. Thenceforward, until the destruction of the city by 
the Arabs in 641 a.d., the history of mathematics centres 
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more or less round that of Alexandria; for this reason the 
Alexandrian Schools are commonly taken to include all Greek 
mathematicians of their time.

The city and university of Alexandria λvere created under the 
following circumstances. Alexander the Great had ascended the 
throne of Macedonia in 336 b.c. at the early age of twenty, and 
by 332 b.c. he had conquered or subdued Greece, Asia Minor, 
and Egypt. Following the plan he adopted whenever a com
manding site had been left unoccupied, he founded a new city 
on the Mediterranean near one mouth of the Nile; and he him
self sketched out the ground-plan, and arranged for drafts of 
Greeks, Egyptians, and Jews to be sent to occupy it. The city 
was intended to be the most magnificent in the world, and, the 
better to secure this, its erection was left in the hands of 
Dinocrates, the architect of the temple of Diana at Ephesus.

After Alexander’s death in 323 b.c. his empire was divided, 
and Egypt fell to the lot of Ptolemy, who chose Alexandria 
as the capital of his kingdom. A short period of confusion 
followed, but as soon as Ptolemy was settled on the throne, say 
about 306 b.c., he determined to attract, so far as he was able, 
learned men of all sorts to his new city; and he at once began 
the erection of the university buildings on a piece of ground 
immediately adjoining his palace. The university was ready to 
be opened somewhere about 300 b.c., and Ptolemy, who wished 
to secure for its staff the most eminent philosophers of the time, 
naturally turned to Athens to find them. The great library 
which was the central feature of the scheme was placed under 
Demetrius Phalereus, a distinguished Athenian, and so rapidly 
did it grow that within forty years it (together with the 
Egyptian annexe) possessed about 600,000 rolls. The mathe
matical department was placed under Euclid, who was thus the 
first, as he was one of the most famous, of the mathematicians 
of the Alexandrian school.

It happens that contemporaneously with the foundation 
of this school the information on which our history is based 
becomes more ample and certain. Many of the works of the 
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Alexandrian mathematicians are still extant; and w« have 
besides an invaluable treatise by Pappus, described bebw, in 
which their best-known treatises are collated, discussei, and 
criticized. It curiously turns out that just as we begin to be 
able to speak with confidence on the subject-matter whiιh was 
taught, we find that our information as to the personality of 
the teachers becomes vague; and we know very little of the 
lives of the mathematicians mentioned in this and th; next 
chapter, even the dates at which they lived being fre(uently 
in doubt.

The third century before Christ.

Euclid.1—This century produced three of the g,eatest 
mathematicians of antiquity, namely Euclid, Archimedis, and 
Apollonius. The earliest of these was Euclid. Of his ife we 
know next to nothing, save that he was of Greek desceιt, and 
was born about 330 b.c. ; he died about 275 b.c. It would 
appear that he was well acquainted with the Platonic geαnetry, 
but he does not seem to have read Aristotle’s works; anc these 
facts are supposed to strengthen the tradition that le was 
educated at Athens. Whatever may have been his p,evious 
training and career, he proved a most successful teache∙ when 
settled at Alexandria. He impressed his own individuality on 
the teaching of the new university to such an extent llιat to 
his successors and almost to his contemporaries the name 
Euclid meant (as it does to us) the book or books he wrote, 
and not the man himself. Some of the mediaeval writes went 
so far as to deny his existence, and with the ingemity of

1 Besides Loria, book ii, chap, i; Cantor, chaps, xii, xiii; and Gow, pp. 
72-86, 195-221 ; see the articles Eucleides by A. De Morgan in Smith’s 
Dictionary of Greek and Roman Biography, London, 1849; the a⅛icle on 
Irrational Quantity by A. De Morgan in the Penny Cyclopaedia, .ondon, 
1839 ; Litterargeschichtliche Studien uber Euklid, by J. L. Heiberg, Leipzig, 
1882 ; and above all Euclid's Elements, translated with an introduction and 
commentary by T. L. Heath, 3 volumes, Cambridge, 1908. Th) latest 
complete edition of all Euclid’s works is that by J. L. Heiberg and H. Menge, 
Leipzig, 1883-96.
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philologists they explained that the term was only a corruption 
of vκλι a key, and διs geometry. The former word was presum
ably derived from κλ∈ts. I can only explain the meaning 
assigned to διs by the conjecture that as the Pythagoreans 
said that the number two symbolized a line, possibly a school
man may have thought that it could be taken as indicative of 
geometry.

From the meagre notices of Euclid which have come down 
to us we find that the saying that there is no royal road in 
geometry was attributed to Euclid as well as to Menaechmus; 
but it is an epigrammatic remark which has had many imitators. 
According to tradition, Euclid was noticeable for his gentleness 
and modesty. Of his teaching, an anecdote has been preserved. 
Stobaeus, who is a somewhat doubtful authority, tells us that, 
when a lad who had just begun geometry asked, “ What do I 
gain by learning all this stuff ? ” Euclid insisted that knowledge 
was worth acquiring for its own sake, but made his slave give 
the boy some coppers, “ since,” said he, “ he must make a profit 
out of what he learns.”

Euclid was the author of several works, but his reputation 
rests mainly on his Elements. This treatise contains a systematic 
exposition of the leading propositions of elementary metrical 
geometry (exclusive of conic sections) and of the theory of 
numbers. It was at once adopted by the Greeks as the standard 
text-book on the elements of pure mathematics, and it is probable 
that it was written for that purpose and not as a philosophical 
attempt to shew that the results of geometry and arithmetic are 
necessary truths.

The modern text1 is founded on an edition or commentary 
prepared by Theon, the father of Hypatia (circ. 380 a.d.). 
There is at the Vatican a copy (circ. 1000 A.τ>.) of an older text, 
and we have besides quotations from the work and references to 
it by numerous writers of various dates. From these sources we

1 Most of the modern text-books in English are founded on Simeon’s 
edition, issued in 1758. Robert Simson, who was born in 1687 and died in 
1768, was professor of mathematics at the University of Glasgow, and left 
several valuable works on ancient geometry.
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gather that the definitions, axioms, and postulates were re
arranged and slightly altered by subsequent editors, but that 
the propositions themselves are substantially as Euclid wrote 
them.

As to the matter of the work. The geometrical part is to a 
large extent a compilation from the works of previous writers. 
Thus the substance of books I and ιι is probably due to 
Pythagoras ∙, that of book in to Hippocrates; that of book v to 
Eudoxus; and the bulk of books iv, vι, xι, and xn to the later 
Pythagorean or Athenian schools. But this material was re
arranged, obvious deductions were omitted (for instance, the 
proposition that the perpendiculars from the angular points of a 
triangle on the opposite sides meet in a point was cut out), and 
in some cases new proofs substituted. The part concerned with 
the theory of numbers would seem to have been taken from the 
works of Eudoxus and Pythagoras, except that portion (book x) 
which deals with irrational magnitudes. The latter may be 
founded on the lost book of Theaetetus; but probably much 
of it is original, for Proclus says that while Euclid arranged 
the propositions of Eudoxus he completed many of those of 
Theaetetus.

The form in which the propositions are presented, consisting 
of enunciation, statement, construction, proof, and conclusion, 
is due to Euclid : so also is the synthetical character of the 
work, each proof being written out as a logically correct train of 
reasoning but without any clue to the method by which it was 
obtained.

The defects of Euclid’s Elements as a text-book of geometry 
have been often stated ; the most prominent are these, (i) The 
definitions and axioms contain many assumptions which are not 
obvious, and in particular the postulate or axiom about parallel 
lines is not self-evident.1 (ii) No explanation is given as to 
the reason why the proofs take the form in which they are 
presented, that is, the synthetical proof is given but not the

1 We know, from the researches of Lobatschewsky and Riemann, that it is 
incapable of proof.
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analysis by which it was obtained, (iii) There is no attempt 
made to generalize the results arrived at; for instance, the idea 
of an angle is never extended so as to cover the case where it is 
equal to or greater than two right angles : the second half of 
the thirty-third proposition in the sixth book, as now printed, 
appears to be an exception, but it is due to Theon and not to 
Euclid. (iv) The principle of superposition as a method of 
proof might be used more frequently with advantage, (v) The 
classification is imperfect. And (vi) the work is unnecessarily 
long and verbose. Some of those objections do not apply to 
certain of the recent school editions of the Elements.

On the other hand, the propositions in Euclid are arranged 
so as to form a chain of geometrical reasoning, proceeding from 
certain almost obvious assumptions by easy steps to results of 
considerable complexity. The demonstrations are rigorous, often 
elegant, and not too difficult for a beginner. Lastly, nearly all 
the elementary metrical (as opposed to the graphical) properties 
of space are investigated, while the fact that for two thousand 
years it was the usual text-book on the subject raises a strong 
presumption that it is not unsuitable for the purpose.

On the Continent rather more than a century ago, Euclid 
was generally superseded by other text-books. In England 
determined efforts have lately been made with the same purpose, 
and numerous other works on elementary geometry have been 
produced in the last decade. The change is too recent to enable 
us to say definitely what its effect may be. But as far as I can 
judge, boys who have learnt their geometry on the new system 
know more facts, but have missed the mental and logical training 
which was inseparable from a judicious study of Euclid’s 
treatise.

I do not think that all the objections above stated can fairly 
be urged against Euclid himself. He published a collection of 
problems, generally known as the ∆eboμiva or Data. This 
contains 95 illustrations of the kind of deductions which 
frequently have to be made in analysis; such as that, if one 
of the data of the problem under consideration be that one
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angle of some triangle in the figure is constant, then it is 
legitimate to conclude that the ratio of the area of the rectangle 
under the sides containing the angle to the area of the triangle 
is known [prop. 66]. Pappus says that the work was written 
for those “ who wish to acquire the power of solving problems.” 
It is in fact a gradual series of exercises in geometrical analysis. 
In short the Elements gave the principal results, and were 
intended to serve as a training in the science of reasoning, while 
the Data were intended to develop originality.

Euclid also wrote a work called ∏∈pi ∆ιαιρ<σeωv or De 
Divisionibus, known to us only through an Arabic translation 
which may be itself imperfect. This is a collection of 36 
problems on the division of areas into parts which bear to one 
another a given ratio. It is not unlikely that this was only 
one of several such collections of examples—possibly including 
the Fallacies and the Porisms—but even by itself it shews that 
the value of exercises and riders was fully recognized by Euclid.

I may here add a suggestion made by De Morgan, whose 
comments on Euclid’s writings were notably ingenious and 
informing. From internal evidence he thought it likely that 
the Elements were written towards the close of Euclid’s life, and 
that their present form represents the first draft of the proposed 
work, which, with the exception of the tenth book, Euclid did 
not live to revise. This opinion is generally discredited, and 
there is no extrinsic evidence to support it.

The geometrical parts of the Elements are so well known 
that I need do no more than allude to them. Euclid admitted 
only those constructions λvhich could be made by the use of a 
ruler and compasses.1 He also excluded practical work and

1 The ruler must be of unlimited length and not graduated ; the compasses 
also must be capable of being opened as wide as is desired. Lorenzo Mas- 
cheroni (who was born at Castagneta on May 14, 1750, and died at Paris 
on July 30, 1800) set himself the task to obtain by means of constructions 
made only with a pair of compasses the same results as Euclid had given. 
Mascheroni’s treatise on the geometry of the compass, which was published 
at Pavia in 1795, is a curious tour de force : he was professor first at 
Bergamo and afterwards at Pavia, and left numerous minor works. Similar 
limitations have been proposed by other writers.
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hypothetical constructions. The first four books and book 
vι deal with plane geometry; the theory of proportion (of 
any magnitudes) is discussed in book v; and books xι and 
xιι treat of solid geometry. On the hypothesis that the 
Elements are the first draft of Euclid’s proposed work, it is 
possible that book xm is a sort of appendix containing some 
additional propositions which would have been put ultimately 
in one or other of the earlier books. Thus, as mentioned 
above, the first five propositions which deal with a line cut 
in golden section might be added to the second book. The 
next seven propositions .are concerned with the relations be
tween certain incommensurable lines in plane figures (such as 
the radius of a circle and the sides of an inscribed regular 
triangle, pentagon, hexagon, and decagon) which are treated by 
the methods of the tenth book and as an illustration of them. 
Constructions of the five regular solids are discussed in the last 
six propositions, and it seems probable that Euclid and his 
contemporaries attached great importance to this group of 
problems. Bretschneider inclined to think that the thirteenth 
book is a summary of part of the lost work of Aristaeus : but 
the illustrations of the methods of the tenth book are due most 
probably to Theaetetus.

Books vιι, vιπ, ιx, and x of the Elements are given up 
to the theory of numbers. The mere art of calculation or 
λoγιcrτικ7∕ was taught to boys when quite young, it was stig
matized by Plato as childish, and never received much atten
tion from Greek mathematicians; nor was it regarded as 

- forming part of a course of mathematics. We do not know 
how it was taught, but the abacus certainly played a prominent 
part in it. The scientific treatment of numbers was called 
dpιθp.ητι.κη, which I have here generally translated as the 
science of numbers. It had special reference to ratio, pro
portion, and the theory of numbers. It is with this alone that 
most of the extant Greek works deal.

In discussing Euclid’s arrangement of the subject, we must 
therefore bear in mind that those who attended his lectures 
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were already familiar with the art of calculation. The system 
of numeration adopted by the Greeks is described later,1 but 
it was so clumsy that it rendered the scientific treatment of 
numbers much more difficult than that of geometry; hence 
Euclid commenced his mathematical course with plane geometry. 
At the same time it must be observed that the results of the 
second book, though geometrical in form, are capable of 
expression in algebraical language, and the fact that numbers 
could be represented by lines was probably insisted on at an 
early stage, and illustrated by concrete examples. This 
graphical method of using lines to represent numbers possesses 
the obvious advantage of leading to proofs which are true for 
all numbers, rational or irrational. It will be noticed that 
among other propositions in the second book we get geometrical 
proofs of the distributive and commutative laws, of rules for 
multiplication, and finally geometrical solutions of the equations 
α(α — a?) = x2, that is x2 + ax - α2 = 0 (Euc. π, 11), and x2 — al> = 0 
(Euc. ιι, 14) : the solution of the first of these equations is 
given in the form x∕α2 + (⅛a)2 - ⅛a. The solutions of the 
equations ax2 - bx + c — 0 and ax2 + bx — c = 0 are given later in 
Euc. vι, 28 and vι, 29 ; the cases when a = l can be deduced 
from the identities proved in Euc. II, 5 and 6, but it is doubtful 
if Euclid recognized this.

The results of the fifth book, in which the theory of propor
tion is considered, apply to any magnitudes, and therefore are 
true of numbers as well as of geometrical magnitudes. In the 
opinion of many writers this is the most satisfactory way of 
treating the theory of proportion on a scientific basis; and it 
was used by Euclid as the foundation on which he built the 
theory of numbers. The theory of proportion given in this 
book is believed to be due to Eudoxus. The treatment of the 
same subject in the seventh book is less elegant, and is supposed 
to be a reproduction of the Pythagorean teaching. This double 
discussion of proportion is, as far as it goes, in favour of the 
conjecture that Euclid did not live to revise the work.

1 See below, chapter vii.
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In books vπ, vm, and ιx Euclid discusses the theory of 
rational numbers. He commences the seventh book with some 
definitions founded on the Pythagorean notation. In proposi
tions 1 to 3 he shews that if, in the usual process for finding 
the greatest common measure of two numbers, the last divisor 
be unity, the numbers must be prime; and he thence deduces 
the rule for finding their g.c.m. Propositions 4 to 22 include 
the theory of fractions, which he bases on the theory of pro
portion; among other results he shews that ab = ba [prop. 16]. 
In propositions 23 to 34 he treats of prime numbers, giving 
many of the theorems in modern text-books on algebra. In 
propositions 35 to 41 he discusses the least common multiple of 
numbers, and some miscellaneous problems.

The eighth book is chiefly devoted to numbers in continued 
proportion, that is, in a geometrical progression; and the cases 
where one or more is a product, square, or cube are specially 
considered.

In the ninth book Euclid continues the discussion of geo
metrical progressions, and in proposition 35 he enunciates the 
rule for the summation of a series of n terms, though the proof 
is given only for the case where n is equal to 4. He also 
develops the theory of primes, shews that the number of primes 
is infinite [prop. 20], and discusses the properties of odd and 
even numbers. He concludes by shewing that a number of the 
form 2n-1(2n-l), where 2n - 1 is a prime, is a “perfect” 
number [prop. 36].

In the tenth book Euclid deals with certain irrational 
magnitudes; and, since the Greeks possessed no symbolism for 
surds, he was forced to adopt a geometrical representation. 
Propositions 1 to 21 deal generally with incommensurable 
magnitudes. The rest of the book, namely, propositions 22 to 
117, is devoted to the discussion of every possible variety of 
lines which can be represented by χ∕( s∕α÷ x∕δ), where a and b 
denote commensurable lines. There are twenty-five species of 
such lines, and that Euclid could detect and classify them all 
is in the opinion of so competent an authority as Nesselmann 
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the most striking illustration of his genius. No further advance 
in the theory of incommensurable magnitudes was made until 
the subject was taken up by Leonardo and Cardan after an 
interval of more than a thousand years.

In the last proposition of the tenth book [prop. 117] the 
side and diagonal of a square are proved to be incommensurable. 
The proof is so short and easy that I may quote it. If possible 
let the side be to the diagonal in a commensurable ratio, 
namely, that of two integers, a and b. Suppose this ratio 
reduced to its lowest terms so that a and b have no common 
divisor other than unity, that is, they are prime to one another. 
Then (by Euc. ι, 47) b2 = 2a2∙, therefore b2 is an even number; 
therefore b is an even number; hence, since a is prime to I, a 
must be an odd number. Again, since it has been shewn that 
b is an even number, b may be represented by 2n; therefore 
(2n)2 = 2α2; therefore a2 = 2n2 ; therefore a2 is an even number; 
therefore a is an even number. Thus the same number a mist 
be both odd and even, which is absurd; therefore the side and 
diagonal are incommensurable. Hankel believes that this proof 
was due to Pythagoras, and this is not unlikely. This proposi
tion is also proved in another way in Euc. x, 9, and for this 
and other reasons it is now usually believed to be an interpola
tion by some commentator on the Elements.

In addition to the Elements and the two collections of riders 
above mentioned (which are extant) Euclid wrote the following 
books on geometry : (i) an elementary treatise on conic sections 
in four books; (ii) a book on surface loci, probably confmed 
to curves on the cone and cylinder ; (iii) a collection of geo
metrical fallacies, which were to be used as exercises in the 
detection of errors; and (iv) a treatise on porisms arranged in 
three books. All of these are lost, but the work on porisms 
was discussed at such length by Pappus, that some writers 
have thought it possible to restore it. In particular, Chasles 
in 1860 published what he considered to be substantially a re
production of it. In this will be found the conceptions of cross 
ratios and projection, and those ideas of modern geometry which
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were used so extensively by Chasles and other writers of the 
nineteenth century. It should be realized, however, that the 
statements of the classical writers concerning this book are 
either very brief or have come to us only in a mutilated 
form, and De Morgan frankly says that he found them un
intelligible, an opinion in which most of those who read them 
will, I think, concur.

Euclid published a book on optics, treated geometrically, 
which contains 61 propositions founded on 12 assumptions. It 
commences with the assumption that objects are seen by rays 
emitted from the eye in straight lines, “ for if light proceeded 
from the object we should not, as we often do, fail to perceive a 
needle on the floor.” A work called Catoptrica is also attributed 
to him by some of the older writers; the text is corrupt and the 
authorship doubtful; it consists of 31 propositions dealing with 
reflexions in plane, convex, and concave mirrors. The geometry 
of both books is Euclidean in form.

Euclid has been credited with an ingenious demonstration 1 
of the principle of the lever, but its authenticity is doubtful. 
He also wrote the Phaenomena, a treatise on geometrical astro
nomy. It contains references to the work of Autolycus 2 and to 
some book on spherical geometry by an unknown writer. Pappus 
asserts that Euclid also composed a book on the elements of 
music : this may refer to the Sectio Canonis, which is by Euclid, 
and deals with musical intervals.

To these works I may add the following little problem, which 
occurs in the Palatine Anthology and is attributed by tradition 
to Euclid. “ A mule and a donkey were going to market laden 
with wheat. The mule said, ‘ If you gave me one measure I 
should carry twice as much as you, but if I gave you one we

1 It is given (from the Arabic) by F. Woepcke in the Journal Asiatique, 
series 4, vol. xviii, October 1851, pp. 225-232.

2 Autolycus lived at Pitane in Aeolis and flourished about 330 b.C. His 
two works on astronomy, containing 43 propositions, are said to be the oldest 
extant Greek mathematical treatises. They exist in manuscript at Oxford. 
They were edited, with a Latin translation, by F. Hultsch, Leipzig, 1885.
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should bear equal burdens.’ Tell me, learned geometrician, 
what were their burdens.” It is impossible to say whether the 
question is due to Euclid, but there is nothing improbable in 
the suggestion.

It will be noticed that Euclid dealt only with magnitudes, 
and did not concern himself with their numerical measures, but 
it would seem from the works of Aristarchus and Archimedes 
that this was not the case with all the Greek mathematicians 
of that time. As one of the works of the former is extant it 
will serve as another illustration of Greek mathematics of this 
period.

Aristarchus. Aristarchus of Samos, born in 310 b.c. and 
died in 250 b.c., was an astronomer rather than a mathematician. 
He asserted, at any rate as a working hypothesis, that the sun 
was the centre of the universe, and that the earth revo.ved 
round the sun. This view, in spite of the simple explanation 
it afforded of various phenomena, was generally rejected by his 
contemporaries. But his propositions1 on the measurement of 
the sizes and distances of the sun and moon were accurate in 
principle, and his results were accepted by Archimedes in his 
Ψα∕qzrn∕s, mentioned below, as approximately correct. Taere 
are 19 theorems, of which I select the seventh as a typical 
illustration, because it shews the way in which the Greeks 
evaded the difficulty of finding the numerical value of surds.

1 I [epi μe~∙∕iθoιv κai a.πoστ∙ημa.rωv 'Hλt'oυ κal ∑eληι>ηs, edited by E. Nzze, 
Stralsund, 1856. Latiu translations were issued by F. Comπιandino in .572 
and by J. Wallis in 1688 ; and a French translation was publisheć by 
F. d’Urban in 1810 and 1823.

Aristarchus observed the angular distance between the noon 
when dichotomized and the sun, and found it to be twenty-line 
thirtieths of a right angle. It is actually about 89° 2Γ, but of 
course his instruments were of the roughest description. He 
then proceeded to shew that the distance of the sun is greιter 
than eighteen and less than twenty times the distance of the 
moon in the following manner.

Let S be the sun, E the earth, and J∕ the moon. Then when
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the moon is dichotomized, that is, when the bright part which 
we see is exactly a half-circle, the angle between MS and ME is

a right angle. With E as centre, and radii ES and EM describe 
circles, as in the figure above. Draw EA perpendicular to ES. 
Draw EE bisecting the angle AES, and EG bisecting the angle 
AEF, as in the figure. Let EM (produced) cut AF in II. 
The angle AEM is by hypothesis ∙⅛th of a right angle. Hence 
we have

angle AEG : angle AEII
AG : AH [ = tan AEG : tan AEII∖

Again

Compounding the ratios (a) and (/?), we have

But the triangles EMS and EAII are similar,
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I will leave the second half of the proposition to amuse any 
reader who may care to prove it: the analysis is straightforward. 
In a somewhat similar way Aristarchus found the ratio of the 
radii of the sun, earth, and moon.

We know very little of Conon and Dositheus, the immediate 
successors of Euclid at Alexandria, or of their contemporaries 
Zeuxippus and Nicoteles, who most likely also lectured there, 
except that Archimedes, who was a student at Alexandria 
probably shortly after Euclid’s death, had a high opinion of 
their ability and corresponded with the three first mentioned. 
Their work and reputation has been completely overshadowed 
by that of Archimedes.

Archimedes.1 Archimedes, who probably was related to 
the royal family at Syracuse, was born there in 287 b.c. and 
died in 212 b.c. He went to the university of Alexandria 
and attended the lectures of Conon, but, as soon as he had 
finished his studies, returned to Sicily where he passed the 
remainder of his life. He took no part in public affairs, but 
his mechanical ingenuity was astonishing, and, on any difficιlties 
which could be overcome by material means arising, his advice 
was generally asked by the government.

Archimedes, like Plato, held that it was undesirable for a 
philosopher to seek to apply the results of science to any prac
tical use ; but, whatever might have been his view of what 
ought to be the case, he did actually introduce a large number 
of new inventions. The stories of the detection of the fraudu
lent goldsmith and of the use of burning-glasses to destroy the 
ships of the Roman blockading squadron will recur to most 
readers. Perhaps it is not as well known that Hiero, who had 
built a ship so large that he could not launch it off the dips,

1 Besides Loria, book ii, chap, iii; Cantor, chaps, xiv, xv ; and Gow, 
pp. 221-244 ; see Quaestiones Archimedeae, by J. L. Heiberg, Copenhagen, 
1879 ; and Marie, vol. i, pp. 81-134. The latest and best edition cf the 
extant works of Archimedes is that by J. L. Heiberg, in 3 vols., Lepzig, 
1880-81. In 1906 a manuscript, previously unknown, was discovertd at 
Constantinople, containing propositions on hydrostatics and on methods; see 
Eine neue Schrift des Archimedes, by J. L. Heiberg and H. G, Zeιr.hen, 
Leipzig, 1907.
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applied to Archimedes. The difficulty was overcome by means 
of an apparatus of cogwheels worked by an endless screw, but 
we are not told exactly how the machine was used. It is said 
that it was on this occasion, in acknowledging the compliments 
of Hiero, that Archimedes made the well-known remark that had 
he but a fixed fulcrum he could move the earth.

Most mathematicians are aware that the Archimedean screw 
wτas another of his inventions. It consists of a tube, open at 
both ends, and bent into the form of a spiral like a corkscrew. 
If one end be immersed in water, and the axis of the instrument 
(⅛.e. the axis of the cylinder on the surface of which the tube 
lies) be inclined to the vertical at a sufficiently big angle, and 
the instrument turned round it, the water will flow along the 
tube and out at the other end. In order that it may work, the 
inclination of the axis of the instrument to the vertical must 
be greater than the pitch of the screw. It was used in Egypt 
to drain the fields after an inundation of the Nile, and was 
also frequently applied to take water out of the hold of a 
ship.

The story that Archimedes set fire to the Roman ships by 
means of burning-glasses and concave mirrors is not mentioned 
till some centuries after his death, and is generally rejected. 
The mirror of Archimedes is said to have been made in the 
form of a hexagon surrounded by rings of polygons ; and Buffon 1 
in 1747 contrived, by the use of a single composite mirror made 
on this model, to set fire to wood at-a distance of 150 feet, 
and to melt lead at a distance of 140 feet. This was in April 
and as far north as Paris, so in a Sicilian summer the use 
of several such mirrors might be a serious annoyance to a 
blockading fleet, if the ships were sufficiently near. It is 
perhaps worth mentioning that a similar device is said to have 
been used in the defence of Constantinople in 514 a.d., and is 
alluded to by writers who either were present at the siege or 
obtained their information from those who were engaged in it.

1 See Memoires de l,academie royale des sciences for 1747, Paris, 1752, 
pp. 82-101.

F
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But whatever be the truth as to this story, there is no doubt 
that Archimedes devised the catapults which kept the Romans, 
who were then besieging Syracuse, at bay for a considerable 
time. These were constructed so that the range could be made 
either short or long at pleasure, and so that they could be dis
charged through a small loophole without exposing the artillery
men to the fire of the enemy. So effective did they prove that 
the siege was turned into a blockade, and three years ela,psed 
before the town was taken.

Archimedes was killed during the sack of the city which 
followed its capture, in spite of the orders, given by the consul 
Marcellus who was in command of the Romans, that his house 
and life should be spared. It is said that a soldier enterel his 
study while he was regarding a geometrical diagram drawn in 
sand on the floor, which was the usual way of drawing figures 
in classical times. Archimedes told him to get off the diagram, 
and not spoil it. The soldier, feeling insulted at having <rders 
given to him and ignorant of who the old man was, killed him. 
According to another and more probable account, the cupidity 
of the troops was excited by seeing his instruments, constricted 
of polished brass which they supposed to be made of gold.

The Romans erected a splendid tomb to Archimedes, on which 
was engraved (in accordance with a wish he had expressec) the 
figure of a sphere inscribed in a cylinder, in commemoration of 
the proof he had given that the volume of a sphere was equal 
to two-thirds that of the circumscribing right cylinder, and its 
surface to four times the area of a great circle. Cicero 1 gives 
a charming account of his efforts (which were successful) to 
rediscover the tomb in 75 B.c.

It is difficult to explain in a concise form the works or dis
coveries of Archimedes, partly because he wrote on near.y all 
the mathematical subjects then known, and partly because his 
writings are contained in a series of disconnected monographs. 
rΓhus, while Euclid aimed at producing systematic treιtises 
which could be understood by all students who had attuned 

1 See his Tusculanaτum Disyutati<mum, v. 23.
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a certain level of education, Archimedes wrote a number of 
brilliant essays addressed chiefly to the most educated mathe
maticians of the day. The work for which he is perhaps now 
best known is his treatment of the mechanics of solids and 
fluids; but he and his contemporaries esteemed his geometrical 
discoveries of the quadrature of a parabolic area and of a 
spherical surface, and his rule for finding the volume of a sphere 
as more remarkable; while at a somewhat later time his numerous 
mechanical inventions excited most attention.

(i) On plane, geometry the extant works of Archimedes are 
three in number, namely, (u) the Measure of the Circle, (ó) the 
Quadrature of the Parabola, and (c) one on Spirals.

(а) The Measure of the Circle contains three propositions. 
In the first proposition Archimedes proves that the area is the 
same as that of a right-angled triangle whose sides are equal 
respectively to the radius a and the circumference of the circle, 
i.e. the area is equal to ∣α (2τrα). In the second proposition 
he shows that πa2 : (2α)2=ll : 14 very nearly; and next, in 
the third proposition, that 7r is less than 31 and greater than 
3-1-9. These theorems are of course proved geometrically. To 
demonstrate the two latter propositions, he inscribes in and 
circumscribes about a circle regular polygons of ninety - six 
sides, calculates their perimeters, and then assumes the circum
ference of the circle to lie between them : this leads to the 
result 6336 / 2017∣ < 7r< 14688 / 4673∣, from which he deduces 
the limits given above. It would seem from the proof that he 
had some (at present unknown) method of extracting the square 
roots of numbers approximately. The table which he formed 
of the numerical values of the chords of a circle is essentially a 
table of natural sines, and may have suggested the subsequent 
work on these lines of Hipparchus and Ptolemy.

(б) The Qτcadrature of the Parabola contains twenty-four 
propositions. Archimedes begins this work, which was sent to 
Dositheus, by establishing some properties of conics [props, l-5]. 
He then states correctly the area cut off from a parabola by any 
chord, and gives a proof which rests on a preliminary mechanical 
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experiment of the ratio of areas which balance when suspended 
from the arms of a lever [props. 6-17]; and, lastly, he gives a 
geometrical demonstration of this result [props. 18-24]. The 
latter is, of course, based on the method of exhaustions, but for 
brevity I will, in quoting it, use the method of limits.

Let the area of the parabola (see figure below) be bounded 
by the chord PQ. Draw VJf the diameter to the chord 
PQ, then (by a previous proposition), V is more remote from

PQ than any other point in the arc PVQ. Let the aιea of 
the triangle PFQ be denoted by Δ. In the segments bounded 
by VP and VQ inscribe triangles in the same way as the triangle 
P VQ was inscribed in the given segment. Each of these tri
angles is (by a previous proposition of his) equal to and
their sum is therefore ∣∆. Similarly in the four segments left 
inscribe triangles; their sum will be τ1κ∆. Proceeding iι. this 
way the area of the given segment is shown to be equal to the 
limit of

when n is indefinitely large.
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The problem is therefore reduced to finding the sum of a 
geometrical series. This he effects as follows. Let Λ, B, C, 
..., .7, A'be a series of magnitudes such that each is one-fourth 
of that which precedes it. Take magnitudes δ, c, ..., k equal 
respectively to Then

Hence

but, by hypothesis,

Hence the sum of these magnitudes exceeds four times the third 
of the largest of them by one-third of the smallest of them.

Returning now to the problem of the quadrature of the 
parabola Λ stands for Δ, and ultimately K is indefinitely 
small; therefore the area of the parabolic segment is four-thirds 
that of the triangle PVQ, or two-thirds that of a rectangle 
whose base is PQ and altitude the distance of V from PQ.

While discussing the question of quadratures it may be 
added that in the fifth and sixth propositions of his work on 
conoids and spheroids he determined the area of an ellipse.

(c) The work on Spirals contains twenty-eight propositions 
on the properties of the curve now known as the spiral of 
Archimedes. It was sent to Dositheus at Alexandria accom
panied by a letter, from which it appears that Archimedes had 
previously sent a note of his results to Conon, who had died 
before he had been able to prove them. The spiral is defined by 
saying that the vectorial angle and radius vector both increase 
uniformly, hence its equation is r = cθ. Archimedes finds most 
of its properties, and determines the area inclosed between the 
curve and two radii vectores. This he does (in effect) by 
saying, in the language of the infinitesimal calculus, that an 
element of area is > ⅛r2dθ and < ⅜ (r + dr)2dθ : to effect the 
sum of the elementary areas he gives tλvo lemmas in which he
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sums (geometrically) the series α2 + (2α)2 + (3α)2 +...+ (naf 
[prop. 10], and a + '2a + 3<ι + ... + na [prop. 11].

(<7) In addition to these he wrote a small treatise on 
geometrical methods, and works on parallel lines, triangles, the 
properties of right-angled triangles, data, the heptagon inscribed 
in a circle, and systems of circles touching one another; possibly 
he wrote others too. These are all lost, but it is probable that 
fragments of four of the propositions in the last-mentioned work 
are preserved in a Latin translation from an Arabic manuscript 
entitled Lemmas of Archimedes.

(ii) On geometry of three dimensions the extant works of 
Archimedes are two in number, namely (a), the Sphere and 
Cylinder, and (6) Conoids and Spheroids.

(a) The Sp>here and Cylinder contains sixty propositions 
arranged in two books. Archimedes sent this like so many 
of his works to Dositheus at Alexandria; but he seems to 
have played a practical joke on his friends there, for he pur
posely misstated some of his results “ to deceive those vain 
geometricians who say they have found everything, but never 
give their proofs, and sometimes claim that they have dis
covered what is impossible.” He regarded this work as his 
masterpiece. It is too long for me to give an analysis of its 
contents, but I remark in passing that in it he finds expressions 
for the surface and volume of a pyramid, of a cone, and of 
a sphere, as well as of the figures produced by the revolution 
of polygons inscribed in a circle about a diameter of the circle. 
There are several other propositions on areas and volumes of 
which perhaps the most striking is the tenth proposition of 
the second book, namely, that “ of all spherical segments whose 
surfaces are equal the hemisphere has the greatest volume.” 
In the second proposition of the second book he enunciates the 
remarkable theorem that a line of length a can be divided 
so that a-x : δ = 4α2 : 9jj2 (where b is a given length), only 
if b be less than ∣α; that is to say, the cubic equation 
x2 - ax- + ⅛α25 = 0 can have a real and positive root only if 
a be greater than 36. This proposition was required to com-
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plete his solution of the problem to divide a given sphere by 
a plane so that the volumes of the segments should be in a given 
ratio. One very simple cubic equation occurs in the Arithmetic 
of Diophantus, but with that exception no such equation appears 
again in the history of European mathematics for more than a 
thousand years.

(δ) The Conoids and Spheroids contains forty propositions 
on quadrics of revolution (sent to Dositheus in Alexandria) 
mostly concerned with an investigation of their volumes.

(c) Archimedes also wrote a treatise on certain semi-regular 
polyhedrons, that is, solids contained by regular but dissimilar 
polygons. This is lost, but references to it are given by 
Pappus.

(iii) On arithmetic Archimedes wrote two papers. One 
(addressed to Zeuxippus) was on the principles of numeration; 
this is now lost. The other (addressed to Gelon) was called 
ylraμμiτη<s (the sand-reckoner), and in this he meets an objection 
which had been urged against his first paper.

The object of the first paper had been to suggest a con
venient system by which numbers of any magnitude could 
be represented; and it would seem that some philosophers at 
Syracuse had doubted whether the system was practicable. 
Archimedes says people talk of the sand on the Sicilian shore 
as something beyond the power of calculation, but he can 
estimate it; and, further, he will illustrate the power of his 
method by finding a superior limit to the number of grains of 
sand which would fill the whole universe, i.e. a sphere whose 
centre is the earth, and radius the distance of the sun. He 
begins by saying that in ordinary Greek nomenclature it was 
only possible to express numbers from 1 up to 108 : these are 
expressed in what he says he may call units of the first order. 
If 10s be termed a unit of the second order, any number from 
108 to 101,i can be expressed as so many units of the second 
order plus so many units of the first order. If 1016 be a unit 
of the third order any number up to 1024 can be then expressed, 
and so on. Assuming that 10,000 grains of sand occupy a
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sphere whose radius is not less than ⅛⅛th of a finger-breadth, 
and that the diameter of the universe is not greater than 101° 
stadia, he finds that the number of grains of sand required to 
fill the solar universe is less than 1051.

1 See a memoir by B. Krumbiegel and A. Amthor, Zeitschrift fur Mat lie- 
matik, Abhandlungen zur (Jeschiclite der Mathematik, Leipzig, vol. xxv, 1880, 
pp. 121-136, 153-171.

Probably this system of numeration was suggested merely 
as a scientific curiosity. The Greek system of numeration 
with which we are acquainted had been only recently intro
duced, most likely at Alexandria, and was sufficient for all the 
purposes for which the Greeks then required numbers; and 
Archimedes used that system in all his papers. On the other 
hand, it has been conjectured that Archimedes and Apollonius 
had some symbolism based on the decimal system for their 
own investigations, and it is possible that it was the one here 
sketched out. The units suggested by Archimedes form a 
geometrical progression, having 10s for the radix. He inci
dentally adds that it will be convenient to remember that the 
product of the with and πth terms of a geometrical progression, 
whose first term is unity, is equal to the (m + n)th term of the 
series, that is, that rm × rn = rm+n.

To these two arithmetical papers I may add the following 
celebrated problem 1 which he sent to the Alexandrian mathe
maticians. The sun had a herd of bulls and cows, all of 
which were either white, grey, dun, or piebald : the number 
of piebald bulls was less than the number of white bulls by 
5/6 ths of the number of grey bulls, it was less than the 
number of grey bulls by 9∕20ths of the number of dun bulls, 
and it was less than the number of dun bulls by 13∕42nds 
of the number of white bulls; the number of white cows was 
7∕T2ths of the number of grey cattle (bulls and cows), the 
number of grey cows was 9∕20ths of the number of dun 
cattle, the number of dun cows was 1 l∕30ths of the number of 
piebald cattle, and the number of piebald cows was 13∕42nds 
of the number of white cattle. The problem was to find the
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composition of the herd. The problem is indeterminate, but 
the solution in lowest integers is

white bulls, ....... 10,366,482; white cows, ....... 7,206,360;
grey bulls,...........  7,460,514; grey cows,............ 4,893,246;
dun bulls, ........... 7,358,060; dun cows, ............ 3,515,820;
piebald bulls,.......  4,149,387 ; piebald cows,....... 5,439,213.

In the classical solution, attributed to Archimedes, these num
bers are multiplied by 80.

Nesselιnann believes, from internal evidence, that the prob
lem has been falsely attributed to Archimedes. It certainly 
is unlike his extant work, but it was attributed to him among 
the ancients, and is generally thought to be genuine, though 
possibly it has come down to us in a modified form. It is 
in verse, and a later copyist has added the additional con
ditions that the sum of the white and grey bulls shall be a 
square number, and the sum of the piebald and dun bulls a 
triangular number.

It is perhaps worthy of note that in the enunciation the 
fractions are represented as a sum of fractions whose numera
tors are unity: thus Archimedes wrote 1/7 + 1/6 instead of 
13/42, in the same way as Ahmes would have done.

(iv) On mechanics the extant works of Archimedes are 
two in number, namely, (a) his Mechanics, and (c) his Hydro
statics.

(a) The Mechanics is a work on statics with special refer
ence to the equilibrium of plane laminas and to properties of 
their centres of gravity; it consists of twenty-five propositions 
in two books. In the first part of book ι, most of the ele
mentary properties of the centre of gravity are proved [props. 
1-8]; and in the remainder of book I, [props. 9-15] and in 
book ιι the centres of gravity of a variety of plane areas, such 
as parallelograms, triangles, trapeziums, and parabolic areas 
are determined.

As an illustration of the influence of Archimedes on the 
history of mathematics, I may mention that the science of 
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statics rested on his theory of the lever until 158G, when 
Stevinus published his treatise on statics.

His reasoning is sufficiently illustrated by an outline of his 
proof for the case of two weights, P and Q, placed at their centres 
of gravity, A and B, on a weightless bar AB. He wants to shew 
that the centre of gravity of P and Q is at a point 0 on the bar 
such that P. 0A = Q. OB.

On the line /17? (produced if necessary) take points IL and 7»', 
so that IIB = BK= A 0 ; and a point L so that LA — OB. It 
follows that LII will be bisected at A, ILK at B, and LK at 0;

also LH ∙.ILK=AH ∙. HB=OB ∙.AO = P .Q. Hence, by a 
previous proposition, we may consider that the effect of P is the 
same as that of a heavy uniform bar 7√77 of weight P, and the 
effect of Q is the same as that of a similar heavy uniform bar 
777f of weight Q. Hence the effect of the weights is the same 
as that of a heavy uniform bar LK. But the centre of gravity 
of such a bar is at its middle point O.

(δ) Archimedes also wrote a treatise on levers and perhaps, 
on all the mechanical machines. The book is lost, but we 
know from Pappus that it contained a discussion of how a 
given weight could be moved with a given power. It was in 
this work probably that Archimedes discussed the theory of 
a certain compound pulley consisting of three or more simple 
pulleys which he had invented, and which was used in some 
public works in Syracuse. It is well known1 that he boasted 
that, if he had but a fixed fulcrum, he could move the whole 
earth; and a commentator of later date says that he added 
he would do it by using a compound pulley.

(c) His work on floating bodies contains nineteen propositions 
in two books, and was the first attempt to apply mathematical 
reasoning to hydrostatics. The story of the manner in which

1 See above, p. 65.
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his attention was directed to the subject is told by Vitruvius. 
Hiero, the king of Syracuse, had given some gold to a goldsmith 
to make into a crown. The crown was delivered, made up, and 
of the proper weight, but it was suspected that the workman 
had appropriated some of the gold, replacing it by an equal 
weight of silver. Archimedes was thereupon consulted. Shortly 
afterwards, when in the public baths, he noticed that his body 
was pressed upwrards by a force which increased the more com
pletely he was immersed in the water. Recognising the value 
of the observation, he rushed out, just as he was, and ran home 
through the streets, shouting evpηκa, eυpηκa, “ I have found it, I 
have found it.” There (to follow a later account) on making 
accurate experiments he found that wτhen equal wτeights of gold 
and silver were weighed in water they no longer appeared equal: 
each seemed lighter than before by the weight of the water it 
displaced, and as the silver was more bulky than the gold its 
weight was more diminished. Hence, if on a balance he weighed 
the crowτn against an equal weight of gold and then immersed 
the whole in water, the gold would outweigh the crown if any 
silver had been used in its construction. Tradition says that 
the goldsmith was found to be fraudulent.

Archimedes began the work by proving that the surface of 
a fluid at rest is spherical, the centre of the sphere being at the 
centre of the earth. He then proved that the pressure of the 
fluid on a body, wholly or partially immersed, is equal to the 
weight of the fluid displaced; and thence found the position 
of equilibrium of a floating body, which he illustrated by 
spherical segments and paraboloids of revolution floating on a 
fluid. Some of the latter problems involve geometrical reason
ing of considerable complexity.

The following is a fair, specimen of the questions considered. 
A solid in the shape of a paraboloid of revolution of height h 
and latus rectum 4α floats in water, with its vertex immersed 
and its base wholly above the surface. If equilibrium be 
possible when the axis is not vertical, then the density of the 
body must be less than (A - 3α)2∕∆3 [book ιι, prop. 4]. When

www.rcin.org.pl



76 THE FIRST ALEXANDRIAN SCHOOL [ch. iv 

it is recollected that Archimedes was unacquainted with trigono
metry or analytical geometry, the fact that he could discover 
and prove a proposition such as that just quoted will serve as an 
illustration of his powers of analysis.

It will be noticed that the mechanical investigations of 
Archimedes were concerned with statics. It may be added lhat 
though the Greeks attacked a few problems in dynamics, they 
did it with but indifferent success : some of their remarks vere 
acute, but they did not sufficiently realise that the fundamental 
facts on which the theory must be based can be established cnly 
by carefully devised observations and experiments. It was not 
until the time of Galileo and Newton that this was done.

(v) We know, both from occasional references in his works 
and from remarks by other writers, that Archimedes was largely 
occupied in astronomical observations. He wrote a book, IIepi 
Σ<∕>∈ιpo7τoα'αs, on the construction of a celestial sphere, which is 
lost; and he constructed a sphere of the stars, and an orrery. 
These, after the capture of Syracuse, were taken by Marcelim to 
Rome, and were preserved as curiosities for at least two or tlree 
hundred years.

This mere catalogue of his works will show how wonde∙ful 
were his achievements; but no one who has not actually read 
some of his writings can form a just appreciation of his extra
ordinary ability. This will be still further increased if we 
recollect that the only principles used by Archimedes, in 
addition to those contained in Euclid’s Elements and Conic

sections, are that of all lines ike 
ACE, ADB, ... connecting two 
points A and B, the straight ine 
is the shortest, and of the curved 
lines, the inner one ADB is

shorter than the outer one ACB-, together with two similar 
statements for space of three dimensions.

In the old and medieval world Archimedes was reckoιed 
as the first of mathematicians, but possibly the best tribute to 
his fame is the fact that those writers who have spoken nost
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highly of his work and ability are those who have been them
selves the most distinguished men of their own generation.

Apollonius.1 The third great mathematician of this century 
was Apollonius of Perga, who is chiefly celebrated for having 
produced a systematic treatise on the conic sections which not 
only included all that was previously known about them, but 
immensely extended the knowledge of these curves. This work 
was accepted at once as the standard text-book on the subject, 
and completely superseded the previous treatises of Menaech- 
mus, Aristaeus, and Euclid which until that time had been in 
general use.

We know very little of Apollonius himself. He was born 
about 260 b.c., and died about 200 B.c. He studied in Alex
andria for many years, and probably lectured there; he is 
represented by Pappus as “ vain, jealous of the reputation of 
others, and ready to seize every opportunity to depreciate them.” 
It is curious that while we know next to nothing of his life, or 
of that of his contemporary Eratosthenes, yet their nicknames, 
which were respectively epsilon and beta, have come down to us. 
Dr. Gow has ingeniously suggested that the lecture rooms at 
Alexandria were numbered, and that they always used the rooms 
numbered 5 and 2 respectively.

Apollonius spent some years at Pergamum in Pamρhylia, 
where a university had been recently established and endowed 
in imitation of that at Alexandria. There he met Eudemus and 
Attalus, to whom he subsequently sent each book of his conics 
as it came out with an explanatory note. He returned to 
Alexandria, and lived there till his death, which was nearly 
contemporaneous with that of Archimedes.

In his great work on conic sections Apollonius so thoroughly 
investigated the properties of these curves that he left but little

1 In addition to Zeuthen’s work and the other authorities mentioned in 
the footnote on p. 51, see Litteτargeschichtliche Studien ilber Buklid, by 
J. L. Heiberg, Leipzig, 1882. Editions of the extant works of Apollonius 
were issued by .J. L. Heiberg in two volumes, Leipzig, 1890, 1893 ; and by 
E. Halley, Oxford, 1706 and 1710: an edition of the conics was published by 
T. L. Heath, Cambridge, 1896.
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for his successors to add. But his proofs are long and involved, 
and I think most readers will be content to accept a short 
analysis of his work, and the assurance that his demonstrations 
are valid. Dr. Zeuthen believes that many of the properties 
enunciated were obtained in the first instance by the use of 
co-ordinate geometry, and that the demonstrations were trans
lated subsequently into geometrical form. If this be so. we 
must suppose that the classical writers were familiar with some 
branches of analytical geometry—Dr. Zeuthen says the use of 
orthogonal and oblique co-ordinates, and of transformations 
depending on abridged notation — that this knowledge was 
confined to a limited school, and was finally lost. This is a 
mere conjecture and is unsupported by any direct evidence, but 
it has been accepted by some writers as affording an explanation 
of the extent and arrangement of the work.

The treatise contained about four hundred propositions, and 
was divided into eight books; we have the Greek text of the 
first four of these, and we also possess copies of the comment
aries by Pappus and Eutocius on the whole work. In the ninth 
century an Arabic translation was made of the first seven hoiks, 
which were the only ones then extant; we have two manuscripts 
of this version. The eighth book is lost.

In the letter to Eudemus which accompanied the first look 
Apollonius says that he undertook the work at the requesi of. 
Naucrates, a geometrician who had been staying with bin at 
Alexandria, and, though he had given some of his friends a 
rough draft of it, he had preferred to revise it carefully before 
sending it to Pergamum. In the note which accompanied the 
next book, he asks Eudemus to read it and communicate iι to 
others who can understand it, and in particular to Philoniies, 
a certain geometrician whom the author had met at Ephesus

The first four books deal with the elements of the subject, 
and of these the first three are founded on Euclid’s ρrevous 
work (which was itself based on the earlier treatises by 
Menaechmus and Aristaeus). Heracleides asserts that much 
of the matter in these books was stolen from an unpublished

www.rcin.org.pl



CH. iv] APOLLONIUS 79

work of Archimedes, but a critical examination by Heiberg 
has shown that this is improbable.

Apollonius begins by defining a cone on a circular base. 
He then investigates the different plane sections of it, and 
shows that they are divisible into three kinds of curves which 
he calls ellipses, parabolas, and hyperbolas. He proves the

proposition that, if A, A' be the vertices of a conic, and if P be 
any point on it, and PM the perpendicular drawn from P on 
A A', then (in the usual notation) the ratio MPi : AM. MA' is 
constant in an ellipse or hyperbola, and the ratio MP2 : AM 
is constant in a parabola. These are the characteristic properties 
on which almost all the rest of the work is based. He next 
shows that, if A be the vertex, I the latus rectum, and if AM 
and MP be the abscissa and ordinate of any point on a conic 
(see above figure), then MP2 is less than, equal to, or greater 
than I. AM according as the conic is an ellipse, parabola, or 
hyperbola; hence the names which he gave to the curves and 
by which they are still known.

He had no idea of the directrix, and was not aware that 
the parabola had a focus, but, with the exception of the pro
positions which involve these, his first three books contain most 
of the' propositions which are found in modern text - books. 
In the fourth book Jιe develops the theory of lines cut
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harmonically, ancl treats of the points of intersection of 
systems of conics. In the fifth book he commences with the 
theory of maxima and minima; applies it to find the centre of 
curvature at any point of a conic, and the evolute of the curve; 
and discusses the number of normals which can be drawn from 
a point to a conic. In the sixth book he treats of similar 
conics. The seventh and eighth books were given up to a 
discussion of conjugate diameters; the latter of these was 
conjecturally restored by E. Halley in his edition of 1710.

The verbose explanations make the book repulsive to most 
modern readers; but the arrangement and reasoning are 
unexceptional, and it has been not unfitly described as the 
crown of Greek geometry. It is the work on which the 
reputation of Apollonius rests, and it earned for him the name 
of “the great geometrician.”

Besides this immense treatise he wrote numerous shorter 
works; of course the books were written in Greek, but they 
are usually referred to by their Latin titles : those about which 
we now know anything are enumerated below. He was the 
author of a work on the problem “given two co-ρlanar straight 
lines Aa and Jib, drawn through fixed points A and Ji; to draw 
a line Oab from a given point 0 outside them cutting them in 
a and b, so that Aa shall be to Jib in a given ratio.” He reduced 
the question to seventy - seven separate cases and gave an 
appropriate solution, with the aid of conics, for each case; this 
was published by E. Halley (translated from an Arabic copy) in 
1706. He also wrote a treatise De Sectione Spatii (restored by 
E. Halley in 1706) on the same problem under the condition 
that the rectangle Aa. Jib was given. He wrote another entitled 
De Sectione Determinate. (restored by R. Simson in 1749), 
dealing with problems such as to find a point J* in a given 
straight line AB, so that PA2 shall be to PB in a given ratio. 
He wrote another De Tactionibus (restored by Vieta in 1600) 
on the construction of a circle which shall touch three given 
circles. Another work was his De Inclinationibus (restored by 
M. Ghetaldi in 1607) on the problem to draw a line so that the
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intercept between two given lines, or the circumferences of two 
given circles, shall be of a given length. He was also the 
author of a treatise in three books on plane loci, De Locis 
Planis (restored by Fermat in 1637, and by 11. Simson in 
1746), and of another on the regular solids. And, lastly, he 
wrote a treatise on unclassed incommensurables, being a com
mentary on the tenth book of Euclid. It is believed that in 
one or more of the lost books he used the method of conical 
projections.

Besides these geometrical works he wrote on the methods of 
arithmetical calculation. All that we know of this is derived 
from some remarks of Pappus. Friedlein thinks that it was 
merely a sort of ready - reckoner. It seems, however, more 
probable that Apollonius here suggested a system of numera
tion similar to that proposed by Archimedes, but proceeding 
by tetrads instead of octads, and described a notation for it. 
It will be noticed that our modern notation goes by hexads, 
a million = 106, a billion = 1012, a trillion = 1018, etc. It is not 
impossible that Apollonius also pointed out that a decimal 
system of notation, involving only nine symbols, would facilitate 
numerical multiplications.

Apollonius was interested in astronomy, and wrote a book 
on the stations and regressions of the planets of which Ptolemy 
made some use in writing the Almagest. He also wrote a 
treatise on the use and theory of the screw in statics.

This is a long list, but I should suppose that most of these 
works were short tracts on special points.

Like so many of his predecessors, he too gave a construction 
for finding two mean proportionals between two given lines, and 
thereby duplicating the cube. It was as follows. Let OA and 
OB be the given lines. Construct a rectangle OADB, of 
which they are adjacent sides. Bisect AB in C. Then, if 
with C as centre we can describe a circle cutting OA produced 
in α, and cutting OB produced in 5, so that aDb shall be a 
straight line, the problem is effected. For it is easily shewn 
that
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Similarly
Hence
That is,

But, by similar triangles,
BD : BL = Oa∙.Ob = Aa : AD.

Therefore 0a : Bl> = Bb : A<ι = Aa : OB,
that is, Bb and 0a are the two mean proportionals between 
0A and OB. It is impossible to construct the circle whose 
centre is C by Euclidean geometry, but Apollonius gave a 
mechanical way of describing it. This construction is quoted 
by several Arabic writers.

In one of the most brilliant passages of his Aperęu historique 
Chasles remarks that, while Archimedes and Apollonius were 
the most able geometricians of the old world, their works are 
distinguished by a contrast which runs through the whole sub
sequent history of geometry. Archimedes, in attacking the 
problem of the quadrature of curvilinear areas, established the 
principles of the geometry which rests on measurements; this 
naturally gave rise to the infinitesimal calculus, and in fact the 
method of exhaustions as used by Archimedes does not differ 
in principle from the method of limits as used by Newton. 
Apollonius, on the other hand, in investigating the properties of 
conic sections by means of transversals involving the ratio of
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rectilineal distances and of perspective, laid the foundations of 
the geometry of form and position.

Eratosthenes.1 Among the contemporaries of Archimedes 
and Apollonius I may mention Eratosthenes. Born at Cyrene 
in 275 b.c., he was educated at Alexandria—perhaps at the 
same time as Archimedes, of whom he was a personal friend— 
and Athens, and was at an early age entrusted with the care of 
the university library at Alexandria, a post which probably he 
occupied till his death. He was the Admirable Crichton of his 
age, and distinguished for his athletic, literary, and scientific 
attainments : he was also something of a poet. He lost his 
sight by ophthalmia, then as now a curse of the valley of the 
Nile, and, refusing to live when he was no longer able to read, 
he committed suicide in 194 b.c.

1 The works of Eratosthenes exist only in fragments. A collection of these 
was published by G. Bernhardy at Berlin in 1822 : some additional fragments 
were printed by E. Hillier, Leipzig, 1872.

In science he was chiefly interested in astronomy and geodesy, 
and he constructed various astronomical instruments which were 
used for some centuries at the university. He suggested the 
calendar (now known as Julian), in which every fourth year 
contains 366 days; and he determined the obliquity of the 
ecliptic as 23° 51' 20". He measured the length of a degree on 
the earth’s surface, making it to be about 79 miles, which is too 
long by nearly 10 miles, and thence calculated the circumference 
of the earth to be 252,000 stadia. If we take the Olympic 
stadium of 2021 yards, this is equivalent to saying that the 
radius is about 4600 miles, but there was also an Egyptian 
stadium, and if he used this he estimated the radius as 3925 
miles, which is very near the truth. The principle used in the 
determination is correct.

Of Eratosthenes’s work in mathematics we have two extant 
illustrations : one in a description of an instrument to duplicate 
a cube, and the other in a rule he gave for constructing a table 
of prime numbers. The former is given in many books. The 
latter, called the “sieve of Eratosthenes,” was as follows: write
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down all the numbers from 1 upwards; then every second 
number from 2 is a multiple of 2 and may be cancelled; every 
third number from 3 is a multiple of 3 and may be cancelled; 
every fifth number from 5 is a multiple of 5 and may be 
cancelled ; and so on. It has been estimated that it would 
involve working for about 300 hours to thus find the primes in 
the numbers from 1 to 1,000,000. The labour of determining 
whether any particular number is a prime may be, however, 
much shortened by observing that if a number can be ex
pressed as the product of two factors, one must be less and the 
other greater than the square root of the number, unless the 
number is the square of a prime, in which case the two factors 
are equal. Hence every composite number must be divisible by 
a prime which is not greater than its square root.

The second century before Christ.

The third century before Christ, which opens with the career 
of Euclid and closes with the death of Apollonius, is the most 
brilliant era in the history of Greek mathematics. But the 
great mathematicians of that century were geometricians, and 
under their influence attention was directed almost solely to that 
branch of mathematics. With the methods they used, and to 
which their successors were by tradition confined, it was hardly 
possible to make any further great advance : to fill up a few 
details in a work that was completed in its essential parts was 
all that could be effected. It was not till after the lapse of 
nearly 1800 years that the genius of Descartes opened the way 
to any further progress in geometry, and I therefore pass over 
the numerous writers who followed Apollonius with but slight 
mention. Indeed it may be said roughly that during the next 
thousand years Pappus was the sole geometrician of great original 
ability; and during this long period almost the only other pure 
mathematicians of exceptional genius were Hipparchus and 
Ptolemy, who laid the foundations of trigonometry, and Dio
phantus, who laid those of algebra.
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Early in the second century, circ. 180 B.C., we find the names 
of three mathematicians—Hypsicles, Nicomedes, and Diocles— 
who in their own day were famous.

Hypsicles. The first of these was Hypsicles, who added a 
fourteenth book to Euclid’s Elements in which the regular solids 
were discussed. In another small work, entitled Risings, we 
find for the first time in Greek mathematics a right angle 
divided in the Babylonian manner into ninety degrees; possibly 
Eratosthenes may have previously estimated angles by the 
number of degrees they contain, but this is only a matter of 
conjecture.

Nicomedes. The second was Nicomedes, who invented the 
curve known as the conchoid or the shell-shaped curve. If from 
a fixed point >S' a line be drawn cutting a given fixed straight 
line in Q, and if P be taken on SQ so that the length QP is 
constant (say d), then the locus of P is the conchoid. Its 
equation may be put in the form r = a sec θ ± d. It is easy 
with its aid to trisect a given angle or to duplicate a cube; and 
this no doubt was the cause of its invention.

Diocles. The third of these mathematicians was Diocles, the 
inventor of the curve known as the cissoid or the ivy-shaped 
curve, which, like the conchoid, was used to give a solution of 
the duplication problem. He defined it thus: let AO A' and 
ROB' be two fixed diameters of a circle at right angles to one 
another. Draw two chords QQ, and RR' parallel to BOB’ and 
equidistant from it. Then the locus of the intersection of AR 
and QQ, will be the cissoid. Its equation can be expressed in 
the form y2(2α — a?) = aA The curve may be used to duplicate 
the cube. For, if OA and OE be the two lines between which 
it is required to insert two geometrical means, and if, in the 
figure constructed as above, A,E cut the cissoid in P, and AP 
cut OB in D, we have ODi = OA2. OE. Thus OD is one 
of the means required, and the other mean can be found at 
once.

Diocles also solved (by the aid of conic sections) a problem 
which bad been proposed by Archimedes, namely, to draw a 
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plane which will divide a sphere into two parts whose volu nes 
shall bear to one another a given ratio.

Perseus. Zenodorus. About a quarter of a century later, 
say about 150 B.c., Perseus investigated the various plane sect ons 
of the anchor-ring, and Zenodorus wrote a treatise on isojeri- 
metrical figures. Part of the latter work has been preserved ; 
one proposition which will serve to show the nature of the 
problems discussed is that “ of segments of circles, having ecual 
arcs, the semicircle is the greatest.”

Towards the close of this century we find two mathematicians 
who, by turning their attention to new subjects, gave a fιesh 
stimulus to the study of mathematics. These were Hipparchus 
and Hero.

Hipparchus.1 Hipparchus was the most eminent of Gnek 
astronomers—his chief predecessors being Eudoxus, Aristarclus, 
Archimedes, and Eratosthenes. Hipparchus is said to have b?en 
born about 160 b.c. at Nicaea in Bithynia; it is probable that 
he spent some years at Alexandria, but finally he took up his 
abode at Rhodes where he made most of his observati<ns. 
Delambre has obtained an ingenious confirmation of the tιxdi- 
tion which asserted that Hipparchus lived in the second centιry 
before Christ. Hipparchus in one place says that the longitude 
of a certain star η Canis observed by him was exactly 90°, rnd 
it should be noted that he was an extremely careful observer. 
Now in 1750 it was 116° 4' 10", and, as the first point of Ades 
regredes at the rate of 50,2" a year, the observation was nude 
about 120 B.c.

Except for a short commentary on a poem of Aratus dealing 
with astronomy all his works are lost, but Ptolemy’s gnat 
treatise, the Almagest, described below, was founded on the 
observations and writings of Hipparchus, and from the nctes

1 See C. Manitius, Hipparchi in Arati et Eudoxiphaenomena Commentarii, 
Leipzig, 1894, and J. B. J. Delambre, Histoire de Γastronomie ancienne, Psris, 
1817, vol. i, pp. 106-189. S. P. Tannery in his Jlecherches sur Γhistoire de 
Vastronomie ancienne, Paris, 1893, argues that the work of Hipparchus lias 
been overrated, but I have adopted the view of the majority of writers on the 
subject.
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there given we infer that the chief discoveries of Hipparchus 
were as follows. He determined the duration of the year to 
within six minutes of its true value. He calculated the inclina
tion of the ecliptic and equator as 23° 51'; it was actually at 
that time 23o 46'. He estimated the annual precession of the 
equinoxes as 59"; it is 50-2". He stated the lunar parallax as 
57', which is nearly correct. He worked out the eccentricity of 
the solar orbit as 1/24; it is very approximately 1/30. He 
determined the perigee and mean motion of the sun and of the 
moon, and he calculated the extent of the shifting of the plane 
of the moon’s motion. Finally he obtained the synodic periods 
of the five planets then known. I leave the details of his 
observations and calculations to writers who deal specially with 
astronomy such as Delambre; but it may be fairly said that 
this work placed the subject for the first time on a scientific 
basis.

To account for the lunar motion Hipparchus supposed the 
moon to move with uniform velocity in a circle, the earth 
occupying a position near (but not at) the centre of this circle. 
This is equivalent to saying that the orbit is an epicycle of the 
first order. The longitude of the moon obtained on this 
hypothesis is correct to the first order of small quantities for a 
few revolutions. To make it correct for any length of time 
Hipparchus further supposed that the apse line moved forward 
about 3° a month, thus giving a correction for eviction. He 
explained the motion of the sun in a similar manner. This 
theory accounted for all the facts which could be determined 
with the instruments then in use, and in particular enabled him 
to calculate the details of eclipses with considerable accuracy.

He commenced a series of planetary observations to enable 
his successors to frame a theory to account for their motions ; 
and with great perspicacity he predicted that to do this it 
would be necessary to introduce epicycles of a higher order, 
that is, to introduce three or more circles the centre of each 
successive one moving uniformly along the circumference of the 
preceding one.
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He also formed a list of I080*of the fixed stars. It is said 
that the sudden appearance in the heavens of a new and 
brilliant star called his attention to the need of such a catalogue; 
and the appearance of such a star during his lifetime is confirmed 
by Chinese records.

No further advance in the theory of astronomy was made 
until the time of Copernicus, though the principles laid down 
by Hipparchus were extended and worked out in detail by 
Ptolemy.

Investigations such as these naturally led to trigonometry, 
and Hipparchus must be credited with the invention of that 
subject. It is known that in plane trigonometry he constructed 
a table of chords of arcs, which is practically the same as one of 
natural sines; and that in spherical trigonometry he had some 
method of solving triangles : but his works are lost, and we can 
give no details. It is believed, however, that the elegant 
theorem, printed as Euc. vι, d, and generally known as 
Ptolemy’s Theorem, is due to Hipparchus and was copied from 
him by Ptolemy. It contains implicitly the addition formulae 
for sin(Λ ± A) and cos(√l ± A) ; and Carnot showed how the 
whole of elementary plane trigonometry could be deduced 
from it.

I ought also to add that Hipparchus was the first to indicate 
the position of a place on the earth by means of its latitude and 
longitude.

Hero.1 The second of these mathematicians was JIero of 
Alexandria, who placed engineering and land-surveying on a 
scientific basis. He was a pupil of Ctesibus, who invented

1 See Recherches sur la vie et les ouvrages cl’Heron d'Alexandria by T. H. 
Martin in vol. iv of Mrinoires prćsentćs.. .d l'acadćmie d’inscriptions, Paris, 
1854 ; see also Loria, book iii, clιap. v, pp. 107-128, and Cantor, chaps, 
xviii, xix. On the work entitled Definitions, which is attributed to Hero, 
see S. P. Tannery, chaps, xiii, xiv, and an article by G. Friedlein in 
Boncoinpagni’s Bulletino di bibliografia, March 1871, vol. iv, pp. 93-126. 
Editions of the extant works of Hero were published in Teubner’s series, 
Leipzig, 1899, 1900, 1903. An English translation of the ∏i'ευματtκα. was 
published by B. Woodcroft and J. G. Greenwood, London, 1851 : drawings 
of the apparatus are inserted.
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several ingenious machines, and is alluded to as if he were a 
mathematician of note. It is not likely that Hero flourished 
before 80 B.c., but the precise period at which he lived is 
uncertain.

In pure mathematics Hero’s principal and most characteristic 
work consists of (i) some elementary geometry, with applications 
to the determination of the areas of fields of given shapes; (ii) 
propositions on finding the volumes of certain solids, with 
applications to theatres, baths, banquet-halls, and so on; (iii) a 
rule to find the height of an inaccessible object; and (iv) tables 
of weights and measures. He invented a solution of the 
duplication problem which is practically the same as that which 
Apollonius had already discovered. Some commentators think 
that he knew how to solve a quadratic equation even when the 
coefficients were not numerical; but this is doubtful. He 
proved the formula that the area of a triangle is equal to 
{s(s - a) (s - δ) (s - c) }1/2, where s is the semiperimeter, and a, b, c, 
the lengths of the sides, and gave as an illustration a triangle 
whose sides were in the ratio 13 : 14 : 15. He seems to have 
been acquainted with the trigonometry of Hipparchus, and the 
values of cot2τr∕n are computed for various values of n, but he 
nowhere quotes a formula or expressly uses the value of the 
sine; it is probable that like the later Greeks he regarded 
trigonometry as forming an introduction to, and being an 
integral part of, astronomy.

The following is the manner in which he solved 1 the problem 
to find the area of a triangle ABC the length of whose sides are 
a, b, c. Let s be the semiperimeter of the triangle. Let the 
inscribed circle touch the sides in D, E, F, and let 0 be its 
centre. On BC produced take 7/ so that C1I= A F, therefore 
B∏=s. Draw OK at right angles to OB, and CK at right 
angles to BC ; let them meet in K. The area ABC or Δ is equal 
to the sum of the areas 0BC, OCA, OAB = ⅛ar + ⅛br + ⅛cr = sr,

1 In his Dioptra, Hultsch, part viii, pp. 235-237. It should be stated 
that some critics think that this is an interpolation, and is not due to 
Hero.
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that is, is equal to B1I. OD. He then shews that the angle 
OA F— angle CBK∙, hence the triangles CL1A7 and CBK are 
similar.

In applied mathematics Hero discussed the centre of gravity, 
the five simple machines, and the problem of moving a givem 
weight with a given power; and in one place he suggested a 
way in which the power of a catapult could be tripled. H<c 
also wrote on the theory of hydraulic machines. He described :a 
theodolite and cyclometer, and pointed out various problem; im 
surveying for which they would be useful. But the mostt
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interesting of his smaller works are his ∏μ∈υ∕zατικd and 
Aι>τo∕iατα, containing descriptions of about 100 small machines 
and mechanical toys, many of which are ingenious. In the 
former there is an account of a small stationary steam-engine 
which is of the form now known as Avery’s patent: it was in 
common use in Scotland at the beginning of this century, but is 
not so economical as the form introduced by Watt. There is 
also an account of a double forcing pump to be used as a fire- 
engine. It is probable that in the hands of Hero these instru
ments never got beyond models. It is only recently that 
general attention has been directed to his discoveries, though 
Arago had alluded to them in his eloge on Watt.

All this is very different from the classical geometry and 
arithmetic of Euclid, or the mechanics of Archimedes. Hero 
did nothing to extend a knowledge of abstract mathematics; he 
learnt all that the text-books of the day could teach him, but he 
was interested in science only on account of its practical appli
cations, and so long as his results were true he cared nothing 
for the logical accuracy of the process by which he arrived at 
them. Thus, in finding the area of a triangle, he took the 
square root of the product of four lines. The classical Greek 
geometricians permitted the use of the square and the cube of 
a line because these could be represented geometrically, but a 
figure of four dimensions is inconceivable, and certainly they 
would have rejected a proof which involved such a conception.

The first century before Christ.

The successors of Hipparchus and Hero did not avail them
selves of the opportunity thus opened of investigating new 
subjects, but fell back on the well-worn subject of geometry. 
Amongst the more eminent of these later geometricians were 
Theodosius aιi⅜ Dionysodorus, both of whom flourished about 
50 b.c.

Theodosius. Theodosius was the author of a complete 
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treatise on the geometry of the sphere, and of two works on 
astronomy.1

Dionysodorus. Dionysodorus is known to us only by his 
solution2 of the problem to divide a hemisphere by a plane 
parallel to its base into two parts, whose volumes shall be in a 
given ratio. Like the solution by Diodes of the similar problem 
for a sphere above alluded to, it was effected by the aid of conic 
sections. Pliny says that Dionysodorus determined the length 
of the radius of the earth approximately as 42,000 stadia, 
which, if we take the Olympic stadium of. 202∣ yards, is a little 
less than 5000 miles; we do not know how it was obtained. 
This may be compared with the result given by Eratosthenes 
and mentioned above.

End of the First Alexandrian School.

The administration of Egypt was definitely undertaken 
by Rome in 30 B.c. The closing years of the dynasty of the 
Ptolemies and the earlier years of the Roman occupation of 
the country were marked by much disorder, civil and political. 
The studies of the university were naturally interrupted, and 
it is customary to take this time as the close of the first 
Alexandrian school.

1 The work on the sphere was edited by I. Barrow, Cambridge, 1675, 
and by E. Nizze, Berlin, 1852. The works on astronomy were published by 
Dasypodius in 1572.

2 It is reproduced in H. Suter’s Geschichte der mathematischen Wissen∙ 
schaften, second edition, Zurich, 1873, p. 101.
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CHAPTER V.

THE SECOND ALEXANDRIAN SCHOOL.1

30 b.c.-641 a.d.

I concluded the last chapter by stating that the first school of 
Alexandria may be said to have come to an end at about the 
same time as the country lost its nominal independence. But, 
although the schools at Alexandria suffered from the disturb
ances which affected the whole Roman world in the transition, 
in fact if not in name, from a republic to an empire, there was 
no break of continuity; the teaching in the university was 
never abandoned; and as soon as order was again established, 
students began once more to flock to Alexandria. This time of 
confusion was, however, contemporaneous with a change in the 
prevalent views of philosophy which thenceforward were mostly 
neo-platonic or neo-pythagorean, and it therefore fitly marks the 
commencement of a new period. These mystical opinions 
reacted on the mathematical school, and this may partially 
account for the paucity of good work.

Though Greek influence was still predominant and the 
Greek language always used, Alexandria now became the in
tellectual centre for most of the Mediterranean nations which 
were subject to Rome. It should be ad<led, however, that 
the direct connection with it of many of the mathematicians

1 For authorities, see footnote above on p. 50. All dates given hereafter 
are to be taken as anno domini unless the contrary is expressly stated.
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of this time is at least doubtful, but their knowledge was 
ultimately obtained from the Alexandrian teachers, and they 
are usually described as of the second Alexandrian school. 
Such mathematics as were taught at Rome were derived from 
Greek sources, and we may therefore conveniently consider 
their extent in connection with this chapter.

The first century after Christ.

There is no doubt that throughout the first century after 
Christ geometry continued to be that subject in science to 
which most attention was devoted. But by this time it was 
evident that the geometry of Archimedes and Apollonius was not 
capable of much further extension ; and such geometrical treatises 
as were produced consisted mostly of commentaries on the 
writings of the great mathematicians of a preceding age. In 
this century the only original works of any ability of which we 
know anything were two by Serenus and one by Menelaus.

Serenus. Menelaus. Those by Serenus of Antissa or of 
Antinoe, circ. 70, are on the plane sections of the cone and 
cylinder,1 in the course of which he lays down the fundamental 
proposition of transversals. That by Menelaus of Alexandria, 
circ. 98, is on spherical trigonometry, investigated in the 
Euclidean method.1 2 3 The fundamental theorem on which the 
subject is based is the relation between the six segments of the 
sides of a spherical triangle, formed by the arc of a great circle 
which cuts them [book in, prop. 1]. Menelaus also wrote on 
the calculation of chords, that is, on plane trigonometry; this 
is lost.

1 These have been edited by J. L. Heiberg, Leipzig, 1896 ; and by 
E. Halley, Oxford, 1710.

2 This was translated by E. Halley, Oxford, 1758.
3 The work has been edited by R. Hoche, Leipzig, 1866.

Nicomachus. Towards the close of this century, circ. 
100, a Jew, Nicomachus, of Gerasa, published an Arithmetic? 
which (or rather the Latin translation of it) remained for a 
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thousand years a standard authority on the subject. Geo
metrical demonstrations are here abandoned, and the work is a 
mere classification of the results then known, with numerical 
illustrations: the evidence for the truth of the propositions 
enunciated, for I cannot call them proofs, being in general an 
induction from numerical instances. The object of the book 
is the study of the properties of numbers, and particularly of 
their ratios. Nicomachus commences with the usual distinc
tions between even, odd, prime, and perfect numbers; he next 
discusses fractions in a somewhat clumsy manner; he then 
turns to polygonal and to solid numbers; and finally treats of 
ratio, proportion, and the progressions. Arithmetic of this kind 
is usually termed Boethian, and the work of Boethius on it was 
a recognised text-book in the middle ages.

The second century after Christ.

Theon. Another text-book on arithmetic on much the 
same lines as that of Nicomachus was produced by Theon of 
Smyrna, circ. 130. It formed the first book of his work1 on 
mathematics, written with the view of facilitating the study 
of Plato’s writings.

1 The Greek text of those parts which are now extant, with a French 
translation, was issued hy J. Dupuis, Paris, 1892.

Thymaridas. Another mathematician, reckoned by some 
writers as of about the same date as Theon, was Thymaridas, 
who is worthy of notice from the fact that he is the earliest 
known writer who explicitly enunciates an algebraical theorem. 
He states that, if the sum of any number of quantities be 
given, and also the sum of every pair which contains one of 
them, then this quantity is equal to one (n - 2)th part of the 
difference between the sum of these pairs and the first given 
sum. Thus, if

and if
then
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He does not seem to have used a symbol to denote the unknown 
quantity, but he always represents it by the same word, which 
is an approximation to symbolism.

Ptolemy.1 About the same time as these writers Ptolemy 
of Alexandria, who died in 168, produced his great work on 
astronomy, which will preserve his name as long as the history 
of science endures. This treatise is usually known as the 
Almagest: the name is derived from the Arabic title al mid- 
schisti, which is said to be a corruption of ∕z∈γtσ-ττ∕ [p.aćh//xaT(.Kł}] 
crwTa^is. The work is founded on the writings of Hipparchus, 
and, though it did not sensibly advance the theory of the 
subject, it presents the views of the older writer with a com
pleteness and elegance which will always make it a standard 
treatise. We gather from it that Ptolemy made observations 
at Alexandria from the years 125 to 150; he, however, was 
but an indifferent practical astronomer, and the observations 
of Hipparchus are generally more accurate than those of his 
expounder.

The work is divided into thirteen books. In the first book 
Ptolemy discusses various preliminary matters; treats of trigo
nometry, plane or spherical; gives a table of chords, that is, 
of natural sines (which is substantially correct and is probably 
taken from the lost work of Hipparchus); and explains the 
obliquity of the ecliptic; in this book he uses degrees, minutes, 
and seconds as measures of angles. The second book is devoted 
chiefly to phenomena depending on the spherical form of the 
earth : he remarks that the explanations would be much 
simplified if the earth were supposed to rotate on its axis 
once a day, but states that this hypothesis is inconsistent with 
known facts. In the third book he explains the motion of the

1 See the article Ptolemaeus Claudius, by A. De Morgan in Smith’s 
Dictionary of Greek and Roman Biography, London, 1849 ; S. P, Tannery, 
Recherches sur Vhistoire de Γastronomic ancienne, Paris, 1893 ; and 
J. B. J. Delambre. Histoire de Γastronomie ancienne, Paris, 1817, vol. ii, 
An edition of all the works of Ptolemy which are now extant was 
published at Bale in 1551. The Almagest with various minor works 
was edited by M. Halma, 12 vols. Paris, 1813-28, and a new edition, 
in two volumes, by J. L. Heiberg, Leipzig, 1898, 1903, 1907.
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sun round the earth by means of excentrics and epicycles : and 
in the fourth and fifth books he treats the motion of the moon 
in a similar way. The sixth book is devoted to the theory of 
eclipses; and in it he gives 3o 8' 30", that is 3i1,2-⅛, as the 
approximate value of 7r, which is equivalent to taking it equal 
to 3T416. The seventh and eighth books contain a catalogue 
(probably copied from Hipparchus) of 1028 fixed stars deter
mined by indicating those, three or more, that appear to be in 
a plane passing through the observer’s eye : and in another 
work Ptolemy added a list of annual sidereal phenomena. The 
remaining books are given up to the theory of the planets.

This work is a splendid testimony to the ability of its 
author. It became at once the standard authority on astro
nomy, and remained so till Copernicus and Kepler shewed 
that the sun and not the earth must be regarded as the centre 
of the solar system.

The idea of excentrics and epicycles on which the theories 
of Hipparchus and Ptolemy are based has been often ridiculed 
in modern times. No doubt at a later time, when more accu
rate observations had been made, the necessity of introducing 
epicycle on epicycle in order to bring the theory into accord
ance with the facts made it very complicated. But De Morgan 
has acutely observed that in so far as the ancient astronomers 
supposed that it was necessary to resolve every celestial motion 
into a series of uniform circular motions they erred greatly, 
but that, if the hypothesis be regarded as a convenient way 
of expressing known facts, it is not only legitimate but 
convenient. The theory suffices to describe either the angular 
motion of the heavenly bodies or their change in distance. The 
ancient astronomers were concerned only with the former ques
tion, and it fairly met their needs; for the latter question it is 
less convenient. In fact it was as good a theory as for their 
purposes and with their instruments and knowledge it was 
possible to frame, and corresponds to the expression of a given 
function as a sum of sines or cosines, a method which is of 
frequent use in modern analysis.

H
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In spite of the trouble taken by Delambre it is almost 
impossible to separate the results due to Hipparchus fron 
those due to Ptolemy. But Delambre and De Morgan agree 
in thinking that the observations quoted, the fundamental 
ideas, and the explanation of the apparent solar motion are due 
to Hipparchus; while all the detailed explanations and calcula
tions of the lunar and planetary motions are due to Ptolemy.

The Almagest shews that Ptolemy was a geometrician (f 
the first rank, though it is with the application of geometry 
to astronomy that he is chiefly concerned. He was also the 
author of numerous other treatises. Amongst these is one on 
pure geometry in which he proposed to cancel Euclid’s postulate 
on parallel lines, and to prove it in the following manner. Let 
the straight line EFGII meet the two straight lines AB and 
CD so as to make the sum of the angles BFG and FGD equal 
to two right angles. It is required to prove that A B and CD 
are parallel. If possible let them not be parallel, then they will 
meet when produced say at M (or Ar). But the angle A FG is

the supplement of BFG, and is therefore equal to FGD: 
similarly the angle FGC is equal to the angle BFG. Hence 
the sum of the angles AFG and FGC is equal to two right 
angles, and the lines BA and DC will therefore if produced 
meet at N (or M). But two straight lines cannot enclose a 
space, therefore AB and CD cannot meet when produced, that 
is, they are parallel. Conversely, if AB and CD be parallel, 
then AF and CG are not less parallel than FB and GD; and
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therefore whatever be the sum of the angles AFG and FGC 
such also must be the sum of the angles FGD and BFG. But 
the sum of the four angles is equal to four right angles, and 
therefore the sum of the angles BFG and FGD must be equal 
to two right angles.

Ptolemy wrote another w70rk to shew that there could not 
be more than three dimensions in space: he also discussed 
orthographic and stereographic projections with special refer
ence to the construction of sun-dials. He wrote on geography, 
and stated that the length of one degree of latitude is 500 
stadia. A book on sound is sometimes attributed to him, but 
on doubtful authority.

The third century after Christ.

Pappus. Ptolemy had shewn not only that geometry 
could be applied to astronomy, but had indicated how new 
methods of analysis like trigonometry might be thence de
veloped. He found however no successors to take up the 
work he had commenced so brilliantly, and we must look 
forward 150 years before we find another geometrician of any 
eminence. That geometrician was Pappus who lived and 
taught at Alexandria about the end of the third century. We 
know that he had numerous pupils, and it is probable that he 
temporarily revived an interest in the study of geometry.

Pappus wrote several books, but the only one which has 
come down to us is his Σwαγωγ7∕,1 a collection of mathe
matical papers arranged in eight books of which the first and 
part of the second have been lost. This collection was intended 
to be a synopsis of Greek mathematics together with comments 
and additional propositions by the editor. A careful com
parison of various extant works with the account given of 
them in this book shews that it is trustworthy, and we rely 
largely on it for our knowledge of other works now lost. It 
is not arranged chronologically, but all the treatises on the

1 It has been published by F. Hultsch, Berlin, 1876-8.
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same subject are grouped together, and it is most likely that 
it gives roughly the order in which the classical authors were 
read at Alexandria. Probably the first book, which is now 
lost, was on arithmetic. The next four books deal with 
geometry exclusive of conic sections ; the sixth with astronomy 
including, as subsidiary subjects, optics and trigonometry; the 
seventh with analysis, conics, and porisms; and the eighth with 
mechanics.

The last two books contain a good deal of original work by 
Pappus ; at the same time it should be remarked that in two or 
three cases he has been detected in appropriating proofs from 
earlier authors, and it is possible he may have done this in other 
cases.

Subject to this suspicion we may say that Pappus’s best 
work is in geometry. He discovered the directrix in the conic 
sections, but he investigated only a few isolated properties : 
the earliest comprehensive account was given by Newton and 
Boscovich. As an illustration of his power I may mention 
that he solved [book vπ, prop. 107] the problem to inscribe in 
a given circle a triangle whose sides produced shall pass 
through three collinear points. This question was in the 
eighteenth century generalised by Cramer by supposing the 
three given points to be anywhere; and was considered a 
difficult problem.1 It was sent in 1742 as a challenge to 
Castillon, and in 1776 he published a solution. Lagrange, 
Euler, Lhulier, Fuss, and Lexell also gave solutions in 1780. 
A few years later the problem was set to a Neapolitan lad 
A. Giordano, who was only 16 but who had shewn marked 
mathematical ability, and he extended it to the case of a 
polygon of n sides which pass through n given points, and gave 
a solution both simple and elegant. Poncelet extended it to 
conics of any species and subject to other restrictions.

In mechanics Pappus shewed that the centre of mass of a 
triangular lamina is the same as that of an inscribed triangular

1 For references to this problem see a note by H. Brocard in L'Inter- 
mediaire des math&maticiens, Paris, 1904, vol. xi, pp. 219-220.
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lamina whose vertices divide each of the sides of the original 
triangle in the same ratio. He also discovered the two 
theorems on the surface and volume of a solid of revolution 
which are still quoted in text-books under his name: these 
are that the volume generated by the revolution of a curve 
about an axis is equal to the product of the area of the curve 
and the length of the path described by its centre of mass; 
and the surface is equal to the product of the perimeter of 
the curve and the length of the path described by its centre of 
mass.

The problems above mentioned are but samples of many 
brilliant but isolated theorems which were enunciated by 
Pappus. His work as a whole and his comments shew that he 
was a geometrician of power; but it was his misfortune to 
live at a time when but little interest was taken in geometry, 
and when the subject, as then treated, had been practically 
exhausted.

Possibly a small tract1 on multiplication and division of 
sexagesimal fractions, which would seem to have been written 
about this time, is due to Pappus.

The fourth century after Christ.

Throughout the second and third centuries, that is, from 
the time of Nicomachus, interest in geometry had steadily 
decreased, and more and more attention had been paid to the 
theory of numbers, though the results were in no way com
mensurate with the time devoted to the subject. It will 
be remembered that Euclid used lines as symbols for any 
magnitudes, and investigated a number of theorems about 
numbers in a strictly scientific manner, but he confined him
self to cases where a geometrical representation was possible. 
There are indications in the works of Archimedes that he was 
prepared to carry the subject much further: he introduced

1 It was edited by C. Henry, Halle, 1879, and is valuable as an illustration 
of practical Greek arithmetic.
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numbers into his geometrical discussions and divided lines by 
lines, but he was fully occupied by other researches and had 
no time to devote to arithmetic. Hero abandoned the geo
metrical representation of numbers, but he, Nicomachus, and 
other later writers on arithmetic did not succeed in creating 
any other symbolism for numbers in general, and thus when 
they enunciated a theorem they were content to verify it by 
a large number of numerical examples. They doubtless knew 
how to solve a quadratic equation with numerical coefficients— 
for, as pointed out above, geometrical solutions of the equa
tions ax2 -bx + c = 0 and ax'1 + bx - c = 0 are given in Euc. vi, 
28 and 29—but probably this represented their highest attain
ment.

It would seem then that, in spite of the time given to their 
study, arithmetic and algebra had not made any sensible 
advance since the time of Archimedes. The problems of this 
kind which excited most interest in the third century may be 
illustrated from a collection of questions, printed in the 
Palatine Anthology, which was made by Metrodoπιs at the 
beginning of the next century, about 310. Some of them are 
due to the editor, but some are of an anterior date, and they 
fairly illustrate the way in which arithmetic was leading up 
to algebraical methods. The following are typical examples. 
“Four pipes discharge into a cistern: one fills it in one day; 
another in two days; the third in three days; the fourth in 
four days: if all run together how soon will they fill the 
cistern?” “Demochares has lived a fourth of his life as a 
boy; a fifth as a youth ; a third as a man ; and has spent 
thirteen years in his dotage : how old is he ? ” “ Make a crown
of gold, copper, tin, and iron weighing GO minae : gold and 
copper shall be two-thirds of it; gold and tin three-fourths of 
it; and gold and iron three-fifths of it: find the weights of 
the gold, copper, tin, and iron which are required.” The 
last is a numerical illustration of Thymaridas’s theorem quoted 
above.

It is believed that these problems were solved by rhetorical
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alge’yra, that is, by a process of algebraical reasoning expressed 
in words and without the use of any symbols. This, according 
to Nesselmann, is the first stage in the development of algebra, 
and we find it used both by Ahmes and by the earliest Arabian, 
Persian, and Italian algebraists: examples of its use in the 
solution of a geometrical problem and in the rule for the solution 
of a quadratic equation are given later.1 On this view then a 
rhetorical algebra had been gradually evolved by the Greeks, 
or vas then in process of evolution. Its development was 
however very imperfect. Hankel, who is no unfriendly critic, 
says that the results attained as the net outcome of the work 
of six centuries on the theory of numbers are, whether we 
look at the form or the substance, unimportant or even childish, 
and are not in any way the commencement of a science.

1 See below, pp. 203, 210.
2 A critical edition of the collected works of Diophantus was edited by 

S. Γ. Tannery, 2 vols., Leipzig, 1893 ; see also Diophantos of Alexandria, 
by ?. L. Heath, Cambridge, 1885 ; and Loria, book v, chap, v, pp. 95-158.

In the midst of this decaying interest in geometry and these 
feelie attempts at algebraic arithmetic, a single algebraist of 
maιked originality suddenly appeared wτho created what was 
practically a new science. This was Diophantus who introduced 
a system of abbreviations for those operations and quantities 
which constantly recur, though in using them he observed all 
:he rules of grammatical syntax. The resulting science is called 
by Nesselmann syncopated algebra : it is a sort of shorthand. 
Broadly speaking, it may be said that European algebra did 
not advance beyond this stage until the close of the sixteenth 
cemury.

Modern algebra has progressed one stage further and is 
entirely symbolic; that is, it has a language of its own and a 
system of notation which has no obvious connection with the 
things represented, while the operations are performed according 
to certain rules which are distinct from the laws of grammatical 
construction.

Diophantus.1 2 All that we know of Diophantus is that
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he lived at Alexandria, and that most likely he was not a 
Greek. Even the date of his career is uncertain; it cannot 
reasonably be put before the middle of the third century, and 
it seems probable that he was alive in the early years of the 
fourth century, that is, shortly after the death of Pappus. He 
was 84 when he died.

In the above sketch of the lines on which algebra has de
veloped I credited Diophantus with the invention of syncopated 
algebra. This is a point on which opinions differ, and some 
writers believe that he only systematized the knowledge which 
was familiar to his contemporaries. In support of this latter 
opinion it may be stated that Cantor thinks that there are traces 
of the use of algebraic symbolism in Pappus, and Freidlein 
mentions a Greek papyrus in which the signs / and 9 are used 
for addition and subtraction respectively; but no other direct 
evidence for the non-originality of Diophantus has been produced, 
and no ancient author gives any sanction to this opinion.

Diophantus wrote a short essay on polygonal numbers ; a 
treatise on algebra which has come down to us in a mutilated 
condition; and a work on porisms which is lost.

The Polygonal Numbers contains ten propositions, and 
was probably his earliest work. In this he reverts to the 
classical system by which numbers are represented by lines, a 
construction is (if necessary) made, and a strictly deductive 
proof follows: it may be noticed that in it he quotes pro
positions, such as Euc. π, 3, and ∏, 8, as referring to numbers 
and not to magnitudes.

His chief work is his Arithmetic. This is really a treatise 
on algebra; algebraic symbols are used, and the problems are 
treated analytically. Diophantus tacitly assumes, as is done 
in nearly all modern algebra, that the steps are reversible. He 
applies this algebra to find solutions (though frequently only 
particular ones) of several problems involving numbers. I 
propose to consider successively the notation, the methods of 
analysis employed, and the subject-matter of this work.

First, as to the notation. Diophantus always employed a 

www.rcin.org.pl



ch. v] DIOPHANTUS 105

symbol to represent the unknown quantity in his equations, 
but as he had only one symbol he could not use more than 
one unknown at a time.1 The unknown quantity is called 
δ dpιθμ0<s, and is represented by s^' or ς^o'. It is usually printed 
as s. In the plural it is denoted by ss or ss0'l. This symbol 
may be a corruption of αP, or perhaps it may be the final 
sigma of this word, or possibly it may stand for the word σωpos 
a heap.2 The square of the unknown is called δwα∕zις, and 
denoted by δi : the cube κυβo<s, and denoted by κυ; and so on 
up to the sixth power.

The coefficients of the unknown quantity and its powers are 
numbers, and a numerical coefficient is written immediately after 
the quantity it multiplies : thus s,α = aj, and ss°l ια = ss ιa == 11λ∙. 
An absolute term is regarded as a certain number of units or 
∕zoι,dδ∈ς which are represented by ∕χ° : thus ∕Λ°d= 1, ∕χ0tα = 11.

There is no sign for addition beyond juxtaposition. Sub
traction is represented by 71, and this symbol affects all the 
symbols that follow it. Equality is represented by ι. Thus

represents
Diophantus also introduced a somewhat similar notation 

for fractions involving the unknown quantity, but into the 
details of this I need not here enter.

It will be noticed that all these symbols are mere abbre
viations for words, and Diophantus reasons out his proofs, 
writing these abbreviations in the middle of his text. In 
most manuscripts there is a marginal summary in which the 
symbols alone are used and which is really symbolic algebra; 
Lut probably this is the addition of some scribe of later times.

This introduction of a contraction or a symbol instead of a 
void to represent an unknown quantity marks a greater advance 
than anyone not acquainted with the subject would imagine, 
and those who have never had the aid of some such abbreviated

1 See, however, below, page 108, example (iii), for an instance of how 
le treated a problem involving two unknown quantities.

2 See above, page 5.
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symbolism find it almost impossible to understand complicated 
algebraical processes. It is likely enough that it might have 
been introduced earlier, but for the unlucky system of numera
tion adopted by the Greeks by which they used all the letters 
of the alphabet to denote particular numbers and thus made it 
impossible to employ them to represent any number.

Next, as to the knowledge of algebraic methods shewn in 
the book. Diophantus commences with some definitions which 
include an explanation of his notation, and in giving the symbol 
for minus he states that a subtraction multiplied by a 
subtraction gives an addition; by this he means that the 
product of - b and - d in the expansion of (α - δ) (c - d) is 
+ bd, but in applying the rule he always takes care that the 
numbers a, b, c, d are so chosen that a is greater than b and c 
is greater than d.

The whole of the work itself, or at least as much as is now 
extant, is devoted to solving problems which lead to equations. 
It contains rules for solving a simple equation of the first 
degree and a binomial quadratic. Probably the rule for solving 
any quadratic equation was given in that part of the work which 
is now lost, but where the equation is of the form ax2 + bx + c~0 
he seems to have multiplied by a and then “ completed the 
square ” in much the same way as is now done: when the 
roots are negative or irrational the equation is rejected as 
“ impossible,” and even when both roots are positive he never 
gives more than one, always taking the positive value of the 
square root. Diophantus solves one cubic equation, namely, 
x3 + x-4x2 + i [book vι, prob. 19].

The greater part of the work is however given up to in
determinate equations between two or three variables. When 
the equation is between two variables, then, if it be of the first 
degree, he assumes a suitable value for one variable and solves 
the equation for the other. Most of his equations are of the 
form y2 = Ax2 + Bx + C. Whenever A or C is equal to zero, 
he is able to solve the equation completely. When this is not 
the case, then, if A = α2, he assumes y = ax + m; if C = c2, he 
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assumes y — mx + c ; and lastly, if the equation can be put in the 
form y2 = (ax ⅛ 6)2 + c2, he assumes y = mx : where in each case 
m has some particular numerical value suitable to the problem 
under consideration. A few particular equations of a higher 
order occur, but in these he generally alters the problem so as 
to enable him to reduce the equation to one of the above 
forms.

The simultaneous indeterminate equations involving three 
variables, or “double equations” as he calls them, which he 
considers are of the forms y2 = Ax2 + Bx + C and z2 = ax2 + bx + c. 
If A and a both vanish, he solves the equations in one of two 
ways. It will be enough to give one of his methods which is 
as follows : he subtracts and thus gets an equation of the form 
y2 — 22 = mx + n ; hence, if y ÷ z = λ, then y =f z = (mx + n)∕λ; and 
solving he finds y and z. His treatment of “double equations” 
of a higher order lacks generality and depends on the particular 
numerical conditions of the problem.

Lastly, as to the matter of the book. The problems he 
attacks and the analysis he uses are so various that they cannot 
be described concisely and I have therefore selected five typical 
problems to illustrate his methods. What seems to strike his 
critics most is the ingenuity with which he selects as his un
known some quantity which leads to equations such as he can 
solve, and the artifices by which he finds numerical solutions of 
his equations.

I select the following as characteristic examples.

(i) Find four numbers, the sum of every arrangement three 
it a time being given; say 22, 24, 27, and 20 [book I, 
prob. 17].

Let x be the sum of all four numbers; hence the numbers 
ire x-22, x - 24, x- 27, and x - 20.

the numbers are 9, 7, 4, and 11.
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(ii) Divide a number, such as 13 which is the sum of two 
squares 4 and 9, into two other squares [book π, prob. 10].

He says that since the given squares are 22 and 32 he will 
take {x + 2)2 and (mx — 3)2 as the required squares, and will 
assume m = 2.

.∙. the required squares are 324/25 and 1/25.

(iii) Find two squares such that the sum of the product 
and either is a square [book ιι, prob. 29].

Let a:2 and yλ be the numbers. Then x2y2 + y2 and x2y2 + x2 
are squares. The first will be a square if x2 + 1 be a square, 
which he assumes may be taken equal to («— 2),2 hence 
x = 3/4. He has now to make 9 (y2 + 1)/16 a square, to do this 
he assumes that 9y2 + 9 = (3y - 4)2, hence y = 7/24. Therefore 
the squares required are 9/16 and 49/576.

It will be recollected that Diophantus had only one symbol 
for an unknown quantity; and in this example he begins by 
calling the unknowns x2 and 1, but as soon as he has found x 
he then replaces the 1 by the symbol for the unknown quantity, 
and finds it in its turn.

(iv) To find a [rational] right-angled triangle such that the 
line bisecting an acute angle is rational [book vι, prob. 18],

His solution is as follows. Let ABC be the triangle of which 
C is the right-angle. Let the bisector ΛD = 5x, and 

let DC = 3x, hence AC = 4x. Next let BC be a multiple of 3, 
say 3, .∙. BD-3-3x, hence AB = 4-4x (by Euc. vι, 3).
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Hence Multiplying
by 32 we get for the sides of the triangle 28, 96, and 100; and 
for the bisector 35.

(v) A man buys x measures of wine, some at 8 drachmae 
a measure, the rest at 5. lie pays far them a square number of 
drachmae, such that, if 60 be added to it, the resulting number 
is x2. Find the number he bought at each price Γbook v, 
prob. 33].

The price paid was hence and
From this it follows that x must be greater than 11 and less 
than 12.

Again is to be a square ; suppose it is equal to
then we have therefore

Diophantus therefore assumes that m is equal to 20, which 
gives him x == 11⅜ ; and makes the total cost, i.e. x2 — 60, equal 
to 72∣ drachmae.

He has next to divide this cost into two parts which shall 
give the cost of the 8 drachmae measures and the 5 drachmae 
measures respectively. Let these parts be y and z.

Then

Therefore

Therefore the number of 5 drachmae measures was 79/12, and 
of 8 drachmae measures was 59/12.

From the enunciation of this problem it would seem that 
the wine was of a poor quality, and Tannery ingeniously 
suggested that the prices mentioned for such a wine are higher 
than were usual until after the end of the second century. He 
therefore rejected the view which was formerly held that 
Diophantus lived in that century, but he did not seem to be
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aware that De Morgan had previously shewn that this opinion 
was untenable. Tannery inclined to think that Diophantus 
lived half a century earlier than I have supposed.

I mentioned that Diophantus wrote a third work entitled 
Porisms. The book is lost, but we have the enunciations of 
some of the propositions, and though we cannot tell whether 
they were rigorously proved by Diophantus they confirm our 
opinion of his ability and sagacity. It has been suggested that 
some of the theorems which he assumes in his arithmetic were 
proved in the porisms. Among the more striking of these 
results are the statements that the difference of the cubes of two 
numbers can be always expressed as the sum of the cubes of two 
other numbers; that no number of the form 4n - 1 can be 
expressed as the sum of two squares; and that no number of the 
form 8n - 1 (or possibly 24« + 7) can be expressed as the sum 
of three squares : to these we may perhaps add the proposition 
that any number can be expressed as a square or as the sum of 
two or three or four squares.

The writings of Diophantus exercised no perceptible influence 
on Greek mathematics; but his Arithmetic, when translated into 
Arabic in the tenth century, influenced the Arabian school, and 
so indirectly affected the progress of European mathematics. An 
imperfect copy of the original work was discovered in 1462; it 
was translated into Latin and published by Xylander in 1575;' 
the translation excited general interest, and by that time the 
European algebraists had, on the whole, advanced beyond the 
point at which Diophantus had left off.

Iamblichus. Iamblichus, circ. 350, to whom we owe a 
valuable work on the Pythagorean discoveries and doctrines, 
seems also to have studied the properties of numbers. He 
enunciated the theorem that if a number which is equal to the 
sum of three integers of the form 3«, 3« - 1, 3« - 2 be taken, 
and if the separate digits of this number be added, and if the 
separate digits of the result be again added, and so on, then the 
final result will be 6 : for instance, the sum of 54, 53, and 52 is 
159, the sum of the separate digits of 159 is 15, the sum of the 

www.rcin.org.pl



ch. v] HYPATIA. THE ATHENIAN SCHOOL 111 

separate digits of 15 is 6. To any one confined to the usual 
Greek numerical notation this must have been a difficult result 
to prove : possibly it was reached empirically.

The names of two commentators will practically conclude the 
long roll of Alexandrian mathematicians.

Theon. The first of these is Theon of Alexandria, who 
flourished about 370. He was not a mathematician of special 
note, but we are indebted to him for an edition of Euclid’s 
Elements and a commentary on the Almagest; the latteι, 1 gives 
a great deal of miscellaneous information about the numerical 
methods used by the Greeks.

1 It was translated with comments by M. Halina and published at Paris 
in 1821.

2 See Untersuchwngen uber die neu aufgefundenen Scholien des Proklus, 
⅛y J. H. Knoche, Herford, 1865.

Hypatia. The other was Hypatia the daughter of Theon. 
She was more distinguished than her father, and was the last 
Alexandrian mathematician of any general reputation : she wrote 
a commentary on the Conics of Apollonius and possibly some 
other works, but none of her writings are how extant. She was 
murdered at the instigation of the Christians in 415.

The fate of Hypatia may serve to remind us that the Eastern 
Christians, as soon as they became the dominant party in the 
state, showed themselves bitterly hostile to all forms of learning. 
That very singleness of purpose which had at first so materially 
aided their progress developed into a one-sidedness which refused 
to see any good outside their own body ; and all who did not 
actively assist them were persecuted. The final establishment of 
Christianity in the East marks the end of the Greek scientific 
schools, though nominally they continued to exist for two 
hundred years more.

The Athenian School (in the fifth century).1 2

The hostility of the Eastern church to Greek science is further 
illustrated by the fall of the later Athenian school. This school 
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occupies but a small space in our history. Ever since Plato’s 
time a certain number of professional mathematicians had lived 
at Athens; and about the year 420 this school again acquired 
considerable reputation, largely in consequence of the numerous 
students who after the murder of Hypatia migrated there 
from Alexandria. Its most celebrated members were Proclus, 
Damascius, and Eutocius.

Proclus. Proclus was born at Constantinople in February 
412 and died at Athens on April 17, 485. He wrote a com
mentary 1 on the first book of Euclid’s Elements, which contains 
a great deal of valuable information on the history of Greek 
mathematics : he is verbose and dull, but luckily he has pre
served for us quotations from other and better authorities. 
Proclus was succeeded as head of the school by Marinus, and 
Marinus by Isidorus.

Damascius. Eutocius. Twτo pupils of Isidorus, who in 
their turn subsequently lectured at Athens, may be mentioned 
in passing. One of these, Damascius of Damascus, circ. 490, 
is commonly said to have added to Euclid’s Elements a fifteenth 
book on the inscription of one regular solid in another, but his 
authorship of this has been questioned by some writers. The other, 
Eutocius, circ. 510, wrote commentaries on the first four books 
of the Conics of Apollonius and on various works of Archimedes.

This later Athenian school was carried on under great 
difficulties owing to the opposition of the Christians. Proclus, 
for example, was repeatedly threatened with death because he 
was “a philosopher.” His remark, “after all my body does 
not matter, it is the spirit that I shall take with me when 
I die,” which he made to some students who had offered to 
defend him, has been often quoted. The Christians, after 
several ineffectual attempts, at last got a decree from Justinian 
in 529 that “ heathen learning ” should no longer be studied at 
Athens. That date therefore marks the end of the Athenian school.

The church at Alexandria was less influential, and the city 
was more remote from the centre of civil power. The schools 

1 It has been edited by G. Friedlein, Leipzig, 1873.
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there were thus suffered to continue, though their existence was 
of a precarious character. Under these conditions mathematics 
continued to be read in Egypt for another hundred years, but 
all interest in the study had gone.

• Roman Mathematics.1

I ought not to conclude this part of the history without any 
mention of Roman mathematics, for it was through Rome that 
mathematics first passed into the curriculum of medieval Europe, 
and in Rome all modern history has its origin. There is, how
ever, very little to say on the subject. The chief study of the 
place was in fact the art of government, whether by law, by 
persuasion, or by those material means on which all government 
ultimately rests. There were, no doubt, professors who could 
teach the results of Greek science, but there was no demand for 
a school of mathematics. Italians who wished to learn more 
xhan the elements of the science went to Alexandria or to places 
which drew their inspiration from Alexandria.

The subject as taught in the mathematical schools at Rome 
βeems to have been confined in arithmetic to the art of calcula
tion (no doubt by the aid of the abacus) and perhaps some of 
the easier parts of the work of Nicomachus, and in geometry 
to a few practical rules; though some of the arts founded on 
ι knowledge of mathematics (especially that of surveying) were 
carried to a high pitch of excellence. It would seem also that 
special attention was paid to the representation of numbers by 
signs. The manner of indicating numbers up to ten by the use 
of fingers must have been in practice from quite early times, but 
ιbout the first century it had been developed by the Romans 
into a finger-symbolism by which numbers up to 10,000 or 
perhaps more could be represented : this would seem to have 
been taught in the Roman schools. It is described by Bede, 
ιnd therefore would seem to have been known as far west as

1 The subject is discussed by Cantor, chaps, xxv, xxvi, and xxvii; also 
by Hankel, pp. 294-304.

I 
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Britain ; Jerome also alludes to it; its use has still survived in 
the Persian bazaars.

I am not acquainted with any Latin work on the principles 
of mechanics, but there were numerous books on the practical 
side of the subject which dealt elaborately with architectural 
and engineering problems. We may judge what they were like 
by the Mathematici Veteres, which is a collection of various 
short treatises on catapults, engines of war, &c. : and by the 
Keστot, written by Sextus Julius Africanus about the end of 
the second century, part of which is included in the Mathematici 
Veteres, which contains, amongst other things, rules for finding 
the breadth of a river when the opposite bank is occupied by an 
enemy, how to signal with a semaphore, &c.

In the sixth century Boethius published a geometry containing 
a few propositions from Euclid and an arithmetic founded on 
that of Nicomachus; and about the same time Cassiodorus 
discussed the foundation of a liberal education which, after the 
preliminary trivium of grammar, logic, and rhetoric, meant the 
quadrivium of arithmetic, geometry, music, and astronomy. 
These works were written at Rome in the closing years of 
the Athenian and Alexandrian schools, and I therefore mention 
them here, but as their only value lies in the fact that they 
became recognized text-books in medieval education I postpone 
their consideration to chapter v∏ι.

Theoretical mathematics was in fact an exotic study at Rome; 
not only was the genius of the people essentially practical, but, 
alike during the building of their empire, while it lasted, and under 
the Goths, all the conditions were unfavourable to abstract science.

On the other hand, Alexandria was exceptionally well placed 
to be a centre of science. From the foundation of the city to 
its capture by the Mohammedans it was disturbed neither by 
foreign nor by civil war, save only for a few years when the 
rule of the Ptolemies gave way to that of Rome : it was wealthy, 
and its rulers took a pride in endowing the university : and 
lastly, just as in commerce it became the meeting-place of the 
east and the west, so it had the good fortune to be the dwelling- 
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place alike of Greeks and of various Semitic people; the one 
race shewed a peculiar aptitude for geometry, the other for 
sciences which rest on measurement. Here too, however, as 
time went on the conditions gradually became more unfavour
able, the endless discussions on theological dogmas and the 
increasing insecurity of the empire tending to divert men’s 
thoughts into other channels.

End of the Second Alexandrian School.
The precarious existence and unfruitful history of the last 

two centuries of the second Alexandrian School need no record. 
In 632 Mohammed died, and within ten years his successors 
had subdued Syria, Palestine, Mesopotamia, Persia, and Egypt. 
The precise date on which Alexandria fell is doubtful, but the 
most reliable Arab historians give December 10, 641— a date 
which at any rate is correct within eighteen months.

With the fall of Alexandria the long history of Greek 
mathematics came to a conclusion. It seems probable that 
the greater part of the famous university library and museum 
had been destroyed by the Christians a hundred or two 
hundred years previously, and what remained was unvalued 
and neglected. Some two or three years after the first capture 
of Alexandria a serious revolt occurred in Egypt, which was 
ultimately put down with great severity. I see no reason to 
doubt the truth of the account that after the capture of the 
city the Mohammedans destroyed such university buildings and 
collections as were still left. It is said that, when the Arab 
commander ordered the library to be burnt, the Greeks made 
such energetic protests that he consented to refer the matter to 
the caliph Omar. The caliph returned the answer, “ As to the 
books you have mentioned, if they contain what is agreeable 
with the book of God, the book of God is sufficient without 
them; and, if they contain what is contrary to the book of God, 
there is no need for them; so give orders for their destruction.” 
The account goes on to say that they were burnt in the public baths 
of the city, and that it took six months to consume them all.
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CHAPTER VI.

THE BYZANTINE SCHOOL.

641-1453.

It will be convenient to consider the Byzantine school in 
connection with the history of Greek mathematics. Afteτ the 
capture of Alexandria by the Mohammedans the majority of the 
philosophers, who previously had been teaching there, migrated 
to Constantinople, which then became the centre of Greek learn
ing in the East and remained so for 800 years. But though 
the history of the Byzantine school stretches over so many 
years—a period about as long as that from the Norman Con
quest to the present day—it is utterly barren of any scientific 
interest; and its chief merit is that it preserved for us the 
works of the different Greek schools. The revelation of ιhese 
works to the West in the fifteenth century was one of the most 
important sources of the stream of modern European thought, 
and the history of the Byzantine school may be summed up by 
saying that it played the part of a conduit-pipe in conveyiιg to 
us the results of an earlier and brighter age.

The time was one of constant war, and men’s minds during 
the short intervals of peace were mainly occupied with Geo
logical subtleties and pedantic scholarship. I should not have 
mentioned any of the following writers had they lived in the 
Alexandrian period, but in default of any others they may be 
noticed as illustrating the character of the school. I ought dso,
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perhaps, to call the attention of the reader explicitly to the fact 
that I am here departing from chronological order, and that the 
mathematicians mentioned in this chapter were contemporaries 
of those discussed in the chapters devoted to the mathematics 
of the middle ages. The Byzantine school was so isolated that 
I deem this the best arrangement of the subject.

Hero. One of the earliest members of the Byzantine school 
was Hero of Constantinople, circ. 900, sometimes called the 
younger to distinguish him from Hero of Alexandria. Hero 
would seem to have written on geodesy and mechanics as applied 
to engines of war.

During the tenth century two emperors, Leo VI. and Con
stantine VII., shewed considerable interest in astronomy and 
mathematics, but the stimulus thus given to the study of these 
subjects was only temporary.

Psellus. In the eleventh century Michael Psellus, born in 
10'20, wrote a pamphlet1 on the quadrivium : it is now in the 
National Library at Paris.

In the fourteenth century we find the names of three monks 
who paid attention to mathematics.

Planudes. Barlaam. Argyrus. The first of the three 
was Maximus Planudes.2 He wrote a commentary on the 
Srst two books of the Arithmetic of Diophantus ; a work on 
Hindoo arithmetic in which he used the Arabic numerals; 
ιnd another on proportions which is now in the National 
Library at Paris. The next was a Calabrian monk named 
Barlaam, who was born in 1290 and died in 1348. He 
was the author of a work, Logistic, on the Greek methods 
)f calculation from which we derive a good deal of informa
tion as to the way in which the Greeks treated numerical 
fractions.3 Barlaam seems to have been a man of great

1 It was printed at Bale in 1536. Psellus also wrote a Compendium 
∖Iathematicum which was printed at Leyden in 1647.

2 His arithmetical commentary was published by Xylander, Bille, 1575 : 
>is work on Hindoo arithmetic, edited by C. J. Gerhardt, was published at 
Halle, 1865.

3 Barlaam’s Logistic, edited by Dasypodius, was published at Strassburg, 
1572 ; another edition was issued at Paris in 1600.
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intelligence. He was sent as an ambassador to the Pope at 
Avignon, and acquitted himself creditably of a difficult mission; 
while there he taught Greek to Petrarch. He was famous at 
Constantinople for the ridicule he threw on the preposterous 
pretensions of the monks at Mount Athos who taught that those 
who joined them could, by steadily regarding their bodies, 
see a mystic light which was the essence of God. Barlaam 
advised them to substitute the light of reason for that of their 
bodies — a piece of advice which nearly cost him his life. 
The last of these monks was Isaac Argyrus, who died in 1372. 
He wrote three astronomical tracts, the manuscripts of which 
are in the libraries at the Vatican, Leyden, and Vienna : one 
on geodesy, the manuscript of which is at the Escurial: one 
on geometry, the manuscript of which is in the National Library 
at Paris : one on the arithmetic of Nicomachus, the manuscript 
of which is in the National Library at Paris: and one on 
trigonometry, the manuscript of which is in the Bodleian at 
Oxford.

Rhabdas. In the fourteenth or perhaps the fifteenth century 
Nicholas Rhabdas of Smyrna wrote two papers 1 on arithmetic 
which are now in the National Library at Paris. He gave an 
account of the finger-symbolism 1 2 which the Romans had intro
duced into the East and was then current there.

1 They have been edited by S. P. Tannery, Paris, 1886.
2 See above, page 113.
3 On the formation and history of magic squares, see my Mathematical 

Recreations, London, fourth edition, 1905, chap. v. On the work of 
Moschopulus, see S. Gunther’s Geschichte der mathematischen Hrissen- 
schaften, Leipzig, 1876, chap. iv.

Pachymeres. Early in the fifteenth century Pachymeres 
wrote tracts on arithmetic, geometry, and four mechanical 
machines.

Moschopulus. A few years later Emmanuel Moschopulus, 
who died in Italy circ. 1460, wrote a treatise on magic squares. 
A magic square3 consists of a number of integers arranged in 
the form of a square so that the sum of the numbers in every 
row, in every column, and in each diagonal is the same. If the
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integers be the consecutive numbers from 1 to π2, the square is 
said to be of the πth order, and in this case the sum of the 
numbers in any row, column, or diagonal is equal to ⅛n(n2 + 1). 
Thus the first 1G integers, arranged in either of the forms given 
below, form a magic square of the fourth order, the sum of

the numbers in every row, every column, and each diagonal 
being 34.

In the mystical philosophy then current certain metaphysical 
ideas were often associated with particular numbers, and thus it 
was natural that such arrangements of numbers should attract 
attention and be deemed to possess magical properties. The 
theory of the formation of magic squares is elegant, and several 
distinguished mathematicians have written on it, but, though 
interesting, I need hardly say it is not useful. Moschopulus 
seems to have been the earliest European writer who attempted 
to deal with the mathematical theory, but his rules apply only 
to odd squares. The astrologers of the fifteenth and sixteenth 
centuries were much impressed by such arrangements. In 
particular the famous Cornelius Agrippa (1486-1535) constructed 
magic squares of the orders 3, 4, 5, 6, 7, 8, 9, which were asso
ciated respectively with the seven astrological “planets,” namely, 
Saturn, Jupiter, Mars, the Sun, Venus, Mercury, and the Moon. 
He taught that a square of one cell, in which unity was inserted, 
represented the unity and eternity of God; while the fact that 
a square of the second order could not be constructed illustrated 
the imperfection of the four elements, air, earth, fire, and water; 
and later writers added that it was symbolic of original sin. A 
magic square engraved on a silver plate was often prescribed as 
a charm against the plague, and one (namely, that in the first
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diagram on the last page) is drawn in the picture of melancholy 
painted about the year 1500 by Albrecht Diirer. Such charms 
are still worn in the East.

Constantinople wτas captured by the Turks in 1453, and the 
last semblance of a Greek school of mathematics then dis
appeared. Numerous Greeks took refuge in Italy. In the 
West the memory of Greek science had vanished, and even the 
names of all but a few Greek writers were unknown ; thus the 
books brought by these refugees came as a revelation to Europe, 
and, as we shall see later, gave a considerable stimulus to the 
study of science.
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CHAPTER VII.

SYSTEMS OF NUMERATION AND PRIMITIVE ARITHMETIC.1

I have in many places alluded to the Greek method of express
ing numbers in writing, and I have thought it best to defer to 
this chapter the whole of what I wanted to say on the various 
systems of numerical notation which were displaced by the 
system introduced by the Arabs.

First, as to symbolism and language. The plan of indicating 
numbers by the digits of one or both hands is so natural that we 
find it in universal use among early races, and the members of 
all tribes noιv extant are able to indicate by signs numbers at 
least as high as ten : it is stated that in some languages the 
names for the first ten numbers are derived from the fingers used 
to denote them. For larger numbers we soon, however, reach a 
limit beyond which primitive man is unable to count, while as 
far as language goes it is well known that many tribes have no 
word for any number higher than ten, and some have no word 
for any number beyond four, all higher numbers being expressed 
by the words plenty or heap : in connection with this it is worth 
remarking that (as stated above) the Egyptians used the symbol 
for the word heap to denote an unknown quantity in algebra.

The number five is generally represented by the open hand,
1 The subject of this chapter has been discussed by Cantor and by Hankel. 

See also the Philosophy of Arithmetic by John Leslie, second edition, Edinburgh, 
1820. Besides these authorities the article on Arithmetic by George Peacock 
in the Encyclopaedia Metropolitarna, Pure Sciences, London, 1845 ; E. B. 
Tylor’s Primitive Culture, London, 1873 ; Les signes numeraux et Tarith- 
metigue chez les peuplcs de Γantiquite ..by T. H. Martin, Rome, 1864 ; and 
Die Zahlzeichen..A>γ G. Friedlein, Erlangen, 1869, should be consulted.
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and it is said that in almost all languages the words five and 
hand are derived from the same root. It is possible that in 
early times men did not readily count beyond five, and things if 
more numerous were counted by multiples of it. It may be that 
the Roman symbol X for ten represents two “V”s, placed apex 
to apex, and, if so, this seems to point to a time when things were 
counted by fives.1 In connection with this it is worth noticing that 
both in Java and among the Aztecs a week consisted of five days.

The members of nearly all races of which we have now any 
knowledge seem, however, to have used the digits of both hands 
to represent numbers. They could thus count up to and in
cluding ten, and therefore were led to take ten as their radix of 
notation. In the English language, for example, all the words 
for numbers higher than ten are expressed on the decimal 
system : those for 11 and 12, whieh at first sight seem to be 
exceptions, being derived from Anglo-Saxon words for one and 
ten and two and ten respectively.

Some tribes seem to have gone further, and by making use of 
their toes were accustomed to count by multiples of twenty. 
The Aztecs, for example, are said to have done so. It may be 
noticed that we still count some things (for instance, sheep) by 
scores, the word score signifying a notch or scratch made on the 
completion of the twenty; while the French also talk of quatre- 
vingts, as though at one time they counted things by multiples 
of twenty. I am not, however, sure whether the latter argu
ment is worth anything, for I have an impression that I have 
seen the word octante in old French books; and there is no 
question 2 that septante and nonante were at one time common 
words for seventy and ninety, and indeed they are still retained 
in some dialects.

The only tribes of whom I have read who did not count in 
terms either of five or of some multiple of five are the Bolans 
of West Africa who are said to have counted by multiples of

1 See also the Odyssey, iv, 413-415, in which apparently reference is made 
to a similar custom.

2 See, for example, V. M. de Kempten’s Practique...d ciffτer, Antwerp, 
1556.
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seven, and the Maories who are said to have counted by 
multiples of eleven.

Up to ten it is comparatively easy to count, but primitive 
people find great difficulty in counting higher numbers; 
apparently at first this difficulty was only overcome by the 
method (still in use in South Africa) of getting two men, one 
to count the units up to ten on his fingers, and the other to 
count the number of groups of ten so formed. To us it is 
obvious that it is equally effectual to make a mark of some 
kind on the completion of each group of ten, but it is alleged 
that the members of many tribes never succeeded in counting 
numbers higher than ten unless by the aid of two men.

Most races who shewed any aptitude for civilization pro
ceeded further and invented a way of representing numbers by 
means of pebbles or counters arranged in sets of ten; and this 
in its turn developed into the abacus or swan-pan. This instru
ment was in use among nations so widely separated as the 
Etriscans, Greeks, Egyptians, Hindoos, Chinese, and Mexicans; 
and was, it is believed, invented independently at several 
different centres. It is still in common use in Russia, China, 
and Japan.

In its simplest form (see Figure 1, on the next page) the abacus 
consists of a wooden board with a number of grooves cut in it, 
or cf a table covered with sand in which grooves are made with 
she fingers. To represent a number, as many counters or pebbles 
ire put on the first groove as there are units, as many on the 
⅛eccnd as there are tens, and so on. When by its aid a number 
of objects are counted, for each object a pebble is put on the 
first groove; and, as soon as there are ten pebbles there, they 
ire taken off and one pebble put on the second groove; and so 
on. It was sometimes, as in the Aztec quipusi made with a 
number of parallel wires or strings stuck in a piece of wood on 
which beads could be threaded; and in that form is called a 
swan-pan. In the number represented in each of the instru
ments drawn on the next page there are seven thousands, three 
hundreds, no tens, and five units, that is, the number is 7305.

www.rcin.org.pl



124 SYSTEMS OF NUMERATION [ch. vπ

Some races counted from left to right, others from right to left, 
but this is a mere matter of convention.

The Roman abaci seem to have been rather more elaborate. 
They contained two marginal grooves or wires, one with four 
beads to facilitate the addition of fractions whose denominators

Figure 1.

Figure 2.

Figure 3.

were four, and one with twelve beads for fractions whose 
denominators were twelve : but otherwise they do not differ in 
principle from those described above. They were commonly 
made to represent numbers up to 100,000,000. The Greek 
abaci were similar to the Roman ones. The Greeks and Romans 
used their abaci as boards on which they played a game some
thing like backgammon.

In the Russian tschotii (Figure 2) the instrument is improved

www.rcin.org.pl



ch. vπ] THE ABACUS 125

by having the wires set in a rectangular frame, and ten (or nine) 
beads are permanently threaded on each of the wires, the wires 
being considerably longer than is necessary to hold them. If 
the frame be held horizontal, and all the beads be towards one 
side, say the lower side of the frame, it is possible to represent 
any number by pushing towards the other or upper side as 
many beads on the first wire as there are units in the number, 
as many beads on the second wire as there are tens in the 
number, and so on. Calculations can be made somewhat more 
rapidly if the five beads on each wire next to the upper side 
be coloured differently to those next to the lower side, and they 
can be still further facilitated if the first, second, ..., ninth 
counters in each column be respectively marked with symbols 
for the numbers 1, 2, ..., 9. Gerbert1 is said to have intro
duced the use of such marks, called apices, towards the close 
cf the tenth century.

1 See below, page 138.
2 For example in R. Record’s Grounde of Arles, edition of 1610, London, 

)p. 225-262.

Figure 3 represents the form of swan-pan or saroban in 
common use in China and Japan. There the development is 
carried one step further, and five beads on each wire are replaced 
ly a single bead of a different form or on a different division, 
lut apices are not used. I am told that an expert Japanese can, 
Ly the aid of a swan-pan, add numbers as rapidly as they can 
Le read out to him. It will be noticed that the instrument 
represented in Figure 3 is made so that two numbers can be 
expressed at the same time on it.

The use of the abacus in addition and subtraction is evident. 
It can be used also in multiplication and division ; rules for these 
processes, illustrated by examples, are given in various old works 
«n arithmetic.1 2

The abacus obviously presents a concrete way of representing 
ι number in the decimal system of notation, that is, by means 
«f the local value of the digits. Unfortunately the method of 
vriting numbers developed on different lines, and it was not
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until about the thirteenth century of our era, when a symbol 
zero used in conjunction with nine other symbols was introduced, 
that a corresponding notation in writing was adopted in Europe.

Next, as to the means of representing numbers in writing. 
In general we may say that in the earliest times a number 
was (if represented by a sign and not a word) indicated by the 
requisite number of strokes. Thus in an inscription from 
Tralles in Caria of the date 398 B.c. the phrase seventh year is 
represented by ετeos ∣ ∣ ∣ ∣ ∣ ∣ ∣ . These strokes may have been 
mere marks; or perhaps they originally represented fingers, 
since in the Egyptian hieroglyphics the symbols for the 
numbers 1, 2, 3, are one, two, and three fingers respectively, 
though in the later hieratic writing these symbols had become 
reduced to straight lines. Additional symbols for 10 and 100 
were soon introduced: and the oldest extant Egyptian and 
Phoenician writings repeat the symbol for unity as many times 
(up to 9) as was necessary, and then repeat the symbol for ten 
as many times (up to 9) as was necessary, and so on. No 
specimens of Greek numeration of a similar kind are in existence, 
but there is every reason to believe the testimony of Ianιblichus 
who asserts that this was the method by which the Greeks first 
expressed numbers in writing.

This way of representing numbers remained in current use 
throughout Roman history; and for greater brevity they or 
the Etruscans added separate signs for 5, 50, &c. The Roman 
symbols are generally merely the initial letters of the names of 
the numbers ; thus c stood for centum or 100, M for mille or 
1000. The symbol v for 5 seems to have originally represented 
an open palm with the thumb extended. The symbols L for 50 
and D for 500 are said to represent the upper halves of the 
symbols used in early times for c and M. The subtractive forms 
like iv for mi are probably of a later origin.

Similarly in Attica five was denoted by II, the first letter of 
7revτε, or sometimes by Γ; ten by Δ, the initial letter of 6εκα; a 
hundred by H for ∈κατov; a thousand by X for χιλιot; while 
50 was represented by a Δ written inside a II; and so on.
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These Attic symbols continued to be used for inscriptions and 
formal documents until a late date.

This, if a clumsy, is a perfectly intelligible system; but the 
Greeks at some time in the third century before Christ abandoned 
it for one which offers no special advantages in denoting a given 
number, while it makes all the operations of arithmetic exceed
ingly difficult. In this, which is known from the place where it 
was introduced as the Alexandrian system, the numbers from 1 
to 9 are represented by the first nine letters of the alphabet; 
the tens from 10 to 90 by the next nine letters; and the 
hundreds from 100 to 900 by the next nine letters. To do this 
the Greeks wanted 27 letters, and as their alphabet contained 
only 24, they reinserted two letters (the digamma and koppa) 
which had formerly been in it but had become obsolete, and 
introduced at the end another symbol taken from the Phoenician 
alphabet. Thus the ten letters α to ι stood respectively for the 
numbers from 1 to 10 ; the next eight letters for the multiples 
of 10 from 20 to 90; and the last nine letters for 100, 200, etc., 
up to 900. Intermediate numbers like 11 were represented as 
the sum of 10 and 1, that is, by the symbol ια'. This afforded 
a notation for all numbers up to 999; and by a system of 
suffixes and indices it was extended so as to represent numbers 
up to 100,000,000.

There is no doubt that at first the results were obtained by 
the use of the abacus or some similar mechanical method, and 
that the signs were only employed to record the result; the idea 
of operating with the symbols themselves in order to obtain the 
results is of a later growth, and is one with which the Greeks 
never became familiar. The non-progressive character of Greek 
arithmetic may be partly due to their unlucky adoption of the 
Alexandrian system which caused them for most practical pur
poses to rely on the abacus, and to supplement it by a table of 
multiplications which was learnt by heart. The results of the 
multiplication or division of numbers other than those in the 
multiplication table might have been obtained by the use of the 
abacus, but in fact they were generally got by repeated additions
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and subtractions. Thus, as late as 944, a certain mathema
tician who in the course of his work wants to multiply 400 by 
5 fiucls the result by addition. The same writer, when he wants 
to divide 6152 by 15, tries all the multiples of 15 until he gets 
to 6000, this gives him 400 and a remainder 152 ; he then 
begins again with all the multiples of 15 until he gets to 150, 
and this gives him 10 and a remainder 2. Hence the answer is 
410 with a remainder 2.

A few mathematicians, however, such as Hero of Alexandria, 
Theon, and Eutocius, multiplied and divided in what is essenti
ally the same way as we do. Thus to multiply 18 by 13 they 
proceeded as follows :—

13× 18 = (10 + 3)(10 + 8)
= 10 (10 + 8) + 3 (10 + 8)
= 100 + 80 + 30 + 24
= 234.

I suspect that the last step, in which they had to add four 
numbers together, was obtained by the aid of the abacus.

These, however, were men of exceptional genius, and we must 
recollect that for all ordinary purposes the art of calculation was 
performed only by the use of the abacus and the multiplication 
table, while the term arithmetic was confined to the theories of 
ratio, proportion, and of numbers.

All the systems here described were more or less clumsy, and 
they have been displaced among civilized races by the Arabic 
system in which there are ten digits or symbols, namely, nine 
for the first nine numbers and another for zero. In this system 
an integral number is denoted by a succession of digits, each 
digit representing the product of that digit and a power of ten, 
and the number being equal to the sum of these products. 
Thus, by means of the local value attached to nine symbols and 
a symbol for zero, any number in the decimal scale of notation 
can be expressed. The history of the development of the science 
of arithmetic with this notation will be considered belθλv in 
chapter xι.

www.rcin.org.pl



129

SECOND PERIOD.j≡tat⅛emattrs of tljc <f≡liiJt)le ]Vιjcs ani) Renaissance.
This period begins about the sixth century, and may be said 

to end with the invention of analytical geometry and of the 
infinitesimal calculus. The characteristic feature of this period 
is the creation or development of modern arithmetic, algebra, 
and trigonometry.

In this period I consider first, in chapter vι∏, the rise of 
learning in Western Europe, and the mathematics of the middle 
ages. Next, in chapter ιx, I discuss the nature and history of 
Hindoo and Arabian mathematics, and in chapter x their intro
duction into Europe. Then, in chapter xι, I trace the subse
quent progress of arithmetic to the year 1637. Next, in chapter 
xιt, I treat of the general history of mathematics during the 
renaissance, from the invention of printing to the beginning of 
the seventeenth century, say, from 1450 to 1637 ; this contains 
an account of the commencement of the modern treatment of 
arithmetic, algebra, and trigonometry. Lastly, in chapter 
xιιι, I consider the revival of interest in mechanics, experi
mental methods, and pure geometry which marks the last few 
yen's of this period, and serves as a connecting link between the 
mathematics of the renaissance and the mathematics of modern 
times.

κ
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CHAPTER VIII.

THE RISE OF LEARNING IN WESTERN EUROPE.1

1 The mathematics of this period has been discussed by Cantor, by 
S. Giinther, Geschichte des mathematischen Unterrichtes im deutschen 
Mittelalteτ, Berlin, 1887 ; and by H. Weissenborn, Gerbert, Beitriige zur 
Kenntniss der Mathematik des Mittelalters, Berlin, 1888 ; and 2Γw Geschichte 
der Einfuhrung der jetzigcn Ziffers, Berlin, 1892.

CIRC. 600-1200.

Education in the sixth, seventh, and eighth centuries.

The first few centuries of this second period of our history are 
singularly barren of interest; and indeed it would be strange if 
we found science or mathematics studied by those who lived in 
a condition of perpetual war. Broadly speaking we may say 
that from the sixth to the eighth centuries the only places of 
study in western Europe were the Benedictine monasteries. 
We may find there some slight attempts at a study of literature ; 
but the science usually taught was confined to the use of the 
abacus, the method of keeping accounts, and a knowledge of 
the rule by which the date of Easter could be determined. Nor 
was this unreasonable, for the monk had renounced the world, 
and there was no reason why he should learn more science than 
was required for the services of the Church and his monastery. 
The traditions of Greek and Alexandrian learning gradually 
died away. Possibly in Rome and a few favoured places copies 
of the works of the great Greek mathematicians were obtain- 
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able, though with difficulty, but there were no students, the 
books were unvalued, and in time became very scarce.

Three authors of the sixth century—Boethius, Cassiodorus, 
and Isidorus—may be named whose writings serve as a con
necting link between the mathematics of classical and of 
medieval times. As their λvorks remained standard text-books 
for some six or seven centuries it is necessary to mention them, 
but it should be understood that this is the only reason for 
doing so; they show no special mathematical ability. It will 
be noticed that these authors were contemporaries of the later 
Athenian and Alexandrian schools.

Boethius. Λm'cιws Manlius Severinus Boethius, or as the 
name is sometimes written Boetius, born at Rome about 475 
and died in 526, belonged to a family which for the two pre
ceding centuries had been esteemed one of the most illustrious 
in Rome. It was formerly believed that he was educated at 
Athens: this is somewhat doubtful, but at any rate he was 
exceptionally well read in Greek literature and science.

Boethius would seem to have wished to devote his life to 
literary pursuits; but recognizing “ that the world would be 
happy only when kings became philosophers or philosophers 
kings,” he yielded to the pressure put on him and took an 
active share in politics. He was celebrated for his extensive 
charities, and, what in those days was very rare, the care that 
he took to see that the recipients were worthy of them. He 
was elected consul at an unusually early age, and took advantage 
of his position to reform the coinage and to introduce the public 
use of sun-dials, water-clocks, etc. He reached the height of 
his prosperity in 522 when his two sons were inaugurated as 
consuls. His integrity and attempts to protect the provincials 
from the plunder of the public officials brought on him the 
hatred of the Court. He was sentenced to death while absent 
from Rome, seized at Ticinum, and in the baptistery of the 
church there tortured by drawing a cord round his head till 
the eyes were forced out of the sockets, and finally beaten 
to death with clubs on October 23, 526. Such at least is the
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account that lias come down to us. At a later time his merits 
were recognized, and tombs and statues erected in his honour by 
the state.

Boethius was the last Roman of note who studied the 
language and literature of Greece, and his works afforded to 
medieval Europe some glimpse of .the intellectual life of the 
old world. His importance in the history of literature is thus 
very great, but it arises merely from the accident of the time 
at which he lived. After the introduction of Aristotle’s works 
in the thirteenth century his fame died away, and he has now 
sunk into an obscurity which is as great as was once his 
reputation. He is best known by his Consolatio, which was 
translated by Alfred the Great into Anglo-Saxon. For our 
purpose it is sufficient to note that the teaching of early 
medieval mathematics was mainly founded on his geometry 
and arithmetic.

His Geometry 1 consists of the enunciations (only) of the first 
book of Euclid, and of a few selected propositions in the third 
and fourth books, but with numerous practical applications to 
finding areas, etc. He adds an appendix with proofs of the 
first three propositions to shew that the enunciations may be 
relied on. His Arithmetic is founded on that of Nlcomachus.

Cassiodorus. A few years later another Roman, Magnus 
Aurelius Cassiodorus, who was born about 490 and died in 
566, published two works, De Institutione Divinarum Litte
rarum and De Artibus ac Disciplines, in which not only the 
preliminary trivium of grammar, logic, and rhetoric were dis
cussed, but also the scientific quadrivium of arithmetic, geometry, 
music, and astronomy. These wτere considered standard works 
during the middle ages; the former was printed at Venice 
in 1598.

Isidorus. Isidorus, bishop of Seville, born in 570 and 
died in 636, was the author of an encyclopaedic work in 
twenty volumes called 0rigines, of which the third volume is

1 His works on geometry and arithmetic were edited by G. Friedlein, 
Leipzig, 1867.
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given up to the quadrivium. It was published at Leipzig in 
1833.

The Cathedral and Conventual Schools.1

1 See The Schools of Charles the Great and the Restoration of Education 
in the Ninth Century by J. B. Mullinger, London, 1877.

2 See the life of Alcuin by F. Lorentz, Halle, 1829, translated by J. M. 
Slee, London, 1837 ; Alcuin und sein Jahrhundert by K. Werner, Paderborn, 
1876 ; and Cantor, vol. i, pp. 712-721.

When, in the latter half of the eighth century, Charles the 
Great had established his empire, he determined to promote 
learning so far as he was able. He began by commanding 
that schools should be opened in connection with every 
cathedral and monastery in his kingdom; an order which was 
approved and materially assisted by the popes. It is interesting 
to us to know that this was done at the instance and under the 
direction of two Englishmen, Alcuin and Clement, who had 
attached themselves to his court.

Alcuin.1 2 Of these the more prominent was Alcuin, who 
was born in Yorkshire in 735 and died at Tours in 804. He 
was educated at York under archbishop Egbert, his “ beloved 
master,” whom he succeeded as director of the school there. 
Subsequently he became abbot of Canterbury, and was sent to 
Rome by Offa to procure the pallium for archbishop Eanbald. 
On his journey back he met Charles at Parma; the emperor 
took a great liking to him, and finally induced him to take up 
his residence at the imperial court, and there teach rhetoric, 
logic, mathematics, and divinity. Alcuin remained for many 
years one of the most intimate and influential friends of Charles 
and was constantly employed as a confidential ambassador; 
as such he spent the years 791 and 792 in England, and while 
there reorganized the studies at his old school at York. In 801 
he begged permission to retire from the court so as to be able 
to spend the last years of his life in quiet: with difficulty he 
obtained leave, and went to the abbey of St. Martin at Tours, 
of which he had been made head in 796. He established a
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school in connection with the abbey which became very 
celebrated, and he remained and taught there till his death on 
May 19, 804.

Most of the extant writings of Alcuin deal with theology 
or history, but they include a collection of arithmetical pro
positions suitable for the instruction of the young. The 
majority of the propositions are easy problems, either determi
nate or indeterminate, and are, I presume, founded on works 
with which he had become acquainted when at Rome. The 
following is one of the most difficult, and will give an idea of 
the character of the work. If one hundred bushels of corn be 
distributed among one hundred people in such a manner that 
each man receives three bushels, each woman two, and each 
child half a bushel: how many men, women, and children 
were there 1 The general solution is (20 - 3%) men, 5n women, 
and (80 - 2n) children, where n may have any of the values 
1, 2, 3, 4, 5, 6. Alcuin only states the solution for which 
% = 3; that is, he gives as the answer 11 men, 15 women, and 
74 children.

This collection however was the work of a man of excep
tional genius, and probably we shall be correct in saying that 
mathematics, if taught at all in a school, was generally con
fined to the geometry of Boethius, the use of the abacus and 
multiplication table, and possibly the arithmetic of Boethius; 
while except in one of these schools or in a Benedictine cloister 
it was hardly possible to get either instruction or opportunities 
for study. It was of course natural that the works used should 
come from Roman sources, for Britain and all the countries 
included in the empire of Charles had at one time formed part 
of the western half of the Roman empire, and their inhabitants 
continued for a long time to regard Rome as the centre of 
civilization, while the higher clergy kept up a tolerably constant 
intercourse with Rome.

After the death of Charles many of his schools confined 
themselves to teaching Latin, music, and theology, some 
knowledge of which was essential to the worldly success of
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the higher clergy. Hardly any science or mathematics was 
taught, but the continued existence of the schools gave an 
opportunity to any teacher whose learning or zeal exceeded 
the narrow limits fixed by tradition; and though there were 
but few who availed themselves of the opportunity, yet the 
number of those desiring instruction was so large that it 
would seem as if any one who could teach was sure to attract 
a considerable audience.

A few schools, where the teachers were of repute, became 
large and acquired a certain degree of permanence, but even in 
them the teaching was still usually confined to the trivium 
and quadrivium. The former comprised the three arts of 
grammar, logic, and rhetoric, but practically meant the art 
of reading and writing Latin ; nominally the latter included 
arithmetic and geometry with their applications, especially to 
music and astronomy, but in fact it rarely meant more than 
arithmetic sufficient to enable one to keep accounts, music for 
the church services, geometry for the purpose of land-surveying, 
and astronomy sufficient to enable one to calculate the feasts 
and fasts of the church. The seven liberal arts are enumerated 
in the line, Lingua, tropus, ratio; numerus, tonus, angulus, 
astra. Any student who got beyond the trivium was looked 
on as a man of great erudition, Qui tria, qui seρtem, qui totum 
scil>ile novit, as a verse of the eleventh century runs. The 
special questions which then and long afterwards attracted 
the best thinkers were logic and certain portions of transcen
dental theology and philosophy.

We may sum the matter up by saying that during the 
ninth and tenth centuries the mathematics taught was still 
usually confined to that comprised in the two works of 
Boethius together with the practical use of the abacus and the 
multiplication table, though during the latter part of the time 
a wider range of reading was undoubtedly accessible.

Gerbert.1 In the tenth century a man appeared who
1 Weissenborn, in the works already mentioned, treats Gerbert very fnlly ; 

see also La Vie et les (Euυres de Gerbert, by A. Olieris, Clermont, 1867 ; Ger-
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would in any age have been remarkable and who gave a great 
stimulus to learning. This was Gerbert, an Aquitanian by 
birth, who died in 1003 at about the age of fifty. His abilities 
attracted attention to him even when a boy, and procured his 
removal from the abbey school at Aurillac to the Spanish 
march where he received a good education. He was in Rome 
in 971, where his proficiency in music and astronomy excited 
considerable interest: but his interests were not confined to 
these subjects, and he had already mastered all the branches of 
the trivium and quadrivium, as then taught, except logic; and 
to learn this he moved to Rheims, which Archbishop Adalbero 
had made the most famous school in Europe. Here he was at 
once invited to teach, and so great was his fame that to him 
Hugh Capet entrusted the education of his son Robert who 
was afterwards king of France.

Gerbert was especially famous for his construction of abaci 
and of terrestrial and celestial globes; he was accustomed to 
use the latter to illustrate his lectures. These globes excited 
great admiration; and he utilized this by offering to exchange 
them for copies of classical Latin works, which seem already 
to have become very scarce; the better to effect this lie ap
pointed agents in the chief towns of Europe. To his efforts it 
is believed we owe the preservation of several Latin works. 
In 982 he received the abbey of Bobbio, and the rest of his life 
was taken up with political affairs; he became Archbishop of 
Rheiιns in 991, and of Ravenna in 998; in 999 he was elected 
Pope, when he took the title of Sylvester II. ; as head of the 
Church, he at once commenced an appeal to Christendom to arm 
and defend the Holy Land, thus forestalling Peter the Hermit by 
a century, but he died on May 12, 1003, before he had time to 
elaborate his plans. His library is, I believe, preserved in the 
Vatican.

So remarkable a personality left a deep impress on his 

bert von Aurillac, by K. Werner, second edition, Vienna, 1881 ; and Gerberti 
...Opera mathematica, edited by N. Bubnov, Berlin, 1899.
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generation, and all sorts of fables soon began to collect around 
his memory. It seems certain that he made a clock which 
was long preserved at Magdeburg, and an organ worked by 
steam which was still at Rheims two centuries after his death. 
All this only tended to confirm the suspicions of his contem
poraries that he had sold himself to the devil; and the details 
of his interviews with that gentleman, the powers he purchased, 
and his effort to escape from his bargain when he was dying, 
may be read in the pages of William of Malmesbury, Orderic 
Vitalis, and Platina. To these anecdotes the first named 
writer adds the story of the statue inscribed with the words 
“strike here,” which having amused our ancestors in the Gesta 
Romanoτum has been recently told again in the Earthly 
Paradise.

Extensive though his influence was, it must not be supposed 
that Gerbert’s writings shew any great originality. His mathe
matical works comprise a treatise on arithmetic entitled De 
Numerorum Divisione, and one on geometry. An improvement 
in the abacus, attributed by some writers to Boethius, but which 
is more likely due to Gerbert, is the introduction in every 
column of beads marked by different characters, called apices, 
for each of the numbers from 1 to 9, instead of nine exactly 
similar counters or beads. These apices lead to a representation 
of numbers essentially the same as the Arabic numerals. There 
was however no symbol for zero; the step from this concrete 
system of denoting numbers by a decimal system on an abacus 
to the system of denoting them by similar symbols in writing 
seems to us to be a small one, but it would appear that Gerbert 
did not make it. He found at Mantua a copy of the geometry 
of Boethius, and introduced it into the medieval schools. 
Gerbert’s own work on geometry is of unequal ability; it includes 
a few applications to land-surveying and the determination of 
the heights of inaccessible objects, but much of it seems to be 
copied from some Pythagorean text-book. In the course of it 
he however solves one problem λvhich was of remarkable 
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difficulty for that time. The question is to find the sides of a 
right-angled triangle whose hypotenuse and area are given. 
He says, in effect, that if these latter be denoted respectively 
by c and Λ2, then the lengths of the two sides will be

Bernelinus. One of Gerbert’s pupils, Bernelinus, published 
a work on the abacus 1 which is, there is very little doubt, a 
reproduction of the teaching of Gerbert. It is valuable as 
indicating that the Arabic system of writing numbers was still 
unknown in Europe.

The Early Medieval Universities.2

At the end of the eleventh century or the beginning of the 
twelfth a revival of learning took place at several of these 
cathedral or monastic schools; and in some cases, at the same 
time, teachers who were not members of the school settled in 
its vicinity and, with the sanction of the authorities, gave 
lectures which were in fact always on theology, logic, or civil 
law. As the students at these centres grew in numbers, it 
became desirable to act together whenever any interest common 
to all was concerned. The association thus formed was a sort 
of guild or trades union, or in the language of the time a uni- 
versitas magistrorum et scholarium. This was the first stage 
in the development of the earliest medieval universities. In 
some cases, as at Paris, the governing body of the university 
was formed by the teachers alone, in others, as at Bologna, by 
both teachers and students; but in all cases precise rules for 
the conduct of business and the regulation of the internal 
economy of the guild were formulated at an early stage in its 
history. The municipalities and numerous societies which

1 It is reprinted in Olleris’s edition of Gerbert’s works, pp. 311-326.
2 See the Universities of Europe in the Middle Ages by H. Rashdall, 

Oxford, 1895 ; Die Universitdten des MittelaUers bis 1400 by P. II. Denifle, 
1885 ; and vol. i of the University of Cambridge by J. B. Mull in ger, 
Cambridge, 1873.
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existed in Italy supplied plenty of models for the construction 
of such rules, but it is possible that some of the regulations 
were derived from those in force in the Mohammedan schools 
at Cordova.

We are, almost inevitably, unable to fix the exact date of 
the commencement of these voluntary associations, but they 
existed at Paris, Bologna, Salerno, Oxford, and Cambridge 
before the end of the twelfth century : these may be considered 
the earliest universities in Europe. The instruction given at 
Salerno and Bologna was mainly technical—at Salerno in medi
cine, and at Bologna in law—and their claim to recognition as 
universities, as long as they were merely technical schools, has 
been disputed.

Although the organization of these early universities was 
independent of the neighbouring church and monastic schools 
they seem in general to have been, at any rate originally, asso
ciated with such schools, and perhaps indebted to them for the 
use of rooms, etc. The universities or guilds (self - governing 
and formed by teachers and students), and the adjacent schools 
(under the direct control of church or monastic authorities), con
tinued to exist side by side, but in course of time the latter 
diminished in importance, and often ended by becoming subject 
to the rule of the university authorities. Nearly all the medieval 
universities grew up under the protection of a bishop (or abbot), 
and were in some matters subject to his authority or to that of 
his chancellor, from the latter of whom the head of the univer
sity subsequently took his title. The universities, however, 
were not ecclesiastical organizations, and, though the bulk of 
their members were ordained, their direct connection with the 
Church arose chiefly from the fact that clerks were then the 
only class of the community who were left free by the state to 
pursue intellectual studies.

A universitas magistrorunι et scholaτium, if successful in 
attracting students and acquiring permanency, always sought 
special legal privileges, such as the right to fix the price of 
provisions and the power to try legal actions in which its 
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members were concerned. These privileges generally led to a 
recognition of its power to grant degrees which conferred a right 
of teaching anywhere within the kingdom. The university was 
frequently incorporated at or about the same time. Paris 
received its charter in 1200, and probably was the earliest 
university in Europe thus officially recognized. Legal privileges 
were conferred on Oxford in 1214, and on Cambridge in 1231 : 
the development of Oxford and Cambridge followed closely the 
precedent of Paris on which their organization was modelled. 
In the course of the thirteenth century universities were founded 
at (among other places) Naples, Orleans, Padua, and Prague; 
and in the course of the fourteenth century at Pavia and Vienna. 
The title of university was generally accredited to any teaching 
body as soon as it was recognized as a studium generale.

The most famous medieval universities aspired to a still 
wider recognition, and the final step in their evolution was an 
acknowledgment by the pope or emperor of their degrees as a 
title to teach throughout Christendom—such universities were 
closely related one with the other. Paris was thus recognized 
in 1283, Oxford in 1296, and Cambridge in 1318.

The standard of education in mathematics has been largely 
fixed by the universities, and most of the mathematicians of 
subsequent times have been closely connected with one or more 
of them; and therefore I may be pardoned for adding a few 
words on the general course of studies1 in a university in 
medieval times.

1 For fuller details as to their organization of studies, their system of 
instruction, and their constitution, see my History of the Study of Mathe
matics at Cambridge, Cambridge, 1889.

The students entered when quite young, sometimes not being 
more than eleven or twelve years old when first coming into 
residence. It is misleading to describe them as undergraduates, 
for their age, their studies, the discipline to which they were 
subjected, and their position in the university shew that they 
should be regarded as schoolboys. The first four years of their 
residence were supposed to be spent in the study of the trivium, 
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that is, Latin grammar, logic, and rhetoric. In quite early 
times, a considerable number of the students did not progress 
beyond the study of Latin grammar—they formed an inferior 
faculty and were eligible only for the degree of master of 
grammar or master of rhetoric—but the more advanced students 
(and in later times all students) spent these years in the study 
of the trivium.

The title of bachelor of arts was conferred at the end of this 
course, and signified that the student was no longer a schoolboy 
and therefore in pupilage. The average age of a commencing 
bachelor may be taken as having been about seventeen or 
eighteen. Thus at Cambridge in the presentation for a degree 
the technical term still used for an undergraduate is juvenis, 
while that for a bachelor is vir. A bachelor could not take 
pupils, could teach only under special restrictions, and probably 
occupied a position closely analogous to that of an undergraduate 
nowadays. Some few bachelors proceeded to the study of civil 
or canon law, but it was assumed in theory that they next 
studied the quadrivium, the course for which took three years, 
and which included about as much science as was to be found 
in the pages of Boethius and Isidores.

The degree of master of arts was given at the end of this 
course. In the twelfth and thirteenth centuries it was merely 
a license to teach : no one sought it who did not intend to use 
it for that purpose and to reside in the university, and only 
those who had a natural aptitude for such work were likely to 
enter a profession so ill-paid as that of a teacher. The degree 
was obtainable by any student who had gone through the recog
nized course of study, and shewn that he was of good moral 
character. Outsiders were also admitted, but not as a matter 
of course. I may here add that towards the end of the fourteenth 
century students began to find that a degree had a pecuniary 
value, and most universities subsequently conferred it only on 
condition that the new master should reside and teach for at 
least a year. Somewhat later the universities took a further 
step and began to refuse degrees to those who were not intel- 
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lectually qualified. This power was assumed on the precedent 
of a case which arose in Paris in 1426, when the university 
declined to confer a degree on a student—a Slavonian, one 
Paul Nicholas—who had performed the necessary exercises in 
a very indifferent manner : he took legal proceedings to compel 
the university to grant the degree, but their right to withhold 
it was established. Nicholas accordingly has the distinction 
of being the first student who under modern conditions was 
“ plucked.”

Athough science and mathematics were recognised as the 
standard subjects of study for a bachelor, it is probable that, 
until the renaissance, the majority of the students devoted most 
of their time to logic, philosophy, and theology. The subtleties 
of scholastic philosophy were dreary and barren, but it is only 
just to say that they provided a severe intellectual training.

We have now arrived at a time when the results of Arab 
and Greek science became known in Europe. The history of 
Greek mathematics has been already discussed; I must now 
temporarily leave the subject of medieval mathematics, and 
trace the development of the Arabian schools to the same date; 
and I must then explain how the schoolmen became acquainted 
with the Arab and Greek text-books, and how their introduction 
affected the progress of European mathematics.
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CHAPTER IX.

THE MATHEMATICS OF THE ARABS.1

The story of Arab mathematics is known to us in its general 
outlines, but we are as yet unable to speak with certainty on 
many of its details. It is, however, quite clear that while part 
of the early knowledge of the Arabs was derived from Greek 
sources, part was obtained from Hindoo works; and that it was 
on those foundations that Arab science was built. I will begin 
by considering in turn the extent of mathematical knowledge 
derived from these sources.

Extent of Mathematics obtained from Greek Sources.

According to their traditions, in themselves very probable, 
the scientific knowledge of the Arabs was at first derived from 
the Greek doctors who attended the caliphs at Bagdad. It is

1 The subject is discussed at length by Cantor, chaps, xxxii-xxxv ; by 
Hankel, pp. 172-293 ; by A. von Kremer in Kulturgeschichte des Orientes 
unter den Chalifen, Vienna, 1877 ; and by H. Suter in his “ Die Mathematiker 
und Astronomen der Araber und ihre Werke,” Zeitschrift fur Mathematik 
und Physik, Abhandlungen zur Geschichte der Mathematik, Leipzig, vol. xlv, 
1900. See also Materiaux pour serυir d l'histoire comparee des sciences 
ιnathematiques clιez les Grecs et les Orientaux, by L. A. Sedillot, Paris, 
1845-9 ; and the following articles by Fr. Woepcke, Sur I’introduction 
de Varithmitique Indienne en Occident, Rome, 1859 ; Sur Γhistoire des 
sciences mathematiques chez les Orientaux, Paris, 1860 ; and Memoire sur la 
propagation des chiffres Indiens, Paris, 1863. 
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said that when the Arab conquerors settled in towns they 
became subject to diseases which had been unknown to them 
in their life in the desert. The study of medicine was then 
confined mainly to Greeks and Jews, and many of these, 
encouraged by the caliphs, settled at Bagdad, Damascus, and 
other cities; their knowledge of all branches of learning was 
far more extensive and accurate than that of the Arabs, and 
the teaching of the young, as has often happened in similar 
cases, fell into their hands. The introduction of European 
science was rendered the more easy as various small Greek 
schools existed in the countries subject to the Arabs : there 
had for many years been one at Edessa among the Nestorian 
Christians, and there were others at Antioch, Emesa, and 
even at Damascus, which had preserved the traditions and some 
of the results of Greek learning.

The Arabs soon remarked that the Greeks rested their 
medical science on the works of Hippocrates, Aristotle, and 
Galen; and these books were translated into Arabic by order 
of the caliph Haroun Al Raschid about the year 800. The 
translation excited so much interest that his successor Al 
Mamun (813-833) sent a commission to Constantinople to 
obtain copies of as many scientific works as was possible, while 
an embassy for a similar purpose was also sent to India. At 
the same time a large staff of Syrian clerks was engaged, whose 
duty it was to translate the works so obtained into Arabic and 
Syriac. To disarm fanaticism these clerks were at first termed 
the caliph’s doctors, but in 1851 they were formed into a college, 
and their most celebrated member, Honein ibn Ishak, was made 
its first president by the caliph Mutawakkil (847-861). Honein 
and his son Ishak ibn Honein revised the translations before 
they were finally issued. Neither of them knew much mathe
matics, and several blunders were made in the works issued on 
that subject, but another member of the college, Tabit ibn 
Korra, shortly published fresh editions which thereafter became 
the standard texts.

In this way before the end of the ninth century the Arabs
L
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obtained translations of the works of Euclid, Archimedes, 
Apollonius, Ptolemy, and others; and in some cases these 
editions are the only copies of the books now extant. It is 
curious, as indicating how completely Diophantus had dropped 
out of notice, that as far as we know the Arabs got no manu
script of his great work till 150 years later, by which time they 
were already acquainted with the idea of algebraic notation and 
processes.

Extent of Mathematics obtained from Hindoo Sources.

The Arabs had considerable commerce with India, and a 
knowledge of one or both of the two great original Hindoo 
works on algebra had been thus obtained in the caliphate of 
Al Mansur (754-775), though it was not until fifty or sixty 
years later that they attracted much attention. The algebra 
and arithmetic of the Arabs were largely founded on these 
treatises, and I therefore devote this section to the consideration 
of Hindoo mathematics.

The Hindoos, like the Chinese, have pretended that they 
are the most ancient people on the face of the earth, and 
that to them all sciences owe their creation. But it would 
appear from all recent investigations that these pretensions 
have no foundation; and in fact no science or useful art 
(except a rather fantastic architecture and sculpture) can be 
traced back to the inhabitants of the Indian peninsula prior 
to the Aryan invasion. This invasion seems to have taken 
place at some time in the latter half of the fifth century or 
in the sixth century, when a tribe of the Aryans entered India 
by the north-west frontier, and established themselves as 
rulers over a large part of the country. Their descendants, 
wherever they have kept their blood pure, may still be recog
nised by their superiority over the races they originally con
quered ; but as is the case with the modern Europeans, they 
found the climate trying and gradually degenerated. For 
the first two or three centuries they, however, retained their
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intellectual vigour, and produced one or two writers of great 
ability.

Arya-Bhata. The earliest of these, of whom we have definite 
information, is Arya-Bhata,1 who was born at Patna in the year 
476. He is frequently quoted by Brahmagupta, and in the 
opinion of many commentators he created algebraic analysis, 
though it has been suggested that he may have seen Diophantus’s 
Arithmetic. The chief work of Arya-Bhata with which we are 
acquainted is his Aryabhathiya, which consists of mnemonic 
verses embodying the enunciations of various rules and proposi
tions. There are no proofs, and the language is so obscure and 
concise that it long defied all efforts to translate it.

1 The subject of prehistoric Indian mathematics has been discussed by G. 
Thibaut, Von Schroeder, and H. Vogt. A Sanskrit text of the Aryabhathiya, 
edited by H. Kern, was published at Leyden in 1874 ; there is also an 
article on it by the same editor in the Journal of the Asiatic Society, London, 
1863, vol. xx, pp. 371-387 ; a French translation by L. Rodet of that part 
which deals with algebra and trigonometry is given in the Journal Asiatique, 
1879, Paris, series 7, vol. xiii, pp. 393-434.

The book is divided into four parts: of these three are 
devoted to astronomy and the elements of spherical trigono
metry ; the remaining part contains the enunciations of thirty- 
three rules in arithmetic, algebra, and plane trigonometry. It 
is probable that Arya-Bhata regarded himself as an astronomer, 
and studied mathematics only so far as it was useful to him in 
his astronomy.

In algebra Arya-Bhata gives the sum of the first, second, and 
third powers of the first n natural numbers ; the general solution 
of a quadratic equation; and the solution in integers of certain 
indeterminate equations of the first degree. His solutions of 
numerical equations have been supposed to imply that he was 
acquainted with the decimal system of enumeration.

In trigonometry he gives a table of natural sines of the 
angles in the first quadrant, proceeding by multiples of 3j°, 
defining a sine as the semichord of double the angle. Assuming 
that for the angle 3∣o the sine is equal to the circular measure, 
he takes for its value 225, i.e. the number of minutes in the 
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angle. He then enunciates a rule which is nearly unintelligible, 
but probably is the equivalent of the statement

sin (π + 1) a — sin na = sin na — sin (n — 1) a — sin na cosec α, 

where a stands for 3∣0; and working with this formula he 
constructs a table of sines, and finally finds the value of sin 90° 
to be 3438. This result is correct if we take 3*1416 as the 
value of π, and it is interesting to note that this is the number 
which in another place he gives for π. The correct trigono
metrical formula is

sin (n + 1) a - sin na = sin na — sin (n - 1) a - 4 sin na sin2 ∣α. 

Arya-Bhata, therefore, took 4 sin2 ∣α as equal to cosec a, that is, 
he supposed that 2 sin α = 1 + sin 2α : using the approximate 
values of sin a and sin 2α given in his table, this reduces to 
2(225) = 1 + 449, and hence to that degree of approximation his 
formula is correct. A considerable proportion of the geometrical 
propositions which he gives is wrong.

Brahmagupta. The next Hindoo writer of note is Brahma
gupta, who is said to have been born in 598, and probably was 
alive about 660. He wrote a work in verse entitled Brahma- 
Sphuta-Siddhanta, that is, the Siddhanta, or system of Brahma 
in astronomy. In this, two chapters are devoted to arithmetic, 
algebra, and geometry.1

The arithmetic is entirely rhetorical. Most of the problems 
are worked out by the rule of three, and a large proportion of 
them are on the subject of interest.

In his algebra, which is also rhetorical, he works out the 
fundamental propositions connected with an arithmetical pro
gression, and solves a quadratic equation (but gives only the 
positive value to the radical). As an illustration of the prob
lems given I may quote the following, which was reproduced in 
slightly different forms by various subsequent writers, but I 
replace the numbers by letters. “Two apes lived at the top of

1 These two chapters (chaps, xii and xviii) were translated by H. T. Cole- 
brooke, and published at Loudon in 1817.
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a cliff of height It, whose base was distant mil from a neighbour
ing village. One descended the cliff and walked to the village, 
the other flew up a height x and then flew in a straight line to 
the village. The distance traversed by each was the same. 
Find x', Brahmagupta gave the correct answer, namely 
x — mlι∕(m + 2). In the question as enunciated originally 
h = 100, m = 2.

Brahmagupta finds solutions in integers of several indeter
minate equations of the first degree, using the same method as 
that now practised. He states one indeterminate equation of 
the second degree, namely, nx2 + 1 = y2, and gives as its solution 
x=2t∣(t2 - n) and y = (t2+ n)∣(t2— n). To obtain this general 
form lie proved that, if one solution either of that or of certain 
allied equations could be guessed, the general solution could be 
written down ; but he did not explain how one solution could be 
obtained. Curiously enough this equation was sent by Fermat 
as a challenge to Wallis and Lord Brouncker in the seventeenth 
century, and the latter found the same solutions as Brahmagupta 
had previously done. Brahmagupta also stated that the equation 
y2 = nx2 — 1 could not be satisfied by integral values of x and y 
unless n could be expressed as the sum of the squares of two 
integers. It is perhaps worth noticing that the early algebraists, 
whether Greeks, Hindoos, Arabs, or Italians, drew no distinc
tion between the problems which led to determinate and those 
which led to indeterminate equations. It was only after the 
introduction of syncopated algebra that attempts were made to 
give general solutions of equations, and the difficulty of giving 
such solutions of indeterminate equations other than those of 
the first degree has led to their practical exclusion from elementary 
algebra.

In geometry Brahmagupta proved the Pythagorean property 
of a right-angled triangle (Euc. I, 47). He gave expressions for 
the area of a triangle and of a quadrilateral inscribable in a 
circle in terms of their sides; and shewed that the area of a 
circle was equal to that of a rectangle whose sides were the 
radius and semiperimeter. He was less successful in his 
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attempt to rectify a circle, and his result is equivalent to 
taking χ∕10 for the value of π. He also determined the 
surface and volume of a pyramid and cone; problems over 
which Arya-Bhata had blundered badly. The next part of 
his geometry is almost unintelligible, but it seems to be an 
attempt to find expressions for several magnitudes connected 
with a quadrilateral inscribed in a circle in terms of its sides : 
much of this is wrong.

It must not be supposed that in the original work all the 
propositions which deal with any one subject are collected 
together, and it is only for convenience that I have tried to 
arrange them in that way. It is impossible to say whether the 
whole of Brahmagupta’s results given above are original. He 
knew of Arya-Bhata’s work, for he reproduces the table of sines 
there given; it is likely also that some progress in mathematics 
had been made by Arya-Bhata’s immediate successors, and that 
Brahmagupta was acquainted with their works ; but there seems 
no reason to doubt that the bulk of Brahmagupta’s algebra and 
arithmetic is original, although perhaps influenced by Dio
phantus’s writings : the origin of the geometry is more doubt
ful, probably some of it is derived from Hero’s works.

Bhaskara. To make this account of Hindoo mathematics 
complete I may depart from the chronological arrangement and 
say that the only remaining Indian mathematician of exceptional 
eminence of whose works we know anything was Bhaskara, who 
was born in 1114. He is said to have been the lineal successor 
of Brahmagupta as head of an astronomical observatory at Ujein. 
He wrote an astronomy, of which four chapters have been trans
lated. Of these one termed Lilavati is on arithmetic; a second 
termed Bija Ganita is on algebra; the third and fourth are on 
astronomy and the sphere;1 some of the other chapters also 
involve mathematics. This work was, I believe, known to the

1 See the article Viga Ganita in the Penny Cyclopaedia, London, 1843 ; 
and the translations of the Lilavati and the Bija Ganita issued by H. T. Cole- 
brooke, London, 1817. The chapters on astronomy and the sphere were 
edited by L. Wilkinson, Calcutta, 1842.
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Arabs almost as soon as it was written, and influenced their 
subsequent writings, though they failed to utilize or extend 
most of the discoveries contained in it. The results thus became 
indirectly known in the West before the end of the twelfth 
century, but the text itself was not introduced into Europe till 
within recent times.

The treatise is in verse, but there are explanatory notes in 
prose. It is not clear whether it is original or whether it is 
merely an exposition of the results then known in India ; but in 
any case it is most probable that Bhaskara was acquainted with 
the Arab works which had been written in the tenth and eleventh 
centuries, and with the results of Greek mathematics as trans
mitted through Arabian sources. The algebra is syncopated and 
almost symbolic, which marks a great advance over that of 
Brahmagupta and of the Arabs. The geometry is also superior 
to that of Brahmagupta, but apparently this is due to the 
knowledge of various Greek works obtained through the Arabs.

The first book or Lilavati commences with a salutation to 
the god of wisdom. The general arrangement of the work may 
be gathered from the following table of contents. Systems of 
weights and measures. Next decimal numeration, briefly de
scribed. Then the eight operations of arithmetic, namely, 
addition, subtraction, multiplication, division, square, cube, 
square-root, and cube-root. Reduction of fractions to a common 
denominator, fractions of fractions, mixed numbers, and the 
eight rules applied to fractions. The “ rules of cipher,” namely, 
a ± 0 = a, 02 = 0, x∕0 = 0, a ÷ 0 = ∞ . The solution of some 
simple equations which are treated as questions of arithmetic. 
The rule of false assumption. Simultaneous equations of the 
first degree with applications. Solution of a few quadratic 
equations. Rule of three and compound rule of three, with 
various cases. Interest, discount, and partnership. Time of 
filling a cistern by several fountains. Barter. Arithmetical 
progressions, and sums of squares and cubes. Geometrical 
progressions. Problems on triangles and quadrilaterals. Ap
proximate value of 7r. Some trigonometrical formulae. Contents 
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of solids. Indeterminate equations of the first degree. Lastly, 
the book ends with a few questions on combinations.

This is the earliest known work which contains a systematic 
exposition of the decimal system of numeration. It is possible 
that Arya-Bhata was acquainted with it, and it is most likely 
that Brahmagupta was so, but in Bhaskara’s arithmetic we meet 
with the Arabic or Indian numerals and a sign for zero as part 
of a well-recognised notation. It is impossible at present to 
definitely trace these numerals farther back than the eighth 
century, but there is no reason to doubt the assertion that they 
were in use at the beginning of the seventh century. Their 
origin is a difficult and disputed question. I mention below1 
the view which on the whole seems most probable, and perhaps is 
now generally accepted, and I reproduce there some of the forms 
used in early times.

To sum the matter up briefly, it may be said that the 
Lilavati gives the rules now current for addition, subtraction, 
multiplication, and division, as well as for the more common pro
cesses in arithmetic; while the greater part of the work is taken 
up with the discussion of the rule of three, which is divided 
into direct and inverse, simple and compound, and is used to 
solve numerous questions chiefly on interest and exchange—the 
numerical questions being expressed in the decimal system of 
notation with which we are familiar.

Bhaskara was celebrated as an astrologer no less than as a 
mathematician. He learnt by this art that the event of his 
daughter Lilavati marrying would be fatal to himself. He 
therefore declined to allow her to leave his presence, but by 
way of consolation he not only called the first book of his work 
by her name, but propounded many of his problems in the form 
of questions addressed to her. For example, “ Lovely and dear 
Lilavati, whose eyes are like a fawn’s, tell me what are the 
numbers resulting from 135 multiplied by 12. If thou be 
skilled in multiplication, whether by whole or by parts, whether 
by division or by separation of digits, tell me, auspicious damsel, 

1 See below, page 184.
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what is the quotient of the product when divided by the same 
multiplier.”

I may add here that the problems in the Indian works give 
a great deal of interesting information about the social and 
economic condition of the country in which they were written. 
Thus Bhaskara discusses some questions on the price of slaves, 
and incidentally remarks that a female slave was generally 
supposed to be most valuable when 16 years old, and subse
quently to decrease in value in inverse proportion to the age ; 
for instance, if when 16 years old she were worth 32 nishkas, 
her value when 20 would be represented by (16 × 32) ÷ 20 
nishkas. It would appear that, as a rough average, a female 
slave of 16 was worth about 8 oxen which had worked for two 
years. The interest charged for money in India varied from 3 j 
to 5 per cent per month. Amongst other data thus given will 
be found the prices of provisions and labour.

The chapter termed Bija Ganita commences with a sentence 
so ingeniously framed that it can be read as the enunciation of a 
religious, or a philosophical, or a mathematical truth. Bhaskara 
after alluding to his Lilavati, or arithmetic, states that he intends 
in this book to proceed to the general operations of analysis. 
The idea of the notation is as follows. Abbreviations and 
initials are used for symbols; subtraction is indicated by a dot 
placed above the coefficient of the quantity to be subtracted; 
addition by juxtaposition merely; but no symbols are used for 
multiplication, equality, or inequality, these being written at 
length. A product is denoted by the first syllable of the word 
subjoined to the factors, between which a dot is sometimes 
placed. In a quotient or fraction the divisor is written under 
the dividend without a line of separation. The two sides of an 
equation are written one under the other, confusion being pre
vented by the recital in words of all the steps which accompany 
the operation Various symbols for the unknown quantity are 
used, but most of them are the initials of names of colours, and 
the word colour is often used as synonymous with unknown 
quantity; its Sanskrit equivalent also signifies a letter, and 
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letters are sometimes used either from the alphabet or from the 
initial syllables of subjects of the problem. In one or two cases 
symbols are used for the given as well as for the unknown 
quantities. The initials of the words square and solid denote 
the second and third powers, and the initial syllable of square 
root marks a surd. Polynomials are arranged in powers, the 
absolute quantity being always placed last and distinguished by 
an initial syllable denoting known quantity. Most of the 
equations have numerical coefficients, and the coefficient is 
always written after the unknown quantity. Positive or 
negative terms are indiscriminately allowed to come first; and 
every power is repeated on both sides of an equation, with a 
zero for the coefficient when the term is absent. After explain
ing his notation, Bhaskara goes on to give the rules for addition, 
subtraction, multiplication, division, squaring, and extracting 
the square root of algebraical expressions; he then gives the 
rules of cipher as in the Lilavati ; solves a few equations ; and 
lastly concludes with some operations on surds. Many of the 
problems are given in a poetical setting with allusions to fair 
damsels and gallant warriors.

Fragments of other chapters, involving algebra, trigonometry, 
and geometrical applications, have been translated by Cole- 
brooke. Amongst the trigonometrical formulae is one which is 
equivalent to the equation d (sin 0) = cos θ dθ.

I have departed from the chronological order in treating here 
of Bhaskara, but I thought it better to mention him at the same 
time as I was discussing his compatriots. It must be remem
bered, however, that he flourished subsequently to all the Arab 
mathematicians considered in the next section. The works with 
which the Arabs first became acquainted were those of Arya. 
Bhata and Brahmagupta, and perhaps of their successors Sridhara 
and Padmanabha; it is doubtful if they ever made much use of 
the great treatise of Bhaskara.

It is probable that the attention of the Arabs was called to 
the works of the first two of these writers by the fact that the 
Arabs adopted the Indian system of arithmetic, and were thus 
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led to look at the mathematical text-books of the Hindoos. 
The Arabs had always had considerable commerce with India, 
and with the establishment of their empire the amount of trade 
naturally increased; at that time, about the year 700, they 
found the Hindoo merchants beginning to use the system of 
numeration with which we are familiar, and adopted it at once. 
This immediate acceptance of it was made the easier, as they 
had no works of science or literature in which another system 
was used, and it is doubtful whether they then possessed any 
but the most primitive system of notation for expressing 
numbers. The Arabs, like the Hindoos, seem also to have 
made little or no use of the abacus, and therefore must have 
found Greek and Roman methods of calculation extremely 
laborious. The earliest definite date assigned for the use in 
Arabia of the decimal system of numeration is 773. In that 
year some Indian astronomical tables were brought to Bagdad, 
and it is almost certain that in these Indian numerals (including 
a zero) were employed.

The Development of Mathematics in Arabia1

In the preceding sections of this chapter I have indicated 
the two sources from which the Arabs derived their knowledge 
of mathematics, and have sketched out roughly the amount of 
knowledge obtained from each. We may sum the matter up 
by saying that before the end of the eighth century the Arabs 
were in possession of a good numerical notation and of 
Biahmagupta’s work on arithmetic and algebra; while before 
th; end of the ninth century they were acquainted with the 
misterpieces of Greek mathematics in geometry, mechanics, 
and astronomy. I have now to explain what use they made of 
th∖se materials.

Alkarismi. The first and in some respects the most illus-

1 A work by B. Baldi on the lives of several of the Arab mathematicians 
wa; printed in Boncompagni’s BuUetino di bibliografia, 1872, vol. v, pp. 427- 
531.
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trious of the Arabian mathematicians was Mohammed ibn Musa 
Abu Djefar Al-Khwarizmi. There is no common agreement as 
to which of these names is the one by which he is to be known : 
the last of them refers to the place where he was born, or in 
connection with which he was best known, and I am told that 
it is the one by which he would have been usually known 
among his contemporaries. I shall therefore refer to him by 
that name; and shall also generally adopt the corresponding 
titles to designate the other Arabian mathematicians. Until 
recently, this was almost always written in the corrupt form 
Alkarismi, and, though this way of spelling it is incorrect, it 
has been sanctioned by so many writers that I shall make use 
of it.

We know nothing of Alkarismi’s life except that he was a 
native of Khorassan and librarian of the caliph Al Mamun; and 
that he accompanied a mission to Afghanistan, and possibly 
came back through India. On his return, about 830, he wrote 
an algebra,1 which is founded on that of Brahmagupta, but in 
which some of the proofs rest on the Greek method of repre
senting numbers by lines. He also wrote a treatise on arith
metic : an anonymous tract termed Algoritmi De Numero 
Indorum, which is in the university library at Cambridge, is 
believed to be a Latin translation of this treatise.2 Besides 
these two works he compiled some astronomical tables, with 
explanatory remarks; these included results taken from both 
Ptolemy and Brahmagupta.

The algebra of Alkarismi holds a most important place in the 
history of mathematics, for we may say that the subsequent 
Arab and the early medieval works on algebra were founded on 
it, and also that through it the Arabic or Indian system of 
decimal numeration was introduced into the West. The work 
is termed Al-gebr we' I mukabala : al-gebr, from which the word 
algebra is derived, means the restoration, and refers to the fact

1 It was published by F. Rosen, with an English translation, London, 
1831.

2 It was published by B. Bonconιpagni, Rome, 1857.
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that any tlιe same magnitude may be added to or subtracted 
from both sides of an equation ; al mukabala means the process 
of simplification, and is generally used in connection with the 
combination of like terms into a single term. The unknown 
quantity is termed either “ the thing ” or “ the root ” (that is, 
of a plant), and from the latter phrase our use of the word root 
as applied to the solution of an equation is derived. The 
square of the unknown is called “ the power.” All the known 
quantities are numbers.

The work is divided into five parts. In the first Alkarismi 
gives rules for the solution of quadratic equations, divided 
into five classes of the forms ax2 — bx, ax2 = c, ax2 + bx = c, 
ax2 + c==bx, and ax2 = bx + c, where a, b, c are positive numbers, 
and in all the applications α=l. He considers only real and 
positive roots, but he recognises the existence of two roots, 
which as far as we know was never done by the Greeks. It is 
somewhat curious that when both roots are positive he generally 
takes only that root which is derived from the negative value of 
the radical.

He next gives geometrical proofs of these rules in a 
manner analogous to that of Euclid ιι, 4. For example, to 
solve the equation x2 + 10a∙ = 39, or any equation of the form 
x2+px = q, he gives two methods of which one is as follows. 
Let AB represent the value of x, and construct on it the 
square ABCD (see figure below). Produce DA to II and

DC to /’ so that AII=CF=⅛ (or |j»); and complete the 
figure as drawn below. Then the areas AC, 11B, and BE 
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represent the magnitudes x2, 5x, and 5x. Thus the left-hand 
side of the equation is represented by the sum of the areas AC, 
HB, and BF, that is, by the gnomon HCG. To both sides of 
the equation add the square KG, the area of which is 25 (or 
4√>2), and we shall get a new square whose area is by hypothesis 
equal to 39 + 25, that is, to 64 (or 5, + ∣jo2) and whose side 
therefore is 8. The side of this square DH, which is equal to 
8, will exceed AH, which is equal to 5, by the value of the 
unknown required, which, therefore, is 3.

In the third part of the book Alkarismi considers the 
product of (x ± a) and (x ± 6). In the fourth part he states 
the rules for addition and subtraction of expressions which 
involve the unknown, its square, or its square root; gives rules 
for the calculation of square roots; and concludes with the 
theorems that a Jb= Ja'1b and Ja Jb = Ja,b. In the fifth 
and last part he gives some problems, such, for example, as to 
find two numbers whose sum is 10 and the difference of whose 
squares is 40.

In all these early works there is no clear distinction between 
arithmetic and algebra, and we find the account and explana
tion of arithmetical processes mixed up with -algebra and 
treated as part of it. It was from this book then that 
the Italians first obtained not only the ideas of algebra, but 
also of an arithmetic founded on the decimal system. 
This arithmetic was long known as algorism, or the art of 
Alkarismi, which served to distinguish it from the arithmetic 
of Boethius; this name remained in use till the eighteenth 
century.

Tabit ibn Korra. The work commenced by Alkarismi 
was carried on by Tabit ibn Korra, born at Harran in 836, and 
died in 901, who was one of the most brilliant and accom
plished scholars produced by the Arabs. As I have already 
stated, he issued translations of the chief works of Euclid, 
Apollonius, Archimedes, and Ptolemy. He also wrote several 
original works, all of which are lost with the exception of a 
fragment on algebra, consisting of one chapter on cubic equa-
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tions, which are solved by the aid of geometry in somewhat 
the same way as that given later.1

Algebra continued to develop very rapidly, but it remained 
entirely rhetorical. The problems with which the Arabs were 
chiefly concerned were solution of equations, problems leading 
to equations, or properties of numbers. The two most prominent 
algebraists of a later date were Alkayami and Alkarki, both 
of whom flourished at the beginning of the eleventh century.

Alkayami. The first of these, Omar Alkayami, is notice
able for his geometrical treatment of cubic equations by which 
he obtained a root as the abscissa of a point of intersection 
of a conic and a circle.2 The equations he considers are of 
the following forms, λvhere a and c stand for positive integers.

whose root he says is the abscissa of a point
of intersection of
whose root he says is the abscissa of a point of intersection
of and whose
root he says is the abscissa of a point of intersection of

and He gives one biquadratic,
namely, the root of which is deter
mined by the point of intersection of and

It is sometimes said that he stated that it was
impossible to solve the equation in positive integers,
or in other words that the sum of two cubes can never be a 
cube; though whether he gave an accurate proof, or whether, 
as is more likely, the proposition (if enunciated at all) was the 
result of a wide induction, it is now impossible to say; but 
the fact that such a theorem is attributed to him will serve to 
illustrate the extraordinary progress the Arabs had made in 
algebra.

Alkarki. The other mathematician of this time (circ. 1000) 
whom I mentioned was AlkarkiA He gave expressions for the

1 See below, page 224.
2 His treatise on algebra was published by Fr. Woepeke, Paris, 1851.
3 His algebra was published by Fr. Woepeke, 1853, and his arithmetic was 

translated into German by Ad. Hochheim, Halle, 1878.
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sums of the first, second, and third powers of the first n natural 
numbers ; solved various equations, including some of the forms

; and discussed surds, shewing, for example,
that

Even where the methods of Arab algebra are quite general 
the applications are confined in all cases to numerical problems, 
and the algebra is so arithmetical that it is difficult to treat the 
subjects apart. From their books on arithmetic and from the 
observations scattered through various works on algebra, we may 
say that the methods used by the Arabs for the four funda
mental processes were analogous to, though more cumbrous 
than, those now in use; but the problems to which the subject 
was applied were similar to those given in modern books, and 
were solved by similar methods, such as rule of three, <fcc. 
Some minor improvements in notation were introduced, such, 
for instance, as the introduction of a line to separate the nume
rator from the denominator of a fraction; and hence a line 
between two symbols came to be used as a symbol of division.1 
Alhossein (980-1037) used a rule for testing the correctness of 
the results of addition and multiplication by “ casting out the 
nines.” Various forms of this rule have been given, but they 
all depend on the proposition that, if each number in the ques
tion be replaced by the remainder when it is divided by 9, and 
if these remainders be added or multiplied as directed in the 
question, then this result when divided by 9 will leave the same 
remainder as the answer whose correctness it is desired to test 
when divided by 9 : if these remainders differ, there is an error. 
The selection of 9 as a divisor was due to the fact that the 
remainder when a number is divided by 9 can be obtained by 
adding the digits of the number and dividing the sum 
by 9.

I am not concerned with the views of Arab writers on 
astronomy or the value of their observations, but I may remark 
in passing that they accepted the theory as laid down by Hippar
chus and Ptolemy, and did not materially alter or advance it.

1 See below, page 241.
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I may, however, add that Al Mamun caused the length of a 
degree of latitude to be measured, and he, as well as the two 
mathematicians to be next named, determined the obliquity of 
the ecliptic.

Albategni. Albuzjani. Like the Greeks, the Arabs rarely, 
if ever, employed trigonometry except in connection with 
astronomy; but in effect they used the trigonometrical ratios 
which are now current, and worked out the plane trigonometry 
of a single angle. They are also acquainted with the elements 
of spherical trigonometry. Albategni, born at Batan in Meso
potamia, in 877, and died at Bagdad in 929, was among the 
earliest of the many distinguished Arabian astronomers. He 
wrote the Science of the Stars,1 which is worthy of note from 
its containing a mention of the motion of the sun’s apogee. 
In this work angles are determined by “ the semi-chord of twice 
the angle,” that is, by the sine of the angle (taking the radius 
vector as unity). It is doubtful whether he was acquainted 
with the previous introduction of sines by Arya-Bhata and 
Brahmagupta ; Hipparchus and Ptolemy, it will be remembered, 
had used the chord. Albategni was also acquainted wτith 
the fundamental formula in spherical trigonometry, giving 
the side of a triangle in terms of the other sides and the 
angle included by them. Shortly after the death of Albategni, 
Albuzjani, who is also known as Abul-Wafa, born in 940, 
and died in 998, introduced certain trigonometrical func
tions, and constructed tables of tangents and cotan
gents. He was celebrated as a geometrician as well as an 
astronomer.

Alhazen. Abd-al-gehl. The Arabs were at first content to 
take the works of Euclid and Apollonius for their text-books 
in geometry without attempting to comment on them, but 
Alhazen, born at Bassora in 987 and died at Cairo in 1038, 
issued in 1036 a collection 2 of problems something like the Data 
of Euclid. Besides commentaries on the definitions of Euclid

1 It was edited by Regiomontanus, Nuremberg, 1537.
2 It was translated by L. A. Sedillot, and published at Paris in 1836.

M
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and on the Almagest, Alhazen also wrote a work on optics,1 which 
includes the earliest scientific account of atmospheric refraction. 
It also contains some ingenious geometry, amongst other things, 
a geometrical solution of the problem to find at what point of a 
concave mirror a ray from a given point must be incident so as 
to be reflected to another given point. Another geometrician 
of a slightly later date was Al>d-al-gehl (circ. 1100), who wrote on 
conic sections, and was also the author of three small geometri
cal tracts.

It was shortly after the last of the mathematicians mentioned 
above that Bhaskara, the third great Hindoo mathematician, 
flourished; there is every reason to believe that he was 
familiar with the works of the Arab school as described 
above, and also that his writings were at once known in 
Arabia.

The Arab schools continued to flourish until the fifteenth 
century. But they produced no other mathematician of any 
exceptional genius, nor was there any great advance on the 
methods indicated above, and it is unnecessary for me to 
crowd my pages with the names of a number of writers 
who did not materially affect the progress of the science in 
Europe.

From this rapid sketch it will be seen that the work of the 
Arabs (including therein writers who wrote in Arabia and 
lived under Eastern Mohammedan rule) in arithmetic, algebra, 
and trigonometry was of a high order of excellence. They 
appreciated geometry and the applications of geometry to 
astronomy, but they did not extend the bounds of the science. 
It may be also added that they made no special progress in 
statics, or optics, or hydrostatics; though there is abundant 
evidence that they had a thorough knowledge of practical 
hydraulics.

The general impression left is that the Arabs were quick 
to appreciate the work of others—notably of the Greek masters 
and of the Hindoo mathematicians—but, like the ancient 

1 It was published at Bale in 1572. 
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Chinese and Egyptians, they did not systematically develop 
a subject to any considerable extent. Their schools may be 
taken to have lasted in all for about 650 years, and if the 
work produced be compared with that of Greek or modern 
European writers it is, as a whole, second-rate both in quantity 
and quality.
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CHAPTER X.

THE INTRODUCTION OF ARAB WORKS INTO EUROPE.
ciRC. 1150-1450.

In the last chapter but one I discussed the development of 
European mathematics to a date which corresponds roughly 
with the end of the “ dark ages ”; and in the last chapter 
I traced the history of the mathematics of the Indians and 
Arabs to the same date. The mathematics of the two or 
three centuries that follow and are treated in this chapter are 
characterised by the introduction of the Arab mathematical 
text-books and of Greek books derived from Arab sources, and 
the assimilation of the new ideas thus presented.

It was, however, from Spain, and not from Arabia, that 
a knowledge of eastern mathematics first came into western 
Europe. The Moors had established their rule in Spain in 747, 
and by the tenth or eleventh century had attained a high 
degree of civilisation. Though their political relations with the 
caliphs at Bagdad were somewhat unfriendly, they gave a 
ready welcome to the works of the great Arab mathematicians. 
In this way the Arab translations of the writings of Euclid, 
Archimedes, Apollonius, Ptolemy, and perhaps of other Greek 
authors, together with the works of the Arabian algebraists, 
were read and commented on at the three great Moorish schools of 
Granada, Cordova, and Seville. It seems probable that these 
works indicate the full extent of Moorish learning, but, as 
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alll knowledge was jealously guarded from Christians, it is 
inmpossible to speak with certainty either on this point or 
oι>n that of the time when the Arab books were first introduced 
irnto Spain.

The eleventh century. The earliest Moorish writer of 
dlistinction of whom I find mention is Geber ibn Aphla, who 
was born at Seville and died towards the latter part of the 
elleventh century at Cordova. He wrote on astronomy and 
tιrigonometry, and was acquainted with the theorem that the 
siines of the angles of a spherical triangle are proportional to the 
siines of the opposite sides.1

Arzachel.2 Another Arab of about the same date was 
∆∖,rzachel, who was living at Toledo in 1080. He suggested 
tlhat the planets moved in ellipses, but his contemporaries with 
scientific intolerance declined to argue about a statement which 
was contrary to Ptolemy’s conclusions in the Almagest.

The twelfth century. During the course of the twelfth 
ctentury copies of the books used in Spain were obtained in 
western Christendom. The first step towards procuring a 
knowledge of Arab and Moorish science was taken by an 
English monk, Adelhard of Bath,3 who, under the disguise of 
a Mohammedan student, attended some lectures at Cordova 
about 1120 and obtained a copy of Euclid’s Elements. This 
copy, translated into Latin, was the foundation of all the 
editions known in Europe till 1533, when the Greek text 
was recovered. How rapidly a knowledge of the work spread 
we may judge when we recollect that before the end of the 
thirteenth century Roger Bacon was familiar with it, while 
before the close of the fourteenth century the first five books 
formed part of the regular curriculum at many universities. 
The enunciations of Euclid seem to have been known before

1 Geber’s works were translated into Latin by Gerard, and published at 
Nuremberg in 1533.

2 See a memoir by M. Steinschneider in Boncompagni’s Bulletino di 
Bibliografia, 1887, vol xx.

3 On the influence of Adelhard and Ben Ezra, see the “ Abhandlungen 
zur Geschichte der Mathematik ” in the Zeitschrift fur Mathematik, vol. xxv, 
1880.
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Adelhard’s time, and possibly as early as the year 1000, th∩uιgh 
copies were rare. Adelhard also issued a text-book on the uιse 
of the abacus.

Ben Ezra.1 During the same century other translations of 
the Arab text-books or commentaries on them were obtained. 
Amongst those who were most influential in introducing 
Moorish learning into Europe I may mention Abraham B'∙en 
Ezra. Ben Ezra was born at Toledo in 1097, and died at 
Rome in 1167. He was one of the most distinguished Jewish 
rabbis who had settled in Spain, where it must be recollected 
that they were tolerated and even protected by the Moors 
on account of their medical skill. Besides some astronomical 
tables and an astrology, Ben Ezra wrote an arithmetic;2 in 
this he explains the Arab system of numeration with nine 
symbols and a zero, gives the fundamental processes of 
arithmetic, and explains the rule of three.

Gerard.3 Another European who was induced by the 
reputation of the Arab schools to go to Toledo was Gerard, 
who was born at Cremona in 1114 and died in 1187. He 
translated the Arab edition of the Almagest, the works of 
Alhazen, and the works of Alfarabius, whose name is other
wise unknown to us : it is believed that the Arabic numerals 
were used in this translation, made in 1136, of Ptolemy’s work. 
Gerard also wrote a short treatise on algorism which exists in 
manuscript in the Bodleian Library at Oxford. He was 
acquainted with one of the Arab editions of Euclid’s Elements, 
which he translated into Latin.

John Hispalensis. Among the contemporaries of Gerard 
was John 11ispalensis of Seville, originally a rabbi, but converted 
to Christianity and baptized under the name given above. He 
made translations of several Arab and Moorish works, and also 
wrote an algorism which contains the earliest examples of the

1 See footnote 3 on p. 165.
2 An analysis of it was published by 0. Terquenι in Liouville’s Journal 

for 1841.
3 See Boncompagni’s Della vita e delle opere di Gherardo Cremonese, 

Rome, 1851.
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extraction of the square roots of numbers by the aid of the 
decimal notation.

The thirteenth century. During the thirteenth century 
there was a revival of learning throughout Europe, but the new 
learning was, I believe, confined to a very limited class. The 
early years of this century are memorable for the development 
of several universities, and for the appearance of three remark
able mathematicians—Leonardo of Pisa, Jordanus, and Roger 
Bacon, the Franciscan monk of Oxford. Henceforward it is 
to Europeans that we have to look for the development of 
mathematics, but until the invention of printing the knowledge 
was confined to a very limited class.

Leonardo.1 Leonardo Fibonacci (i.e. filius Bonaccii) gener
ally known as Leonardo of Pisa, was born at Pisa about 1175. 
His father Bonacci was a merchant, and was sent by his fellow
townsmen to control the custom-house at Bugia in Barbary; 
there Leonardo was educated, and he thus became acquainted 
with the Arabic or decimal system of numeration, as also with 
Alkarismi’s work on Algebra, which was described in the last 
chapter. It would seem that Leonardo was entrusted with some 
duties, in connection with the custom-house, which required him 
to travel. He returned to Italy about 1200, and in 1202 
published a work called Algebra et almucluιbala (the title being 
taken from Alkarismi’s work), but generally known as the Liber 
Abaci. He there explains the Arabic system of numeration, and 
remarks on its great advantages over the Roman system. He 
then gives an account of algebra, and points out the convenience 
of using geometry to get rigid demonstrations of algebraical 
formulae. He shews how to solve simple equations, solves a few 
quadratic equations, and states some methods for the solution of 
indeterminate equations; these rules are illustrated by problems 
on numbers. The algebra is rhetorical, but in one case letters

1 See the Leben und Schriften Leonardos da Pisa, by J. Giesing, Dδbeln, 
1886 ; Cantor, chaps, xli, xlii ; and an article by V. Lazzarini in the 
Bollettino di Bibliografia e Storia, Rome, 1904, vol. vii. Most of Leonardo’s 
writings were edited and published by B. Boncompagni, Rome, vol. i, 1857, 
and vol. ii, 1862.
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are employed as algebraical symbols. This work bad a wide 
circulation, and for at least two centuries remained a standard 
authority from which numerous writers drew their inspiration.

The Liber Abaci is especially interesting in the history of 
arithmetic, since practically it introduced the use of the Arabic 
numerals into Christian Europe. The language of Leonardo 
implies that they were previously unknown to his countrymen ; 
he says that having had to spend some years in Barbary he there 
learnt the Arabic system, which he found much more convenient 
than that used in Europe; he therefore published it “ in order 
that the Latin1 race might no longer be deficient in that 
knowledge.” Now Leonardo had read very widely, and had 
travelled in Greece, Sicily, and Italy; there is therefore every 
presumption that the system was not then commonly employed 
in Europe.

1 Dean Peacock says that the earliest known application of the wort 
Italians to describe the inhabitants of Italy occurs about the middle of th∣ 
thirteenth century ; by the end of that century it was in common use.

Though Leonardo introduced the use of Arabic numerals 
into commercial affairs, it is probable that a knowledge of them 
as current in the East was previously not uncommon among 
travellers and merchants, for the intercourse between Christians 
and Mohammedans was sufficiently close for each to learn 
something of the language and common practices of the other. We 
can also hardly suppose that the Italian merchants were ignorant 
of the method of keeping accounts used by some of their best 
customers ; and we must recollect, too, that there were numerous 
Christians who had escaped or been ransomed after serving the 
Mohammedans as slaves. It was, however, Leonardo win 
brought the Arabic system into general use, and by the middh 
of the thirteenth century a large proportion of the Italian 
merchants employed it by the side of the old system.

The majority of mathematicians must have already known 
of the system from the works of Ben Ezra, Gerard, and John 
Hispalensis. But shortly after the appearance of Leonardo’s 
book Alfonso of Castile (in 1252) published some astronomical
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tables, founded on observations made in Arabia, which were 
computed by Arabs, and which, it is generally believed, were 
expressed in Arabic notation. Alfonso’s tables had a wide 
circulation among men of science, and probably were largely 
instrumental in bringing these numerals into universal use 
among mathematicians. By the end of the thirteenth century 
it was generally assumed that all scientific men would be 
acquainted with the system : thus Roger Bacon writing in that 
century recommends algorism (that is, the arithmetic founded 
on the Arab notation) as a necessary study for theologians who 
ought, he says, “ to abound in the power of numbering.” We 
may then consider that by the year 1300, or at the latest 1350, 
these numerals were familiar both to mathematicians and to 
Italian merchants.

So great was Leonardo’s reputation that the Emperor 
Frederick II. stopped at Pisa in 1225 in order to hold a sort 
of mathematical tournament to test Leonardo’s skill, of λvhich 
he had heard such marvellous accounts. The competitors were 
informed beforehand of the questions to be asked, some or all 
of which were composed by John of Palermo, who was one of 
Frederick’s suite. This is the first time that we meet with an 
instance of those challenges to solve particular problems which 
were so common in the sixteenth and seventeenth centuries. 
The first question propounded was to find a number of which 
the square, when either increased or decreased by 5, would 
remain a square. Leonardo gave an answer, which is correct, 
namely 41/12. The next question was to find by the methods 
used in the tenth book of Euclid a line whose length x 
should satisfy the equation xz + 2x2 + 10a; = 20. Leonardo 
showed by geometry that the problem was impossible, but he 
gave an approximate value of the root of this equation, namely, 
1,22' 7" 42"' 33"" 4v 40vι, which is equal to l-3688081075..., 
ιnd is correct to nine places of decimals.1 Another question 
was as follows. Three men, A, B, C, possess a sum of money u, 
flιeir shares being in the ratio 3:2:1. A takes away x, keeps 

1 See Fr. Woepcke in Liouville’s Journal for 1854, p. 401.
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half of it, and deposits the remainder with D; B takes away ?/, 
keeps two-thirds of it, and deposits the remainder with Z>; C 
takes away all that is left, namely z, keeps five-sixths of it, and 
deposits the remainder with D. This deposit with D is found 
to belong to A, B, and C in equal proportions. Find u, ,r, ?/, 
and z. Leonardo showed that the problem was indeterminate, 
and gave as one solution u — 47, ic= 33, y = 13, z= 1. The other 
competitors failed to solve any of these questions.

The chief work of Leonardo is the Liber Abaci alluded to 
above. This work contains a proof of the well-known result 

(α2 + δ2) (c2 + d2) — (ac + bd)2 + (be - ad)2 = (ad + be)2 + (bd — ac)2. 

He also wrote a geometry, termed Practica Geometriae, which 
was issued in 1220 This is a good compilation, and some 
trigonometry is introduced; among other propositions and 
examples he finds the area of a triangle in terms of its sides. 
Subsequently he published a Liber Quadratorum dealing with 
problems similar to the first of the questions propounded at the 
tournament.1 He also issued a tract dealing with determinate 
algebraical problems : these are all solved by the rule of false 
assumption in the manner explained above.

Frederick II. The Emperor Frederick II., who was born 
in 1194, succeeded to the throne in 1210, and died in 1250, 
was not only interested in science, but did as much as any 
other single man of the thirteenth century to disseminate a 
knowledge of the works of the Arab mathematicians in western 
Europe. The university of Naples remains as a monument 
of his munificence. I have already mentioned that the presence 
of the Jews had been tolerated in Spain on account of their 
medical skill and scientific knowledge, and as a matter of fact 
the titles of physician and algebraist2 were for a long time 
nearly synonymous; thus the Jewish physicians were admirably

1 Fr. Woepcke in Liouville’s Journal for 1855, p. 54, has given an analysis 
of Leonardo’s method of treating problems on square numbers.

2 For instance the reader may recollect that in Don Quixote (part ii, 
ch. 15), when Samson Carasco is thrown by the knight from his horse and 
has his ribs broken, an algebrista is summoned to bind up his wounds.
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fitted both to get copies of the Arab works and to translate 
them. Frederick II. made use of this fact to engage a staff of 
learned Jews to translate the Arab works which he obtained, 
though there is no doubt that he gave his patronage to them 
the more readily because it was singularly offensive to the pope, 
with whom he was then engaged in a quarrel. At any rate, by 
the end of the thirteenth century copies of the works of Euclid, 
Archimedes, Apollonius, Ptolemy, and of several Arab authors 
were obtainable from this source, and by the end of the next 
century were not uncommon. From this time, then, we may 
say that the development of science in Europe was independent 
of the aid of the Arabian schools.

Jordanus.1 Among Leonardo’s contemporaries -was a German 
mathematician, whose works were until the last few years almost 
unknown. This was Jordanus Nemorarius, sometimes called 
Jordanus de Saxonia or Teutonicus. Of the details of his life 
we know but little, save that he was elected general of the 
Dominican order in 1222. The works enumerated in the foot
note 2 hereto are attributed to him, and if we assume that these 
works have not been added to or improved by subsequent 
annotators, we must esteem him one of the most eminent mathe
maticians of the middle ages.

His knowledge of geometry is illustrated by his De Triangulis 
and De 1soperimetris. The most important of these is the 
De Triangulis, which is divided into four books. The first 
book, besides a few definitions, contains thirteen propositions on 
triangles which are based on Euclid’s Elements. The second

1 See Cantor, chaps, xliii, xliv, where references to the authorities on 
Jordanus are collected.

2 Prof. Curtze, who has made a special study of the subject, considers that 
the following works are due to Jordanus. “Geometria vel de Triangulis,” 
published by M. Curtze in 1887 in vol. vi of the Mitteilungen des Copernicus- 
Vereins zu Thorn ; De Isoperimetτis ; Arithmetica Demonstrata, published 
by Faber Stapulensis at Paris in 1496, second edition, 1514 ; Algorithmus 
Demonstratus, published by J. Schiiner at Nuremberg in 1534 ; De Numeris 
Datis, published by P. Treutlein in 1879 and edited in 1891 with comments 
by M. Curtze in vol. xxxvi of the Zeitschrift fur Mathematik und Physik; 
De Ponderibus, published by P. Apian at Nuremberg in 1533, and reissued 
at Venice in 1565 ; and, lastly, two or three tracts on Ptolemaic astronomy. 
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book contains nineteen propositions, mainly on the ratios of 
straight, lines and the comparison of the areas of triangles; for 
example, one problem is to find a point inside a triangle so that 
the lines joining it to the angular points may divide the triangle 
into three equal parts. The third book contains twelve proposi
tions mainly concerning arcs and chords of circles. The fourth 
book contains twenty-eight propositions, partly on regular 
polygons and partly on miscellaneous questions such as the 
duplication and trisection problems.

The Algorithmus Denιonstratus contains practical rules for 
the four fundamental processes, and Arabic numerals are 
generally (but not always) used. It is divided into ten books 
dealing with properties of numbers, primes, perfect numbers, 
polygonal numbers, ratios, powers, and the progressions. It 
would seem from it that Jordanus knew the general expres
sion for the square of any algebraic multinomial.

The De Numeris Datis consists of four books containing 
solutions of one hundred and fifteen problems. Some of these 
lead to simple or quadratic equations involving more than one 
unknown quantity. He shews a knowledge of proportion ; but 
many of the demonstrations of his general propositions are only 
numerical illustrations of them.

In several of the propositions of the Algorithmus and De 
Numeris Datis letters are employed to denote both known and 
unknown quantities, and they are used in the demonstrations of 
the rules of arithmetic as well as of algebra. As an example 
of this I quote the following proposition,1 the object of which is 
to determine two quantities whose sum and product are known.

1 From the De Numeris Datis, book i, prop. 3.

Dato numero per duo diuiso si, quod ex duetu unius in alterum pro- 
ducitur, datum fuerit, et utrumque eorum datum esse necesse est.

Sit numerus datus abc diuisus in ab et c, atque ex ab in c fiat d datus, 
itemque ex abc in se fiat e. Sumatur itaque quadruplunι d, qui fit /, quo 
dempto de e reιnaneat g, et ipse erit quadratuni differentiae ab ad c. 
Extrahatur ergo radix ex g, et sit h, eritque h differentia ab ad c, cuuιque 
sic h datum, erit et c et ab datum.
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Huius operatio facile constabit hoc modo. Verbi gratia sit x diuisus 
in numeros duos, atque ex ductu unius eorum in alium fiat xxι ; cuius 
quadruplum et ipsum est Lxxxini, tollatur de quadrato x, hoc est c, et 
remanent XVI, cuius radix extrahatur, quae erit quatuor, et ipse est 
differentia. Ipsa tollatur de x et reliquum, quod est vi, dimidietur, 
eritque medietas m, et ipse est minor portio et maior vii.

It will be noticed that Jordanus, like Diophantus and the 
Hindoos, denotes addition by juxtaposition. Expressed in 
modern notation his argument is as follows. Let the numbers 
be a + b (which I will denote by γ) and c. Then γ + c is 
given; hence (γ + c)2 is known; denote it by e. Again yc is 
given; denote it by d; hence 4γc, which is equal to id, is 
known; denote it by f. Then (γ-c)2 is equal to e-/ which 
is known; denote it by g. Therefore γ - c = Jg, which is 
known ; denote it by h. Hence y + c and y - c are known, 
and therefore y and c can be at once found. It is curious 
that he should have taken a sum like a + b for one of his 
unknowns. In his numerical illustration he takes the sum to 
be 10 and the product 21.

Save for one instance in Leonardo’s writings, the above 
works are the earliest instances known in European mathematics 
of syncopated algebra in which letters are used for algebraical 
symbols. It is probable that the A lgorithmus was not generally 
known until it was printed in 1534, and it is doubtful how far 
the works of Jordanus exercised any considerable influence on 
the development of algebra. In fact it constantly happens in 
the history of mathematics that improvements in notation or 
method are made long before they are generally adopted or 
their advantages realized. Thus the same thing may be dis
covered over and over again, and it is not until the general 
standard of knowledge requires some such improvement, or it is 
enforced by some one whose zeal or attainments compel atten
tion, that it is adopted and becomes part of the science. 
Jordanus in using letters or symbols to represent any quantities 
which occur in analysis was far in advance of his contemporaries. 
A similar notation was tentatively introduced by other and
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later mathematicians, but it was not until it had been thus 
independently discovered several times that it came into general 
use.

It is not necessary to describe in detail the mechanics, optics, 
or astronomy of Jordanus. The treatment of mechanics 
throughout the middle ages was generally unintelligent.

No mathematicians of the same ability as Leonardo and 
Jordanus appear in the history of the subject for over two 
hundred years. Their individual achievements must not be 
taken to imply the standard of knowledge then current, but 
their works were accessible to students in the following two 
centuries, though there were not many who seem to have 
derived much benefit therefrom, or who attempted to extend the 
bounds of arithmetic and algebra as there expounded.

During the thirteenth century the most famous centres of 
learning in western Europe were Paris and Oxford, and I must 
now refer to the more eminent members of those schools.

Holy wood.1 I will begin by mentioning John de Holy wood, 
whose name is often written in the latinized form of Sacrobosco. 
Holywood was born in Yorkshire and educated at Oxford; but 
after taking his master’s degree he moved to Paris, and taught 
there till his death in 1244 or 1246. His lectures on algorism 
and algebra are the earliest of which I can find mention. His 
work on arithmetic was for many years a standard authority; it 
contains rules, but no proofs; it was printed at Paris in 1496. 
He also wrote a treatise on the sphere, which was made public 
in 1256 : this had a wide and long-continued circulation, and 
indicates how rapidly a knowledge of mathematics was spreading. 
Besides these, two pamphlets by him, entitled respectively De 
Compute Ecclesiastico and De Λstrolabio, are still extant.

Roger Bacon.2 Another contemporary of Leonardo and

1 See Cantor, chap. xlv.
2 See Roger Bacon, sa vie, ses ouvrages . . . by E. Charles, Paris, 1861 ; 

⅛nd the memoir by J. S. Brewer, prefixed to the Opera Inedita, Rolls Series, 
London, 1859 : a somewhat depreciatory criticism of the former of these 
works is given in Roger Bacon, eine Monographic, by L. Schneider, Augsburg, 
1873.
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Jo>rdanus was Roger Bacon, who for physical science did work 
sonnewhat analogous to what they did for arithmetic and 
al∣gebra. Roger Bacon was born near Ilchester in 1214, and 
dited at Oxford on June 11, 1294. He was the son of royalists, 
m<ost of whose property had been confiscated at the end of the 
ciwil wars : at an early age he was entered as a student at 
O xford, and is said to have taken orders in 1233. In 1234 
lie; removed to Paris, then the intellectual capital of western 
Eιurope, where he lived for some years devoting himself especi
ally to languages and physics; and there he spent on books 
and experiments all that remained of his family property and 
hits savings. He returned to Oxford soon after 1240, and there 
fo>r the following ten or twelve years he laboured incessantly, 
being chiefly occupied in teaching science. His lecture room 
w:as crowded, but everything that he earned was spent in buying 
manuscripts and instruments. He tells us that altogether at 
Paris and Oxford he spent over £2000 in this way—a sum 
which represents at least £20,000 nowadays.

Bacon strove hard to replace logic in the university curri
culum by mathematical and linguistic studies, but the influences 
of the age were too strong for him. His glowing eulogy on 
“ divine mathematics ” which should form the foundation of a 
liberal education, and which “ alone can purge the intellect 
and fit the student for the acquirement of all knowledge,” fell 
on deaf ears. We can judge how small was the amount of 
geometry which was implied in the quadrivium, when he tells us 
that in geometry few students at Oxford read beyond Euc. ι, 5; 
though we might perhaps have inferred as much from the 
character of the work of Boethius.

At last worn out, neglected, and ruined, Bacon was per
suaded by his friend Grosseteste, the great Bishop of Lincoln, 
to renounce the world and take the Franciscan vows. The 
society to which he now found himself confined was singularly 
uncongenial to him, and he beguiled the time by writing on 
scientific questions and perhaps lecturing. The superior of the 
order heard of this, and in 1257 forbade him to lecture or 
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publish anything under penalty of the most severe punishmemts, 
and at the same time directed him to take up his residence' at 
Paris, where he could be more closely watched.

Clement IV., when in England, had heard of Bacon’s abilities, 
and in 1266 when he became Pope he invited Bacon to write. 
The Franciscan order reluctantly permitted him to do so, lbut 
they refused him any assistance. With difficulty Bacon obtained 
sufficient money to get paper and the loan of books, and in the 
short space of fifteen months he produced in 1267 his Opus 
Majus with two supplements which summarized what was then 
known in physical science, and laid down the principles on which 
it, as well as philosophy and literature, should be studied. He 
stated as the fundamental principle that the study of natural 
science must rest solely on experiment; and in the fourth part 
he explained in detail how astronomy and physical sciences rest 
ultimately on mathematics, and progress only when their funda
mental principles are expressed in a mathematical form. Mathe
matics, he says, should be regarded as the alphabet of all 
philosophy.

The results that he arrived at in this and his other works 
are nearly in accordance with modern ideas, but were too far 
in advance of that age to be capable of appreciation or perhaps 
even of comprehension, and it was left for later generations to 
rediscover his works, and give him that credit which he never 
experienced in his lifetime. In astronomy he laid down the 
principles for a reform of the calendar, explained the pheno
mena of shooting stars, and stated that the Ptolemaic system 
was unscientific in so far as it rested on the assumption that 
circular motion was the natural motion of a planet, while the 
complexity of the explanations required made it improbable 
that the theory was true. In optics he enunciated the laws of 
reflexion and in a general way of refraction of light, and used 
them to give a rough explanation of the rainbow and of magnify
ing glasses. Most of his experiments in chemistry were directed 
to the transmutation of metals, and led to no useful results. He 
gave the composition of gunpowder, but there is no doubt that it

www.rcin.org.pl



<ch. x] ROGER BACON. CAMPANUS 177

1was not his own invention, though it is the earliest European 
ιmention of it. On the other hand, some of his statements 
ιappear to be guesses which are more or less ingenious, while 
some of them are certainly erroneous.

In the years immediately following the publication of his 
Opus Majus he wrote numerous works which developed in 
detail the principles there laid down. Most of these have now 
been published, but I do not know of the existence of any 
complete edition. They deal only with applied mathematics 
and physics.

Clement took no notice of the great work for which he had 
asked, except to obtain leave for Bacon to return to England. 
On the death of Clement, the general of the Franciscan order 
was elected Pope and took the title of Nicholas IV. Bacon’s 
investigations had never been approved of by his superiors, 
and he was now ordered to return to Paris, where we are told 
he was immediately accused of magic; he was condemned in 
1280 to imprisonment for life, but was released about a year 
before his death.

Campanus. The only other mathematician of this century 
whom I need mention is Giovanni Campano, or in the latinized 
form Campanus, a canon of Paris. A copy of Adelhardrs trans
lation of Euclid’s Elements fell into the hands of Campanus, who 
added a commentary thereon in which he discussed the properties 
of a regular re-entrant pentagon.1 He also, besides some minor 
works, wrote the Theory of the Planets, which was a free 
translation of the Almagest.

1 This edition of Euclid was printed by Ratdolt at Venice in 1482, and 
was formerly believed to be due to Campanus. On this work see J. L. 
Heiberg in the Zeitschrift fur Mathematik, vol. xxxv, 1890.

2 See Cantor, vol. ii, p. 102 et seq.
N

The fourteenth century. The history of the fourteenth 
century, like that of the one preceding it, is mostly concerned 
with the assimilation of Arab mathematical text-books and of 
Greek books derived from Arab sources.

Bradwardine.1 2 A mathematician of this time, who was 
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perhaps sufficiently influential to justify a mention here, ⅛ 
Thomas Bradwar dine, Archbishop of Canterbury. Bradwardine 
was born at Chichester about 1290. He was educated ait 
Merton College, Oxford, and subsequently lectured in thatt 
university. From 1335 to the time of his death he was chiefly 
occupied with the politics of the church and state; he took at 
prominent part in the invasion of France, the capture of Calais, 
and the victory of Cressy. He died at Lambeth in 1349. His 
mathematical works, which were probably written when he was 
at Oxford, are the Tractatus de Proportionibus, printed at Paris 
in 1495 ; the Arithmetica Speculativa, printed at Paris in 1502 ; 
the Geometria Speculativa, printed at Paris in 1511 ; and the 
De Quadratura Circuli, printed at Paris in 1495. They prob
ably give a fair idea of the nature of the mathematics then read 
at an English university.

0resmus.1 Nicholas 0resmus was another writer of the 
fourteenth century. He was born at Caen in 1323, became the 
confidential adviser of Charles V., by whom he was made tutor 
to Charles VI., and subsequently was appointed bishop of 
Lisieux, at which city he died on July 11, 1382. He wrote the 
Algorismus Proportionum, in which the idea of fractional indices 
is introduced. He also issued a treatise dealing with questions 
of coinage and commercial exchange; from the mathematical 
point of view it is noticeable for the use of vulgar fractions and 
the introduction of symbols for them.

By the middle of this century Euclidean geometry (as 
expounded by Campanus) and algorism were fairly familiar to 
all professed mathematicians, and the Ptolemaic astronomy was 
also generally known. About this time the almanacks began to 
add to the explanation of the Arabic symbols the rules of 
addition, subtraction, multiplication, and division, “de algorismo.” 
The more important calendars and other treatises also inserted 
a statement of the rules of proportion, illustrated by various 
practical questions.

1 See Die matlιematischen Schriften des Nicole 0resme, by M. Curtze, 
Thoru, 1870.
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In the latter half of this century there was a general revolt 
of the universities against the intellectual tyranny of the school
men. This was largely due to Petrarch, who in his own genera
tion was celebrated as a humanist rather than as a poet, and 
who exerted all his power to destroy scholasticism and encourage 
scholarship. The result of these influences on the study of 
mathematics may be seen in the changes then introduced in 
the study of the quadrivium. The stimulus came from the 
university of Paris, where a statute to that effect was passed 
in 1366, and a year or two later similar regulations were 
made at other universities; unfortunately no text-books are 
mentioned. We can, however, form a reasonable estimate of 
the range of mathematical reading required, by looking at 
the statutes of the universities of Prague, of Vienna, and of 
Leipzig.

By the statutes of Prague, dated 1384, candidates for the 
bachelor’s degree were required to have read Holywood’s treatise 
on the sphere, and candidates for the master’s degree to be 
acquainted with the first six books of Euclid, optics, hydrostatics, 
the theory of the lever, and astronomy. Lectures were actually 
delivered on arithmetic, the art of reckoning with the fingers, 
and the algorism of integers; on almanacks, which probably 
meant elementary astrology; and on the Almagest, that is, on 
Ptolemaic astronomy. There is, however, some reason for 
thinking that mathematics received far more attention here than 
was then usual at other universities.

At Vienna, in 1389, a candidate for a master’s degree was 
required to have read five books of Euclid, common perspective, 
proportional parts, the measurement of superficies, and the 
Theory of the Planets. The book last named is the treatise by 
Campanus which was founded on that by Ptolemy. This was a 
fairly respectable mathematical standard, but I would remind 
the reader that there was no such thing as “ plucking ” in a 
medieval university. The student had to keep an act or give 
a lecture on certain subjects, but whether he did it well or 
badly he got his degree, and it is probable that it was only the 
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few students whose interests were mathematical who really 
mastered the subjects mentioned above.

The fifteenth century. A few facts gleaned from the history 
of the fifteenth century tend to shew that the regulations about 
the study of the quadrivium were not seriously enforced. The 
lecture lists for the years 1437 and 1438 of the university of 
Leipzig (founded in 1409, the statutes of which are almost 
identical with those of Prague as quoted above) are extant, and 
shew that the only lectures given there on mathematics in those 
years were confined to astrology. The records of Bologna, 
Padua, and Pisa seem to imply that there also astrology was 
the only scientific subject taught in the fifteenth century, and 
even as late as 1598 the professor of mathematics at Pisa was 
required to lecture on the Quadripartitum, an astrological work 
purporting (probably falsely) to have been written by Ptolemy. 
The only mathematical subjects mentioned in the registers of 
the university of Oxford as read there between the years 1449 
and 1463 were Ptolemy’s astronomy, or some commentary on it, 
and the first two books of Euclid. Whether most students got 
as far as this is doubtful. It would seem, from an edition of 
Euclid’s Elements published at Paris in 1536, that after 1452 
candidates for the master’s degree at that university had to take 
an oath that they had attended lectures on the first six books of 
that work.

Beldomandi. The only writer of this time that I need 
mention here is Prodocimo Beldomandi of Padua, born about 
1380, who wrote an algoristic arithmetic, published in 1410, 
which contains the summation of a geometrical series; and 
some geometrical works.1

By the middle of the fifteenth century printing had been 
introduced, and the facilities it gave for disseminating knowledge 
were so great as to revolutionize the progress of science. We 
have now arrived at a time when the results of Arab and Greek 
science were known in Europe ; and this perhaps, then, is as

1 For further details see Boncompagni’s I3ulletino di bibliografia, 
vole, xii, xviii.
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good a date as can be fixed for the close of this period, and the 
commencement of that of the renaissance. The mathematical 
history of the renaissance begins with the career of Regiomon
tanus ; but before proceeding with the general history it will be 
convenient to collect together the chief facts connected with the 
development of arithmetic during the middle ages and the 
renaissance. To this the next chapter is devoted.
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CHAPTER XI.

THE DEVELOPMENT OF ARITHMETIC.1 
ciRC. 1300-1637.

1 See the article on Arithmetic by G. Peacock in the Encyclopaedia 
Metropolitana, vol. i, London, 1845 ; Arithmetical Books by A. De Morgan, 
London, 1847 ; and an article by P. Treutlein of Karlsruhe, in the Zeitschrift 
fur Mathematik, 1877, vol. xxii, supplement, pp. 1-100.

We have seen in the last chapter that by the end of the 
thirteenth century the Arabic arithmetic had been fairly intro
duced into Europe and was practised by the side of the older 
arithmetic which was founded on the work of Boethius. It will 
be convenient to depart from the chronological arrangement and 
briefly to sum up the subsequent history of arithmetic, but 1 
hope, by references in the next chapter to the inventions and 
improvements in arithmetic here described, that I shall be able 
to keep the order of events and discoveries clear.

The older arithmetic consisted of two parts : practical arith
metic or the art of calculation which was taught by means of 
the abacus and possibly the multiplication table; and theoretical 
arithmetic, by which was meant the ratios and properties of 
numbers taught according to Boethius — a knowledge of the 
latter being confined to professed mathematicians. The theo
retical part of this system continued to be taught till the middle 
of the fifteenth century, and the practical part of it was used by 
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the smaller tradesmen in England,1 Germany, and France till 
the beginning of the seventeenth century.

1 See, for instance, Chaucer, The MiUer's Tale, v, 22-25 ; Shakespeare, 
The Winter’s Tale, Act iv, Sc. 2 ; Othello, Act I, Sc. 1. There are similar 
references in French and German literature ; notably by Montaigne and 
Moliere. I believe that the Exchequer division of the High Court of Justice 
derives its name from the table before which the judges and officers of the 
court originally sat: this was covered with black cloth divided into squares 
or chequers by white lines, and apparently was used as an abacus.

The new Arabian arithmetic was called algorism or the art of 
Alkarismi, to distinguish it from the old or Boethian arithmetic. 
The text-books on algorism commenced with the Arabic system 
of notation, and began by giving rules for addition, subtraction, 
multiplication, and division; the principles of proportion were 
then applied to various practical problems, and the books usually 
concluded with general rules for many of the common problems of 
commerce. Algorism was in fact a mercantile arithmetic, though 
at first it also included all that was then known as algebra.

Thus algebra has its origin in arithmetic; and to most people 
the term universal arithmetic, by which it was sometimes desig
nated, conveys a more accurate impression of its objects and 
methods than the more elaborate definitions of modern mathe
maticians—certainly better than the definition of Sir William 
Hamilton as the science of pure time, or that of De Morgan as 
the calculus of succession. No doubt logically there is a marked 
distinction between arithmetic and algebra, for the former is the 
theory of discrete magnitude, while the latter is that of continu
ous magnitude; but a scientific distinction such as this is of 
comparatively recent origin, and the idea of continuity was not 
introduced into mathematics before the time of Kepler.

Of course the fundamental rules of this algorism were not at 
first strictly proved—that is the work of advanced thought— 
but until the middle of the seventeenth century there was some 
discussion of the principles involved; since then very few arith
meticians have attempted to justify or prove the processes used, 
or to do more than enunciate rules and illustrate their use by 
numerical examples.
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I have alluded frequently to the Arabic system of numerical 
notation. I may therefore conveniently begin by a few notes on 
the history of the symbols now current.

Their origin is obscure and has been much disputed.1 On 
the whole it seems probable that the symbols for the numbers 4, 
5, G, 7, and 9 (and possibly 8 too) are derived from the initial 
letters of the corresponding words in the Indo-Bactrian alphabet 
in use in the north of India perhaps 150 years before Christ; 
that the symbols for the numbers 2 and 3 are derived respectively 
from two and three parallel penstrokes written cursively; and 
similarly that the symbol for the number 1 represents a single 
penstroke. Numerals of this type were in use in India before 
the end of the second century of our era. The origin of the 
symbol for zero is unknown; it is not impossible that it was 
originally a dot inserted to indicate a blank space, or it may 
represent a closed hand, but these are mere conjectures; there 
is reason to believe that it was introduced in India towards the 
close of the fifth century of our era, but the earliest writing now 
extant in which it occurs is assigned to the eighth century.

1 See A. L’Esprit, Histoire des c,hiffres, Paris, 1893 ; A. P. Pihan, Signes 
de numeration, Paris, 1860 ; Er. Woepcke, La propagation des chiffres 
Indiens, Paris, 1863 ; A. C. Burnell, South Indian Palaeography, Mangalore, 
1874 ; Is. Taylor, The Alphabet, London, 1883 ; and Cantor.

The numerals used in India in the eighth century and for a 
long time afterwards are termed Devanagari numerals, and their 
forms are shewn in the first line of the table given on the next 
page. These forms were slightly modified by the eastern Arabs, 
and the resulting symbols were again slightly modified by the 
western Arabs or Moors. It is perhaps probable that at first 
the Spanish Arabs discarded the use of the symbol for zero, and 
only reinserted it when they found how inconvenient the omission 
proved. The symbols ultimately adopted by the Arabs are 
termed Gobar numerals, and an idea of the forms most commonly 
used may be gathered from those printed in the second line of 
the table given on next page. From Spain or Barbary the Gobar 
numerals passed into western Europe. The further evolution of
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the forms of the symbols to those with which we are familiar is 
indicated below by facsimiles1 of the numerals used at different 
times. All the sets of numerals here represented are written 
from left to right and in the order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Devanagari (Indian) nu
merals, tire. 950.

Gobar Arabic numerals, 
tire. 1100 (?).

From a missal, tire. 1385, 
of German origin.

European(ρrobablyltalian) 
numerals, tire. 1400.

From the Mirrour of the 
World, printed by Cax- 
ton in 1480.

From a Scotch calendar 
for 1482, probably of 
French origin.

Γrom 1500 onwards the symbols employed are practically the 
same as those now in use.2

The further evolution in the East of the Gobar numerals 
proceeded almost independently of European influence. There 
tre minute differences in the forms used by various writers, and 
in some cases alternative forms ; without, however, entering into 
these details we may say that the numerals they commonly

employed finally took the form shewn above, but the symbol

1 The first, second, and fourth examples are taken from Is. Taylor’s 
∖lphabet, London, 1883, vol. ii, p. 266 ; the others are taken from Leslie’s 
Philosophy of Arithmetic, 2nd ed., Edinburgh, 1820, pp. 114, 115.

2 See, for example, TonstalΓs Z>c Arte Supputandi, London, 1522 ; or 
lecord’s Grounde of Artes, London, 1540, and Whetstone of Witte, London, 
1557.
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there given for 4 is at the present time generally written 
cursively.

Leaving now the history of the symbols I proceed to discuss 
their introduction into general use and the development of 
algoristic arithmetic. I have already explained how men of 
science, and particularly astronomers, had become acquainted 
with the Arabic system by the middle of the thirteenth century. 
The trade of Europe during the thirteenth and fourteenth 
centuries was mostly in Italian hands, and the obvious ad
vantages of the algoristic system led to its general adoption 
in Italy for mercantile purposes. This change was not effected, 
however, without considerable opposition; thus, an edict was 
issued at Florence in 1299 forbidding bankers to use Arabic 
numerals, and in 1348 the authorities of the university of Padua 
directed that a list should be kept of books for sale with the 
prices marked “ non per cifras sed per literas claras.”

The rapid spread of the use of Arabic numerals and arithmetic 
through the rest of Europe seems to have been as largely due to 
the makers of almanacks and calendars as to merchants and 
men of science. These calendars had a wide circulation in 
medieval times. Some of them were composed with special 
reference to ecclesiastical purposes, and contained the dates of 
the different festivals and fasts of the church for a period of 
some seven or eight years in advance, as well as notes on church 
ritual. Nearly every monastery and church of any pretensions 
possessed one of these. Others were written specially for the 
use of astrologers and physicians, and some of them contained 
notes on various scientific subjects, especially medicine and astro
nomy. Such almanacks were not then uncommon, but, since it 
was only rarely that they found their way into any corporate 
library, specimens are now rather scarce. It was the fashion to 
use the Arabic symbols in ecclesiastical works; while their 
occurrence in all astronomical tables and their Oriental origin 
(which savoured of magic) secured their use in calendars intended 
for scientific purposes. Thus the symbols were generally em
ployed in both kinds of almanacks, and there are but few specimens 
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of calendars issued after the year 1300 in which an explanation 
of the Arabic numerals is not included. Towards the middle of 
the fourteenth century the rules of arithmetic de algorismo were 
also sometimes added, and by the year 1400 we may consider 
that the Arabic symbols were generally known throughout 
Europe, and were used in most scientific and astronomical 
works.

Outside Italy most merchants continued, however, to keep 
their accounts in Roman numerals till about 1550, and 
monasteries and colleges till about 1650 ; though in both 
cases it is probable that in and after the fifteenth century the 
processes of arithmetic were performed in the algoristic manner. 
Arabic numerals are used in the pagination of some books issued 
at Venice in 1471 and 1482. No instance of a date or number 
being written in Arabic numerals is known to occur in any 
English parish register or the court rolls of any English 
manor before the sixteenth century; but in the rent-roll of 
the St Andrews Chapter, Scotland, the Arabic numerals 
were used in 1490. The Arabic numerals were used in 
Constantinople by Planudes 1 in the fourteenth century.

The history of modern mercantile arithmetic in Europe 
begins then with its use by Italian merchants, and it is 
especially to the Florentine traders and writers that we owe 
its early development and improvement. It was they who 
invented the system of book-keeping by double entry. In this 
system every transaction is entered on the credit side in one 
ledger, and on the debtor side in another; thus, if cloth be sold 
to A, A’s account is debited with the price, and the stock-book, 
containing the transactions in cloth, is credited with the amount 
sold. It was they, too, who arranged- the problems to which 
arithmetic could be applied in different classes, such as rule of 
three, interest, profit and loss, <fcc. They also reduced the 
fundamental operations of arithmetic “ to seven, in reverence,” 
says Pacioli, “of the seven gifts of the Holy Spirit: namely, 
numeration, addition, subtraction, multiplication, division, 

1 See above, p. 117.
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raising to powers, and extraction of roots.” Brahmagupta 
had enumerated twenty processes, besides eight subsidiary ones, 
and had stated that “ a distinct and several knowledge of these ” 
was “ essential to all who wished to be calculators ”; and, 
whatever may be thought of Pacioli’s reason for the alteration, 
the consequent simplification of the elementary processes was 
satisfactory. It may be added that arithmetical schools were 
founded in various parts of Germany, especially in and after the 
fourteenth century, and did much towards familiarizing traders 
in northern and western Europe with commercial algoristic 
arithmetic.

The operations of algoristic arithmetic were at first very 
cumbersome. The chief improvements subsequently introduced 
into the early Italian algorism were (i) the simplification of the 
four fundamental processes; (ii) the introduction of signs for 
addition, subtraction, equality, and (though not so important) 
for multiplication and division; (iii) the invention of 
logarithms; and (iv) the use of decimals. I will consider 
these in succession.

(i) In addition and subtraction the Arabs usually worked 
from left to right. The modern plan of working from right to 
left is said to have been introduced by an Englishman named 
Garth, of whose life I can find no account. The old plan con
tinued in partial use till about 1600; even now it would be 
more convenient in approximations where it is necessary to keep 
only a certain number of places of decimals.

The Indians and Arabs had several systems of multiplication. 
These were all somewhat laborious, and were made the more so 
as multiplication tables, if not unknown, were at any rate used 
but rarely. The operation was regarded as one of considerable 
difficulty, and the test of the accuracy of the result by “ casting 
out the nines ” was invented as a check on the correctness of the 
work. Various other systems of multiplication were subse
quently employed in Italy, of which several examples are 
given by Pacioli and Tartaglia; and the use of the multipli
cation table—at least as far as 5 × 5—became common. From
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this limited table the resulting product of the multiplication of 
all numbers up to 10 × 10 can be deduced by what was termed 
the reguła ignavi. This is a statement of the identity 
(5 + α) (5 + 6) = (5 — α) (5-6)+ 10(α + 6). The rule was usually 
enunciated in the following form. Let the number five be 
represented by the open hand ; the number six by the hand with 
one finger closed; the number seven by the hand with two 
fingers closed; the number eight by the hand with three fingers 
closed; and the number nine by the hand with four fingers 
closed. To multiply one number by another let the multiplier be 
represented by one hand, and the number multiplied by the 
other, according to the above convention. Then the required 
answer is the product of the number of fingers (counting the 
thumb as a finger) open in the one hand by the number of 
fingers open in the other together with ten times the total 
number of fingers closed. The system of multiplication now 
in use seems to have been first introduced at Florence.

The difficulty which all but professed mathematicians 
experienced in the multiplication of large numbers led to the 
invention of several mechanical ways of effecting the process. 
Of these the most celebrated is that of Napier’s rods invented in 
1617. In principle it is the same as a method which had been 
long in use both in India and Persia, and which has been 
described in the diaries of several travellers, and notably in 
the Travels of Sir John Chardin in Persia, London, 1686. 
rΓo use the method a number of rectangular slips of bone, wood, 
netal, or cardboard are prepared, and each of them divided by 
cross lines into nine little squares, a slip being generally about 
three inches long and a third of an inch across. In the top 
ι⅛quare one of the digits is engraved, and the results of multiplying 
it by 2, 3, 4, 5, 6, 7, 8, and 9 are respectively entered in the 
tight lower squares; where the result is a number of two digits, 
1he ten-digit is written above and to the left of the unit-digit 
ιnd separated from it by a diagonal line. The slips are usually 
arranged in a box. Figure 1 on the next page represents nine 
such slips side by side; figure 2 shews the seventh slip, which
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is supposed to be taken out of the box and put by itself. 
Suppose we wish to multiply 2985 by 317. The process as 

Figure 1. Figure 2. Figure 3.

effected by the use of these slips is as follows. The slips headed 
2, 9, 8, and 5 are taken out of the box and put side by side as 
shewn in figure 3 above. The result of multiplying 2985 by 7 
may be written thus

Now7 if the reader will look at the seventh line in figure 3, 
he will see that the upper and lower rows of figures are respec
tively 1G53 and 4365 ; moreover, these are arranged by the 
diagonals so that roughly the 4 is under the 6, the 3 under the 
5, and the 6 under the 3 ; thus

16 5 3
4 3 6 5

The addition of these two numbers gives the required result. 
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Hence the result of multiplying by 7, 1, and 3 can be succes
sively determined in this way, and the required answer (namely, 
the product of 2985 and 317) is then obtained by addition.

The whole process was written as follows :—

The modification introduced by Napier in his Rabdologia, 
published in 1617, consisted merely in replacing each slip by a 
prism with square ends, which he called “ a rod,” each lateral 
face being divided and marked in the same way as one of the 
slips above described. These rods not only economized space, 
but were easier to handle, and were arranged in such a way as 
to facilitate the operations required.

If multiplication was considered difficult, division was at first 
regarded as a feat which could be performed only by skilled 
mathematicians. The method commonly employed by the 
Arabs and Persians for the division of one number by another 
will be sufficiently illustrated by a concrete instance. Suppose 
we require to divide 17978 by 472. A sheet of paper is divided 
into as many vertical columns as there are figures in the number 
to be divided. The number to be divided is written at the top 
and the divisor at the bottom; the first digit of each number 
being placed at the left-hand side of the paper. Then, taking 
the left-hand column, 4 will go into 1 no times, hence the first 
figure in the dividend is 0, which is written under the last figure 
of the divisor. This is represented in figure 1 on the next page. 
Next (see figure 2) rewrite the 472 immediately above its 
former position, but shifted one place to the right, and cancel 
the old figures. Then 4 will go into 17 four times; but, as 
on trial it is found that 4 is too big for the first digit of the 
dividend, 3 is selected; 3 is therefore written below the last 
digit of the divisor and next to the digit of the dividend last
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found. The process of multiplying the divisor by 3 and sub
tracting from the number to be divided is indicated in figure 
2, and shews that the remainder is 3818. A similar process is

Figure 1. Figure 2. Figure 3.

then repeated, that is, 472 is divided into 3818, shewing that 
the quotient is 38 and the remainder 42. This is represented in 
figure 3, which shews the whole operation.

The method described above never found much favour in 
Italy. The present system was in use there as early as the 
beginning of the fourteenth century, but the method generally 
employed λvas that known as the galley or scratch system. The 
following example from Tartaglia, in which it is required to 
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'divide 1330 by 84, will serve to illustrate this method : the 
^arithmetic given by Tartaglia is shewn above, where numbers in 
thin type are supposed to be scratched out in the course of the 
work.

The process is as follows. First write the 84 beneath the 
1330, as indicated below, then 84 will go into 133 once, hence 
the first figure in the quotient is 1. Now 1 × 8 = 8, which sub
tracted from 13 leaves 5. Write this above the 13, and cancel 
the 13 and the 8, and we have as the result of the first step

Next, 1×4 = 4, which subtracted from 53 leaves 49. Insert 
the 49, and cancel the 53 and the 4, and we have as the next 
step

which shews a remainder 490.
We have now to divide 490 by 84. Hence the next figure 

in the quotient will be 5, and re-writing the divisor we have

Then 5 × 8 = 40, and this subtracted from 49 leaves 9. Insert 
the 9, and cancel the 49 and the 8, and we have the following 
result
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Next 5 × 4 = 20, and this subtracted from 90 leaves 70. Insert 
the 70, and cancel the 90 and the 4, and the final result, shewing 
a remainder 70, is

The three extra zeros inserted in Tartaglia’s work are unneces
sary, but they do not affect the result, as it is evident that a 
figure in the dividend may be shifted one or more places up in 
the same vertical column if it be convenient to do so.

The medieval writers were acquainted with the method now 
in use, but considered the scratch method more simple. In 
some cases the latter is very clumsy, as may be illustrated by the 
following example taken from Pacioli. The object is to divide 
23400 by 100. The result is obtained thus

The galley method was used in India, and the Italians may 
have derived it thence. In Italy it became obsolete somewhere 
about 1600; but it continued in partial use for at least another 
century in other countries. I should add that Napier’s rods can 
be, and sometimes were used to obtain the result of dividing 
one number by another.

(ii) The signs + and - to indicate addition and subtraction 1 
occur in Widman’s arithmetic published in 1489, but were first 
brought into general notice, at any rate as symbols of opera
tion, by Stifel in 1544. They occur, however, in a work by

1 See below, pp. 206, 207, 214, 216.
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G. V. Hoecke, published at Antwerp in 1514. I believe I am 
correct in saying that Vieta in 1591 was the first well-known 
writer who used these signs consistently throughout his work, 
and that it was not until the beginning of the seventeenth 
century that they became recognized as well-known symbols. 
The sign = to denote equality 1 was introduced by Record in 
1557.

1 See below, p. 214.
2 See the article on Logarithms in the Encyclopaedia Britannica, ninth

edition ; see also below, pp. 236, 237.

(iii) The invention of logarithms,1 2 * without which many of 
the numerical calculations which have constantly to be made 
would be practically impossible, was due to Napier of Merchis- 
ton. The first public announcement of the discovery was 
made in his Mirifici Lo<jarithmorum Canonis Descriptio, pub
lished in 1614, and of which an English translation was issued 
in the following year; but he had privately communicated a 
summary of his results to Tycho Brahe as early as 1594. In 
this work Napier explains the nature of logarithms by a com
parison between corresponding terms of an arithmetical and 
geometrical progression. He illustrates their use, and gives 
tables of the logarithms of the sines and tangents of all angles 
in the first quadrant, for differences of every minute, calculated 
to seven places of decimals. His definition of the logarithm of a 
quantity n was what we should now express by 107loge (107∕n). 
This work is the more interesting to us as it is the first valuable 
contribution to the progress of mathematics which was made by 
any British writer. The method by which the logarithms were 
calculated was explained in the C'onstructio, a posthumous work 
issued in 1619 : it seems to have been very laborious, and 
depended either on direct involution and evolution, or on the 
formation of geometrical means. The method by finding the 
approximate value of a convergent series was introduced by 
Newton, Cotes, and Euler. Napier had determined to change 
the base to one which was a power of 10, but died before he 
could effect it.
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The rapid recognition throughout Europe of the advantages 
of using logarithms in practical calculations was mainly due to 
Briggs, who was one of the earliest to recognize the value of 
Napier’s invention. Briggs at once realized that the base to 
which Napier’s logarithms were calculated was inconvenient; 
he accordingly visited Napier in 1616, and urged the change 
to a decimal base, which was recognized by Napier as an im
provement. On his return Briggs immediately set to work to 
calculate tables to a decimal base, and in 1617 he brought out 
a table of logarithms of the numbers from 1 to 1000 calculated 
to fourteen places of decimals.

It would seem that J. Biirgi, independently of Napier, had 
constructed before 1611 a table of antilogarithms of a series of 
natural numbers : this was published in 1620. In the same 
year a table of the logarithms, to seven places of decimals, of 
the sines and tangents of angles in the first quadrant was 
brought out by Edmund Gunter, one of the Gresham lecturers. 
Four years later the latter mathematician introduced a “line of 
numbers,” which provided a mechanical method for finding the 
product of tλvo numbers : this was the precursor of the slide
rule, first described by Oughtred in 1632. In 1624, Briggs pub
lished tales of the logarithms of some additional numbers and of 
various trigonometrical functions. His logarithms of the natural 
numbers are equal to those to the base 10 when multiplied by 
108, and of the sines of angles to those to the base 10 when 
multiplied by 1012. The calculation of the logarithms of 
70,000 numbers which had been omitted by Briggs from his 
tables of 1624 was performed by Adrian Vlacq and published 
in ⅜628: with this addition the table gave the logarithms of 
all numbers from 1 to 101,000.

The Arithmetica Logarithmica of Briggs and Vlacq are sub
stantially the same as the existing tables : parts have at different 
times been recalculated, but no tables of an equal range and 
fulness entirely founded on fresh computations have been pub
lished since. These tables were supplemented by Briggs’s 
Trigonometrica Britannica, which contains tables not only of 
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the logarithms of the trigonometrical functions, but also of their 
natural values: it was published posthumously in 1G33. A 
table of logarithms to the base e of the numbers from 1 to 1000 
and of the sines, tangents, and secants of angles in the first 
quadrant was published by John Speidell at London as early 
as 1619, but of course these were not so useful in practical 
calculations as those to the base 10. By 1630 tables of 
logarithms were in general use.

(iv) The introduction of the decimal notation for fractions 
is also (in my opinion) due to Briggs. Stevinus had in 1585 
used a somewhat similar notation, for he wrote a number 
such as 25’379 either in the form 25, 3' 7" 9"', or in the form 
25 @ 3 Q 7 © 9 ® ; Napier in 1617 in his essay on rods had 
adopted the former notation; and Rudolff had used a somewhat 
similar notation. Biirgi also employed decimal fractions, writing 
141-4 as 14θ14. But the above-mentioned writers had employed 

the notation only as a concise way of stating results, and made 
no use of it as an operative form. The same notation occurs, how
ever, in the tables published by Briggs in 1617, and would 
seem to have been adopted by him in all his works ; and, though 
it is difficult to speak with absolute certainty, I have myself but 
little doubt that he there employed the symbol as an operative 
form. In Napier’s posthumous Constructio, published in 1619, 
it is defined and used systematically as an operative form, and 
as this work was written after consultation with Briggs, about 
1615-6, and probably was revised by the latter before it was issued, 
I think it confirms the view that the invention is due to Briggs 
and was communicated by him to Napier. At any rate it was 
not employed as an operative form by Napier in 1617, and, if 
Napier were then acquainted with it, it must be supposed that 
he regarded its use as unsuitable in ordinary arithmetic. Before 
the sixteenth century fractions were commonly written in the 
sexagesimal notation.1

In Napier’s work of 1619 the point is written in the form now
1 For examples, see above, pp. 97, 101, 169. 

www.rcin.org.pl



198 THE DEVELOPMENT OF ARITHMETIC [ch. xi 

adopted in England. Witt in 1613 and Napier in 1617 used 
a solidus to separate the integral from the fractional part. 
Briggs underlined the decimal figures, and would have printed a 
number such as 25-379 in the form 25379. Subsequent writers 
added another line, and would have written it as 25∣379 ; nor 
was it till the beginning of the eighteenth century that the 
current notation was generally employed. Even now the 
notation varies slightly in different countries : thus the fraction 
∣ would in the decimal notation be written in England as 0-25, 
in America as 0.25, and in Germany and France as 0,25. A 
knowledge of the decimal notation became general among 
practical men with the introduction of the French decimal 
standards.
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CHAPTER XII.

THE MATHEMATICS OF THE RENAISSANCE.1

ciRC. 1450-1637.

The last chapter is a digression from the chronological arrange
ment to which, as far as possible, I have throughout adhered, 
but I trust by references in this chapter to keep the order of 
events and discoveries clear. I return now to the general 
history of mathematics in western Europe. Mathematicians 
had barely assimilated the knowledge obtained from the Arabs, 
including their translations of Greek writers, when the refugees 
who escaped from Constantinople after the fall of the eastern 
empire brought the original works and the traditions of Greek 
science into Italy. Thus by the middle of the fifteenth century 
the chief results of Greek and Arabian mathematics were 
accessible to European students.

The invention of printing about that time rendered the 
dissemination of discoveries comparatively easy. It is almost a 
truism to remark that until printing was introduced a writer 
appealed to a very limited class of readers, but we are perhaps 
apt to forget that when a medieval writer “ published ” a work 
the results were known to only a few of his contemporaries.

1 Where no other references are given, see parts xii, xiii, xiv, and the early 
chapters of part xv of Cantor’s ForZ&swngren ; on the Italian mathematicians 
of this period see also G. Libri, IΓistoire des sciences mathematiques en Italie, 
4 vols., Paris, 1838-1841.
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This had not been the case in classical times, for then and 
until the fourth century of our era Alexandria was the recog
nized centre for the reception and dissemination of new works 
and discoveries. In medieval Europe, on the other hand, there 
was no common centre through which men of science could 
communicate with one another, and to this cause the slow 
and fitful development of medieval mathematics may be partly 
ascribed.

The introduction of printing marks the beginning of the 
modern world in science as in politics; for it was contempo
raneous -with the assimilation by the indigenous European 
school (which was born from scholasticism, and whose history 
was traced in chapter vm) of the results of the Indian and 
Arabian schools (whose history and influence were traced in 
chapters ιx and x), and of the Greek schools (whose history 
was traced in chapters ιι to v).

The last two centuries of this period of our history, which 
may be described as the renaissance, were distinguished by 
great mental activity in all branches of learning. The creation 
of a fresh group of universities (including those in Scotland), 
of a somewhat less complex type than the medieval universities 
above described, testify to the general desire for knowledge. 
The discovery of America in 1492 and the discussions that 
preceded the Reformation flooded Europe with new ideas which, 
by the invention of printing, were widely disseminated ; but the 
advance in mathematics was at least as well marked as that in 
literature and that in politics.

During the first part of this time the attention of mathe
maticians was to a large extent concentrated on syncopated 
algebra and trigonometry; the treatment of these subjects is 
discussed in the first section of this chapter, but the relative 
importance of the mathematicians of this period is not very 
easy to determine. The middle years of the renaissance were 
distinguished by the development of symbolic algebra : this is 
treated in the second section of this chapter. The close of the 
sixteenth century saw the creation of the science of dynamics : 
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this forms the subject of the first section of chapter x∏ι. 
About the same time and in the early years of the seventeenth 
century considerable attention was paid to pure geometry : this 
forms the subject of the second section of chapter xm.

The development of syncopated algebra and trigonometry.

Regiomontanus.1 Amongst the many distinguished λvriters 
of this time Johann Regiomontanus was the earliest and one 
of the most able. He was born at Kδnigsberg on June 6, 
1436, and died at Rome on July 6, 1476. His real name 
was Johannes Midler, but, following the custom of that time, 
he issued his publications under a Latin pseudonym which in 
his case was taken from his birthplace. To his friends, his 
neighbours, and his tradespeople he may have been Johannes 
Miiller, but the literary and scientific world knew him as 
Regiomontanus, just as they knew Zepernik as Copernicus, 
and Schwarzerd as Melanchthon. It seems as pedantic as it is 
confusing to refer to an author by his actual name when he 
is universally recognized under another : I shall therefore in all 
cases as far as possible use that title only, whether latinized or 
not, by which a writer is generally known.

1 His life was written by P. Gassendi, The Hague, second edition, 1655. 
His letters, which afford much valuable information on the mathematics of his 
time, were collected and edited by C. G. von Murr, Nuremberg, 1786. An 
account of his works will be found in Regiomontanus, ein geistiger Vorldufer 
des Copernicus, by A. Ziegler, Dresden, 1874 ; see also Cantor, chap. lv.

Regiomontanus studied mathematics at the university of 
Vienna, then one of the chief centres of mathematical studies 
in Europe, under Purbach who was professor there. His 
first work, done in conjunction with Purbach, consisted of an 
analysis of the Almagest. In this the trigonometrical functions 
sine and cosine were used and a table of natural sines was 
introduced. Purbach died before the book was finished: it 
was finally published at Venice, but not till 1496. As soon as 
this was completed Regiomontanus wrote a work on astrology,
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which contains some astronomical tables and a table of natural 
tangents : this was published in 1490.

Leaving Vienna in 1462, Regiomontanus travelled for some 
time in Italy and Germany; and at last in 1471 settled for 
a few years at Nuremberg, where he established an observatory, 
opened a printing-press, and probably lectured. Three tracts o∙n 
astronomy by him were written here. A mechanical eagle, which 
flapped its wings and saluted the Emperor Maximilian I. on his 
entry into the city, bears witness to his mechanical ingenuity, 
and was reckoned among the marvels of the age. Thence 
Regiomontanus moved to Rome on an invitation from Sixtus IV. 
who wished him to reform the calendar. He was assassinated, 
shortly after his arrival, at the age of 40.

Regiomontanus was among the first to take advantage of 
the recovery of the original texts of the Greek mathematical 
works in order to make himself acquainted with the methods of 
reasoning and results there used; the earliest notice in modern 
Europe of the algebra of Diophantus is a remark of his that he 
had seen a copy of it at the Vatican. He was also well read in 
the works of the Arab mathematicians.

The fruit of his study was shewn in his De Triangulis 
written in 1464. This is the earliest modern systematic 
exposition of trigonometry, plane and spherical, though the 
only trigonometrical functions introduced are those of the sine 
and cosine. It is divided into five books. The first four arc 
given up to plane trigonometry, and in particular to deter
mining triangles from three given conditions. The fifth book 
is devoted to spherical trigonometry. The work was printed 
at Nuremberg in 1533, nearly a century after the death of 
Regiomontanus.

As an example of the mathematics of this time I quote one 
of his propositions at length. It is required to determine a 
triangle when the difference of two sides, the perpendicular on 
the base, and the difference between the segments into which 
the base is thus divided are given [book ιι, prop. 23]. The 
following is the solution given by Regiomontanus.
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Sit talis triangulus ABG, cujus duo latera AB et AG differentia 
lιabeant nota HG, ductaque perpendiculari AD duoruin casuunι BD et 
DG, differentia sit EG: hae duae differentiae sint datae, et ipsa perpen- 
dicularis AD data. Dico quod omnia latera trianguli nota concludentur. 
Per artem rei et census hoc problema absolvemus. Detur ergo differentia 
laterum ut 3, differentia casuum 12, et perpendicularis 10. Pono pro 
basi unain rem, et pro aggregate laterum 4 res, nae proportio basis ad

congeriem laterum est ut HG ad GE, scilicet unius ad 4. Erit ergo BD 
⅜ rei minus 6, sed AB erit 2 res demptis ⅛. Duco AB in se, producuntur 
•I census et 2∣ demptis 6 rebus. Item BD in se facit ⅛ census et 36 
minus 6 rebus : huic addo quadratum de 10 qui est 100. Colliguntur ⅛ 
census et 136 minus 6 rebus aequales videlicet 4 censibus et 2∣ demptis 
6 rebus. Restaurando itaque defectus et auferendo utrobique aequalia, 
quemadmodum ars ipsa praecipit, habemus census aliquot aequales 
numero, unde cognitio rei patebit, et inde tria latera trianguli more suo 
innotescet.

To explain the language of the proof I should add that 
Regiomontanus calls the unknown quantity res, and its square 
census or zensus; but though he uses these technical terms he 
writes the words in full. He commences by saying that he will 
solve the problem by means of a quadratic equation (per artem 
rei et census); and that he will suppose the difference of the 
sides of the triangle to be 3, the difference of the segments of 
the base to be 12, and the altitude of the triangle to be 10. 
He then takes for his unknown quantity (unam rem or a?) the 
base of the triangle, and therefore the sum of the sides will be 
4.r. Therefore BD will be equal to ⅛ - 6 (’- rei minus 6), and 
AB will be equal to 2.r - ∙]- (2 res demptis √); hence AB'1 (AB 
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in se) will be 4χ2 + 2∣ - §x (4 census et 2 J demptis G rebus), 
and BD2 will be ⅛x2 + 3G -Gx. To BD2 he adds ΛD2 (quad
ra turn de 10) which is 100, and states that the sum of the two 
is equal to AB2. This he says will give the value of x2 (census), 
whence a knowledge of x (cognitio rei) can be obtained, and the 
triangle determined.

To express this in the language of modern algebra we have

but by the given numerical conditions

Therefore
Hence

From which x can be found, and all the elements of the triangle 
determined.

It is worth noticing that Regiomontanus merely aimed at 
giving a general method, and the numbers are not chosen with 
any special reference to the particular problem. Thus in his 
diagram he does not attempt to make GE anything like four 
times as long as GH, and, since x is ultimately found to be 
equal to ⅜ v∕321, the point D really falls outside the base. The 
order of the letters ABG, used to denote the triangle, is of 
course derived from the Greek alphabet.

Some of the solutions which he gives are unnecessarily 
complicated, but it must be remembered that algebra and 
trigonometry were still only in the rhetorical stage of develop
ment, and when every step of the argument is expressed in 
words at full length it is by no means easy to realize all that is 
contained in a formula.

It will be observed from the above example that Regiomon
tanus did not hesitate to apply algebra to the solution of 
geometrical problems. Another illustration of this is to be found 
in his discussion of a question which appears in Brahmaguptas
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Siddhanta. The problem was to construct a quadrilateral, 
having its sides of given lengths, which should be inscribable in 
a circle. The solution1 given by Regiomontanus was effected 
by means of algebra and trigonometry.

The Algorithmus Demonstratus of Jordanus, described above, 
which was first printed in 1534, was formerly attributed to 
Regiomontanus.

Regiomontanus was one of the most prominent mathema
ticians of his generation, and I have dealt with his works in 
some detail as typical of the most advanced mathematics of 
the time. Of his contemporaries I shall do little more than 
mention the names of a few of those who are best known ; 
none were quite of the first rank, and I should sacrifice the 
proportion of the parts of the subject were I to devote much 
space to them.

Purbach.2 I may begin by mentioning George Purbach, 
first the tutor and then the friend of Regiomontanus, born 
near Linz on May 30, 1423, and died at Vienna on April 8, 
1461, who wrote a work on planetary motions which was 
published in 1460; an arithmetic, published in 1511 ; a table 
of eclipses, published in 1514; and a table of natural sines, 
published in 1541.

Cusa.3 Next I may mention Nicolas de Cusa, who was 
born in 1401 and died in 1464. Although the son of a poor 
fisherman and without influence, he rose rapidly in the church, 
and in spite of being “ a reformer before the reformation ” 
became a cardinal. His mathematical writings deal with the 
reform of the calendar and the quadrature of the circle; in 
the latter problem his construction is equivalent to taking 
i( J3 + v∕6) as the value of π. He argued in favour of the 
diurnal rotation of the earth.

Chuquet. I may also here notice a treatise on arithmetic,
1 It was published by C. G. von Murr at Nuremberg in 1786.
2 Purbach’s life was written by P. Gassendi, The Hague, second edition, 

1655.
3 Cusa’s life was written by F. A. Scharpff, Tiibingen, 1871 ; and his 

collected works, edited by H. Petri, were published at Bale in 1565.
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known as Le Triparty,1 by Nicolas Chuquet, a bachelor of 
medicine in the university of Paris, which was written in 1484. 
This work indicates that the extent of mathematics then taught 
was somewhat greater than was generally believed a few years 
ago. It contains the earliest known use of the radical sign 
with indices to mark the root taken, 2 for a square-root, 3 for 
a cube-root, and so on; and also a definite statement of the 
rule of signs. The words plus and minus are denoted by the 
contractions p, m. The work is in French.

1 See an article by A. Marre in Boncompagni’s Bulletino di bibliografia 
for 1880, vol. xiii, pp. 555-659.

2 See articles by P. Treutlein {Die deutsche Coss) in the Abhandlungen zur 
Geschichte der Matheτnatik for 1879 ; by de Morgan in the Cambridge Philo
sophical Transactions, 1871, vol. xi, pp. 203-212 ; and by Bonconιpagni in 
the Bulletino di bibliografia for 1876, vol. ix, pp. 188-210.

3 See passim Levit. xxv, verse 27, and 1 Maccab. x, verse 41.

Introduction 1 2 of signs + and - . In England and Germany 
algorists were less fettered by precedent and tradition than in 
Italy, and introduced some improvements in notation which 
were hardly likely to occur to an Italian. Of these the most 
prominent were the introduction, if not the invention, of the 
current symbols for addition, subtraction, and equality.

The earliest instances of the regular use of the signs + and - 
of which we have any knowledge occur in the fifteenth century. 
Johannes Wid/man of Eger, born about 1460, matriculated at 
Leipzig in 1480, and probably by profession a physician, wrote 
a Mercantile Arithmetic, published at Leipzig in 1489 (and 
modelled on a work by Wagner printed some six or seven years 
earlier): in this book these signs are used merely as marks 
signifying excess or deficiency ; the corresponding use of the 
■word surplus or overplus3 was once common and is still 
retained in commerce.

It is noticeable that the signs generally occur only in practical 
mercantile questions : hence it has been conjectured that they 
were originally warehouse marks. Some kinds of goods were 
sold in a sort of wooden chest called a lagel, which when full 
was apparently expected to weigh roughly either three or four
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centners; if one of these cases were a little lighter, say 5 lbs., 
than four centners, Widman describes it as weighing 4c - 5 lbs. : 
if it were 5 lbs. heavier than the normal weight it is described 
as weighing 4c —∣— 5 lbs. The symbols are used as if they 
would be familiar to his readers; and there are some slight 
reasons for thinking that these marks were chalked on the 
chests as they came into the warehouses. We infer that the 
more usual case was for a chest to weigh a little less than 
its reputed weight, and, as the sign — placed between two 
numbers was a common symbol to signify some connection 
between them, that seems to have been taken as the standard 
case, while the vertical bar was originally a small mark super
added on the sign - to distinguish the two symbols. It will 
be observed that the vertical line in the symbol for excess, 
printed above, is somewhat shorter than the horizontal line. 
This is also the case with Stifel and most of the early writers 
who used the symbol: some presses continued to print it in 
this, its earliest form, till the end of the seventeenth century. 
Xylander, on the other hand, in 1575 has the vertical bar 
much longer than the horizontal line, and the symbol is some
thing like -∣-.

Another conjecture is that the symbol for plus is derived 
from the Latin abbreviation & for et; while that for minus is 
obtained from the bar which is often used in ancient manuscripts 
to indicate an omission, or which is written over the contracted 
form of a word to signify that certain letters have been left out. 
This view has been often supported on a priori grounds, but it 
has recently found powerful advocates in Professors Zangmeister 
and Le Paige who also consider that the introduction of these 
symbols for plus and minus may be referred to the fourteenth 
century.

These explanations of the origin of our symbols for plus and 
minus are the most plausible that have been yet advanced, but 
the question is difficult and cannot be said to be solved. Another 
suggested derivation is that + is a contraction of ~C, the initial 
letter in Old German of plus, while - is the limiting form of 
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m (for minus) when written rapidly. De Morgan1 proposed 
yet another derivation : the Hindoos sometimes used a dot to 
indicate subtraction, and this dot might, he thought, have been 
elongated into a bar, and thus give the sign for minus; while 
the origin of the sign for plus was derived from it by a super
added bar as explained above; but I take it that at a later 
time he abandoned this theory for what has been called the 
warehouse explanation.

1 See his Arithmetical Books, London, 1847, p. 19.
3 See H. Staigmiiller in the Zeitschrift fur Mathematik, 1889, vol. xxxiv ; 

also Libri, vol. iii, pp. 133-145 ; and Cantor, chap, lvii.

I should perhaps here add that till the close of the sixteenth 
century the sign + connecting two quantities like a and 6 was 
also used in the sense that if a were taken as the answer to some 
question one of the given conditions would be too little by b. 
This was a relation which constantly occurred in solutions of 
questions by the rule of false assumption.

Lastly, I would repeat again that these signs in Widman are 
only abbreviations and not symbols of operation; he attached 
little or no importance to them, and no doubt would have 
been amazed if he had been told that their introduction was pre
paring the way for a revolution of the processes used in algebra.

The Algor ithmus of Jordanus was not published till 1534; 
Widman’s work was hardly known outside Germany; and it 
is to Pacioli that we owe the introduction into general use 
of syncopated algebra; that is, the use of abbreviations for 
certain of the more common algebraical quantities and operations, 
but where in using them the rules of syntax are observed.

Pacioli.2 Lucas Pacioli, sometimes known as Lucas di Burgo, 
and sometimes, but more rarely, as Lucas Paciolus, was born at 
Burgo in Tuscany about the middle of the fifteenth century. 
We know little of his life except that he was a Franciscan 
friar; that he lectured on mathematics at Rome, Pisa, Venice, 
and Milan; and that at the last-named city he was the first 
occupant of a chair of mathematics founded by Sforza : he died 
at Florence about the year 1510.
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H is chief work was printed at Venice in 1494 and is termed 
Summa de arithmetica, geometria, propoτzioni e proporzionalita. 
It is divided into two parts, the first dealing with arithmetic 
and algebra, the second with geometry. This was the earliest 
printed book on arithmetic and algebra. It is mainly based on 
the writings of Leonardo of Pisa, and its importance in the 
history of mathematics is largely due to its wide circulation.

In the arithmetic Pacioli gives rules for the four simple 
processes, and a method for extracting square roots. He deals 
pretty fully with all questions connected with mercantile 
arithmetic, in which he works out numerous examples, and 
in particular discusses at great length bills of exchange and 
the theory of book-keeping by double entry. This part was 
the first systematic exposition of algoristic arithmetic, and has 
been already alluded to in chapter xi. It and the similar 
work by Tartaglia are the two standard authorities on the 
subject.

Many of his problems are solved by “ the method of false 
assumption,” which consists in assuming any number for the 
unknown quantity, and if on trial the given conditions be 
not satisfied, altering it by a simple proportion as in rule of 
three. As an example of this take the problem to find the 
original capital of a merchant who spent a quarter of it in 
Pisa and a fifth of it in Venice, who received on these trans
actions 180 ducats, and who has in hand 224 ducats. Suppose 
that we assume that he had originally 100 ducats. Then if 
he spent 25 + 20 ducats at Pisa and Venice, he would have 
had 55 ducats left. But by the enunciation he then had 
224 - 180, that is, 44 ducats. Hence the ratio of his original 
capital to 100 ducats is as 44 to 55. Thus his original capital 
was 80 ducats.

The following example will serve as an illustration of the 
kind of arithmetical problems discussed.

I buy for 1440 ducats at Venice 2400 sugar loaves, whose nett weight 
is 7200 lire ; I pay as a fee to the agent 2 per cent. ; to the weighers and 
porters on the whole, 2 ducats ; I afterwards spend in boxes, cords,

P 
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canvas, and in fees to the ordinary packers in the whole, 8 ducats ; for 
the tax or octroi duty on the first amount, 1 ducat per cent. ; afterwards 
for duty and tax at the office of exports, 3 ducats per cent. ; for writing 
directions on the boxes and booking their passage, 1 ducat; for the bark 
to Rimini, 13 ducats ; in compliments to the captains and in drink for 
the crews of armed barks on several occasions, 2 ducats ; in expenses for 
provisions for mys⅛Jf and servant for one month, 6 ducats ; for expenses 
for several short journeys over land here and there, for barbers, for 
washing of linen, and of boots for myself and servant, 1 ducat; upon my 
arrival at Rimini I pay to the captain of the port for port dues in the 
money of that city, 3 lire ; for porters, disembarkation on land, and 
carriage to the magazine, 5 lire ; as a tax upon entrance, 4 soldi a load 
which are in number 32 (such being the custom); for a booth at the fair, 
4 soldi per load ; I further find that the measures used at the fair are 
different to those used at Venice, and that 140 lire of weight are there 
equivalent to 100 at Venice, and that 4 lire of their silver coinage are 
equal to a ducat of gold. I ask, therefore, at how much I must sell a 
hundred lire Rimini in order that I may gain 10 per cent, upon my 
■whole adventure, and what is the stun which 1 must receive in Venetian 
money ?

In the algebra he discusses in some detail simple and 
quadratic equations, and problems on numbers which lead to 
such equations. He mentions the Arabic classification of cubic 
equations, but adds that their solution appears to be as im
possible as the quadrature of the circle. The following is the 
rule he gives1 for solving a quadratic equation of the form 
x2 + x = a∙. it is rhetorical and not syncopated, and will serve 
to illustrate the inconvenience of that method.

“ Si res et census numero coaequantur, a rebus 
dimidio sumpto censum producere debes, 
addereque numero, cujus a radice totiens 
toile semis rerum, census latusque redibit.”

He confines his attention to the positive roots of equations.
Though much of the matter described above is taken from 

Leonardo’s Liber Abaci, yet the notation in which it is expressed 
is superior to that of Leonardo. Pacioli follows Leonardo and

1 Edition of 1494, p. 145.
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the Arabs in calling the unknown quantity the thing, in Italian 
cosa—hence algebra was sometimes known as the cossic art—or 
in Latin res, and sometimes denotes it by co or R or Rj. He 
calls the square of it census or zensus, and sometimes denotes 
it by ce or Z; similarly the cube of it, or cuba, is sometimes 
represented by cu or C; the fourth power, or censo di censo, 
is written either at length or as ce di ce or as ce ce. It may 
be noticed that all his equations are numerical, so that he did 
not rise to the conception of representing known quantities by 
letters as Jordanus had done and as is the case in modern 
algebra; but Libri gives two instances in which in a proportion 
he represents a number by a letter. He indicates addition by 
p or ρ, the initial letter of the word plus, but he generally evades 
the introduction of a symbol for minus by writing his quantities 
on that side of the equation which makes them positive, though 
in a few places he denotes it by m for minus or by de for demρtus. 
Similarly, equality is sometimes indicated by ae for aequalis. 
This is a commencement of syncopated algebra.

There is nothing striking in the results he arrives at in the 
second or geometrical part of the work; nor in two other tracts 
on geometry which he wrote and which were printed at Venice 
in 1508 and 1509. It may be noticed, however, that, like 
Regiomontanus, he applied algebra to aid him in investigating 
the geometrical properties of figures.

The following problem will illustrate the kind of geometri
cal questions he attacked. The radius of the inscribed circle 
of a triangle is 4 inches, and the segments into which one side 
is divided by the point of contact are 6 inches and 8 inches 
respectively. Determine the other sides. To solve this it is 
sufficient to remark that rs = Δ = √zs (.$ - α) (,$ - 6) (s - c) which 
gives 4s = χ∕s×(s - 14)× 6 x 8, hence s = 21 ; therefore the 
required sides are 21-6 and 21-8, that is, 15 and 13. But 
Pacioli makes no use of these formulae (with which he was 
acquainted), but gives an elaborate geometrical construction, and 
then uses algebra to find the lengths of various segments of the 
lines he wants. The work is too long for me to reproduce here, 
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but the following analysis of it will afford sufficient materials 
for its reproduction. Let √1∕>C' be the triangle, I), E, F the 
points of contact of the sides, and 0 the centre of the given 
circle. Let II be the point of intersection of OB and DF, and 
K that of 0C and DE. Let L and M be the feet of the 
perpendiculars drawn from E and F on BC. Draw EP 
parallel to AB and cutting BC in P. Then Pacioli determines 
in succession the magnitudes of the following lines : (i) OB, 
(ii) 0C, (iii) FD, (iv) FII, (v) ED, (vi) EK. He then 
forms a quadratic equation, from the solution of which he 
obtains the values of MB and MD. Similarly he finds the 
values of LC and LD. He now finds in succession the values 
of EL, FM, EP, and LP; and then by similar triangles obtains 
the value of AB, which is 13. This proof was, even sixty years 
later, quoted by Cardan as “ incomparably simple and excellent, 
and the very crown of mathematics.” I cite it as an illustration 
of the involved and inelegant methods then current. The 
problems enunciated are very similar to those in the De 
Triangulis of Regiomontanus.

Leonardo da Vinci. The fame of Leonardo da Vinci as 
an artist has overshadowed his claim to consideration as a 
mathematician, but he may be said to have prepared the way 
for a more accurate conception of mechanics and physics, while 
his reputation and influence drew some attention to the subject; 
he was an intimate friend of Pacioli. Leonardo was the 
illegitimate son of a lawyer of Vinci in Tuscany, was born in 
1452, and died in France in 1519 while on a visit to Francis I. 
Several manuscripts by him were seized by the French revolu
tionary armies at the end of the last century, and Venturi, at 
the request of the Institute, reported on those concerned with 
physical or mathematical subjects.1

Leaving out of account Leonardo’s numerous and important 
artistic works, his mathematical writings are concerned chiefly 
with mechanics, hydraulics, and optics — his conclusions being

1 Essai sur les ouvrnges physico-malhematiqucs de Leonard de Vinci, I >y 
J.-B. Venturi, Baris, 1797. 
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usually based on experiments. His treatment of hydraulics 
and optics involves but little mathematics. The mechanics 
contain numerous and serious errors; the best portions are 
those dealing with the equilibrium of a lever under any forces, 
the laws of friction, the stability of a body as affected by the 
position of its centre of gravity, the strength of beams, and the 
orbit of a particle under a central force; he also treated a few 
easy problems by virtual moments. A knowledge of the triangle 
of forces is occasionally attributed to him, but it is probable 
that his views on the subject were somewhat indefinite. 
Broadly speaking, we may say that his mathematical work 
is unfinished, and consists largely of suggestions which he 
did not discuss in detail and could not (or at any rate did 
not) verify.

Diirer. Albrecht Diirer1 was another artist of the same 
time who was also known as a mathematician. He was born at 
Nuremberg on May 21, 1471, and died there on April 6, 1528. 
His chief mathematical work was issued in 1525, and contains a 
discussion of perspective, some geometry, and certain graphical 
solutions ; Latin translations of it were issued in 1532, 1555, 
and 1605.

Copernicus. An account of Nicolaus Copernicus, born at 
Thorn on Feb. 19, 1473, and died at Frauenberg on May 7, 
1543, and his conjecture that the earth and planets all revolved 
round the sun, belong to astronomy rather than to mathematics. 
I may, however, add that Copernicus wrote on trigonometry, his 
results being published as a text-book at Wittenberg in 1542; 
it is clear though it contains nothing new. It is evident from 
this and his astronomy that he was well read in the literature, 
of mathematics, and was himself a mathematician of consider
able power. I describe his statement as to the motion of the 
earth as a conjecture, because he advocated it only on the 
ground that it gave a simple explanation of natural phenomena. 
Galileo in 1632 was the first to try to supply a proof of this 
hypothesis.

1 See Purer als Mathematiker, by H. Staigmiiller, Stuttgart, 1891.

www.rcin.org.pl



214 MATHEMATICS OF THE RENAISSANCE [ch. xπ

By the beginning of the sixteenth century the printing
press began to be active, and many of the works of the earlier 
mathematicians became now for the first time accessible to all 
students. This stimulated inquiry, and before the middle of 
the century numerous works were issued which, though they 
did not include any great discoveries, introduced a variety of 
small improvements all tending to make algebra more analytical.

Record. The sign now used to denote equality was intro
duced by Robert Record.1 Record was born at Tenby in 
Pembrokeshire about 1510, and died at London in 1558. He 
entered at Oxford, and obtained a fellowship at All Souls 
College in 1531; thence he migrated to Cambridge, where he 
took a degree in medicine in 1545. He then returned to 
Oxford and lectured there, but finally settled in London and 
became physician to Edward VI. and to Mary. His prosperity 
must have been short-lived, for at the time of his death he was 
confined in the King’s Bench prison for debt.

1 See pp. 15-19 of my History of the Study of Mathematics at Cam
bridge, Cambridge, 1889.

2 See Whetstone of Witte, f. Ff, j. v.

In 1540 he published an arithmetic, termed the Grounde of 
Aries, in which he employed the signs + to indicate excess 
and - to indicate deficiency; “ + whyche betokeneth too 
muche, as this line - plaine without a crosse line betokeneth 
too little.” In this book the equality of two ratios is indi
cated by two equal and parallel lines whose opposite ends are 
joined diagonally, ex. gr. by Z. A few years later, in 1557, he 
wrote an algebra under the title of the Whetstone of Witte. 
This is interesting as it contains the earliest introduction of the 
sign = for equality, and he says he selected that particular 
symbol because1 2 than two parallel straight lines “ noe 2 thynges 
can be moare equalle.” M. Charles Henry has, however, asserted 
that this sign is a recognized abbreviation for the word est 
in medieval manuscripts; and, if this be established, it would 
seem to indicate a more probable origin. In this work Record 
shewed how the square root of an algebraic expression could be
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extracted. He also wrote an astronomy. These works give a 
clear view of the knowledge of the time.

Rudolff. Riese. About the same time in Germany, Rudolff 
and Riese took up the subjects of algebra and arithmetic. Their 
investigations form the basis of Stifel’s well - known work. 
Christoff Rudolff1 published his algebra in 1525 ; it is entitled 
Die Coss, and is founded on the writings of Pacioli, and perhaps 
of Jordanus. Rudolff introduced the sign of for the square 
root, the symbol being a corruption of the initial letter of the 
word radix, similarly J J denoted the cube root, and x∕ x∕ 
the fourth root. Adam Riese 1 2 was born near Bamberg, Bavaria, 
in 1489, of humble parentage, and after working for some years 
as a miner set up a school; he died at Annaberg on March 30, 
1559. He wrote a treatise on practical geometry, but his most 
important book was his well-known arithmetic (which may be 
described as algebraical), issued in 1536, and founded on Pacioli’s 
work. Riese used the symbols + and - .

1 See E. Wappler, Geschichte der deutschen Algebra im xv. Jahrhunderte, 
Zwickau, 1887.

2 See two works by B. Berlet, Ueber Adam Riese, Annaberg, 1855 ; and 
Die Coss von Adam Riese, Annaberg, 1860.

3 The authorities on Stifel are given by Cantor chap, lxii.

Stifel.3 The methods used by Rudolff and Riese and their 
results were brought into general notice through Stifel’s work, 
which had a wide circulation. Michael Stifel, sometimes known 
by the Latin name of Stiff'elius, was born at Esslingen in 1486, 
and died at Jena on April 19, 1567. He was originally an 
Augustine monk, but he accepted the doctrines of Luther, of 
whom he was a personal friend. He tells us in his algebra that 
his conversion was finally determined by noticing that the pope 
Leo X. was the beast mentioned in the Revelation. To shew 
this, it was only necessary to add up the numbers represented by 
the letters in Leo decimus (the m had to be rejected since it 
clearly stood for mysterium), and the result amounts to exactly 
ten less than 666, thus distinctly implying that it was Leo the 
tenth. Luther accepted his conversion, but frankly told him he 
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had better clear his mind of any nonsense about the number of 
the beast.

Unluckily for himself Stif el did not act on this advice. 
Believing that he had discovered the true way of interpreting 
the biblical prophecies, he announced that the world would come 
to an end on October 3, 1533. The peasants of Holzdorf, of which 
place he was pastor, aware of his scientific reputation, accepted 
his assurance on this point. Some gave themselves up to 
religious exercises, others wasted their goods in dissipation, but 
all abandoned their work. When the day foretold had passed, 
many of the peasants found themselves ruined. Furious at having 
been deceived, they seized the unfortunate prophet, and he was 
lucky in finding a refuge in the prison at Wittenberg, from 
which he was after some time released by the personal interces
sion of Luther.

Stifel wrote a small treatise on algebra, but his chief mathe
matical work is his Arithmetica Integra, published at Nuremberg 
in 1544, with a preface by Melanchthon.

The first two books of the Arithmetica Integra deal with 
surds and incommensurables, and are Euclidean in form. The 
third book is on algebra, and is noticeable for having called 
general attention to the German practice of using the signs 
+ and - to denote addition and subtraction. There are traces of 
these signs being occasionally employed by Stifel as symbols of 
operation and not only as abbreviations; in this use of them he 
seems to have followed G. V. Hoecke. He not only employed the 
usual abbreviations for the Italian words which represent the 
unknown quantity and its powers, but in at least one case when 
there were several unknown quantities he represented them 
respectively by the letters A, B, C, &c.; thus re-introducing the 
general algebraic notation which had fallen into disuse since the 
time of Jordanus. It used to be said that Stifel was the real 
inventor of logarithms, but it is now certain that this opinion 
was due to a misapprehension of a passage in which he compares 
geometrical and arithmetical progressions. Stifel is said to have 
indicated a formula for writing down the coefficients of the
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various terms in the expansion of (1 + aτ)n if those in the expan
sion of (1 +Λi)n~1 were known.

In 1553 Stif el brought out an edition of RudolffsZhe Coss, in 
which he introduced an improvement in the algebraic notation 
then current. The symbols at that time ordinarily used for the 
unknown quantity and its powers were letters which stood for 
abbreviations of the words. Among those frequently adopted 
were 7? or Rj for radix or res (x), Z or C for zensus or census 
(x2), C or K for cubus (xs), <fcc. Thus x2 + 5x - 4 would have 
been written

1 Z p. 5 R m. 4 ;

where p stands for plus and nι for minus. Other letters and 
symbols were also employed : thus Xylander (1575) would have 
denoted the above expression by

1Q + 5A-4;

a notation similar to this was sometimes used by Vieta and even 
by Fermat. The advance made by Stifel was that he introduced 
the symbols 1√1, 1AA, 1AAA, for the unknown quantity, its 
square, and its cube, which shewed at a glance the relation 
between them.

Tartaglia. Niccolo Fontana, generally known as Nicholas 
Tartaglia, that is, Nicholas the stammerer, was born at Brescia 
in 1500, and died at Venice on December 14, 1557. After the 
capture of the town by the French in 1512, most of the in
habitants took refuge in the cathedral, and were there massacred 
by the soldiers. His father, who was a postal messenger at 
Brescia, was amongst the killed. The boy himself had his skull 
split through in three places, while his jaws and his palate were 
cut open; he was left for dead, but his mother got into the 
cathedral, and finding him still alive managed to carry him off. 
Deprived of all resources she recollected that dogs when wounded 
always licked the injured place, and to that remedy he attributed 
his ultimate recovery, but the injury to his palate produced an 
impediment in his speech, from which he received his nickname. 
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His mother managed to get sufficient money to pay for his 
attendance at school for fifteen days, and he took advantage 
of it to steal a copy-book from which he subsequently taught 
himself how to read and write; but so poor were they that he 
tells us he could not afford to buy paper, and was obliged 
to make use of the tombstones as slates on which to work his 
exercises.

He commenced his public life by lecturing at Verona, but he 
was appointed at some time before 1535 to a chair of mathe
matics at Venice, where he was living, when he became famous 
through his acceptance of a challenge from a certain Antonio del 
Fiore (or Florido). Fiore had learnt from his master, one 
Scipione Ferro (who died at Bologna in 1526), an empirical 
solution of a cubic equation of the form x3 + 7x =-r. This 
solution was previously unknown in Europe, and it is possible 
that Ferro had found the result in an Arab work. Tartaglia, in 
answer to a request from Colla in 1530, stated that he could 
effect the solution of a numerical equation of the form ,r3 +ρx~ — r. 
Fiore, believing that Tartaglia was an impostor, challenged him 
to a contest. According to this challenge each of them was to 
deposit a certain stake with a notary, and whoever could solve 
the most problems out of a collection of thirty propounded by 
the other was to get the stakes, thirty days being allowed for 
the solution of the questions proposed. Tartaglia was aware 
that his adversary was acquainted with the solution of a cubic 
equation of some particular form, and suspecting that the 
questions proposed to him would all depend on the solution of 
such cubic equations, set himself the problem to find a general 
solution, and certainly discovered how to obtain a solution of 
some if not all cubic equations. His solution is believed to have 
depended on a geometrical construction,1 but led to the formula 
which is often, but unjustly, described as Cardan’s.

When the contest took place, all the questions proposed to 
Tartaglia were, as he had suspected, reducible to the solution 
of a cubic equation, and he succeeded within two hours in 

1 See below, p. 224.
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bringing them to particular cases of the equation a∙3 -∖-qx = r, of 
λvhich he knew the solution. His opponent failed to solve any 
of the problems proposed to him, most of which were, as a 
matter of fact, reducible to numerical equations of the form 
xi + px2 = r. Tartaglia was therefore the conqueror; he subse
quently composed some verses commemorative of his victory.

The chief works of Tartaglia are as follows : (i) His Nova 
scienza, published in 1537 : in this he investigated the fall of 
bodies under gravity ; and he determined the range of a pro
jectile, stating that it was a maximum when the angle of 
projection was 45°, but this seems to have been a lucky guess, 
(ii) His Inventioni, published in 154G, and containing, inter 
alia, his solution of cubic equations. (iii) His Trattato de 
numeri e m,isuri, consisting of an arithmetic, published in 1556, 
and a treatise on numbers, published in 1560; in this he shewed 
how the coefficients of x in the expansion of (1 +x)n could be 
calculated, by the use of an arithmetical triangle,1 from those 
in the expansion of (1 + x)n~1 for the cases when n is equal to 
2, 3, 4, 5, or 6. His works were collected into a single edition 
and republished at Venice in 1606.

The treatise on arithmetic and numbers is one of the chief 
authorities for our knowledge of the early Italian algorism. It 
is verbose, but gives a clear account of the arithmetical methods 
then in use, and has numerous historical notes which, as far as 
we can judge, are reliable, and are ultimately the authorities for 
many of the statements in the last chapter. It contains an 
immense number of questions on every kind of problem which 
would be likely to occur in mercantile arithmetic, and there 
are several attempts to frame algebraical formulae suitable for 
particular problems.

These problems give incidentally a good deal of information 
as to the ordinary life and commercial customs of the time. 
Thus we find that the interest demanded on first-class security 
in Venice ranged from 5 to 12 per cent, a year; while the 
interest on commercial transactions ranged from 20 per cent.

1 See below, pp. 284, 285.
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a year upwards. Tartaglia illustrates the evil effects of the 
law forbidding usury by the manner in which it was evaded 
in farming. Farmers who were in debt were forced by their 
creditors to sell all their crops immediately after the harvest; 
the market being thus glutted, the price obtained was very low7, 
and the money-lenders purchased the corn in open market at an 
extremely cheap rate. The farmers then had to borrow their 
seed-corn on condition that they replaced an equal quantity, or 
paid the then price of it, in the month of May, when corn was 
dearest. Again, Tartaglia, who had been asked by the magis
trates at Verona to frame for them a sliding scale by which the 
price of bread would be fixed by that of corn, enters into a 
discussion on the principles which it was then supposed should 
regulate it. In another place he gives the rules at that time 
current for preparing medicines.

Pacioli had given in his arithmetic some problems of an 
amusing character, and Tartaglia imitated him by inserting a 
large collection of mathematical puzzles. He half apologizes 
for introducing them by saying that it was not uncommon at 
dessert to propose arithmetical questions to the company by way 
of amusement, and he therefore adds some suitable problems. 
He gives several questions on how to guess a number thought 
of by one of the company, or the relationships caused by the 
marriage of relatives, or difficulties arising from inconsistent 
bequests. Other puzzles are similar to the following. “ Three 
beautiful ladies have for husbands three men, who are young, 
handsome, and gallant, but also jealous. The party are travel
ling, and find on the bank of a river, over which they have to 
pass, a small boat which can hold no more than two persons. 
How can they pass, it being agreed that, in order to avoid 
scandal, no woman shall be left in the society of a man unless 
her husband is present? ” “A ship, carrying as passengers 
fifteen Turks and fifteen Christians, encounters a storm; and 
the pilot declares that in order to save the ship and crew one- 
half of the passengers must be thrown into the sea. To choose 
the victims, the passengers are placed in a circle, and it is agreed
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that every ninth man shall be cast overboard, reckoning from a 
certain point. In what manner must they be arranged, so that 
the lot may fall exclusively upon the Turks ? ” “ Three men
robbed a gentleman of a vase containing 24 ounces of balsam. 
Whilst running away they met in a wood with a glass-seller 
of whom in a great hurry they purchased three vessels. On 
reaching a place of safety they wish to divide the booty, but 
they find that their vessels contain 5, 11, and 13 ounces 
respectively. How can they divide the balsam into equal 
portions ? ”

These problems—some of which are of oriental origin—form 
the basis of the collections of mathematical recreations by Bachet 
de Meziriac, Ozanam, and Montucla.1

1 Solutions of these and other similar problems are given in my Mathe
matical Recreations, chaps, i, ii. On Bachet, see below, p. 305. Jacques 
0zanam, born at Bouligneux in 1640, and died in 1717, left numerous works 
of which one, worth mentioning here, is his Recreations mathematiques et 
physiques, two volumes, Paris, 1696. Jean Etienne Montucla, born at Lyons 
in 1725, and died in Paris in 1799, edited and revised Ozanam’s mathe
matical recreations. His history of attempts to square the circle, 1754, 
and history of mathematics to the end of the seventeenth century, in two 
volumes, 1758, are interesting and valuable works.

2 There is an admirable account of Cardan’s life in the Nouvelle biographic 
yenerale, by V. Sardou. Cardan left an autobiography of which an analysis 
by H. Morley was published in two volumes in London in 1854. All 
Cardan’s printed works were collected by Sponius, and published in ten 
volumes, Lyons, 1663 ; the works on arithmetic and geometry are contained 
in the fourth volume. It is said that there are in the Vatican several 
manuscript note-books of his which have not been yet edited.

Cardan.1 2 The life of Tartaglia was embittered by a quarrel 
with his contemporary Cardan, who published Tartaglia’s solu
tion of a cubic equation which he had obtained under a pledge 
of secrecy. Girolamo Cardan was born at Pavia on September 
24, 1501, and died at Rome on September 21, 1576. His 
career is an account of the most extraordinary and inconsistent 
acts. A gambler, if not a murderer, he was also an ardent 
student of science, solving problems which had long baffled all 
investigation ; at one time of his life he was devoted to intrigues 
which were a scandal even in the sixteenth century, at another 
he did nothing but rave on astrology, and yet at another he 
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declared that philosophy was the only subject worthy of man’s 
attention. His was the genius that was closely allied to 
madness.

He was the illegitimate son of a lawyer of Milan, and was 
educated at the universities of Pavia and Padua. After taking 
his degree he commenced life as a doctor, and practised his 
profession at Sacco and Milan from 1524 to 1550 ; it was during 
this period that he studied mathematics and published his chief 
works. After spending a year or so in France, Scotland, and 
England, he returned to Milan as professor of science, and shortly 
afterwards was elected to a chair at Pavia. Here he divided his 
time between debauchery, astrology, and mechanics. His two 
sons were as wicked and passionate as himself : the elder was 
in 1560 executed for poisoning his wife, and about the same 
time Cardan in a fit of rage cut off the ears of the younger who 
had committed some offence; for this scandalous outrage he 
suffered no punishment, as the Pope Gregory XIII. granted him 
protection. In 1562 Cardan moved to Bologna, but the scandals 
connected with his name were so great that the university took 
steps to prevent his lecturing, and only gave way under pressure 
from Rome. In 1570 he was imprisoned for heresy on account 
of his having published the horoscope of Christ, and when 
released he found himself so generally detested that he deter
mined to resign his chair. At any rate he left Bologna in 
1571, and shortly afterwards moved to Rome. Cardan was 
the most distinguished astrologer of his time, and when he 
settled at Rome he received a pension in order to secure his 
services as astrologer to the papal court. This proved fatal to 
him for, having foretold that he should die on a particular 
day, he felt obliged to commit suicide in order to keep up his 
reputation—so at least the story runs.

The chief mathematical work of Cardan is the Ars Magna 
published at Nuremberg in 1545. Cardan was much interested 
in the contest between Tartaglia and Fiore, and as he had 
already begun writing this book he asked Tartaglia to com
municate his method of solving a cubic equation. Tartaglia

www.rcin.org.pl



ch. xπ] CARDAN 223

refused, whereupon Cardan abused him in the most violent 
terms, but shortly afterwards wrote saying that a certain 
Italian nobleman had heard of Tartaglia’s fame and was most 
anxious to meet him, and begged him to come to Milan at 
once. Tartaglia came, and though he found no nobleman 
awaiting him at the end of his journey, he yielded to Cardan’s 
importunity, and gave him the rule, Cardan on his side taking 
a solemn oath that he would never reveal it. Cardan asserts 
that he was given merely the result, and that he obtained 
the proof himself, but this is doubtful. He seems to have 
at once taught the method, and one of his pupils Ferrari 
reduced the equation of the fourth degree to a cubic and so 
solved it.

When the Ars Magna was published in 1545 the breach of 
faith was made manifest.1 Tartaglia not unnaturally was very 
angry, and after an acrimonious controversy he sent a challenge 
to Cardan to take part in a mathematical duel. The pre
liminaries were settled, and the place of meeting was to be a 
certain church in Milan, but when the day arrived Cardan 
failed to appear, and sent Ferrari in his stead. Both sides 
claimed the victory, though I gather that Tartaglia was the 
more successful; at any rate his opponents broke up the 
meeting, and he deemed himself fortunate in escaping with his 
life. Not only did Cardan succeed in his fraud, but modern 
writers have often attributed the solution to him, so that 
Tartaglia has not even that posthumous reputation which at 
least is his due.

1 The history of the subject and of the doings of Fiore, Tartaglia, and 
Cardan are given in an Appendix to the 2nd edition of the French translation 
of my Mathematical Recreations, Paris, 1908, vol. ii, p. 322 et seq.

The Ars Magna is a great advance on any algebra pre
viously published. Hitherto algebraists had confined their 
attention to those roots of equations which were positive. 
Cardan discussed negative and even complex roots, and 
proved that the latter would always occur in pairs, though he 
declined to commit himself to any explanation as to the 
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meaning of these “ sophistic ” quantities which he said were 
ingenious though useless. Most of his analysis of cubic equa
tions seems to have been original; he shewed that if the three 
roots were real, Tartaglia’s solution gave them in a form 
which involved imaginary quantities. Except for the somewhat 
similar researches of Bombelli a few years later, the theory 
of imaginary quantities received little further attention from 
mathematicians until John Bernoulli and Euler took up the 
matter after the lapse of nearly two centuries. Gauss first put 
the subject on a systematic and scientific basis, introduced the 
notation of complex variables, and used the symbol i, which had 
been introduced by Euler in 1777, to denote the square root of 
( - 1): the modern theory is chiefly based on his researches.

Cardan established the relations connecting the roots with 
the coefficients of an equation. He was also aware of the 
principle that underlies Descartes’s “rule of signs,” but as he 
followed the custom, then general, of writing his equations as 
the equality of two expressions in each of which all the terms 
were positive he was unable to express the rule concisely. He 
gave a method of approximating to the root of a numerical 
equation, founded on the fact that, if a function have opposite 
signs when two numbers are substituted in it, the equation 
obtained by equating the function to zero will have a root 
between these two numbers.

Cardan’s solution of a quadratic equation is geometrical 
and substantially the same as that given by Alkarismi. His 
solution of a cubic equation is also geometrical, and may be 
illustrated by the following case which he gives in chapter xι. 
To solve the equation x2 + 6« = 20 (or any equation of the form 
xi + qx = r), take two cubes such that the rectangle under their 
respective edges is 2 (or ⅜<∕) and the difference of their 
volumes is 20 (or r). Then x will be equal to the difference 
between the edges of the cubes. To verify this he first gives a 
geometrical lemma to shew that, if from a line ΛC, a portion 
CB be cut off, then the cube on AB will be less than the 
difference between the cubes on √1C, and BC by three times
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the right parallelopiped whose edges are respectively equal to 
AC, BC, and AB—this statement is equivalent to the alge
braical identity (α - 6)3 = α3 - δ3 — 3αδ(α - 6) — and the fact 
that x satisfies the equation is then obvious. To obtain the 
lengths of the edges of the two cubes he has only to solve 
a quadratic equation for which the geometrical solution pre
viously given sufficed.

like all previous mathematicians he gives separate proofs 
of his rule for the different forms of equations which can fall 
under it. Thus he proves the rule independently for equa
tions of the form x3 + px = q, x3 =px + q, x3 + px + q = 0, and 
x3+q=px. It will be noticed that with geometrical proofs 
this was the natural course, but it does not appear that he was 
aware that the resulting formulae were general. The equations 
he considers are numerical.

Shortly after Cardan came a number of mathematicians 
who did good work in developing the subject, but who are 
hardy of sufficient importance to require detailed mention here. 
Of lhese the most celebrated are perhaps Ferrari and Rheticus.

Terrari. Ludovico Ferraro, usually known as Ferrari, 
whose name I have already mentioned in connection with the 
solmion of a biquadratic equation, was born at Bologna on 
Feb 2, 1522, and died on Oct. 5, 1565. His parents were 
pool and he was taken into Cardan’s service as an errand boy, 
but was allowed to attend his master’s lectures, and sub
sequently became his most celebrated pupil. He is described as 
“a ueat rosy little fellow, with a bland voice, a cheerful face, 
and an agreeable short nose, fond of pleasure, of great natural 
powers,” but “with the temper of a fiend.” His manners and 
nuπerous accomplishments procured him a place in the service 
of tie Cardinal Ferrando Gonzago, where he managed to make 
a fo,tune. His dissipations told on his health, and he retired 
in 1)65 to Bologna where he began to lecture on mathematics. 
He vas poisoned the same year either by his sister, who seems 
to hive been the only person for whom he had any affection, 
or bz her paramour.

Q
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Such work as Ferrari produced is incorporated in Cardan’s 
Ars Magna or Bombelli’s Algebra, but nothing can be defi
nitely assigned to him except the solution of a biquadratic 
equation. Colla had proposed the solution of the equation 
a?4 + 6x2 + 36 = 60a? as a challenge to mathematicians : this par
ticular equation had probably been found in some Arabic 
work. Nothing is known about the history of this problem 
except that Ferrari succeeded where Tartaglia and Cardan 
had failed.

Rheticus. Georg Joachim Rheticus, born at Feldkirch on 
Feb. 15, 1514, and died at Kaschau on Dec. 4, 1576, was 
professor at Wittenberg, and subsequently studied under 
Copernicus whose works were produced under the direction of 
Rheticus. Rheticus constructed various trigonometrical tables, 
some of which were published by his pupil Otho in 1596. 
These were subsequently completed and extended by Vieta 
and Pitiscus, and are the basis of those still in use. Rheticus 
also found the values of sin 2θ and sin 30 in terms of sin θ 
and cos θ, and was aware that trigonometrical ratios might be 
defined by means of the ratios of the sides of a right-angled 
triangle without introducing a circle.

I add here the names of some other celebrated mathema
ticians of about the same time, though their works are now 
of little value to any save antiquarians. Franciscus 
Maurolycus, born at Messina of Greek parents in 1494, and 
died in 1575, translated numerous Latin and Greek mathe
matical works, and discussed the conics regarded as sections of 
a cone: his works were published at Venice in 1575. Jean 
Borrel, born in 1492 and died at Grenoble in 1572, wrote an 
algebra, founded on that of Stifel; and a history of the 
quadrature of the circle : his works were published at Lyons 
in 1559. Wilhelm Xylander, born at Augsburg on Dec. 26, 
1532, and died on Feb. 10, 1576, at Heidelberg, where since 
1558 he had been professor, brought out an edition of the 
works of Psellus in 1556 ; an edition of Euclid’s Elements in 
1562 ; an edition of the Arithmetic of Diophantus in 1575; 
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and some minor works which were collected and published in 
1577. Frederigo Commandino, born at Urbino in 1509, 
and died there on Sept. 3, 1575, published a translation of the 
works of Archimedes in 1558; selections from Apollonius and 
Pappus in 1566; an edition of Euclid’s Elements in 1572; and 
selections from Aristarchus, Ptolemy, Hero, and Pappus in 
1574: all being accompanied by commentaries. Jacques 
Peletier, born at le Mans on July 25, 1517, and died at Paris 
in July 1582, wrote text-books on algebra and geometry: 
most of the results of Stifel and Cardan are included in the 
former. Adrian Romanus, born at Louvain on Sept. 29, 
1561, and died on May 4, 1625, professor of mathematics and 
medicine at the university of Louvain, was the first to prove 
the usual formula for sin (A + B). And lastly, Bartholomaus 
Pitiscus, born on Aug. 24, 1561, and died at Heidelberg, 
where he was professor of mathematics, on July 2, 1613, 
published his Trigonometry in 1599 : this contains the expres
sions for sin (A ± B) and cos (4 ± B) in terms of the trigono
metrical ratios of A and B.

About this time also several text-books were produced 
which if they did not extend the boundaries of the subject 
systematized it. In particular I may mention those by Ramus 
and Bombelli.

Ramus.1 Peter Ramus was born at Cuth in Picardy in 
1515, and was killed at Paris in the massacre of St. Bartho
lomew on Aug. 24, 1572. He was educated at the university 
of Paris, and on taking his degree he astonished and charmed 
the university with the brilliant declamation he delivered on 
the thesis that everything Aristotle had taught was false. He 
lectured—for it will be remembered that in early days there 
were no professors—first at le Mans, and afterwards at Paris; 
at the latter he founded the first chair of mathematics. 
Besides some works on philosophy he wrote treatises on 
arithmetic, algebra, geometry (founded on Euclid), astronomy

1 See the monographs by Ch. Waddington, Paris, 1855 ; and by 
C. Desmaze, Paris, 1864.
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(founded on the works of Copernicus), and physics, which were 
long regarded on the Continent as the standard text-books in 
these subjects. They are collected in an edition of his works 
published at Bale in 1569.

Bombelli. Closely following the publication of Cardan’s 
great work, Rafaello Bombelli published in 1572 an algebra 
which is a systematic exposition of the knowledge then current 
on the subject. In the preface he traces the history of the 
subject, and alludes to Diophantus who, in spite of the notice 
of Regiomontanus, was still unknown in Europe. He discusses 
radicals, real and complex. He also treats the theory of 
equations, and shews that in the irreducible case of a cubic 
equation the roots are all real; and he remarks that the 
problem to trisect a given angle is the same as that of the 
solution of a cubic equation. Finally he gave a large collection 
of problems.

Bombelli’s work is noticeable for his use of symbols which 
indicate an approach to index notation. ∙ Following in the 
steps of Stifel, he introduced a symbol <d√ for the unknowτn 
quantity, for its square, ka> for its cube, and so on, and 
therefore wrote x2 + 5x — 4 as

Stevinus in 1586 employed ... in a similar way;
and suggested, though he did not use, a corresponding notation 
for fractional indices. He would have written the abovo 
expression as

But whether the symbols were more or less convenient they 
were still only abbreviations for words, and were subject to 
all the rules of syntax. They merely afforded a sort of short
hand by which the various steps and results could be expressed 
concisely. The next advance was the creation of symbolic 
algebra, and the chief credit of that is due to Vieta.
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The development of symbolic algebra.

We have now reached a point beyond which any con
siderable development of algebra, so long as it was strictly 
syncopated, could hardly proceed. It is evident that Stifel 
and Bombelli and other writers of the sixteenth century had 
introduced or were on the point of introducing some of the 
ideas of symbolic algebra. But so far as the credit of in
venting symbolic algebra can be put down to any one man 
we may perhaps assign it to Vieta, while we may say that 
Harriot and Descartes did more than any other writers to 
bring it into general use. It must be remembered, however, 
that it took time before all these innovations became generally 
known, and they were not familiar to mathematicians until the 
lapse of some years after they had been published.

Vieta.1 Franciscus Vieta (Franęois Vie te) was born in 
1540 at Fontenay near la Rochelle, and died in Paris in 1603. 
He was brought up as a lawyer and practised for some time 
at the Parisian bar; he then became a member of the pro
vincial parliament in Brittany; and finally in 1580, through 
the influence of the Duke de Rohan, he was made master of 
requests, an office attached to the parliament at Paris; the 
rest of his life was spent in the public service. He was a 
firm believer in the right divine of kings, and probably a 
zealous catholic. After 1580 he gave up most of his leisure 
to mathematics, though his great work, Zn Artem. Analyticam 
Isagoge, in which he explained how algebra could be applied 
to the solution of geometrical problems, was not published till 
1591.

His mathematical reputation was already considerable, 
when one day the ambassador from the Low Countries re
marked to Henry IV. that France did not possess any 
geometricians capable of solving a problem which had been 
propounded in 1593 by his countryman Adrian Romanus to

1 The best account of Vieta’s life and works is that by A. De Morgan in 
the English Cyclopaedia, London, vol. vi, 1858.
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all the mathematicians of the world, and which required the 
solution of an equation of the 45th degree. The king there
upon summoned Vieta, and informed him of the challenge. 
Vieta saw that the equation was satisfied by the chord of a 
circle (of unit radius) which subtends an angle 27γ∕45 at the 
centre, and in a few minutes he gave back to the king two 
solutions of the problem written in pencil. In explanation of 
this feat I should add that Vieta had previously discovered 
how to form the equation connecting sin nθ with sin θ and 
cos θ. Vieta in his turn asked Romanus to give a geometrical 
construction to describe a circle which should touch three 
given circles. This was the problem which Apollonius had 
treated in his De Tactionibus, a lost book which Vieta at 
a later time conjecturally restored. Romanus solved the 
problem by the use of conic sections, but failed to do it by 
Euclidean geometry. Vieta gave a Euclidean solution which 
so impressed Romanus that he travelled to Fontenay, where 
the French court was then settled, to make Vieta’s acquaint
ance—an acquaintanceship which rapidly ripened into warm 
friendship.

Henry was much struck with the ability shown by Vieta in 
this matter. The Spaniards had at that time a cipher contain
ing nearly 600 characters, which was periodically changed, and 
which they believed it was impossible to decipher. A despatch 
having been intercepted, the king gave it to Vieta, and asked 
him to try to read it and find the key to the system. Vieta 
succeeded, and for two years the French used it, greatly to 
their profit, in the war which was then raging. So convinced 
was Philip II. that the cipher could not be discovered, that when 
he found his plans known he complained to the Pope that the 
French were using sorcery against him, “contrary to the practice 
of the Christian faith.”

Vieta wrote numerous works on algebra and geometry. 
The most important are the In Artem Analyticam Isagoge, 
Tours, 1591 ; the Suppiementum Geometriae, and a collection 
of geometrical problems, Tours, 1593; and the De Numerosa
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Potestatum Resolutione, Paris, 1600. All of these were printed 
for private circulation only, but they were collected by F. van 
Schooten and published in one volume at Leyden in 1646. 
Vieta also wrote the De Aequationum Recognitions et Emenda- 
tione, which was published after his death in 1615 by Alexander 
Anderson.

The In Artem is the earliest work on symbolic algebra. It 
also introduced the use of letters for both known and unknown 
(positive) quantities, a notation for the powers of quantities, 
and enforced the advantage of working with homogeneous 
equations. To this an appendix called Logistice Speciosa was 
added on addition and multiplication of algebraical quantities, 
and on the powers of a binomial up to the sixth. Vieta 
implies that he knew how to form the coefficients of these six 
expansions by means of the arithmetical triangle as Tartaglia 
had previously done, but Pascal gave the general rule for 
forming it for any order, and Stifel had already indicated the 
method in the expansion of (1 + x)n if those in the expansion 
of (l+rr)n~1 were known; Newton was the first to give the 
general expression for the coefficient of x? in the expansion of 
(1 + x)n. Another appendix known as Zetetica on the solution 
of equations was subsequently added to the In Artem.

The In Artem is memorable for two improvements in 
algebraic notation which were introduced here, though it is 
probable that Vieta took the idea of both from other authors.

One of these improvements was that he denoted the known 
quantities by the consonants B, C, D, &c., and the unknown 
quantities by the vowels A, E, I, &c. Thus in any problem 
he was able to use a number of unknown quantities. In this 
particular point he seems to have been forestalled by Jordanus 
and by Stifel. The present custom of using the letters at the 
beginning of the alphabet α, ó, c, &c., to represent known 
quantities and those towards the end, x, y, z, &c., to represent 
the unknown quantities was introduced by Descartes in 1637.

The other improvement was this. Till this time it had been 
generally the custom to introduce new symbols to represent the
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square, cube, <fcc., of quantities which had already occurred in 
the equations ; thus, if R or N stood for x, Z or C or Q stood 
for x2, and C or K for x3, &c. So long as this was the case the 
chief advantage of algebra was that it afforded a concise state
ment of results every statement of which was reasoned out. 
But when Vieta used A to denote the unknown quantity a∙, he 
sometimes employed A quadratus, A cubus, ... to represent τ2, 
xz, ..., which at once showed the connection between the 
different powers; and later the successive powers of A were 
commonly denoted by the abbreviations Aq, Ac, Aqq, &.c. Thus 
Vieta would have written the equation

as B 3 in A quad. - D piano in A + A cubo aequatur Z solido. 
It will be observed that the dimensions of the constants (B, D, 
and Z) are chosen so as to make the equation homogeneous : 
this is characteristic of all his work. It will be also noticed 
that he does not use a sign for equality; and in fact the parti
cular sign = which we use to denote equality was employed by 
him to represent “ the difference between.” Vieta’s notation is 
not so convenient as that previously used by Stifel, Bombelli, 
and Stevinus, but it was more generally adopted.

These two steps were almost essential to any further progress 
in algebra. In both of them Vieta had been forestalled, but it 
was his good luck in emphasising their importance to be the 
means of making them generally known at a time when opinion 
was ripe for such an advance.

The De Aequationum Recognitione et Emendatione is mostly 
on the theory of equations. It was not published till twelve 
years after Vieta’s death, and it is possible that the editor made 
additions to it. Vieta here indicated how from a given equation 
another could be obtained whose roots were equal to those of 
the original increase by a given quantity, or multiplied by a 
given quantity; he used this method to get rid of the co
efficient of x in a quadratic equation and of the coefficient of 
x- in a cubic equation, and was thus enabled to give the general
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algebraic solution of both. It would seem that he knew that 
the first member of an algebraical equation <∕> (ar) = 0 could be 
resolved into linear factors, and that the coefficients of x could 
be expressed as functions of the roots; perhaps the discovery 
of both these theorems should be attributed to him.

His solution of a cubic equation is as follows. First reduce
the equation to the form Next let
and we get which is a quadratic in y3. Hence y
can be found, and therefore x can be determined.

His solution of a biquadratic is similar to that known as 
Ferrari’s, and essentially as follows. He first got rid of the 
terin involving a?3, thus reducing the equation to the form

He then took the forms involving x2 and x
to the right-hand side of the equation and added to
each side, so that the equation became

He then chose y so that the right-hand side of this equality is 
a perfect square. Substituting this value of y, he was able to 
take the square root of both sides, and thus obtain two quadratic 
equations for x, each of which can be solved.

The De Numerosa Potestatum Resolutions deals with nume
rical equations. In this a method for approximating to the 
values of positive roots is given, but it is prolix and of little 
use, though the principle (which is similar to that of Newton’s 
rule) is correct. Negative roots are uniformly rejected. This 
work is hardly worthy of Vieta’s reputation.

Vieta’s trigonometrical researches are included in various 
tracts which are collected in Van Schooten’s edition. Besides 
some trigonometrical tables he gave the general expression for 
the sine (or chord) of an angle in terms of the sine and cosine 
of its submultiples. Delambre considers this as the completion 
of the Arab system of trigonometry. We may take it then 
that from this time the results of elementary trigonometry were 
familiar to mathematicians. Vieta also elaborated the theory 
of right-angled spherical triangles.
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Among Vieta’s miscellaneous tracts will be found a proof 
that each of the famous geometrical problems of the trisection 
of an angle and the duplication of the cube depends on the 
solution of a cubic equation. There are also some papers 
connected with an angry controversy with Clavius, in 1594, 
on the subject of the reformed calendar, in which Vieta was 
not well advised.

Vieta’s works on geometry are good, but they contain 
nothing which requires mention here. He applied algebra 
and trigonometry to help him in investigating the properties 
of figures. He also, as I have already said, laid great stress 
on the desirability of always working with homogeneous 
equations, so that if a square or a cube were given it should 
be denoted by expressions like α2 or δ3, and not by terms like 
m or n which do not indicate the dimensions of the quantities 
they represent. He had a lively dispute with Scaliger on the 
latter publishing a solution of the quadrature of the circle, 
and Vieta succeeded in showing the mistake into which his 
rival had fallen. He gave a solution of his own which as far 
as it goes is correct, and stated that the area of a square is to 
that of the circumscribing circle as

This is one of the earliest attempts to find the value of π by 
means of an infinite series. He was well acquainted with the 
extant writings of the Greek geometricians, and introduced the 
curious custom, which during the seventeenth and eighteenth 
centuries became fashionable, of restoring lost classical works. 
He himself produced a conjectural restoration of the De Tac- 
tionibus of Apollonius.

Girard. Vieta’s results in trigonometry and the theory of 
equations were extended by Albert Girard, a Dutch mathe
matician, who was born in Lorraine in 1595, and died on 
December 9, 1632.

In 1626 Girard published at the Hague a short treatise on 
trigonometry, to which were appended tables of the values of
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the trigonometrical functions. This work contains the earliest . 
use of the abbreviations sin, tan, sec for sine, tangent, and 
secant. The supplemental triangles in spherical trigonometry 
are also discussed; their properties seem to have been discovered 
by Girard and Snell at about the same time. Girard also gave 
the expression for the area of a spherical triangle in terms of 
the spherical excess — this was discovered independently by 
Cavalieri. In 1627 Girard brought out an edition of Marolois’s 
Geometry with considerable additions.

Girard’s algebraical investigations are contained in his Inven
tion nouvelle en I’algebre, published at Amsterdam in 1629.1 This 
contains the earliest use of brackets; a geometrical interpre
tation of the negative sign ; the statement that the number of 
roots of an algebraical question is equal to its degree; the 
distinct recognition of imaginary roots; the theorem, known as 
Newton’s rule, for finding the sum of like powers of the roots 
of an equation; and (in the opinion of some writers) implies 
also a knowledge that the first member of an algebraical equa
tion φ(x) = 0 could be resolved into linear factors. Girard’s 
investigations were unknown to most of his contemporaries, 
and exercised no appreciable influence on the development of 
mathematics.

The invention of logarithms by Napier of Merchiston in 
1614, and their introduction into England by Briggs and others, 
have been already mentioned in chapter xι. A few words on 
these mathematicians may be here added.

Napier.2 John Napier was born at Merchiston in 1550, 
and died on April 4, 1617. He spent most of his time on the 
family estate near Edinburgh, and took an active part in the 
political and religious controversies of the day; the business of 
his life was to show that the Pope was Antichrist, but his 
favourite amusement was the study of mathematics and science.

1 It was re-issued by B. de Haan at Leyden in 1884.
2 See the Memoirs of Napier by Mark Napier, Edinburgh, 1834. An 

edition of all his works was issued at Edinburgh in 1839. A bibliography 
of his writings is appended to a translation of the Construct io by W. R. 
Macdonald, Edinburgh, 1889.
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As soon as the use of exponents became common in algebra 
the introduction of logarithms would naturally follow, but 
Napier reasoned out the result without the use of any symbolic 
notation to assist him, and the invention of logarithms was the 
result of the efforts of many years with a view to abbreviate 
the processes of multiplication and division. It is likely that 
Napier’s attention may have been partly directed to the 
desirability of facilitating computations by the stupendous 
arithmetical efforts of some of his contemporaries, who seem 
to have taken a keen pleasure in surpassing one another in 
the extent to which they carried multiplications and divisions. 
The trigonometrical tables by Rheticus, which were published 
in 1596 and 1613, were calculated in a most laborious way: 
Vieta himself delighted in arithmetical calculations which must 
have taken days of hard work, and of which the results often 
served no useful purpose : L. van Ceulen (1539-1610) practically 
devoted his life to finding a numerical approximation to the 
value of π∙, finally in 1610 obtaining it correct to 35 places of 
decimals : while, to cite one more instance, P. A. Cataldi (1548- 
1626), who is chiefly known for his invention in 1613 of the 
form of continued fractions, must have spent years in numerical 
calculations.

In regard to Napier’s other work I may again mention that 
in his Rabdologia, published in 1617, he introduced an im
proved form of rod by the use of which the product of two 
numbers can be found in a mechanical way, or the quotient of 
one number by another. He also invented two other rods 
called “ virgulae,” by which square and cube roots can be 
extracted. I should add that in spherical trigonometry he 
discovered certain formulae known as Napier’s analogies, and 
enunciated the “rule of circular parts” for the solution of 
right-angled spherical triangles.

Briggs. The name of Briggs is inseparably associated with 
the history of logarithms. Henry Briggs1 was born near

1 See pp. 27-30 of my History of the Study of Mathematics at Cambridge, 
Cambridge, 1889.
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Halifax in 1561 : he was educated at St. John’s College, 
Cambridge, took his degree in 1581, and obtained a fellowship 
in 1588: he was elected to the Gresham professorship of 
geometry in 1596, and in 1619 or 1620 became Savilian 
professor at Oxford, a chair which he held until his death on 
January 26, 1631. It may be interesting to add that the 
chair of geometry founded by Sir Thomas Gresham was the 
earliest professorship of mathematics established in Great 
Britain. Some twenty years earlier Sir Henry Savile had 
given at Oxford open lectures on Greek geometry and geo
metricians, and in 1619 he endowed the chairs of geometry 
and astronomy in that university which are still associated 
with his name. Both in London and at Oxford Briggs was 
the first occupant of the chair of geometry. He began his 
lectures at Oxford with the ninth proposition of the first book 
of Euclid—that being the furthest point to which Savile had 
been able to carry his audiences. At Cambridge the Lucasian 
chair was established in 1663, the earliest occupants being 
Barrow and Newton.

The almost immediate adoption throughout Europe of 
logarithms for astronomical and other calculations was mainly 
the work of Briggs, who undertook the tedious work of calculat
ing and preparing tables of logarithms. Amongst others he 
convinced Kepler of the advantages of Napier’s discovery, and 
the spread of the use of logarithms was rendered more rapid by 
the zeal and reputation of Kepler, who by his tables of 1625 
and 1629 brought them into vogue in Germany, while Cavalieri 
in 1624 and Edmund Wingate in 1626 did a similar service for 
Italian and French mathematicians respectively. Briggs also 
was instrumental in bringing into common use the method of 
long division now generally employed.

Harriot. Thomas Harriot, who was born at Oxford in 
1560, and died in London on July 2, 1621, did a great deal to 
extend and codify the theory of equations. The early part of 
his life was spent in America with Sir Walter Raleigh; while 
there he made the first survey of Virginia and North Carolina, 

www.rcin.org.pl



238 MATHEMATICS OF THE RENAISSANCE [ch. xιι 

the maps of these being subsequently presented to Queen 
Elizabeth. On his return to England he settled in London, 
and gave up most of his time to mathematical studies.

The majority of the propositions I have assigned to Vieta 
are to be found in Harriot’s writings, but it is uncertain 
whether they were discovered by him independently of Vieta 
or not. In any case it is probable that Vieta had not fully 
realised all that was contained in the propositions he had 
enunciated. Some of the consequences of these, with exten
sions and a systematic exposition of the theory of equations, 
were given by Harriot in his Artis Analytical Praxis, which 
was first printed in 1631. The Praxis is more analytical than 
any algebra that preceded it, and marks an advance both in 
symbolism and notation, though negative and imaginary roots 
are rejected. It was widely read, and proved one of the most 
powerful instruments in bringing analytical methods into general 
use. Harriot was the first to use the signs > and < to repre
sent greater than and less than. When he denoted the unknown 
quantity by a he represented α2 by aa, a3 by aaa, and so on. 
This is a distinct improvement on Vieta’s notation. The same 
symbolism was used by Wallis as late as 1685, but concurrently 
with the modern index notation which was introduced by 
Descartes. I need not allude to the other investigations of 
Harriot, as they are comparatively of small importance; extracts 
from some of them were published by S. P. Rigaud in 1833.

Oughtred. Among those who contributed to the general 
adoption in England of these various improvements and 
additions to algorism and algebra was JP⅛7Z7<m Oughtred,1 who 
was born at Eton on March 5, 1575, and died at his vicarage 
of Albury in Surrey on June 30, 1660: it is sometimes said 
that the cause of his death was the excitement and delight 
which he experienced “ at hearing the House of Commons [or 
Convention] had voted the King’s return ”; a recent critic adds

1 See pp. 30-31 of my History of the, Study of Mathematics at Cambridge, 
Cambridge, 1889. A complete edition of Oughtred’s works was published at 
Oxford in 1677.
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that it should be remembered “by way of excuse that he 
[Oughtred] was then eighty-six years old,” but perhaps the 
story is sufficiently discredited by the date of his death. 
Oughtred was educated at Eton and King’s College, Cambridge, 
of the latter of which colleges he was a fellow and for some time 
mathematical lecturer.

His Claris Mathematicae published in 1631 is a good system
atic text-book on arithmetic, and it contains practically all that 
was then known on the subject. In this work he introduced the 
symbol × for multiplication. He also introduced the symbol 
: : in proportion : previously to his time a proportion such as 
a : b = c : d was usually written as a-b-c—d; he denoted it 
by a . b :: c . d. Wallis says that some found fault with the 
book on account of the style, but that they only displayed their 
own incompetence, for Oughtred’s “words be always full but 
not redundant.” Pell makes a somewhat similar remark.

Oughtred also wrote a treatise on trigonometry published in 
1657, in which abbreviations for sine, cosine, <fcc., were employed. 
This was really an important advance, but the works of Girard 
and Oughtred, in which they were used, were neglected and soon 
forgotten, and it was not until Euler reintroduced contractions 
for the trigonometrical functions that they were generally adopted. 
In this work the colon (z.e. the symbol:) was used to denote a ratio.

We may say roughly that henceforth elementary arithmetic, 
algebra, and trigonometry were treated in a manner which is 
not substantially different from that now in use; and that the 
subsequent improvements introduced were additions to the 
subjects as then known, and not a rearrangement of them 
on new foundations.

The origin of the more common symbols in algebra.
It may be convenient if I collect here in one place the 

scattered remarks I have made on the introduction of the 
various symbols for the more common operations in algebra.1

1 See also two articles by C. Henry in the June and July numbers of the 
Revue Archtologique, 1879, vol. xxxvii, pp. 324-333, vol. xxxviii, pp. 1-10.
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The later Greeks, the Hindoos, and Jordanus indicated 
addition by mere juxtaposition. It will be observed that this 
is still the custom in arithmetic, where, for instance, 2∣ stands 
for 2 +1. The Italian algebraists, when they gave up expressing 
every operation in words at full length and introduced synco
pated algebra, usually denoted plus by its initial letter P or p, 
a line being sometimes drawn through the letter to show that it 
was a contraction, or a symbol of operation, and not a quantity. 
The practice, however, was not uniform; Pacioli, for example, 
sometimes denoted plus by p, and sometimes by e, and Tartaglia 
commonly denoted it by φ. The German and English algebraists, 
on the other hand, introduced the sign + almost as soon as they 
used algorism, but they spoke of it as signum additorum and 
employed it only to indicate excess; they also used it with a 
special meaning in solutions by the method of false assumption. 
Widman used it as an abbreviation for excess in 1489 : by 1630 
it was part of the recognised notation of algebra, and was 
used as a symbol of operation.

Subtraction was indicated by Diophantus by an inverted and 
truncated φ. The Hindoos denoted it by a dot. The Italian 
algebraists when they introduced syncopated algebra generally 
denoted minus by M or m, a line being sometimes drawn through 
the letter; but the practice was not uniform—Pacioli, for ex
ample, denoting it sometimes by m, and sometimes by de for 
demptus. The German and English algebraists introduced the 
present symbol which they described as signum subtractorum. 
It is most likely that the vertical bar in the symbol for plus 
was superimposed on the symbol for minus to distinguish the 
two. It may be noticed that Pacioli and Tartaglia found the 
sign - already used to denote a division, a ratio, or a proportion 
indifferently. The present sign for minus was in general use by 
about the year 1630, and was then employed as a symbol of 
operation.

Vieta, Schooten, and others among their contemporaries 
employed the sign = written between two quantities to denote 
the difference between them; thus a = b means with them what
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we denote by a ∞ b. On the other hand, Barrow wrote —: for 
the same purpose. I am not aware when or by whom the current 
symbol ∞ was first used with this signification.

Oughtred in 1631 used the sign × to indicate multiplication; 
Harriot in 1631 denoted the operation by a dot; Descartes in 
1637 indicated it by juxtaposition. I am not aware of any 
symbols for it which were in previous use. Leibnitz in 1686 
employed the sign ^ to denote multiplication.

Division was ordinarily denoted by the Arab way of 
writing the quantities in the form of a fraction by means of 
a line drawn between them in any of the forms a — b, a∕b, or 
α

Oughtred in 1631 employed a dot to denote either division 

or a ratio. Leibnitz in 1686 employed the sign to denote 
division. The colon (or symbol :), used to denote a ratio, 
occurs on the last two pages of Oughtred’s Canones Sinuum, 
published in 1657. I believe that the current symbol for 
division ÷ is only a combination of the - and the symbol : for 
a ratio; it was used by Johann Heinrich Rahn at Zurich in 
1659, and by John Pell in London in 1668. The symbol -÷÷- 
was used by Barrow and other writers of his time to indicate 
continued proportion.

The current symbol for equality was introduced by Record 
in 1557 ; Xylander in 1575 denoted it by two parallel vertical 
lines; but in general till the year 1600 the word was written at 
length; and from then until the time of Newton, say about 
1680, it was more frequently represented by co or by oo than 
by any other symbol. Either of these latter signs was used as 
a contraction for the first two letters of the word aequalis.

The symbol : : to denote proportion, or the equality of two 
ratios, was introduced by Oughtred in 1631, and was brought 
into common use by Wallis in 1686. There is no object in 
having a symbol to indicate the equality of two ratios which is 
different from that used to indicate the equality of other things, 
and it is better to replace it by the sign =.

The sign > for is greater than and the sign < for is less than
R
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were introduced by Harriot in 1631, but Oughtred simultaneously
invented the symbols and for the same purpose ; and
these latter were frequently used till the beginning of the 
eighteenth century, ex. gr. by Barrow.

The symbols for is not equal to, is not greater than, and
for is not less than, are, I believe, now rarely used outside

Great Britain; they were employed, if not invented, by Euler.
The symbols and were introduced by P. Bouguer in 1734.

The vinculum was introduced by Vieta in 1591 ; and brackets 
were first used by Girard in 1629.

The symbol to denote the square root was introduced by
Rudolff in 1526 ; a similar notation had been used by Bhaskara 
and by Chuquet.

The different methods of representing the power to which 
a magnitude was raised have been already briefly alluded to. 
The earliest known attempt to frame a symbolic notation was 
made by Bombelli in 1572, when he represented the unknown
quantity by its square by its cube by In
1586 Stevinus used in a similar way; and
suggested, though he did not use, a corresponding notation 
for fractional indices. In 1591 Vieta improved on this by 
denoting the different powers of A by A, A quad., A cub., tfcc., 
so that he could indicate the powers of different magnitudes; 
Harriot in 1631 further improved on Vieta’s notation by 
writing aa for α2, u<ια for α3, &c., and this remained in use for 
fifty years concurrently with the index notation. In 1634 
P. Herigonus, in his Cursus mathematicus, published in five 
volumes at Paris in 1634-1637, wrote a, a2, a3, ... for a, a2, 
α3 ....

The idea of using exponents to mark the power to which a 
quantity was raised was due to Descartes, and was introduced 
by him in 1637 ; but he used only positive integral indices 
α1, α2, α3, .... Wallis in 1659 explained the meaning of negative 
and fractional indices in expressions such as α-1, axl,∖ <fcc.; the 
latter conception having been foreshadowed by Oresmus and 
perhaps by Stevinus. Finally the idea of an index unrestricted
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in magnitude, such as the n in the expression αn, is, I believe, 
due to Newton, and was introduced by him in connection with 
the binomial theorem in the letters for Leibnitz written in 
1676.

The symbol ∞ for infinity was first employed by Wallis in 
1655 in his Arithmetica Infinitorum-, but does not occur again 
until 1713, when it is used in James Bernoulli’s Ars Con- 
jectandi. This sign was sometimes employed by the Romans 
to denote the number 1000, and it has been conjectured that 
this led to its being applied to represent any very large 
number.

There are but few special symbols in trigonometry; I may, 
however, add here the following note which contains all that I 
have been able to learn on the subject. The current sexagesimal 
division of angles is derived from the Babylonians through the 
Greeks. The Babylonian unit angle was the angle of an 
equilateral triangle; following their usual practice this was 
divided into sixty equal parts or degrees, a degree was sub
divided into sixty equal parts or minutes, and so on; it is said 
that 60 was assumed as the base of the system in order that the 
number of degrees corresponding to the circumference of a circle 
should be the same as the number of days in a year which it is 
alleged was taken (at any rate in practice) to be 360.

The word sine was used by Regiomontanus and was derived 
from the Arabs; the terms secant and tangent were introduced 
by Thomas Finck (born in Denmark in 1561 and died in 1646) 
in his Geometriae Rotundi, Bale, 1583; the word cosecant 
was (I believe) first used by Rheticus in his Opus Palatinum, 
1596 ; the terms cosine and cotangent were first employed by 
E. Gunter in his Canon Triangulorum, London, 1620. The 
abbreviations sin, tan, sec were used in 1626 by Girard, and 
those of cos and cot by Oughtred in 1657 ; but these contractions 
did not come into general use till Euler reintroduced them in 
1748. The idea of trigonometrical functions originated with 
John Bernoulli, and this view of the subject was elaborated in 
1748 by Euler in his Introductio in Analysin Infinitorum.
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CHAPTER XΠL

THE CLOSE OF THE RENAISSANCE.1

ciRC. 1586-1637.

The closing years of the renaissance were marked by a revival 
of interest in nearly all branches of mathematics and science. 
As far as pure mathematics is concerned we have already seen 
that during the last half of the sixteenth century there had been 
a great advance in algebra, theory of equations, and trigono
metry ; and we shall shortly see (in the second section of this 
chapter) that in the early part of the seventeenth century 
some new processes in geometry were invented. If, however, 
we turn to applied mathematics it is impossible not to be 
struck by the fact that even as late as the middle or end of the 
sixteenth century no marked progress in the theory had been 
made from the time of Archimedes. Statics (of solids) and 
hydrostatics remained in much the state in which he had left 
them, while dynamics as a science did not exist. It was 
Stevinus who gave the first impulse to the renewed study of 
statics, and Galileo who laid the foundation of dynamics; and 
to their works the first section of this chapter is devoted.

The development of mechanics and experimental methods.

Stevinus.2 Simon Stevinus was born at Bruges in 1548,
1 See footnote to chapter xii.
2 An analysis of his works is given in the Histoiτe des sciences mathe-
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and died at the Hague in 1620. We know very little of his life 
save that he was originally a merchant’s clerk at Antwerp, and at 
a later period of his life was the friend of Prince Maurice of 
Orange, by whom he was made quartermaster-general of the 
Dutch army.

To his contemporaries he was best known for his works on 
fortifications and military engineering, and the principles he 
laid down are said to be in accordance with those which are now 
usually accepted. To the general populace he was also well 
known on account of his invention of a carriage which was 
propelled by sails; this ran on the sea-shore, carried twenty
eight people, and easily outstripped horses galloping by the 
side; his model of it was destroyed in 1802 by the French 
when they invaded Holland. It was chiefly owing to the 
influence of Stevinus that the Dutch and French began a 
proper system of book-keeping in the national accounts.

I have already alluded to the introduction in his Arithmetic, 
published in 1585, of exponents to mark the power to which 
quantities were raised ; for instance, he wrote 3a:2 - 5« + 1 
as 3 0 - 5 Q + 1 ®. His notation for decimal fractions was 
of a similar character. He further suggested the use of 
fractional (but not negative) exponents. In the same book he 
likewise suggested a decimal system of weights and measures.

He also published a geometry which is ingenious though it 
does not contain many results which were not previously 
known; in it some theorems on perspective are enunciated.

It is, however, on his Statics and Hydrostatics, published (in 
Flemish) at Leyden in 1586, that his fame rests. In this 
work he enunciates the triangle of forces—a theorem which 
some think was first propounded by Leonardo da Vinci 
Stevinus regards this as the fundamental proposition of the 
matiques et physiques chez les Beiges, by L. A. J. Quetelet, Brussels, 1866, 
pp. 144-168 ; see also Notice historique sur la vie et les ouvrages de Stevinus, 
by J. V. Gothals, Brussels, 1841 ; and Les travaux de Stevinus, by 
M. Steichen, Brussels, 1846. The works of Stevinus were collected by 
Snell, translated into Latin, and published at Leyden in 1608 under the title 
Hypomnemata Mathematica.
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subject. Previous to the publication of his work the science of 
statics had rested on the theory of the lever, but subsequently it 
became usual to commence by proving the possibility of repre
senting forces by straight lines, and thus reducing many 
theorems to geometrical propositions, and in particular to 
obtaining in this way a proof of the parallelogram (which is 
equivalent to the triangle) of forces. Stevinus is not clear in 
his arrangement of the various propositions or in their logical 
sequence, and the new treatment of the subject was not definitely 
established before the appearance in 1687 of Varignon’s work 
on mechanics. Stevinus also found the force which must be 
exerted along the line of greatest slope to support a given 
weight on an inclined plane—a problem the solution of which 
had been long in dispute. He further distinguishes between 
stable and unstable equilibrium. In hydrostatics he discusses 
the question of the pressure which a fluid can exercise, and 
explains the so-called hydrostatic paradox.

His method 1 of finding the resolved part of a force in a 
given direction, as illustrated by the case of a weight resting on 
an inclined plane, is a good specimen of his work and is worth 
quoting.

He takes a wedge ABC whose base AE is horizontal [and 
whose sides BA, BC are in the ratio of 2 to 1]. A thread 
connecting a number of small equal equidistant weights is placed 
over the wedge as indicated in the figure on the next page (which 
I reproduce from his demonstration) so that the number of these 
weights on BA is to the number on BC in the same proportion 
as BA is to BC. This is always possible if the dimensions of the 
wedge be properly chosen, and he places four weights resting on 
BA and two on BC; but we may replace these weights by a 
heavy uniform chain TSLVT without altering his argument. 
He says in effect, that experience shews that such a chain will 
remain at rest; if not, we could obtain perpetual motion. Thus 
the effect in the direction 7L4 of the weight of the part TS of 
the chain must balance the effect in the direction BC of the

1 Hypomnemata Mathematica, vol. iv, de Statica, prop. 19.
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weight of the part TV of the chain. Of course BC may be 
vertical, and if so the above statement is equivalent to saying 
that the effect in the direction BA of the weight of the chain on 
it is diminished in the proportion of BC to BA ; in other words,

if a weight TV rests on an inclined plane of inclination a the 
component of IV down the line of greatest slope is Br sin a.

Stevinus was somewhat dogmatic in his statements, and 
allowed no one to differ from his conclusions, “ and those,” says 
he, in one place, “ who cannot see this, may the Author of nature 
have pity upon their unfortunate eyes, for the fault is not 
in the thing, but in the sight which we are unable to give them.”

Galileo.1 Just as the modern treatment of statics originates 
with Stevinus, so the foundation of the science of dynamics is 
due to Galileo. Galileo Galilei was born at Pisa on February 
18, 1564, and died near Florence on January 8, 1642. His 
father, a poor descendant of an old and noble Florentine house, 
was himself a fair mathematician and a good musician. Galileo 
was educated at the monastery of Vallombrosa, where his 
literary ability and mechanical ingenuity attracted considerable

1 See the biography of Galileo, by J. J. Fahie, London, 1903. An 
edition of Galileo’s works was issued in 16 volumes by E. Alberi, Florence, 
1842-1856. A good many of his letters on various mathematical subjects 
have been since discovered, and a new and complete edition is in process of 
issue by the Italian Government, Florence ; vols. i to xix and a bibliography, 
1890-1907.
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attention. He was persuaded to become a novitiate of the order 
in 1579, but his father, who had other views, at once removed 
him, and sent him in 1581 to the university of Pisa to study 
medicine. It was there that he noticed that the great bronze 
lamp, hanging from the roof of the cathedral, performed its 
oscillations in equal times, and independently of whether the 
oscillations were large or small—a fact which he verified by 
counting his pulse. He had been hitherto kept in ignorance of 
mathematics, but one day, by chance hearing a lecture on 
geometry (by Ricci), he was so fascinated by the science that 
thenceforward he devoted his leisure to its study, and finally 
got leave to discontinue his medical studies. He left the 
university in 1585, and almost immediately commenced his 
original researches.

He published in 1586 an account of the hydrostatic balance, 
and in 1588 an essay on the centre of gravity in solids; these 
were not printed till later. The fame of these works secured for 
him in 1589 the appointment to the mathematical chair at Pisa 
—the stipend, as was then the case with most professorships, 
being very small. During the next three years he carried on, 
from the leaning tower, that series of experiments on falling 
bodies which established the first principles of dynamics. 
Unfortunately, the manner in which he promulgated his dis
coveries, and the ridicule he threw on those who opposed him, 
gave not unnatural offence, and in 1591 he was obliged to 
resign his position.

At this time he seems to have been much hampered by want 
of money. Influence was, however, exerted on his behalf with 
the Venetian senate, and he was appointed professor at Padua, a 
chair which he held for eighteen years, 1592-1610. His 
lectures there seem to have been chiefly on mechanics and 
hydrostatics, and the substance of them is contained in his 
treatise on mechanics, which was published in 1612. In these 
lectures he repeated his Pisan experiments, and demonstrated 
that falling bodies did not (as was then commonly believed) 
descend with velocities proportional, amongst other things, to
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their weights. He further shewed that, if it were assumed that 
they descended with a uniformly accelerated motion, it was 
possible to deduce the relations connecting velocity, space, and 
time which did actually exist. At a later date, by observing the 
times of descent of bodies sliding down inclined planes, he 
shewed that this hypothesis was true. He also proved that the 
path of a projectile is a parabola, and in doing so implicitly 
used the principles laid down in the first two laws of motion as 
enunciated by Newton. He gave an accurate definition of 
momentum which some λvriters have thought may be taken to 
imply a recognition of the truth of the third law of motion. 
The laws of motion are, however, nowhere enunciated in a pre
cise and definite form, and Galileo must be regarded rather as 
preparing the way for Newton than as being himself the creator 
of the science of dynamics.

In statics he laid down the principle that in machines what 
was gained in power was lost in speed, and in the same ratio. 
In the statics of solids he found the force which can support 
a given weight on an inclined plane; in hydrostatics he pro
pounded the more elementary theorems on pressure and on 
floating bodies ; while among hydrostatical instruments he used, 
and perhaps invented, the thermometer, though in a somewhat 
imperfect form.

It is, hoλvever, as an astronomer that most people regard 
Galileo, and though, strictly speaking, his astronomical researches 
lie outside the subject-matter of this book, it may be interest
ing to give the leading facts. It was in the spring of 1609 
that Galileo heard that a tube containing lenses had been made 
by an optician, Hans Lippershey, of Middleburg, which served 
to magnify objects seen through it. This gave him the clue, 
and he constructed a telescope of that kind which still bears his 
name, and of which an ordinary opera-glass is an example. 
Within a few months he had produced instruments which were 
capable of magnifying thirty-two diameters, and within a year 
he had made and published observations on the solar spots, the 
lunar mountains, Jupiter’s satellites, the phases of Venus, and 
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Saturn’s ring. The discovery of the microscope followed natu
rally from that of the telescope. Honours and emoluments were 
showered on him, and he was enabled in 1610 to give up his 
professorship and retire to Florence. In 1611 he paid a tem
porary visit to Rome, and exhibited in the gardens of the 
Quirinal the new worlds revealed by the telescope.

It would seem that Galileo had always believed in the 
Copernican system, but was afraid of promulgating it on 
account of the ridicule it excited. The existence of Jupiter’s 
satellites seemed, however, to make its truth almost certain, and 
he now boldly preached it. The orthodox party resented his 
action, and in February 1616 the Inquisition declared that to 
suppose the sun the centre of the solar system was false, and 
opposed to Holy Scripture. The edict of March 5, 1616, which 
carried this into effect, has never been repealed, though it has 
been long tacitly ignored. It is well known that towards the 
middle of the seventeenth century the Jesuits evaded it by 
treating the theory as an hypothesis from which, though false, 
certain results would follow.

In January 1632 Galileo published his dialogues on the 
system of the world, in which in clear and forcible language he 
expounded the Copernican theory. In these, apparently through 
jealousy of Kepler’s fame, he does not so much as mention 
Kepler’s laws (the first two of which had been published in 
1609, and the third in 1619); he rejects Kepler’s hypothesis 
that the tides are caused by the attraction of the moon, and 
tries to explain their existence (which he alleges is a confirma
tion of the Copernican hypothesis) by the statement that 
different parts of the earth rotate with different velocities. He 
was more successful in showing that mechanical principles 
would account for the fact that a stone thrown straight up 
falls again to the place from which it was thrown—a fact 
which previously had been one of the chief difficulties in the 
way of any theory which supposed the earth to be in 
motion.

The publication of this book was approved by the papal
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censor, but substantially was contrary to the edict of 1616. 
Galileo was summoned to Rome, forced to recant, do penance, 
and was released only on promise of obedience. The documents 
recently printed show that he was threatened with the torture, 
but probably there was no intention of carrying the threat into 
effect.

When released he again took up his work on mechanics, and 
by 1636 had finished a book which was published under the 
title Discorsi intorno a due nuove scienze at Leyden in 1638. 
In 1637 he lost his sight, but with the aid of pupils he con
tinued his experiments on mechanics and hydrostatics, and in 
particular on the possibility of using a pendulum to regulate a 
clock, and on the theory of impact.

An anecdote of this time has been preserved which, though 
probably not authentic, is sufficiently interesting to bear repeti
tion. According to one version of the story, Galileo was 
interviewed by some members of a Florentine guild who wanted 
their pumps altered so as to raise water to a height which was 
greater than thirty feet; and thereupon he remarked that it 
might be desirable to first find out wτhy the water rose at all. 
A bystander intervened and said there was no difficulty about 
that, because nature abhorred a vacuum. Yes, said Galileo, but 
apparently it is only a vacuum which is less than thirty feet. 
His favourite pupil Torricelli was present, and thus had his 
attention directed to the question, which he subsequently 
elucidated.

Galileo’s work may, I think, be fairly summed up by saying 
that his researches on mechanics are deserving of high praise, 
and that they are memorable for clearly enunciating the fact 
that science must be founded on laws obtained by experiment; 
his astronomical observations and his deductions therefrom were 
also excellent, and were expounded with a literary skill which 
leaves nothing to be desired; but though he produced some of 
the evidence which placed the Copernican theory on a satis
factory basis, he did not himself make any special advance in 
the theory of astronomy.
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Francis Bacon.1 The necessity of an experimental founda
tion for science was also advocated wτith considerable effect by 
Galileo’s contemporary Francis Bacon (Lord Verulam), who was 
born at London on Jan. 22, 1561, and died on April 9, 1626. 
He was educated at Trinity College, Cambridge. His career in 
politics and at the bar culminated in his becoming Lord Chan
cellor, with the title of Lord Verulam. The story of his subse
quent degradation for accepting bribes is well known.

His chief work is the Novum Organum, published in 1620, 
in which he lays down the principles which should guide those 
who are making experiments on which they propose to found 
a theory of any branch of physics or applied mathematics. He 
gave rules by which the results of induction could be tested, 
hasty generalisations avoided, and experiments used to check 
one another. The influence of this treatise in the eighteenth 
century was great, but it is probable that during the preceding 
century it was little read, and the remark repeated by several 
French writers that Bacon and Descartes are the creators of 
modern philosophy rests on a misapprehension of Bacon’s 
influence on his contemporaries; any detailed account of this 
book belongs, however, to the history of scientific ideas rather 
than to that of mathematics.

Before leaving the subject of applied mathematics I may 
add a few words on the writings of Guldinus, Wright, and 
Snell.

Guldinus. Habakkuk Guldinus, born at St. Gall on June 
12, 1577, and died at Gratz on Nov. 3, 1643, was of Jewish 
descent, but was brought up as a Protestant; he was converted 
to Roman Catholicism, and became a Jesuit, when he took the 
Christian name of Paul, and it was to him that the Jesuit 
colleges at Rome and Gratz owed their mathematical reputation. 
The two theorems known by the name of Pappus (to which I 
have alluded above) were published by Guldinus in the fourth

1 See his life by J. Speckling, London, 1872-74. The best edition of his 
works is that by Ellis, Speckling, and Heath, in 7 volumes, London, second 
edition, 1870.
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book of his De Centro Graυitatis, Vienna, 1635-1642. Not 
only were the rules in question taken without acknowledgment 
from Pappus, but (according to Montucla) the proof of them 
given by Guldinus was faulty, though he was successful in 
applying them to the determination of the volumes and surfaces 
of certain solids. The theorems were, however, previously 
unknown, and their enunciation excited considerable interest.

Wright.1 I may here also refer to Edward Wright, who is 
worthy of mention for having put the art of navigation on a 
scientific basis. Wright was born in Norfolk about 1560, and 
died in 1615. He was educated at Caius College, Cambridge, 
of which society he was subsequently a fellow. He seems to 
have been a good sailor, and he had a special talent for the con
struction of instruments. About 1600 he was elected lecturer 
on mathematics by the East India Company; he then settled in 
London, and shortly afterwards was appointed mathematical 
tutor to Henry, Prince of Wales, the son of James I. His 
mechanical ability may be illustrated by an orrery of his con
struction by which it was possible to predict eclipses; it was 
shewn in the Tower as a curiosity as late as 1675.

In the maps in use before the time of Gerard Mercator a 
degree, whether of latitude or longitude, had been represented 
in all cases by the same length, and the course to be pursued 
by a vessel was marked on the map by a straight line joining 
the ports of arrival and departure. Męrcator had seen that 
this led to considerable errors, and had realised that to make 
this method of tracing the course of a ship at all accurate the 
space assigned on the map to a degree of latitude ought gradu
ally to increase as the latitude increased. Using this principle, 
he had empirically constructed some charts, which were published 
about 1560 or 1570. Wright set himself the problem to deter
mine the theory on which such maps should be drawn, and 
succeeded in discovering the law of the scale of the maps, 
though his rule is strictly correct for small arcs only. The

1 See pp. 25-27 of my History of the Study of Mathematics at Cambridge, 
Cambridge, 1889.
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result was published in the second edition of Blundeville’s 
Exercises.

In 1599 Wright published his Certain Errors in Navigation 
Detected and Corrected, in which he explained the theory and 
inserted a table of meridional parts. The reasoning shews con
siderable geometrical power. In the course of the work he gives 
the declinations of thirty-two stars, explains the phenomena of 
the dip, parallax, and refraction, and adds a table of magnetic 
declinations; he assumes the earth to be stationary. In the 
following year he published some maps constructed on his 
principle. In these the northernmost point of Australia is 
shewn; the latitude of London is taken to be 51o 32'.

Snell. A contemporary of Guldinus and Wright was 
Willebrod Snell, whose name is still well known through his 
discovery in 1619 of the law of refraction in optics. Snell was 
born at Leyden in 1581, occupied a chair of mathematics at the 
university there, and died there on Oct. 30, 1626. He was one 
of those infant prodigies who occasionally appear, and at the 
age of twelve he is said to have been acquainted with the 
standard mathematical works. I will here only add that in 
geodesy he laid down the principles for determining the length 
of the arc of a meridian from the measurement of any base line, 
and in spherical trigonometry he discovered the properties of the 
polar or supplemental triangle.

Revival of interest in pure geometry.
The close of the sixteenth century was marked not only by 

the attempt to found a theory of dynamics based on laws derived 
from experiment, but also by a revived interest in geometry. 
This was largely due to the influence of Kepler.

Kepler.1 Johann Kepler, one of the founders of modern
1 See Johann Kepplers Leben und Wirken, by J. L. E. von Breitschwert, 

Stuttgart, 1831 ; and R. Wolf’s Geschichte der Astronomie, Munich, 1877. 
A complete edition of Kepler’s works was published by C. Frisch at Frankfort, 
in 8 volumes, 1858-71 ; and an analysis of the mathematical part of his chief 
work, the Harmonice Mundi, is given by Chasles in his Aperęu historique. 
See also Cantor, vol. ii, part xv.
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astronomy, was born of humble parents near Stuttgart on 
Dec. 27, 1571, and died at Ratisbon on Nov. 15, 1630. He 
was educated under Mastlin at Tubingen. In 1593 he was 
appointed professor at Griitz, where he made the acquaintance 
of a wealthy widow, whom he married, but found too late that 
he had purchased his freedom from pecuniary troubles at the 
expense of domestic happiness. In 1599 he accepted an ap
pointment as assistant to Tycho Brahe, and in 1601 succeeded 
his master as astronomer to the emperor Rudolph II. But his 
career was dogged by bad luck : first his stipend was not paid ; 
next his wife went mad and then died, and a second marriage in 
1611 did not prove fortunate ; while, to complete his discomfort, 
he was expelled from his chair, and narrowly escaped condemna
tion for heterodoxy. During this time he depended for his 
income on telling fortunes and casting horoscopes, for, as he 
says, “ nature which has conferred upon every animal the means 
of existence has designed astrology as an adjunct and ally to 
astronomy.” He seems, however, to have had no scruple in 
charging heavily for his services, and to the surprise of his con
temporaries was found at his death to possess a considerable 
hoard of money. He died while on a journey to try and 
recover for the benefit of his children some of the arrears of his 
stipend.

In describing Galileo’s work I alluded briefly to the three 
laws in astronomy that Kepler had discovered, and in connection 
with which his name will be always associated. I may further 
add that he suggested that the planets might be retained in 
their orbits by magnetic vortices, but this was little more than 
a crude conjecture. I have also already mentioned the prominent 
part he took in bringing logarithms into general use on the con
tinent. These are familiar facts ; but it is not known so generally 
that Kepler was also a geometrician and algebraist of consider
able power, and that he, Desargues, and perhaps Galileo, may 
be considered as forming a connecting liuk between the mathe
maticians of the renaissance and those of modern times.

Kepler’s work in geometry consists rather in certain general 
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principles enunciated, and illustrated by a few cases, than in any 
systematic exposition of the subject. In a short chapter on 
conics inserted in his Paraliρomena, published in 1604, he lays 
down what has been called the principle of continuity, and 
gives as an example the statement that a parabola is at once the 
limiting case of an ellipse and of a hyperbola; he illustrates the 
same doctrine by reference to the foci of conics (the word focus 
was introduced by him); and he also explains that parallel lines 
should be regarded as meeting at infinity. He introduced the 
use of the eccentric angle in discussing properties of the ellipse.

In his Stereometria, which was published in 1615, he deter
mines the volumes of certa1’n vessels and the areas of certain 
surfaces, by means of infinitesimals instead of by the long and 
tedious method of exhaustions. These investigations as well 
as those of 1604 arose from a dispute with a wine merchant as 
to the proper way of gauging the contents of a cask. This 
use of infinitesimals was objected to by Guldinus and other 
writers as inaccurate, but though the methods of Kepler are 
not altogether free from objection he was substantially correct, 
and by applying the law of continuity to infinitesimals he pre
pared the way for Cavalieri’s method of indivisibles, and the 
infinitesimal calculus of Newton and Leibnitz.

Kepler’s work on astronomy lies outside the scope of this 
book. I will mention only that it was founded on the observa
tions of Tycho Brahe,1 whose assistant he was. His three laws 
of planetary motion were the result of many and laborious 
efforts to reduce the phenomena of the solar system to certain 
simple rules. The first two were published in 1609, and stated 
that the planets describe ellipses round the sun, the sun being 
in a focus; and that the line joining the sun to any planet 
sweeps over equal areas in equal times. The third was pub
lished in 1619, and stated that the squares of the periodic times 
of the planets are proportional to the cubes of the major axes of 
their orbits. The laws were deduced from observations on the

1 For an account of Tycho Brahe, born at Knudstrup in 1546 and died at 
Prague in 1601, see his life by J. L. E. Dreyer, Edinburgh, 1890.
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motions of Mars and the earth, and were extended by analogy 
to the other planets. I ought to add that he attempted to 
explain why these motions took place by a hypothesis which is 
mot very different from Descartes’s theory of vortices. He sug
gested that the tides were caused by the attraction of the moon. 
Kepler also devoted considerable time to the elucidation of the 
theories of vision and refraction in optics.

While the conceptions of the geometry of the Greeks were 
being extended by Kepler, a Frenchman, whose works until 
recently were almost unknown, was inventing a new method of 
investigating the subject—a method which is now known as 
projective geometry. This was the discovery of Desargues, 
whom I put (with some hesitation) at the close of this period, 
and not among the mathematicians of modern times.

Desargues.1 Gerard Desargues, born at Lyons in 1593, and 
died in 1662, was by profession an engineer and architect, but 
he gave some courses of gratuitous lectures in Paris from 1626 
to about 1630 which made a great impression upon his contem
poraries. Both Descartes and Pascal had a high opinion of his 
work and abilities, and both made considerable use of the 
theorems he had enunciated.

In 1636 Desargues issued a work on perspective; but most 
of his researches were embodied in his Brouillon proiect on 
conics, published in 1639, a copy of which was discovered 
by Chasles in 1845. I take the following summary of it from 
C. Taylor’s work on conics. Desargues commences with a 
statement of the doctrine of continuity as laid down by 
Kepler: thus the points at the opposite ends of a straight 
line are regarded as coincident, parallel lines are treated as 
meeting at a point at infinity, and parallel planes on a line at 
infinity, while a straight line may be considered as a circle whose 
centre is at infinity. The theory of involution of six points, 
with its special cases, is laid down, and the projective property 
of pencils in involution is established. The theory of polar lines

1 See (Euvres de Desargv.es, by M. Poudra, 2 vols., Paris, 1864 ; and a note 
in the Bibliotheca Mathematica, 1885, p. 90.

S 
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is expounded, and its analogue in space suggested. A tangent 
is defined as the limiting case of a secant, and an asymptote as 
a tangent at infinity. Desargues shows that the lines which join 
four points in a plane determine three pairs of lines in involu
tion on any transversal, and from any conic through the four 
points another pair of lines can be obtained which are in 
involution with any two of the former. He proves that the 
points of intersection of the diagonals and the two pairs of 
opposite sides of any quadrilateral inscribed in a conic are a 
conjugate triad with respect to the conic, and when one of the 
three points is at infinity its polar is a diameter; but he fails to 
explain the case in which the quadrilateral is a parallelogram, 
although he had formed the conception of a straight line which 
was wholly at infinity. The book, therefore, may be fairly said 
to contain the fundamental theorems on involution, homology, 
poles and polars, and perspective.

The influence exerted by the lectures of Desargues on 
Descartes, Pascal, and the French geometricians of the 
seventeenth century was considerable; but the subject of 
projective geometry soon fell into oblivion, chiefly because the 
analytical geometry of Descartes was so much more powerful as 
a method of proof or discovery.

The researches of Kepler and Desargues will serve to remind 
us that as the geometry of the Greeks was not capable of 
much further extension, mathematicians were now beginning 
to seek for new methods of investigation, and were extending 
the conceptions of geometry. The invention of analytical 
geometry and of the infinitesimal calculus temporarily diverted 
attention from pure geometry, but at the beginning of the 
last century there was a revival of interest in it, and since 
then it has been a favourite subject of study with many 
mathematicians.

Mathematical knowledge at the close of the renaissance.
Thus by the beginning of the seventeenth century we may 

say that the fundamental principles of arithmetic, algebra, 

www.rcin.org.pl



ch. xιπ] THE CLOSE OF THE RENAISSANCE 259 

theory of equations, and trigonometry had been laid down, and 
the outlines of the subjects as we know them had been traced. 
It must be, however, remembered that there were no good 
elementary text-books on these subjects; and a knowledge of 
them was therefore confined to those who could extract it from 
the ponderous treatises in which it lay buried. Though much of 
the modern algebraical and trigonometrical notation had been 
introduced, it was not familiar to mathematicians, nor was it 
even universally accepted; and it was not until the end of the 
seventeenth century that the language of these subjects was 
definitely fixed. Considering the absence of good text-books, 
I am inclined rather to admire the rapidity with which it came 
into universal use, than to cavil at the hesitation to trust to it 
alone which many writers showed.

If we turn to applied mathematics, we find, on the other 
hand, that the science of statics had made but little advance 
in the eighteen centuries that had elapsed since the time of 
Archimedes, λvhile the foundations of dynamics were laid by 
Galileo only at the close of the sixteenth century. In fact, as 
we shall see later, it was not until the time of Newton that the 
science of mechanics was placed on a satisfactory basis. The 
fundamental conceptions of mechanics are difficult, but the 
ignorance of the principles of the subject shown by the 
mathematicians of this time is greater than would have been 
anticipated from their knowledge of pure mathematics.

With this exception, we may say that the principles of 
analytical geometry and of the infinitesimal calculus were needed 
before there was likely to be much further progress. The 
former was employed by Descartes in 1637, the latter was 
invented by Newton some thirty or forty years later, and 
their introduction may be taken as marking the commencement 
of the period of modern mathematics.
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THIRD PERIOD.

∣≡oirεrn ^Mathematics.

The history of modern mathematics begins with the invention 
of analytical geometry and the infinitesimal calculus. The 
mathematics is far more complex than that produced in either of 
the preceding periods ; but, during the seventeenth and eighteenth 
centuries, it may be generally described as characterized by the 
development of analysis, and its application to the phenomena 
of nature.

I continue the chronological arrangement of the subject. 
Chapter xv contains the history of the forty years from 1635 
to 1675, and an account of the mathematical discoveries of 
Descartes, Cavalieri, Pascal, Wallis, Fermat, and Huygens. 
Chapter xvι is given up to a discussion of Newton’s researches. 
Chapter xvπ contains an account of the works of Leibnitz and 
his followers during the first half of the eighteenth century 
(including D’Alembert), and of the contemporary English school 
to the death of Maclaurin. The works of Euler, Lagrange, 
Laplace, and their contemporaries form the subject-matter of 
chapter xvm.

Lastly, in chapter xιx I have added some notes on a few of 
the mathematicians of recent times; but I exclude all detailed 
reference to living writers, and partly because of this, partly 
for other reasons there given, the account of contemporary 
mathematics does not profess to cover the subject.
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CHAPTER XIV.

THE HISTORY OF MODERN MATHEMATICS.

The division between this period and that treated in the 
last six chapters is by no means so well defined as that which 
separates the history of Greek mathematics from the mathe
matics of the middle ages. The methods of analysis used in 
the seventeenth century and the kind of problems attacked 
changed but gradually; and the mathematicians at the begin
ning of this period were in immediate relations with those at 
the end of that last considered. For this reason some writers 
have divided the history of mathematics into two parts only, 
treating the schoolmen as the lineal successors of the Greek 
mathematicians, and dating the creation of modern mathe
matics from the introduction of the Arab text-books into 
Europe. The division I have given is, I think, more con
venient, for the introduction of analytical geometry and of the 
infinitesimal calculus revolutionized the development of the sub
ject, and therefore it seems preferable to take their invention as 
marking the commencement of modern mathematics.

The time that has elapsed since these methods were in
vented has been a period of incessant intellectual activity in 
all departments of knowledge, and the progress made in mathe
matics has been immense. The greatly extended range of 
knowledge, the mass of materials to be mastered, the absence 
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of perspective, and even the echoes of old controversies, com
bine to increase the difficulties of an author. As, however, the 
leading facts are generally known, and the works published 
during this time are accessible to any student, I may deal more 
concisely with the lives and writings of modern mathematicians 
than with those of their predecessors, and confine myself more 
strictly than before to those who have materially affected the 
progress of the subject.

To give a sense of unity to a history of mathematics it is 
necessary to treat it chronologically, but it is possible to do 
this in two ways. We may discuss separately the development 
of different branches of mathematics during a certain period 
(not too long), and deal with the works of each mathematician 
under such heads as they may fall. Or we may describe in 
succession the lives and writings of the mathematicians of a 
certain period, and deal with the development of different sub
jects under the heads of those who studied them. Personally, 
I prefer the latter course; and not the least advantage of this, 
from my point of view, is that it adds a human interest to the 
narrative. No doubt as the subject becomes more complex 
this course becomes more difficult, and it may be that when the 
history of mathematics in the nineteenth century is written it 
will be necessary to deal separately with the separate branches 
of the subject, but, as far as I can, I continue to present the 
history biographically.

Roughly speaking, we may say that five distinct stages in 
the history of modern mathematics can be discerned.

First of all, there is the invention of analytical geometry by 
Descartes in 1637 ; and almost at the same time the intro
duction of the method of indivisibles, by the use of which 
areas, volumes, and the positions of centres of mass can be 
determined by summation in a manner analogous to that effected 
nowadays by the aid of the integral calculus. The method of 
indivisibles was soon superseded by the integral calculus. Ana
lytical geometry, however, maintains its position as part of the 
necessary training of every mathematician, and for all purposes 
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of research is incomparably more potent than the geometry of 
the ancients. The latter is still, no doubt, an admirable intel
lectual training, and it frequently affords an elegant demonstra
tion of some proposition the truth of which is already known, 
but it requires a special procedure for every particular problem 
attacked. The former, on the other hand, lays down a few simple 
rules by which any property can be at once proved or disproved.

In the second place, we have the invention, some thirty 
years later, of the fluxional or differential calculus. Wherever 
a quantity changes according to some continuous law—and most 
things in nature do so change—the differential calculus enables 
us to measure its rate of increase or decrease; and, from its rate 
of increase or decrease, the integral calculus enables us to find 
the original quantity. Formerly every separate function of x 
such as (1 + x)n, log (l+x), sin x, tan-1 a?, &c., could be ex
panded in ascending powers of x only by means of such special 
procedure as was suitable for that particular problem; but, by 
the aid of the calculus, the expansion of any function of x in 
ascending powers of x is in general reducible to one rule which 
covers all cases alike. So, again, the theory of maxima and 
minima, the determination of the lengths of curves and the 
areas enclosed by them, the determination of surfaces, of volumes, 
and of centres of mass, and many other problems, are each re
ducible to a single rule. The theories of differential equations, 
of the calculus of variations, of finite differences, &c., are the 
developments of the ideas of the calculus.

These two subjects—analytical geometry and the calculus— 
became the chief instruments of further progress in mathematics. . 
In both of them a sort of machine was constructed : to solve a 
problem, it wτas only necessary to put in the particular function 
dealt with, or the equation of the particular curve or surface 
considered, and on performing certain simple operations the 
result came out. The validity of the process was proved once 
for all, and it was no longer requisite to invent some special 
method for every separate function, curve, or surface.

In the third place, Huygens, following Galileo, laid the 
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foundation of a satisfactory treatment of dynamics, and Newton 
reduced it to an exact science. The latter mathematician pro
ceeded to apply the new analytical methods not only to numerous 
problems in the mechanics of solids and fluids on the earth, 
but to the solar system; the whole of mechanics terrestrial and 
celestial was thus brought within the domain of mathematics. 
There is no doubt that Newton used the calculus to obtain many 
of his results, but he seems to have thought that, if his demon
strations were established by the aid of a new science which was 
at that time generally unknown, his critics (who would not 
understand the fluxional calculus) would fail to realise the truth 
and importance of his discoveries. He therefore determined to 
give geometrical proofs of all his results. He accordingly cast 
the Principia into a geometrical form, and thus presented it to 
the world in a language which all men could then understand. 
The theory of mechanics was extended, systematized, and put 
in its modern form by Lagrange and Laplace towards the end 
of the eighteenth century.

In the fourth place, we may say that during this period 
the chief branches of physics have been brought within the 
scope of mathematics. This extension of the domain of mathe
matics was commenced by Huygens and Newton when they 
propounded their theories of light; but it was not until the 
beginning of the last century that sufficiently accurate observa
tions were made in most physical subjects to enable mathematical 
reasoning to be applied to them.

Numerous and far-reaching conclusions have been obtained 
in physics by the application of mathematics to the results of 
observations and experiments, but we now want some more 
simple hypotheses from which we can deduce those laws which 
at present form our starting-point. If, to take one example, 
we could say in what electricity consisted, we might get some 
simple laws or hypotheses from which by the aid of mathe
matics all the observed phenomena could be deduced, in the 
same way as Newton deduced all the results of physical astro
nomy from the law of gravitation. All lines of research seem,
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moreover, to indicate that there is an intimate connection be
tween the different branches of physics, e.g. between light, heat, 
elasticity, electricity, and magnetism. The ultimate explanation 
of this and of the leading facts in physics seems to demand a 
study of molecular physics; a knowledge of molecular physics 
in its turn seems to require some theory as to the constitution 
of matter; it would further appear that the key to the constitu
tion of matter is to be found in electricity or chemical physics. 
So the matter stands at present; the connection between the 
different branches of physics, and the fundamental laws of those 
branches (if there be any simple ones), are riddles which are yet 
unsolved. This history does not pretend to treat of problems 
which are now the subject of investigation; the fact also that 
mathematical physics is mainly the creation of the nineteenth 
century would exclude all detailed discussion of the subject.

Fifthly, this period has seen an immense extension of pure 
mathematics. Much of this is the creation of comparatively 
recent times, and I regard the details of it as outside the limits 
of this book, though in chapter xιx I have allowed myself to 
mention some of the subjects discussed. The most striking 
features of this extension are the critical discussion of 
fundamental principles, the developments of higher geometry, 
of higher arithmetic or the theory of numbers, of higher 
algebra (including the theory of forms), and of the theory 
of equations, also the discussion of functions of double and 
multiple periodicity, and the creation of a theory of functions.

This hasty summary will indicate the subjects treated and 
the limitations I have imposed on myself. The history of the 
origin and growth of analysis and its application to the 
material universe comes within my purview. The extensions 
in the latter half of the nineteenth century of pure mathe
matics and of the application of mathematics to physical 
problems open a new period which lies beyond the limits of 
this book; and I allude to these subjects only so far as they 
may indicate the directions in which the future history of 
mathematics appears to be developing.
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CHAPTER XV.

HISTORY OF MATHEMATICS FROM DESCARTES TO ΠUYGENS.1 

CIRC. 1635-1675.

I propose in this chapter to consider the history of mathematics 
during the forty years in the middle of the seventeenth century⅛ 
I regard Descartes, Cavalieri, Pascal, Wallis, Fermat, and 
Huygens as the leading mathematicians of this time. I shall 
treat them in that order, and I shall conclude with a brief list of 
the more eminent remaining mathematicians of the same date.

I have already stated that the mathematicians of this period 
—and the remark applies more particularly to Descartes, Pascal, 
and Fermat—were largely influenced by the teaching of Kepler 
and Desargues, and I would repeat again that I regard these 
latter and Galileo as forming a connecting link between the 
writers of the renaissance and those of modern times. I should 
also add that the mathematicians considered in this chapter were 
contemporaries, and, although I have tried to place them roughly 
in such an order that their chief works shall come in a chrono
logical arrangement, it is essential to remember that they were 
in relation one with the other, and in general were acquainted 
with one another’s researches as soon as these were published.

Descartes.2 Subject to the above remarks, we may consider
1 See Cantor, part xv, vol. ii, pp. 599-844 ; other authorities for the 

mathematicians of this period are mentioned in the footnotes.
2 See Descartes, by E. S. Haldane, London, 1905. A complete edition of 

his works, edited by C. Adam and P. Tanner, is in process of issue by the
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Descartes as the first of the modern school of mathematics. 
Rene Descartes was born near Tours on March 31, 1596, and 
died at Stockholm on February 11, 1650; thus he was a con
temporary of Galileo and Desargues. His father, who, as the 
name implies, was of a good family, was accustomed to spend 
half the year at Rennes when the local parliament, in which he 
held a commission as councillor, was in session, and the rest of 
the time on his family estate of Les Cartes at La Haye. Rene, 
the second of a family of two sons and one daughter, was sent 
Sthe age of eight years to the Jesuit School at La Fleche, and 

the admirable discipline and education there given he speaks 
most highly. On account of his delicate health he was per
mitted to lie in bed till late in the mornings; this was a custom 
Sich he always followed, and when he visited Pascal in 1647 
hd* told him that the only way to do good work in mathematics 
jfttd to preserve his health was never to allow any one to make 

. him get up in the morning before he felt inclined to do so; an 
I opinion which I chronicle for the benefit of any schoolboy into 

whose hands this work may fall.
rw On leaving school in 1612 Descartes went to Paris to be 
.introduced to the world of fashion. Here, through the medium 
cjf fhe Jesuits, he made the acquaintance of Mydorge, and 
gjnelwed his schoolboy friendship with Mersenne, and together 
with them he devoted the two years of 1615 and 1616 to the 
study of mathematics. At that time a man of position usually 
entered either the army or the church; Descartes chose the 
former profession, and in 1617 joined the army of Prince 
Maurice of Orange, then at Breda. Walking through the streets 
there he saw a placard in Dutch which excited his curiosity, 
and stopping the first passer, asked him to translate it into 
either French or Latin. The stranger, who happened to be 
Isaac Beeckman, the head of the Dutch College at Dort, offered
French Government; vols. i-ix, 1897-1904. A tolerably complete account of 
Descartes’s mathematical and physical investigations is given in Ersch and 
Gruber’s Encyclopadie. The most complete edition of his works is that by 
Victor Cousin in 11 vols., Paris, 1824-26. Some minor papers subsequently 
discovered were printed by F. de Careil, Paris, 1859.
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to do so if Descartes would answer it; the placard being, in fact, 
a challenge to all the world to solve a certain geometrical 
problem.1 Descartes worked it out within a few hours, and a 
warm friendship between him and Beeckman was the result. This 
unexpected test of his mathematical attainments made the un
congenial life of the army distasteful to him, and though, under 
family influence and tradition, he remained a soldier, he con
tinued to occupy his leisure with mathematical studies. He was 
accustomed to date the first ideas of his new philosophy and of 
his analytical geometry from three dreams which he experienced 
on the night of November 10, 1619, at Neuberg, when campaign
ing on the Danube, and he regarded this as the critical day of 
his life, and one which determined his whole future.

He resigned his commission in the spring of 1621, and 
spent the next five years in travel, during most of which time 
he continued to study pure mathematics. In 1626 we find 
him settled at Paris, “ a little well-built figure, modestly clad in 
green taffety, and only wearing sword and feather in token of 
his quality as a gentleman.” During the first two years there 
he interested himself in general society, and spent his leisure in 
the construction of optical instruments; but these pursuits were 
merely the relaxations of one who failed to find in philosophy 
that theory of the universe which he was convinced finally 
awaited him.

In 1628 Cardinal de Berulle, the founder of the Oratorians, 
met Descartes, and was so much impressed by his conversation 
that he urged on him the duty of devoting his life to the 
examination of truth. Descartes agreed, and the better to 
secure himself from interruption moved to Holland, then at the 
height of its power. There for twenty years he lived, giving up 
all his time to philosophy and mathematics. Science, he says, 
may be compared to a tree; metaphysics is the root, physics is 
the trunk, and the three chief branches are mechanics, medicine,

1 Some doubt has been recently expressed as to whether the story is 
well founded: see LTntermediaire des Mathematiciensi Paris, 1909, vol. xvi, 
pp. 12-13.
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and morals, these forming the three applications of our know
ledge, namely, to the external world, to the human body, and 
to the conduct of life.

He spent the first four years, 1629 to 1633, of his stay in 
Holland in writing Le Monde, which embodies an attempt to 
give a physical theory of the universe; but finding that its 
publication was likely to bring on him the hostility of the 
church, and having no desire to pose as a martyr, he abandoned 
it: the incomplete manuscript was published in 1664. He 
then devoted himself to composing a treatise on universal 
science; this was published at Leyden in 1637 under the title 
Discours de la methode pour bien conduire sa raison et chercher 
la verite dans les sciences, and was accompanied with three 
appendices (which possibly were not issued till 1638) entitled 
La Dioptrique, Les Meteores, and La Geometrie; it is from the 
last of these that the invention of analytical geometry dates. 
In 1641 he published a work called Meditationes, in which he 
explained at some length his views of philosophy as sketched 
out in the Discours. In 1644 he issued the Principia 
Philosophiae, the greater part of which was devoted to physical 
science, especially the laws of motion and the theory of vortices. 
In 1647 he received a pension from the French court in honour 
of his discoveries. He went to Sweden on the invitation of the 
Queen in 1649, and died a few months later of inflammation of 
the lungs.

In appearance, Descartes was a small man with large head, 
projecting brow, prominent nose, and black hair coming down 
to his eyebrows. His voice was feeble. In disposition he was 
cold and selfish. Considering the range of his studies he was 
by no means widely read, and he despised both learning and 
art unless something tangible could be extracted therefrom. 
He never married, and left no descendants, though he had one 
illegitimate daughter, who died young.

As to his philosophical theories, it will be sufficient to say 
that he discussed the same problems which have been debated 
for the last two thousand years, and probably will be debated
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with equal zeal two thousand years hence. It is hardly neces
sary to say that the problems themselves are of importance 
and interest, but from the nature of the case no solution ever 
offered is capable either of rigid proof or of disproof; all 
that can be effected is to make one explanation more probable 
than another, and whenever a philosopher like Descartes 
believes that he has at last finally settled a question it has 
been possible for his successors to point out the fallacy in 
his assumptions. I have read somewhere that philosophy has 
always been chiefly engaged with the inter-relations of God, 
Nature, and Man. The earliest philosophers were Greeks 
who occupied themselves mainly with the relations between 
God and Nature, and dealt with Man separately. The 
Christian Church was so absorbed in the relation of God to 
Man as entirely to neglect Nature. Finally, modern philos
ophers concern themselves chiefly with the relations between 
Man and Nature. Whether this is a correct historical 
generalization of the views which have been successively 
prevalent I do not care to discuss here, but the statement as 
to the scope of modern philosophy marks the limitations of 
Descartes’s writings.

Descartes’s chief contributions to mathematics were his 
analytical geometry and his theory of vortices, and it is on his 
researches in connection with the former of these subjects that 
his mathematical reputation rests.

Analytical geometry does not consist merely (as is sometimes 
loosely said) in the application of algebra to geometry ; that had 
been done by Archimedes and many others, and had become the 
usual method of procedure in the works of the mathematicians 
of the sixteenth century. The great advance made by Descartes 
was that he saw that a point in a plane could be completely 
determined if its distances, say x and y, from two fixed lines 
drawn at right angles in the plane were given, with the convention 
familiar to us as to the interpretation of positive and negative 
values; and that though an equation ∕(x, y) = 0 was indeter
minate and could be satisfied by an infinite number of values of
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x and y, yet these values of x and y determined the co-ordinates 
of a number of points which form a curve, of which the equation 
∕(x, y) = 0 expresses some geometrical property, that is, a 
property true of the curve at every point on it. Descartes 
asserted that a point in space could be similarly determined by 
three co-ordinates, but he confined his attention to plane 
curves.

It was at once seen that in order to investigate the properties 
of a curve it was sufficient to select, as a definition, any 
characteristic geometrical property, and to express it by means 
of an equation between the (current) co-ordinates of any point 
on the curve, that is, to translate the definition into the 
language of analytical geometry. The equation so obtained 
contains implicitly every property of the curve, and any 
particular property can be deduced from it by ordinary algebra 
without troubling about the geometry of the figure. This 
may have been dimly recognized or foreshadowed by earlier 
writers, but Descartes went further and pointed out the very 
important facts that two or more curves can be referred to one 
and the same system of co-ordinates, and that the points in 
which two curves intersect can be determined by finding the 
roots common to their two equations. I need not go further 
into details, for nearly everyone to whom the above is intelligible 
will have read analytical geometry, and is able to appreciate the 
value of its invention.

Descartes’s Geometrie is divided into three books : the first 
two of these treat of analytical geometry, and the third includes 
an analysis of the algebra then current. It is somewhat difficult 
to follow the reasoning, but the obscurity was intentional. 
“Je n’ai rien omis,” says he, “qu’h dessein . . . j’avois prevu 
que certaines gens qui se van tent de sgavoir tout n’auroient 
pas manque de dire que je n’avois rien ecrit qu’ils n’eussent 
sgu auparavant, si je me fusse rendu assez intelligible pour 
eux.”

The first book commences with an explanation of the 
principles of analytical geometry, and contains a discussion 

τ
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of a certain problem which had been propounded by Pappus in 
the seventh book of his ∑υvαγojγι∕ and of which some particular 
cases had been considered by Euclid and Apollonius. The 
general theorem had baffled previous geometricians, and it 
was in the attempt to solve it that Descartes was led to the 
invention of analytical geometry. The full enunciation of the 
problem is rather involved, but the most important case is to 
find the locus of a point such that the product of the 
perpendiculars on m given straight lines shall be in a constant 
ratio to the product of the perpendiculars on n other given 
straight lines. The ancients had solved this geometrically 
for the case τn=l, π = l, and the case »z=l, n = 2. Pappus 
had further stated that, if τn = n = 2, the locus is a conic, 
but he gave no proof; Descartes also failed to prove this by 
pure geometry, but he shewed that the curve is represented 
by an equation of the second degree, that is, is a conic; 
subsequently Newton gave an elegant solution of the problem 
by pure geometry.

In the second book Descartes divides curves into two 
classes, namely, geometrical and mechanical curves. He 
defines geometrical curves as those which can be generated 
by the intersection of two lines each moving parallel to one 
co-ordinate axis with “ commensurable ” velocities; by which 
terms he means that dy]dx is an algebraical function, as, for 
example, is the case in the ellipse and the cissoid. He calls a 
curve mechanical when the ratio of the velocities of these lines 
is “ incommensurable ” ; by which term he means that dy[dx is 
a transcendental function, as, for example, is the case in the 
cycloid and the quadratrix. Descartes confined his discussion 
to geometrical curves, and did not treat of the theory of 
mechanical curves. The classification into algebraical and trans
cendental curves now usual is due to Newton.1

Descartes also paid particular attention to the theory of the 
tangents to curves—as perhaps might be inferred from his 
system of classification just alluded to. The then current 

1 See below, page 340.
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definition of a tangent at a point was a straight line through 
the point such that between it and the curve no other straight 
line could be drawn, that is, the straight line of closest contact. 
Descartes proposed to substitute for this a statement equivalent 
to the assertion that the tangent is the limiting position of the 
.secant; Fermat, and at a later date Maclaurin and Lagrange, 
adopted this definition. Barrow, followed by Newton and 
Leibnitz, considered a curve as the limit of an inscribed 
polygon when the sides become indefinitely small, and stated 
that a side of the polygon when produced became in the limit a 
tangent to the curve. Roberval, on the other hand, defined a 
tangent at a point as the direction of motion at that instant of a 
point which was describing the curve. The results are the same 
whichever definition is selected, but the controversy as to which 
definition was the correct one was none the less lively. In his 
letters Descartes illustrated his theory by giving the general 
rule for drawing tangents and normals to a roulette.

The method used by Descartes to find the tangent or normal 
at any point of a given curve was substantially as follows. He 
determined the centre and radius of a circle which should cut 
the curve in two consecutive points there. The tangent to the 
circle at that point will be the required tangent to the curve. 
In modern text-books it is usual to express the condition that 
two of the points in which a straight line (such as y = mx + c) cuts 
the curve shall coincide with the given point: this enables us to 
determine m and c, and thus the equation of the tangent there 
is determined. Descartes, however, did not venture to do this, 
but selecting a circle as the simplest curve and one to which he 
knew how to draw a tangent, he so fixed his circle as to make it 
touch the given curve at the point in question, and thus reduced 
the problem to drawing a tangent to a circle. I should note 
in passing that he only applied this method to curves which are 
symmetrical about an axis, and he took the centre of the circle 
on the axis.

The obscure style deliberately adopted by Descartes 
diminished the circulation and immediate appreciation of these
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books; but a Latin translation of them, with explanatory 
notes, was prepared by F. de Beaune, and an edition of this, 
with a commentary by F. van Schooten, issued in 1659, was 
widely read.

The third book of the Geometrie contains an analysis of the 
algebra then current, and it has affected the language of the 
subject by fixing the custom of employing the letters at the 
beginning of the alphabet to denote known quantities, and those 
at the end of the alphabet to denote unknown quantities.1 
Descartes further introduced the system of indices now in use; 
very likely it was original on his part, but I would here remind 
the reader that the suggestion had been made by previous 
writers, though it had not been generally adopted. It is 
doubtful whether or not Descartes recognised that his letters 
might represent any quantities, positive or negative, and that it 
was sufficient to prove a proposition for one general case. He 
was the earliest writer to realize the advantage to be obtained 
by taking all the terms of an equation to one side of it, though 
Stifel and Harriot had sometimes employed that form by choice. 
He realised the meaning of negative quantities and used them 
freely. In this book he made use of the rule for finding a limit 
to the number of positive and of negative roots of an algebraical 
equation, which is still known by his name; and introduced the 
method of indeterminate coefficients for the solution of equations. 
He believed that he had given a method by which algebraical 
equations of any order could be solved, but in this he was 
mistaken. It may be also mentioned that he enunciated the 
theorem, commonly attributed to Euler, on the relation between 
the numbers of faces, edges, and angles of a polyhedron : this is 
in one of the papers published by Careil.

1 On the origin of the custom of using x to represent an unknown 
example, see a note by G. Enestrδm in the Bibliotheca Mathematica, 1885, 
p. 43.

Of the two other appendices to the Discours one was devoted 
to optics. The chief interest of this consists in the statement 
given of the law of refraction. This appears to have been taken
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from Snell’s work, though, unfortunately, it is enunciated in a 
way which might lead a reader to suppose that it is due to the 
researches of Descartes. Descartes would seem to have repeated 
Snell’s experiments when in Paris in 1626 or 1627, and it is 
possible that he subsequently forgot how much he owed to the 
earlier investigations of Snell. A large part of the optics is 
devoted to determining the best shape for the lenses of a 
telescope, but the mechanical difficulties in grinding a surface of 
glass to a required form are so great as to render these investi
gations of little practical use. Descartes seems to have been 
doubtful whether to regard the rays of light as proceeding from 
the eye and so to speak touching the object, as the Greeks 
had done, or as proceeding from the object, and so affecting the 
eye ; but, since he considered the velocity of light to be infinite, 
he did not deem the point particularly important.

The other appendix, on meteors, contains an explanation of 
numerous atmospheric phenomena, including the rainbow; the 
explanation of the latter is necessarily incomplete, since 
Descartes was unacquainted with the fact that the refractive 
index of a substance is different for lights of different colours.

Descartes’s physical theory of the universe, embodying most 
of the results contained in his earlier and unpublished Le Monde, 
is given in his Principia, 1644, and rests on a metaphysical 
basis. He commences with a discussion on motion; and then 
lays down ten laws of nature, of which the first two are almost 
identical with the first two laws of motion as given by Newton ; 
the remaining eight laws are inaccurate. He next proceeds to 
discuss the nature of matter which he regards as uniform in 
kind though there are three forms of it. He assumes that the 
matter of the universe must be in motion, and that the motion 
must result in a number of vortices. He states that the sun is 
the centre of an immense whirlpool of this matter, in which the 
planets float and are swept round like straws in a whirlpool of 
water. Each planet is supposed to be the centre of a secondary 
whirlpool by which its satellites are carried : these secondary 
whirlpools are supposed to produce variations of density in the
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surrounding medium which constitute the primary whirlpool, 
and so cause the planets to move in ellipses and not in circles. 
All these assumptions are arbitrary and unsupported by any 
investigation. It is not difficult to prove that on his hypothesis 
the sun would be in the centre of these ellipses, and not at a 
focus (as Kepler had shewn was the case), and that the weight 
of a body at every place on the surface of the earth except the 
equator would act in a direction which was not vertical; but it 
will be sufficient here to say that Newton in the second book of 
his Principia, 1687, considered the theory in detail, and shewed 
that its consequences are not only inconsistent with each of 
Kepler’s laws and with the fundamental laws of mechanics, but 
are also at variance with the laws of nature assumed by Descartes. 
Still, in spite of its crudeness and its inherent defects, the 
theory of vortices marks a fresh era in astronomy, for it was 
an attempt to explain the phenomena of the whole universe by 
the same mechanical laws which experiment shews to be true 
on the earth.

Cavalieri.1 Almost contemporaneously with the publication 
in 1637 of Descartes’s geometry, the principles of the integral 
calculus, so far as they are concerned with summation, were 
being worked out in Italy. This was effected by what was 
called the principle of indivisibles, and was the invention of 
Cavalieri. It was applied by him and his contemporaries to 
numerous problems connected with the quadrature of curves and 
surfaces, the determination of volumes, and the positions of 
centres of mass. It served the same purpose as the tedious 
method of exhaustions used by the Greeks; in principle the 
methods are the same, but the notation of indivisibles is more 
concise and convenient. It was, in its turn, superseded at the 
beginning of the eighteenth century by the integral calculus.

1 Cavalieri’s life has been written by P. Frisi, Milan, 1778; by F. 
Predari, Milan, 1843 ; by Gabrio Piola, Milan, 1844 ; and by A. Favaro, 
Bologna, 1888. An analysis of his works is given in Marie’s Histoire des 
Sciences, Paris, 1885-8, vol. iv, pp. 69-90.

Bonaventura Cavalieri was born at Milan in 1598, and died
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at Bologna on November 27, 1G47. He became a Jesuit at an 
early age ; on the recommendation of the Order he was in 1629 
made professor of mathematics at Bologna ; and he continued 
to occupy the chair there until his death. I have already 
mentioned Cavalieri’s name in connection with the introduc
tion of the use of logarithms into Italy, and have alluded to 
his discovery of the expression for the area of a spherical 
triangle in terms of the spherical excess. He was one of the 
most influential mathematicians of his time, but his subsequent 
reputation rests mainly on his invention of the principle of 
indivisibles.

The principle of indivisibles had been used by Kepler in 
1604 and 1615 in a somewhat crude form. It was first stated 
by Cavalieri in 1629, but he did not publish his results till 
1635. In his early enunciation of the principle in 1635 
Cavalieri asserted that a line was made up of an infinite 
number of points (each without magnitude), a surface of an 
infinite number of lines (each without breadth), and a volume 
of an infinite number of surfaces (each without thickness). To 
meet the objections of Guldinus and others, the statement 
was recast, and in its final form as used by the mathematicians 
of the seventeenth century it was published in Cavalieri’s 
Exercitationes Geometricae in 1647; the third exercise is 
devoted to a defence of the theory. This book contains the 
earliest demonstration of the properties of Pappus.1 Cavalieri’s 
works on indivisibles were reissued with his later corrections in 
1653.

The method of indivisibles rests, in effect, on the assumption 
that any magnitude may be divided into an infinite number of 
small quantities which can be made to bear any required ratios 
(ex. gr. equality) one to the other. The analysis given by 
Cavalieri is hardly worth quoting except as being one of the 
first steps taken towards the formation of an infinitesimal 
calculus. One example will suffice. Suppose it be required to 
find the area of a right-angled triangle. Let the base be made 

1 See above, pp. 101, 252. 
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up of, or contain n points (or indivisibles), and similarly let the 
other side contain na points, then the ordinates at the successive 
points of the base will contain a, 2a ... , na points. Therefore 
the number of points in the area is a+ 2a+ ... +na ; the sum 
of which is ⅜n2a + ⅛na. Since n is very large, we may neglect 
fna, for it is inconsiderable compared with ⅛n2a. Hence the 
area is equal to jfina)n, that is, ⅜ × altitude × base. There is 
no difficulty in criticizing such a proof, but, although the form 
in which it is presented is indefensible, the substance of it is 
correct.

It would be misleading to give the above as the only 
specimen of the method of indivisibles, and I therefore quote 
another example, taken from a later writer, which will fairly

illustrate the use of the method when modified and corrected by 
the method of limits. Let it be required to find the area 
outside a parabola ΛPC and bounded by the curve, the tangent 
at A, and a line DC parallel to AD the diameter at A. Com
plete the parallelogram ABCD. Divide AD into n equal parts, 
let AM contain r of them, and let MN be the (r+ l)th part. 
Draw MP and NQ parallel to AB, and draw PP parallel to AD. 
Then when n becomes indefinitely large, the curvilinear area 
APCD will be the limit of the sum of all parallelograms like PN. 
Now

area PN: area BD = MP . MN ∙. DC . AD.
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But by the properties of the parabola

and
Hence
Therefore area PN: area
Therefore, ultimately,

area APOD : area

which, in the limit,
It is perhaps worth noticing that Cavalieri and his successors 

always used the method to find the ratio of two areas, volumes, 
or magnitudes of the same kind and dimensions, that is, they 
never thought of an area as containing so many units of area. 
The idea of comparing a magnitude with a unit of the same 
kind seems to have been due to Wallis.

It is evident that in its direct form the method is ap
plicable to only a few curves. Cavalieri proved that, if m be 
a positive integer, then the limit, when n is infinite, of 

which is equivalent to
saying that he found the integral to x of xm from x = 0 to 
x = 1 ; he also discussed the quadrature of the hyperbola.

Pascal.1 Among the contemporaries of Descartes none 
displayed greater natural genius than Pascal, but his mathe
matical reputation rests more on what he might have done 
than on what he actually effected, as during a considerable part 
of his life he deemed it his duty to devote his whole time 
to religious exercises.

Blaise Pascal was born at Clermont on June 19, 1623, and 
died at Paris on Aug. 19, 1662. His father, a local judge at

1 See Pascal by J. Bertrand, Paris, 1891 ; and Pascal, sein Leben und 
seine Kdmpfe, by J. G. Dreydorff, Leipzig, 1870. Pascal’s life, written by 
his sister Mme. Perier, was edited by A. P. Faugere, Paris, 1845, and has 
formed the basis for several works. An edition of his writings was published 
in five volumes at the Hague in 1779, second edition, Paris, 1819 ; some 
additional pamphlets and letters were published in three volumes at Paris 
in 1858.
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Clermont, and himself of some scientific reputation, moved to 
Paris in 1631, partly to prosecute his own scientific studies, 
partly to carry on the education of his only son, who had 
already displayed exceptional ability. Pascal was kept at home 
in order to ensure his not being overworked, and with the same 
object it was directed that his education should be at first 
confined to the study of languages, and should not include any 
mathematics. This naturally excited the boy’s curiosity, and 
one day, being then twelve years old, he asked in what geometry 
consisted. His tutor replied that it was the science of con
structing exact figures and of determining the proportions 
between their different parts. Pascal, stimulated no doubt by 
the injunction against reading it, gave up his play-time to this 
new study, and in a few weeks had discovered for himself many 
properties of figures, and in particular the proposition that the 
sum of the angles of a triangle is equal to two right angles. I 
have read somewhere, but I cannot lay my hand on the authority, 
that his proof merely consisted in turning the angular points of 
a triangular piece of paper over so as to meet in the centre of 
the inscribed circle: a similar demonstration can be got by 
turning the angular points over so as to meet at the foot of the 
perpendicular drawn from the biggest angle to the opposite side. 
His father, struck by this display of ability, gave him a copy of 
Euclid’s Elements, a book which Pascal read with avidity and 
soon mastered.

At the age of fourteen he was admitted to the weekly 
meetings of Roberval, Mersenne, Mydorge, and other French 
geometricians; from which, ultimately, the French Academy 
sprung. At sixteen Pascal wrote an essay on conic sections; 
and in 1641, at the age of eighteen, he constructed the first 
arithmetical machine, an instrument which, eight years later, he 
further improved. His correspondence with Fermat about this 
time shews that he was then turning his attention to analytical 
geometry and physics. He repeated Torricelli’s experiments, ly 
which the pressure of the atmosphere could be estimated as a 
weight, and he confirmed his theory of the cause of barometrical
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variations by obtaining at the same instant readings at different 
altitudes on the hill of Puy-de-Dδme.

In 1650, when in the midst of these researches, Pascal 
suddenly abandoned his favourite pursuits to study religion, or, 
as he says in his Pensees, ll to contemplate the greatness and the 
misery of man ”; and about the same time he persuaded the 
younger of his two sisters to enter the Port Royal society.

In 1653 he had to administer his father’s estate. He now 
took up his old life again, and made several experiments on the 
pressure exerted by gases and liquids; it was also about this 
period that he invented the arithmetical triangle, and together 
with Fermat created the calculus of probabilities. He was 
meditating marriage when an accident again turned the current 
of his thoughts to a religious life. He was driving a four-in- 
lιand on November 23, 1654, when the horses ran away; the 
two leaders dashed over the parapet of the bridge at Neuilly, 
and Pascal was saved only by the traces breaking. Always 
somewhat of a mystic, he considered this a special summons to 
abandon the world. He wrote an account of the accident on 
a small piece of parchment, which for the rest of his life he 
wore next to his heart, to perpetually remind him of his 
covenant; and shortly moved to Port Royal, where he continued 
to live until his death in 1662. Constitutionally delicate, he 
had injured his health by his incessant study; from the age of 
seventeen or eighteen he suffered from insomnia and acute 
dyspepsia, and at the time of his death was physically worn 
out.

His famous Provincial Letters directed against the Jesuits, 
and his Pensees, were written towards the close of his life, and 
are the first example of that finished form which is characteristic 
of the best French literature. The only mathematical work 
that he produced after retiring to Port Royal was the essay on 
the cycloid in 1658. He was suffering from sleeplessness and 
toothache when the idea occurred to him, and to his surprise his 
teeth immediately ceased to ache. Regarding this as a divine 
intimation to proceed with the problem, he worked incessantly
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for eight days at it, and completed a tolerably full account of 
the geometry of the cycloid.

I now proceed to consider his mathematical works in rather 
greater detail.

His early essay on the geometry of conics, written in 1639, 
but not published till 1779, seems to have been founded on the 
teaching of Desargues. Two of the results are important as 
well as interesting. The first of these is the theorem known 
now as “ Pascal’s theorem,” namely, that if a hexagon be 
inscribed in a conic, the points of intersection of the opposite 
sides will lie in a straight line. The second, which is really due 
to Desargues, is that if a quadrilateral be inscribed in a conic, 
and a straight line be drawn cutting the sides taken in order in 
the points A, B, C, and D, and the conic in P and Q, then

PA. PC: PB. PD = QA. QC : QB. QD.

Pascal employed his arithmetical triangle in 1653, but no 
account of his method was printed till 1665. The triangle is 
constructed as in the figure below, each horizontal line 
being formed from the one above it by making every number 
in it equal to the sum of those above and to the left of it in the 
row immediately above it; ex. gr. the fourth number in the

fourth line, namely, 20, is equal to 1+3 + 6 + 10. The numbers 
in each line are what are now called J⅛rurate numbers. Those
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iin the first line are called numbers of the first order ; those in 
tthe second line, natural numbers or numbers of the second 
(order; those in the third line, numbers of the third order, and 
so on. It is easily shewn that the mth number in the nth row
iis

Pascal’s arithmetical triangle, to any required order, is got 
lby drawing a diagonal downwards from right to left as in the 
ifigure. The numbers in any diagonal give the coefficients of the 
(expansion of a binomial; for example, the figures in the fifth 
(diagonal, namely, 1, 4, 6, 4, 1, are the coefficients in the 
(expansion (a + δ)4. Pascal used the triangle partly for this 
purpose, and partly to find the numbers of combinations of rnι 
things taken n at a time, which he stated, correctly, to be 
((n + 1) (n + 2) (n + 3) ... m∣(m - ri) !

Perhaps as a mathematician Pascal is best known in connec
tion with his correspondence with Fermat in 1654, in which he 
laid down the principles of the theory of probabilities. This 
correspondence arose from a problem proposed by a gamester, 
the Chevalier de Mere, to Pascal, who communicated it to 
Fermat. The problem was this. Two players of equal skill 
want to leave the table before finishing their game. Their 
scores and the number of points which constitute the game 
being given, it is desired to find in what proportion they should 
divide the stakes. Pascal and Fermat agreed on the answer, 
but gave different proofs. The following is a translation of 
Pascal’s solution. That of Fermat is given later.

The following is my method for determining the share of each player 
when, for example, two players play a game of three points and each 
player has staked 32 pistoles.

Suppose that the first player has gained two points, and the second 
player one point; they have now to play for a point on this condition, 
that, if the first player gain, he takes all the money which is at stake, 
namely, 64 pistoles ; while, if the second player gain, each player has two 
points, so that they are on terms of equality, and, if they leave off play
ing, each ought to take 32 pistoles. Thus, if the first player gain, then 
64 pistoles belong to him, and, if he lose, then 32 pistoles belong to him. 
If therefore the players do not wish to play this game, but to separate
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without playing it, the first player would say to the second, “ I am 
certain of 32 pistoles even if 1 lose this game, and as for the other 32 
pistoles perhaps I shall have them and perhaps you will have them ; 
the chances are equal. Let us then divide these 32 pistoles equally, 
and give me also the 32 pistoles of which I am certain.” Thus the first 
player will have 48 pistoles and the second 16 pistoles.

Next, suppose that the first player has gained two points and the 
second player none, and that they are about to play for a point ; the 
condition then is that, if the first player gain this point, he secures the 
game and takes the 64 pistoles, and, if the second player gain this point, 
then the players will be in the situation already examined, in which the 
first player is entitled to 48 pistoles and the second to 16 pistoles. 
Thus, if they do not wish to play, the first player would say to the second, 
“ If I gain the point I gain 64 pistoles ; if I lose it, I am entitled to 
48 pistoles. Give me then the 48 pistoles of which I am certain, and 
divide the other 16 equally, since our chances of gaining the point are 
equal.” Thus the first player will have 56 pistoles and the second player 
8 pistoles.

Finally, suppose that the first player has gained one point and the 
second player none. If they proceed to play for a point, the condition is 
that, if the first player gain it, the players will be in the situation first 
examined, in which the first player is entitled to 56 pistoles ; if the first 
player lose the point, each player has then a point, and each is entitled 
to 32 pistoles. Thus, if they do not wish to play, the first player would 
say to the second, “ Give me the 32 pistoles of which I am certain, and 
divide the remainder of the 56 pistoles equally, that is, divide 24 pistoles 
equally.” Thus the first player will have the sum of 32 and 12 
pistoles, that is, 44 pistoles, and consequently the second will have 20 
pistoles.

Pascal proceeds next to consider the similar problems when 
the game is won by whoever first obtains m + n points, and 
one player has nι while the other has n points. The answer 
is obtained by using the arithmetical triangle. The general 
solution (in which the skill of the players is unequal) is given 
in many modern text-books on algebra, and agrees with Pascal’s 
result, though of course the notation of the latter is different 
and less convenient.

Pascal made an illegitimate use of the new theory in 
the seventh chapter of his Penseeś. In effect, he puts his 
argument that, as the value of eternal happiness must le
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infinite, then, even if the probability of a religious life ensuring 
eternal happiness be very small, still the expectation (which is 
measured by product of the two) must be of sufficient magni
tude to make it worth while to be religious. The argument, 
if worth anything, would apply equally to any religion which 
promised eternal happiness to those who accepted its doctrines. 
If any conclusion may be drawn from the statement, it is the 
undesirability of applying mathematics to questions of morality 
of which some of the data are necessarily outside the range 
of an exact science. It is only fair to add that no one 
had more contempt than Pascal for those who changed 
their opinions according to the prospect of material benefit, 
and this isolated passage is at variance with the spirit of his 
writings.

The last mathematical work of Pascal was that on the cycloid 
in 1658. The cycloid is the curve traced out by a point on the 
circumference of a circular hoop which rolls along a straight 
line. Galileo, in 1630, had called attention to this curve, the 
shape of which is particularly graceful, and had suggested that 
the arches of bridges should be built in this form.1 Four years 
later, in 1634, Roberval found the area of the cycloid ; Descartes 
thought little of this solution and defied him to find its tangents, 
the same challenge being also sent to Fermat who at once 
solved the problem. Several questions connected with the 
turve, and with the surface and volume generated by its 
revolution about its axis, base, or the tangent at its vertex, 
were then proposed by various mathematicians. These and 
some analogous questions, as well as the positions of the centres 
)f the mass of the solids formed, were solved by Pascal in 1658, 
and the results were issued as a challenge to the world. Wallis 
succeeded in solving all the questions except those connected 
with the centre of mass. Pascal’s own solutions were effected 
by the method of indivisibles, and are similar to those which

1 The bridge, by Essex, across the Cam in the grounds of Trinity College, 
Cambridge, has cycloidal arches. On the history of the cycloid before Galileo, 
see S. Giinther, Bibliotheca Mathematica, 1887, vol. i, pp. 7-14.
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a modern mathematician would give by the aid of the integrad 
calculus. He obtained by summation what are equivalent bo 
the integrals of sin<∕>, siπ2φ, and φsin<∕>, one limit being eithe:r 
0 or ∣7r. He also investigated the geometry of the Archi
medean spiral. These researches, according to D’Alembert, 
form a connecting link between the geometry of Archimedes an∣d 
the infinitesimal calculus of Newton.

Wallis.1 John Wallis was born at Ashford on November 22, 
1616, and died at Oxford on October 28, 1703. He was educated 
at Felstead school, and one day in his holidays, when fifteen 
years old, he happened to see a book of arithmetic in the 
hands of his brother; struck with curiosity at the odd signs 
and symbols in it he borrowed the book, and in a fortnight, 
with his brother’s help, had mastered the subject. As it was 
intended that he should be a doctor, he was sent to Emmanuel 
College, Cambridge, while there he kept an “act” on the 
doctrine of the circulation of the blood; that is said to have 
been the first occasion in Europe on which this theory was 
publicly maintained in a disputation. His interests, however, 
centred on mathematics.

1 See my History of the Study of Mathematics at Cambridge, pp. 41-46. 
An edition of Wallis’s mathematical works was published in three volumes at 
Oxford, 1693-98.

He was elected to a fellowship at Queens’ College, Cambridge, 
and subsequently took orders, but on the whole adhered to the 
Puritan party, to w,hom he rendered great assistance in decipher
ing the royalist despatches. He, however, joined the moderate 
Presbyterians in signing the remonstrance against the execution 
of Charles I., by which he incurred the lasting hostility of the 
Independents. In spite of their opposition he was appointed in 
1649 to the Savilian chair of geometry at Oxford, w7here he 
lived until his death on October 28, 1703. Besides his mathe
matical works he wrote on theology, logic, and philosophy, and 
was the first to devise a system for teaching deaf-mutes. I 
confine myself to a few notes on his more important mathematical 
writings. They are notable partly for the introduction of the 
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ιuse of infinite series as an ordinary part of analysis, and partly 
ffor the fact that they revealed and explained to all students the 
principles of the new methods of analysis introduced by his 
contemporaries and immediate predecessors.

In 1655 Wallis published a treatise on come sections in which 
they λvere defined analytically. I have already mentioned that 
the Geometrie of Descartes is both difficult and obscure, and to 
many of his contemporaries, to whom the method was new, it 
must have been incomprehensible. This work did something to 
make the method intelligible to all mathematicians : it is the 
earliest book in which these curves are considered and defined 
aιs curves of the second degree.

The most important of Wallis’s works was his Arithmetica 
Jnfinitorum, which was published in 1656. In this treatise 
the methods of analysis of Descartes and Cavalieri were 
systematised and greatly extended, but their logical exposition 
is open to criticism. It at once became the standard book 
on the subject, and is constantly referred to by subsequent 
writers. It is prefaced by a short tract on conic sections. 
He commences by proving the law of indices; shews that 
«°, x~1, x~2 ... represents 1, l∣x, l∣x2 ...; that xi,2 represents the 
square root of x, that x2''3 represents the cube root of x2, and 
generally that x~n represents the reciprocal of xn, and that 
χv∣9 represents the ⅛th root of χP.

Leaving the numerous algebraical applications of this dis
covery he next proceeds to find, by the method of indivisibles, 
the area enclosed between the curve y = xm, the axis of x, and 
any ordinate x = h; and he proves that the ratio of this area 
to that of the parallelogram on the same base and of the 
same altitude is equal to the ratio 1 : m + 1. He apparently 
assumed that the same result would be true also for the 
curve y = curin, where a is any constant, and m any number 
positive or negative; but he only discusses the case of the 
parabola in which m = 2, and that of the hyperbola in which 

= — 1 : in the latter case his interpretation of the result 
is incorrect. He then shews that similar results might be 

u
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written down for any curve of the form y = '∑axm; and hence 
that, if the ordinate y of a curve can be expanded in powers 
of the abscissa x, its quadrature can be determined : thus he
says that if the equation of a curve were
its area would be He then applies this
to the quadrature of the curves

etc. taken between the limits x = 0 and
x=l ; and shews that the areas are respectively
etc. He next considers curves of the form and estab
lishes the theorem that the area bounded by the curve, the 
axis of x, and the ordinate x=l, is to the area of the rectangle 
on the same base and of the same altitude as m : m + 1. This

is equivalent to finding the value of He illustrates

this by the parabola in which «» = 2. He states, but does 
not prove, the corresponding result for a curve of the form

Wallis shewed considerable ingenuity in reducing the equations 
of curves to the forms given above, but, as he was unacquainted 
with the binomial theorem, he could not effect the quadrature of
the circle, whose equation is since he was unable to
expand this in powers of x. He laid down, however, the principle
of interpolation. Thus, as the ordinate of the circle
is the geometrical mean between the ordinates of the curves

and it might be supposed that, as an

approximation, the area of the semicircle which

is might be taken as the geometrical mean between the
values of

and

that is, 1 and ; this is equivalent to taking or
as the value of 7r. But, Wallis argued, we have in fact a
series 1, and therefore the term interpolated
between 1 and I ought to be so chosen as to obey the law
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of this series. This, by an elaborate method, which I need not 
describe in detail, leads to a value for the interpolated term 
which is equivalent to taking

The mathematicians of the seventeenth century constantly used 
interpolation to obtain results which we should attempt to obtain 
by direct analysis.

In this work also the formation and properties of continued 
fractions are discussed, the subject having been brought into 
prominence by Brouncker’s use of these fractions.

A few years later, in 1659, Wallis published a tract con
taining the solution of the problems on the cycloid which had 
been proposed by Pascal. In this he incidentally explained 
how the principles laid down in his Arithmetica Infinitorum 
could be used for the rectification of algebraic curves; and 
gave a solution of the problem to rectify the semi-cubical 
parabola x3 = αy2, which had been discovered in 1657 by his 
pupil William Neil. Since all attempts to rectify the ellipse 
and hyperbola had been (necessarily) ineffectual, it had been 
supposed that no curves could be rectified, as indeed Descartes 
lad definitely asserted to be the case. The logarithmic spiral 
lad been rectified by Torricelli, and was the first curved line 
(other than the circle) whose length was determined by mathe- 
natics, but the extension by Neil and Wallace to an algebraical 
<urve was novel. The cycloid was the next curve rectified; this 
vas done by Wren in 1658.

Early in 1658 a similar discovery, independent of that of 
Veil, was made by van Heuraet,1 and this was published by 
'an Schooten in his edition of Descartes’s Geometria in 1659. 
'ran Heuraet’s method is as follows. He supposes the curve 
to be referred to rectangular axes; if this be so, and if (x, y) 
le the co-ordinates of any point on it, and n the length of the

1 On van Heuraet, see the Bibliotheca Mathematica, 1887, vol. i, 
]p. 76-80. 
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normal, and if another point whose co-ordinates are (x, η) be 
taken such that η : h = n : y, where h is a constant; then, if ds 
be the element of the length of the required curve, we have by 
similar triangles ds : dx = n : y. Therefore lids = ηdx. Hence, 
if the area of the locus of the point (x, y) can be found, the 
first curve can be rectified. In this way van Heuraet effected 
the rectification of the curve y3 = ax2∙, but added that the 
rectification of the parabola y2 = ax is impossible since it 
requires the quadrature of the hyperbola. The solutions given 
by Neil and Wallis are somewhat similar to that given by van 
Heuraet, though no general rule is enunciated, and the analysis 
is clumsy. A third method was suggested by Fermat in 1660, 
but it is inelegant and laborious.

The theory of the collision of bodies was propounded by 
the Royal Society in 1668 for the consideration of mathe
maticians. Wallis, Wren, and Huygens sent correct and 
similar solutions, all depending on what is now called the 
conservation of momentum; but, while Wren and Huygens 
confined their theory to perfectly elastic bodies, Wallis con
sidered also imperfectly elastic bodies. This was followed in 
1669 by a work on statics (centres of gravity), and in 1670 by 
one on dynamics : these provide a convenient synopsis of what 
was then known on the subject.

In 1685 Wallis published an Algebra, preceded by a 
historical account of the development of the subject, which 
contains a great deal of valuable information. The second 
edition, issued in 1693 and forming the second volume of his 
Opera, was considerably enlarged. This algebra is noteworthy 
as containing the first systematic use of formulae. A given 
magnitude is here represented by the numerical ratio which 
it bears to the unit of the same kind of magnitude : thus, 
when Wallis wants to compare two lengths he regards each as 
containing so many units of length. This perhaps will be 
made clearer if I say that the relation between the space 
described in any time by a particle moving with a uniform 
velocity would be denoted by Wallis by the formula s — d,
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where s is the number representing the ratio of the space 
described to the unit of length; while previous writers would 
have denoted the same relation by stating what is equivalent1 
to the proposition s1 : s2 = v1t1 : v2t2. It is curious to note that 
Wallis rejected as absurd the now usual idea of a negative 
number as being less than nothing, but accepted the view that 
it is something greater than infinity. The latter opinion may 
be tenable and not inconsistent with the former, but it is hardly 
a more simple one.

1 See ex. gr. Newton’s Principia, bk. i, sect, i, lemma 10 or 11.
2 The best edition of Fermat’s works is that in three volumes, edited by 

£ P. Tannery and C. Henry, and published by the French government, 
1891-6. Of earlier editions, I may mention one of his papers and corre
spondence, printed at Toulouse in two volumes, 1670 and 1679 : of which a 
sιmnιary, with notes, λvas published by E. Brassinne at Toulouse in 1853, 
aid a reprint was issued at Berlin in 1861.

Fermat.1 2 While Descartes was laying the foundations of 
analytical geometry, the same subject was occupying the atten
tion of another and not less distinguished Frenchman. This 
was Fermat. Pierre de Fermat, who was born near Montauban 
in 1601, and died at Castres on January 12, 1665, was the son 
of a leather-merchant; he was educated at home; in 1631 he 
obtained the post of councillor for the local parliament at 
Toulouse, and he discharged the duties of the office with scrupu
lous accuracy and fidelity. There, devoting most of his leisure 
to mathematics, he spent the remainder of his life—a life which, 
lut for a somewhat acrimonious dispute with Descartes on the 
validity of certain analysis used by the latter, was unruffled by 
any event which calls for special notice. The dispute was chiefly 
due to the obscurity of Descartes, but the tact and courtesy of 
Γermat brought it to a friendly conclusion. Fermat was a good 
scholar, and amused himself by conjecturally restoring the work 
(f Apollonius on plane loci.

Except a few isolated papers, Fermat published nothing in 
Iis lifetime, and gave no systematic exposition of his methods. 
Some of the most striking of his results were found after his 
ceath on loose sheets of paper or written in the margins of
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works which he had read and annotated, and are unaccompanied 
by any proof. It is thus somewhat difficult to estimate the 
dates and originality of his work. He was constitutionally 
modest and retiring, and does not seem to have intended his 
papers to be published. It is probable that he revised his notes 
as occasion required, and that his published works represent the 
final form of his researches, and therefore cannot be dated much 
earlier than 1660. I shall consider separately (i) his investiga
tions in the theory of numbers; (ii) his use in geometry of 
analysis and of infinitesimals; and (iii) his method of treating 
questions of probability.

(i) The theory of numbers appears to have been the favourite 
study of Fermat. He prepared an edition of Diophantus, and 
the notes and comments thereon contain numerous theorems of 
considerable elegance. Most of the proofs of Fermat are lost, 
and it is possible that some of them were not rigorous—an 
induction by analogy and the intuition of genius sufficing to 
lead him to correct results. The following examples will illus
trate these investigations.

(a) If p be a prime and a be prime to p, then aR~1 - 1 is 
divisible by p, that is, αi,^1 - 1 ≡0 (mod. p). A proof of this, 
first given by Euler, is well known. A more general theorem 
is that αΦ(n> - 1 ≡ 0 (mod. n), where a is prime to n, and ≠ (n) is 
the number of integers less than n and prime to it.

(δ) An odd prime can be expressed as the difference of two 
square integers in one and only one way. Fermat’s proof is as 
follows. Let n be the prime, and suppose it equal to x2 - y∖ 
that is, to (« + y) (x-y). Now, by hypothesis, the only integral 
factors of n are n and unity, hence x-∖-y = n and x-y=Λ. 
Solving these equations we get x = ^(n + 1) and y = ∣(n - 1).

(c) He gave a proof of the statement made by Diophantus 
that the sum of the squares of two integers cannot be of the 
form 4>⅛ - 1 ; and he added a corollary which I take to mean 
that it is impossible that the product of a square and a prime 
of the form 4n - 1 [even if multiplied by a number prime to the 
latter], can be either a square or the sum of two squares.
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JFor example, 44 is a multiple of 11 (which is of the form 
41 × 3 — 1) by 4, hence it cannot be expressed as the sum of two 
squares. He also stated that a number of the form α2 + δ2, 
where a is prime to b, cannot be divided by a prime of the 
iforιn An- 1.

(d) Every prime of the form 4?i + 1 is expressible, and that 
in one way only, as the sum of two squares. This problem was 
ifirst solved by Euler, who shewed that a number of the form 
2wι(4z⅛ + 1) can be always expressed as the sum of two squares.

(e) If α, b, c, be integers, such that α2 + δ2 = c2, then ab 
cannot be a square. Lagrange gave a solution of this.

(/) The determination of a number x such that x2n + 1 may 
be a square, where n is a given integer which is not a square. 
Lagrange gave a solution of this.

(y) There is only one integral solution of the equation 
x2 + 2 = y3; and there are only two integral solutions of the 
equation x2 + 4 = y3. The required solutions are evidently for 
the first equation x = 5, and for the second equation x = 2 and 
x =11. This question was issued as a challenge to the English 
mathematicians Wallis and Digby.

(Λ) No integral values of x, y, z can be found to satisfy the 
equation xn + yn = zn, if n be an integer greater than 2. This 
proposition 1 has acquired extraordinary celebrity from the fact 
that no general demonstration of it has been given, but there 
is no reason to doubt that it is true.

Probably Fermat discovered its truth first for the case n = 3, 
and then for the caseπ = 4. His proof for the former of these 
cases is lost, but that for the latter is extant, and a similar 
proof for the case of n == 3 was given by Euler. These proofs 
depend upon shewing that, if three integral values of x, y, z can 
be found which satisfy the equation, then it will be possible to 
find three other and smaller integers which also satisfy it: in 
this way, finally, we shew that the equation must be satisfied by 
three values which obviously do not satisfy it. Thus no integral

1 On this curious proposition, see -my Mathematical Recreations, fourth 
edition, 1905, pp. 37-40.
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solution is possible. It would seem that this method is in
applicable to any cases except those of n = 3 and n = 4.

Fermat’s discovery of the general theorem was made later. 
A proof can be given on the assumption that a number can be 
resolved into the product of powers of primes in one and only 
one way. The assumption is true of real numbers, but it is 
not true when complex factors are admitted. For instance, 
10 can be expressed as the product of 3 + i and 3-z, or of 
3 + 2 and 3 - 1, or of 2, 2 + i, and 2 - i. It is possible that 
Fermat made some such erroneous supposition, but, on the 
whole, it seems more likely that he discovered a rigorous 
demonstration.

In 1823 Legendre obtained a proof for the case of n = o; 
in 1832 Lejeune Dirichlet gave one for n = 14, and in 1840 
Lame and Lebesgue gave proofs for π = 7. The proposition 
appears to be true universally, and in 1849 Kummer, by means 
of ideal primes, proved it to be so for all numbers except those 
(if any) which satisfy three conditions. It is not certain whether 
any number can be found to satisfy these conditions, but there 
is no number less than 6857 which does so. The general 
problem has also been discussed by Sophie Germain. I may 
add that, to prove the truth of the proposition, when n is 
greater than 4 obviously it is sufficient to confine ourselves to 
cases where n is a prime.

The following extracts, from a letter now in the university 
library at Leyden, will give an idea of Fermat’s methods; the 
letter is undated, but it would appear that, at the time Ferma: 
wrote it, he had proved the proposition (7⅛) above only for the 
case when n = 3.

Je ne m’en servis au commencement que pour demontrer les propo
sitions negatives, comme par exemple, qu’il n’y a aucu nombre moindre 
de l’unite qu’un multiple de 3 qui soit compose d’un quarre et du triple 
d’un autre quarre. Qu’il n’y a aucun triangle rectangle de nombres dom 
Γaire soit un nombre quarre. La preuve se fait par d7rα7ω7⅛1∕ -ττ↑v d∙ 
dδdvaτov en cette maniere. S’il y auoit aucun triangle rectangle eι 
nombres entiers, qui eust son aire esgale a un quarre, il y auroit ur 
autre triangle moindre que celuy la qui auroit la mesme propriete. S’i. 
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y en auoit un second moindre que le premier qui eust la mesme pro
priété il y en auroit par un pareil raisonnement un troisième moindre 
que ce second qui auroit la mesme propriété et enfin un quatrième, un 
cinquième etc. a l’infini en descendant. Or est il qu’estant donné un 
nombre il n’y en a point infinis en descendant moindres que celuy la, 
j’entens parler tousjours des nombres entiers. D’ou on conclud qu’il est 
donc impossible qu’il y ait aucun triangle rectangle dont l’aire soit 
quarré. Vide foliû post sequens....

Je fus longtemps sans pouuoir appliquer ma methode aux questions 
affirmatiues, parce que le tour et le biais pour y venir est beaucoup plus 
malaisé que celuy dont je me sers aux negatives. De sorte que lors qu’il 
me falut demonstrer que tout nombre premier qui surpasse de l’unité un 
multiple de 4, est composé de deux quarrez je me treuuay en belle peine. 
Mais enfin une meditation diverses fois reiterée me donna les lumières qui 
me manquoient. Et les questions affirmatiues passèrent par ma methode 
a l’ayde de quelques nouueaux principes qu’il y fallust joindre par 
nécessité. Ce progres de mon raisonnement en ces questions affirmatives 
estoit tel. Si un nombre premier pris a discretion qui surpasse de l’unité 
un multiple de 4 n’est point composé de deux quarrez il y aura un nombre 
premier de mesme nature moindre que le donné ; et ensuite un troisième 
encore moindre, etc. en descendant a l’infini jusques a ce que uous arriviez 
au nombre 5, qui est le moindre de tous ceux de cette nature, lequel il s’en 
suivroit n’estre pas composé de deux quarrez, ce qu’il est pourtant d’ou on 
doit inferer par la deduction a l’impossible que tous ceux de cette nature 
sont par consequent composez de 2 quarrez.

Il y a infinies questions de cette espece. Mais il y en a quelques 
autres qui demandent de nouveaux principes pour y appliquer la descente, 
et la recherche en est quelques fois si mal aisée, qu’on n’y peut venir 
qu’auec une peine extreme. Telle est la question suiuante que Bachet sur 
Diophante avoiie n’avoir jamais peu demonstrer, sur le snject de laquelle 
Mr. Descartes fait dans une de ses lettres la mesme declaration, jusques la 
qu’il confesse qu’il la juge si difficile, qu’il ne voit point de voye pour la 
résoudre. Tout nombre est quarré, ou composé de deux, de trois, ou de 
quatre quarrez. Je l’ay enfin rangée sous ma methode et je demonstre 
que si un nombre donné n’estoit point de cette nature il y en auroit un 
moindre qui ne le seroit pas non plus, puis un troisième moindre que le 
second &c. a l’infini, d’ou l’on infere que tous les nombres sont de cette 
nature....

J’ay ensuite considéré certaines questions qui bien que negatives ne 
restent pas de receuoir tres-grande difficulté, la methode pour y pratiquer 
la descente estant tout a fait diuerse des precedentes comme il sera aisé 
d’esprouuer. Telles sont les suiuantes. Il n’y a aucun cube diuisible en 
deux cubes. Il n’y a qu’un seul quarré en entiers qui augmenté du binaire
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fasse un cube, ledit quarré est 25. Il n’y a que deux quarrez en entiers 
lesquels augmentés de 4 fassent cube, lesdits quarrez sont 4 et 121....

Apres auoir couru toutes ces questions la plupart de diuerses (sic) nature 
et de differente façon de demonstrer, j’ay passé a l’inuention des regies 
generales pour résoudre les equations simples et doubles de Diophante. 
On propose par exemple 2 quarr.+7957 esgaux a un quarré (hoc est 
2xx + 7967<=<= quadr.) J’ay une regle generale pour résoudre cette equation 
si elle est possible, ou découvrir son impossibilité. Et ainsi en tous les cas et 
en tous nombres tant des quarrez que des unitez. On propose cette 
equation double 2x + 3 et Sx + 5 esgaux chaucon a un quarré. Bachet se 
glorifie en ses commentaires sur Diophante d’auoir trouvé une regle en deux 
cas particuliers. Je la donne generale en toute sorte de cas. Et determine 
par regle si elle est possible ou non....

Voila sommairement le conte de mes recherches sur le suject des 
nombres. Je ne l’ay escrit que parce que j’apprehende que le loisir 
d’estendre et de mettre au long toutes ces demonstrations et ces methodes 
me manquera. En tout cas cette indication seruira aux sçauants pour 
trouver d’eux mesmes ce que je n’estens point, principalement si Mr. de 
Carcaui et Frenicle leur font part de quelques demonstrations par la 
descente que je leur ay enuoyees sur le suject de quelques propositions 
negatiues. Et peut estre la postérité me scaura gré de luy avoir fait 
connoistre que les anciens n’ont pas tout sceu, et cette relation pourra 
passer dans l’esprit de ceux qui viendront apres moy pour traditio 
lampadis ad filios, comme parle le grand Chancelier d’Angleterre, suiuant 
le sentiment et la deuise duquel j’adjousteray, multi pertransibunt et 
augebitur scientia.

(ii) I next proceed to mention Fermat’s ∙use in geometry oj 
analysis and of infinitesimals. It would seem from his corre
spondence that he had thought out the principles of analytical 
geometry for himself before reading Descartes’s Géométrie, and 
had realised that from the equation, or, as he calls it, the 
“ specific property,” of a curve all its properties could be 
deduced. His extant papers on geometry deal, however, mainly 
with the application of infinitesimals to the determination of the 
tangents to curves, to the quadrature of curves, and to questions 
of maxima and minima ; probably these papers are a revision of 
his original manuscripts (which he destroyed), and were written 
about 1663, but there is no doubt that he was in possession of 
the general idea of his method for finding maxima and minima 
as early as 1628 or 1629.
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He obtained the subtangent to the ellipse, cycloid, cissoid, 
conchoid, and quadratrix by making the ordinates of the curve 
and a straight line the same for tλvo points whose abscissae were 
x and x - e ; but there is nothing to indicate that he was aware 
that the process was general, and, though in the course of his 
work he used the principle, it is probable that he never separated 
it, so to speak, from the symbols of the particular problem he 
was considering. The first definite statement of the method was 
due to Barrow,1 and was published in 1669.

Fermat also obtained the areas of parabolas and hyperbolas 
of any order, and determined the centres of mass of a few simple 
laminae and of a paraboloid of revolution. As an example of 
his method of solving these questions I will quote his solution of 
the problem to find the area between the parabola y3 =px2, the 
axis of x, and the line x = a. He says that, if the several ordin
ates at the points for which x is equal to a, α(l - e), α(l - e)2,∙∙. 
be drawn, then the area will be split into a number of little 
rectangles whose areas are respectively

The sum of these is ; and by a subsidi
ary proposition (for he was not acquainted with the binomial 
theorem) he finds the limit of this, when e vanishes, to be

The theorems last mentioned were published only
after his death; and probably they were not written till after he 
had read the works of Cavalieri and Wallis.

Kepler had remarked that the values of a function immedi
ately adjacent to and on either side of a maximum (or minimum) 
value must be equal. Fermat applied this principle to a few 
examples. Thus, to find the maximum value of x(a-x), 
his method is essentially equivalent to taking a consecutive 
value of x, namely x - e where e is very small, and putting 
x(a - x) = (x - e) (a - x + e). Simplifying, and ultimately putting 
e = 0, we get x = ⅛a. This value of x makes the given expression 
a maximum.

1 See below, pp. 311-12-
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(iii) Fermat must share with Pascal the honour of having 
founded the theory of probabilities. I have already mentioned 
the problem proposed to Pascal, and which he communicated 
to Fermat, and have there given Pascal’s solution. Fermat’s 
solution depends on the theory of combinations, and will be 
sufficiently illustrated by the following example, the substance 
of which is taken from a letter dated August 24, 1654, which 
occurs in the correspondence with Pascal. Fermat discusses the 
case of two players, A and B, where A wants two points to win 
and B three points. Then the game will be certainly decided 
in the course of four trials. Take the letters a and b, and write 
down all the combinations that can be formed of four letters. 
These combinations are 16 in number, namely, aaaa, aaab, aaba, 
aabb; abaa, abab, abba, abbb; baaa, baab, baba, babb; bbaa, 
bbab, bbba, bbbb. Now every combination in which a occurs 
twice or oftener represents a case favourable to A, and every 
combination in which b occurs three times or oftener represents 
a case favourable to B. Thus, on counting them, it will be 
found that there are 11 cases favourable to A, and 5 cases 
favourable to B; and, since these cases are all equally likely, A’s 
chance of wanning the game is to B’s chance as 11 is to 5.

The only other problem on this subject which, as far as I 
know, attracted the attention of Fermat was also proposed to 
him by Pascal, and was as follows. A person undertakes to 
throw a six with a die in eight throws ; supposing him to have 
made three throws without success, what portion of the stake 
should he be allowed to take on condition of giving up his 
fourth throw? Fermat’s reasoning is as follows. The chance 
of success is 1 /6, so that he should be allowed to take 1 /6 of the 
stake on condition of giving up his throw. But, if we wish to 
estimate the value of the fourth throw before any throw is 
made, then the first throw is worth 1/6 of the stake; the second 
is worth 1/6 of what remains, that is, 5/36 of the stake; the 
third throw is worth 1/6 of what now remains, that is, 25/216 
of the stake ; the fourth throw is worth 1 /6 of what now remains, 
that is, 125/1296 of the stake.
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Fermat does not seem to have carried the matter much 
further, but his correspondence with Pascal shows that his views 
on the fundamental principles of the subject were accurate : 
those of Pascal were not altogether correct.

Fermat’s reputation is quite unique in the history of science. 
The problems on numbers which he had proposed long defied 
all efforts to solve them, and many of them yielded only to the 
skill of Euler. One still remains unsolved. This extraordinary 
achievement has overshadowed his other work, but in fact it is 
all of the highest order of excellence, and we can only regret 
that he thought fit to write so little.

Huygens.1 Christian Huygens was born at the Hague on 
April 14, 1629, and died in the same town on June 8, 1695. 
He generally wrote his name as Hugens, but I follow the usual 
custom in spelling it as above : it is also sometimes written as 
Huyghens. His life was uneventful, and there is little more 
to record in it than a statement of his various memoirs and 
researches.

In 1651 he published an essay in which he shewed the 
fallacy in a system of quadratures proposed by Gregoire de 
Saint-Vincent, who was well versed in the geometry of the 
Greeks, but had not grasped the essential points in the more 
modern methods. This essay was followed by tracts on the 
quadrature of the conics and the approximate rectification of 
the circle.

In 1654 his attention was directed to the improvement of the 
telescope. In conjunction with his brother he devised a new 
and better way of grinding and polishing lenses. As a result 
of these improvements he was able during the following two 
years, 1655 and 1656, to resolve numerous astronomical ques
tions ; as, for example, the nature of Saturn’s appendage. His 
astronomical observations required some exact means of measuring

1 A new edition of all Huygens’s works and correspondence was issued at 
the Hague in ten volumes, 1888-1905. An earlier edition of his works was 
published in six volumes, four at Leyden in 1724, and two at Amsterdam 
in 1728 (a life by s’Gravesande is prefixed to the first volume): his scientific 
correspondence was published at the Hague in 1833.
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time, and he was thus led in 1656 to invent the pendulum clock, 
as described in his tract Horologium, 1658. The time-pieces 
previously in use had been balance-clocks.

In the year 1657 Huygens wrote a small work on the calculus 
of probabilities founded on the correspondence of Pascal and 
Fermat. He spent a couple of years in England about this 
time. His reputation was now so great that in 1665 Louis 
XIV. offered him a pension if he would live in Paris, which 
accordingly then became his place of residence.

In 1668 he sent to the Royal Society of London, in answer 
to a problem they had proposed, a memoir in which (simul
taneously with Wallis and Wren) he proved by experiment that 
the momentum in a certain direction before the collision of two 
bodies is equal to the momentum in that direction after the 
collision. This was one of the points in mechanics on which 
Descartes had been mistaken.

The most important of Huygens’s work was his Horologium 
Oscillatorium published at Paris in 1673. The first chapter is 
devoted to pendulum clocks. The second chapter contains a 
complete account of the descent of heavy bodies under their own 
weights in a vacuum, either vertically down or on smooth curves. 
Amongst other propositions he shews that the cycloid is tauto- 
chronous. In the third chapter he defines evolutes and 
involutes, proves some of their more elementary properties, and 
illustrates his methods by finding the evolutes of the cycloid 
and the parabola. These are the earliest instances in which the 
envelope of a moving line was determined. In the fourth 
chapter he solves the problem of the compound pendulum, and 
shews that the centres of oscillation and suspension are inter
changeable. In the fifth and last chapter he discusses again 
the theory of clocks, points out that if the bob of the pendulum 
were, by means of cycloidal checks, made to oscillate in a cycloid 
the oscillations would be isochronous; and finishes by shewing 
that the centrifugal force on a body which moves round a circle 
of radius r with a uniform velocity v varies directly as v2 
and inversely as r. This work contains the first attempt to
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apply dynamics to bodies of finite size and not merely to 
particles.

In 1675 Huygens proposed to regulate the motion of watches 
by the use of the balance spring, in the theory of which he had 
been perhaps anticipated in a somewhat ambiguous and incom
plete statement made by Hooke in 1658. Watches or portable 
clocks had been invented early in the sixteenth century, and by 
the end of that century were not very uncommon, but they were 
clumsy and unreliable, being driven by a main spring and 
regulated by a conical pulley and verge escapement; moreover, 
until 1687 they had only one hand. The first watch whose 
motion was regulated by a balance spring was made at Paris 
under Huygens’s directions, and presented by him to Louis XIV.

The increasing intolerance of the Catholics led to his return 
to Holland in 1681, and after the revocation of the edict of 
Nantes he refused to hold any further communication with 
France. He now devoted himself to the construction of lenses 
of enormous focal length: of these three of focal lengths 123 
feet, 180 feet, and 210 feet, were subsequently given by him to 
the Royal Society of London, in whose possession they still 
remain. It was about this time that he discovered the achro
matic eye-piece (for a telescope) which is known by his name. 
In 1689 he came from Holland to England in order to make 
the acquaintance of Newton, whose Principia had been published 
in 1687. Huygens fully recognized the intellectual merits of 
the work, but seems to have deemed any theory incomplete 
which did not explain gravitation by mechanical means.

On his return in 1690 Huygens published his treatise on 
light in which the undulatory theory was expounded and 
explained. Most of this had been written as early as 1678. . 
The general idea of the theory had been suggested by Robert 
Hooke in 1664, but he had not investigated its consequences 
in any detail. Only three ways have been suggested in which 
light can be produced mechanically. Either the eye may be 
supposed to send out something which, so to speak, feels the 
object (as the Greeks believed); or the object perceived may
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send out something which hits or affects the eye (as assumed im 
the emission theory); or there may be some medium betweem 
the eye and the object, and the object may cause some change 
in the form or condition of this intervening medium and thu;s 
affect the eye (as Hooke and Huygens supposed in the wave o>r 
undulatory theory. According to this last theory space is filled 
with an extremely rare ether, and light is caused by a series o»f 
waves or vibrations in this ether which are set in motion by th e 
pulsations of the luminous body. From this hypothesis Huygen s 
deduced the laws of reflexion and refraction, explained the 
phenomena of double refraction, and gave a construction fo∙r 
the extraordinary ray in biaxal crystals; while he found by 
experiment the chief phenomena of polarization.

The immense reputation and unrivalled powers of Newton 
led to disbelief in a theory which he rejected, and to the general 
adoption of Newton’s emission theory. Within the present 
century crucial experiments have been devised which give differ
ent results according as one or the other theory is adopted ; all 
these experiments agree with the results of the undulatory theory 
and differ from the results of the Newtonian theory; the latter 
is therefore untenable. Until, however, the theory of interfer
ence, suggested by Young, was worked out by Fresnel, the 
hypothesis of Huygens failed to account for all the facts, and 
even now the properties which, under it, have to be attributed 
to the intervening medium or ether involve difficulties of which 
we still seek a solution. Hence the problem as to how the 
effects of light are really produced cannot be said to be finally 
solved.

Besides these works Huygens took part in most of the con- 
. troversies and challenges which then played so large a part in 

the mathematical world, and wrote several minor tracts. In one 
of these he investigated the form and properties of the catenary. 
In another he stated in general terms the rule for finding maxima 
and minima of which Fermat had made use, and shewed that 
the subtangent of an algebraical curve f(x, y) = 0 was equal to 
yfy[fx, where fy is the derived function of /(.r, y) regarded as a
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function of y. In some posthumous works, issued at Leyden in 
1703, he further shewed how from the focal lengths of the 
component lenses the magnifying power of a telescope could be 
determined; and explained some of the phenomena connected 
with haloes and parhelia.

I should add that almost all his demonstrations, like those 
of Newton, are rigidly geometrical, and he would seem to have 
made no use of the differential or fluxional calculus, though he 
admitted the validity of the methods used therein. Thus, even 
when first written, his works were expressed in an archaic 
language, and perhaps received less attention than their intrinsic 
merits deserved.

I have now traced the development of mathematics for a 
period which we may take roughly as dating from 1635 to 1675, 
under the influence of Descartes, Cavalieri, Pascal, Wallis, Fer
mat, and Huygens. The life of Newton partly overlaps this 
period; his works and influence are considered in the next 
chapter.

I may dismiss the remaining mathematicians of this time1 
with comparatively slight notice. The most eminent of them 
are Bachet, Barrow, Brouncker, Collins, De la Hire, de La- 
loubere, Frenicle, James Gregory, Hooke, Hudde, Nicholas Mer
cator, Mersenne, Pell, Roberval, Roemer, Rolle, Saint-Vincent, 
Sime, Torricelli, Tschirnhausen, van Schooten, Viviani, and 
Wren. In the following notes I have arranged the above- 
mentioned mathematicians so that as far as possible their chief 
contributions shall come in chronological order.

Bachet. Claude Gaspard Bachet de Meziriac was born at 
Bourg in 1581, and died in 1638. He wrote the Problemes 
plaisants, of which the first edition was issued in 1612, a 
second and enlarged edition was brought out in 1624; this 
contains an interesting collection of arithmetical tricks and 
questions, many of which are quoted in my Mathematical Recrea
tions and Essays. He also wrote Les elements arithmetiques,

1 Notes on several of these mathematicians will be found in C. Hutton’s 
Mathematical Dictionary and Tracts, 5 volumes, London, 1812-1815.

X
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which exists in manuscript; and a translation of the Arithmetic 
of Diophantus. Bachet was the earliest writer who discussed 
the solution of indeterminate equations by means of continued 
fractions.

Mersenne. Marin Mersenne, born in 1588 and died at Paris 
in 1648, was a Franciscan friar, who made it his business to be 
acquainted and correspond with the French mathematicians of 
that date and many of their foreign contemporaries. In 1634 
he published a translation of Galileo’s mechanics; in 1644 he 
issued his Cogitata Physico-Mathematica, by which he is best 
known, containing an account of some experiments in physics; 
he also wrote a synopsis of mathematics, which was printed in 
1664.

The preface to the Cogitata contains a statement (possibly 
due to Fermat) that, in order that 2p - 1 may be prime, the 
only values of p, not greater than 257, which are possible are 
1, 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257; the number 67 
is probably a misprint for 61. With this correction the state
ment appears to be true, and it has been verified for all except 
twenty-one values of p, namely, 71, 89, 101, 103, 107, 109, 127, 
137, 139, 149, 157, 163, 167, 173, 181, 193, 199, 227, 229, 241, 
and 257. Of these values, Mersenne asserted that p = 127 and 
p = 257 make 2p - 1 a prime, and that the other nineteen values 
make 2P — 1 a composite number. It has been asserted that 
the statement has been verified when∕> = 89 and 127, but these 
verifications rest on long numerical calculations made by single 
computators and not published; until these demonstrations 
have been confirmed we may say that twenty-one cases still 
await verification or require further investigation. The factors 
of 2p - 1 when p = 89 are not known, the calculation merely 
shewing that the number could not be prime. It is most likely 
that these results are particular cases of some general theorem 
on the subject which remains to be discovered.1

The theory of perfect numbers depends directly on that of
1 Ou this curious proposition, see my Mathematical Recreations, fourth 

edition, 1905, chap. ix.
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Mersenne’s numbers. It is probable that all perfect numbers 
are included in the formula 2?~ 1(2τ, - 1), where 2P - 1 is a 
prime. Euclid proved that any number of this form is 
perfect; Euler shewed that the formula includes all even 
perfect numbers; and there is reason to believe—though a 
rigid demonstration is wanting—that an odd number cannot 
be perfect. If we assume that the last of these statements is 
true, then every perfect number is of the above form. Thus, 
if p = 2, 3, 5, 7, 13, 17, 19, 31, 61, then, by Mersenne’s rule, 
the corresponding values of 2? - 1 are prime; they are 3, 7, 31, 
127,8191,131071,524287,2147483647,2305843009213693951; 
and the corresponding perfect numbers are 6, 28, 496, 8128, 
33550336, 8589869056,137438691328, 2305843008139952128, 
and 2658455991569831744654692615953842176.

Roherval.1 Gilles Persσnier (de) Roberval, born at Roberval 
in 1602 and died at Paris in 1675, described himself from the 
place of his birth as de Roberval, a seigniorial title to which he 
had no right. He discussed the nature of the tangents to 
curves, solved some of the easier questions connected with the 
cycloid, generalized Archimedes’s theorems on the spiral, wrote 
on mechanics, and on the method of indivisibles, which he rendered 
more precise and logical. He was a professor in the university 
of Paris, and in correspondence with nearly all the leading 
mathematicians of his time.

Van Schooten. Frans van Schooten, to whom we owe an 
edition of Vieta’s works, succeeded his father (who had taught 
mathematics to Huygens, Hudde, and Sluze) as professor at 
Leyden in 1646. He brought out in 1659 a Latin translation of 
Descartes’s Geometrie, and in 1657 a collection of mathematical 
exercises in which he recommended the use of co-ordinates in 
space of three dimensions. He died in 1661.

Saint-Vincent.2 Gregoire de Saint-Vincent, a Jesuit, born 
at Bruges in 1584 and died at Ghent in 1667, discovered the

1 A complete edition of his works was included in the old Memoires of the 
Academy of Sciences published in 1693.

2 See L. A. J. Quetelet’s Histoire des sciences chez les Beiges, Brussels, 
1866.
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expansion of log (1 +a?) in ascending powers of x. Although a 
circle-squarer he is worthy of mention for the numerous theorems 
of interest which he discovered in his search after the impossible, 
and Montucla ingeniously remarks that “ no one ever squared 
the circle with so much ability or (except for his principal object) 
with so much success.” He wrote two books on the subject, one 
published in 1647 and the other in 1668, which cover some two 
or three thousand closely printed pages; the fallacy in the quad
rature was pointed out by Huygens. In the former work he 
used indivisibles. An earlier work entitled Theoremata Mathe- 
matica, published in 1624, contains a clear account of the method 
of exhaustions, which is applied to several quadratures, notably 
that of the hyperbola.

Torricelli.1 Evangelista Torricelli, born at Faenza on 
Oct. 15, 1608, and died at Florence in 1647, wrote on the 
quadrature of the cycloid and conics; the rectification of the 
logarithmic spiral; the theory of the barometer; the value of 
gravity found by observing the motion of two weights connected 
by a string passing over a fixed pulley ; the theory of projectiles ; 
and the motion of fluids.

Hudde. Johann Hudde, burgomaster of Amsterdam, was 
born there in 1633, and died in the same town in 1704. He 
wrote two tracts in 1659 : one was on the reduction of equations 
which have equal roots; in the other he stated what is equiva
lent to the proposition that if fix, y) = 0 be the algebraical

equation of a curve, then the subtangent is but being

ignorant of the notation of the calculus his enunciation is 
involved.

Frónicle.2 Bernard Frenicle de Bessy, born in Paris circ. 
1605 and died in 1670, wrote numerous papers on combinations 
and on the theory of numbers, also on magic squares. It may

1 Torricelli’s mathematical writings were published at Florence in 1644, 
under the title Opera Geometrica ; see also a memoir by G. Loria, Bibliotheca 
matlιematica, series 3, vol. i, pp. 75-89, Leipzig, 1900.

2 Frenicle,s miscellaneous works, edited by De la Hire, were published in 
the Memoires de VAcademie, vol. v, 1691.
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be interesting to add that he challenged Huygens to solve the 
following system of equations in integers, x2 + y2 — z2, x2 = u2 + v2, 
x - y = u- v. A solution was given by M. Pepin in 1880.

De Laloubere. Antoine de Laloubere, a Jesuit, born in 
Languedoc in 1600 and died at Toulouse in 1664, is chiefly 
celebrated for an incorrect solution of Pascal’s problems on 
the cycloid, which he gave in 1660, but he has a better claim 
to distinction in having been the first mathematician to study 
the properties of the helix.

N. Mercator. Nicholas Mercator (sometimes known as 
Kauffmann) was born in Holstein about 1620, but resided most 
of his life in England. He went to France in 1683, where he 
designed and constructed the fountains at Versailles, but the 
payment agreed on was refused unless he would turn Catholic; 
he died of vexation and poverty in Paris in 1687. He wrote a 
treatise on logarithms entitled Logarithmo-technica, published in 
1668, and discovered the series

he proved this by writing the equation of a hyperbola in the form

to which Wallis’s method of quadrature could be applied. The 
name series had been independently discovered by Saint-Vincent.

Barrow.1 Isaac Barrow was born in London in 1630, 
ιnd died at Cambridge in 1677. He went to school first at 
Jharterhouse (where he was so troublesome that his father was 
ιeard to pray that if it pleased God to take any of his children 
ιe could best spare Isaac), and subsequently to Felstead. He 
completed his education at Trinity College, Cambridge ; after 
∙,aking his degree in 1648, he was elected to a fellowship in 
1649; he then resided for a few years in college, but in 1655 he 
ivas driven out by the persecution of the Independents. He 
(pent the next four years in the East of Europe, and after many

1 Barrow’s mathematical works, edited by W. Whewell, were issued at 
Jambridge in 1860.
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adventures returned to England in 1659. He was ordained 
the next year, and appointed to the professorship of Greek at 
Cambridge. In 1662 he was made professor of geometry at 
Gresham College, and in 1663 was selected as the first occupier 
of the Lucasian chair at Cambridge. He resigned the latter 
to his pupil Newton in 1669, whose superior abilities he recog
nized and frankly acknowledged. For the remainder of his 
life he devoted himself to the study of divinity. He was 
appointed master of Trinity College in 1672, and held the post 
until his death.

He is described as “ low in stature, lean, and of a pale com
plexion,” slovenly in his dress, and an inveterate smoker. He 
was noted for his strength and courage, and once when travelling 
in the East he saved the ship by his own prowess from capture 
by pirates. A ready and caustic wit made him a favourite of 
Charles II., and induced the courtiers to respect even if they 
did not appreciate him. He wrote with a sustained and 
somewhat stately eloquence, and with his blameless life and 
scrupulous conscientiousness was an impressive personage of 
the time.

His earliest work was a complete edition of the Elements 
of Euclid, which he issued in Latin in 1655, and in English 
in 1660; in 1657 he published an edition of the Data. His 
lectures, delivered in 1664, 1665, and 1666, were published in 
1683 under the title Lectiones Mathematicae; these are mostly 
on the metaphysical basis for mathematical truths. His 
lectures for 1667 were published in the same year, and suggest 
the analysis by which Archimedes was led to his chief results. 
In 1669 he issued his Lectiones Opticae et Geometricae. It is 
said in the preface that Newton revised and corrected these 
lectures, adding matter of his own, but it seems probable from 
Newton’s remarks in the fluxional controversy that the additions 
were confined to the parts which dealt with optics. This, which 
is his most important work in mathematics, was republished 
with a few minor alterations in 1674. In 1675 he published an 
edition with numerous comments of the first four books of the 
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Conics of Apollonius, and of the extant works of Archimedes 
and Theodosius.

In the optical lectures many problems connected with the 
reflexion and refraction of light are treated with ingenuity. 
The geometrical focus of a point seen by reflexion or refraction 
is defined; and it is explained that the image of an object is 
the locus of the geometrical foci of every point on it. Barrow 
also worked out a few of the easier properties of thin lenses, 
and considerably simplified the Cartesian explanation of the 
rainbow.

The geometrical lectures contain some new ways of deter
mining the areas and tangents of curves. The most celebrated 
of these is the method given for the determination of tangents 
to curves, and this is sufficiently important to require a detailed 
notice, because it illustrates the way in which Barrow, Hudde, 
and Sluze were working on the lines suggested by Fermat 
towards the methods of the differential calculus. Fermat had 
observed that the tangent at a point P on a curve was deter
mined if one other point besides P on it were known; hence, 
if the length of the subtangent MT could be found (thus

determining the point T), then the line TP would be the 
required tangent. Now Barrow remarked that if the abscissa 
and ordinate at a point Q adjacent to P were drawn, he got a 
small triangle PQR (which he called the differential triangle, 
because its sides PR and PQ were the differences of the 
abscissae and ordinates of P and Q), so that
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TM.MP = QR-.RP.

To find QR : RP he supposed that x, y were the co-ordinates of
P, and x - e, y -a those of Q (Barrow actually used p for x and 
m for y, but I alter these to agree with the modern practice). 
Substituting the co-ordinates of Q in the equation of the curve, 
and neglecting the squares and higher powers of e and a as 
compared with their first powers, he obtained e : a. The ratio 
α∕e was subsequently (in accordance with a suggestion made 
by Sluze) termed the angular coefficient of the tangent at 
the point.

Barrow applied this method to the curves (i) x2(x2 + y2) = r2y2 ; 
(ii) x3 + yi = r3 ; (iii) x3 + yi = rxy, called la galande ; (iv) 
y = (r - x') tan πx∣2r, the quadratrix ∙, and (v) y = r tan πx∣2r. It 
will be sufficient here if I take as an illustration the simpler 
case of the parabola y2=px. Using the notation given 
above, we have for the point P, y3-px', and for the point
Q, (y - α)2 -p(x - e). Subtracting we get 2ay - a2 =pe. But, 
if a be an infinitesimal quantity, a2 must be infinitely smaller 
and therefore may be neglected when compared with the 
quantities 2ay and pe. Hence 2ay=pe, that is, e∙.a≈2y∙.p. 
Therefore TM : y = e : a = 2y : p. Hence TM = 2y2∣p = 2x. 
This is exactly the procedure of the differential calculus, 
except that there we have a rule by which we can get the ratio 
a[e or dy∣dx directly without the labour of going through a 
calculation similar to the above for every separate case.

Brouncker. William, Viscount Brouncker, one of the 
founders of the Royal Society of London, born about 1620, 
and died on April 5, 1684, was among the most brilliant 
mathematicians of this time, and was in intimate relations 
with Wallis, Fermat, and other leading mathematicians. I 
mentioned above his curious reproduction of Brahmagupta’s 
solution of a certain indeterminate equation. Brouncker proved 
that the area enclosed between the equilateral hyperbola xy = 1, 
the axis of x, and the ordinates x — 1 and x= 2, is equal 
either to

www.rcin.org.pl



ch.xv] BROUNCKER. JAMES GREGORY 313

or to

He also worked out other similar expressions for different 
areιs bounded by the hyberbola and straight lines. He wrote 
on the rectification of the parabola and of the cycloid.1 It is 
noticeable that he used infinite series to express quantities 
wh>se values he could not otherwise determine. In answer to 
a request of Wallis to attempt the quadrature of the circle he 
shewed that the ratio of the area of a circle to the area of the 
circumscribed square, that is, the ratio of π to 4, is equal to 
the ratio of

to 1. Continued fractions2 had been employed by Bombelli 
in 1572, and had been systematically used by Cataldi in his 
treatise on finding the square roots of numbers, published at 
Boogna in 1613. Their properties and theory were given by 
Htygens, 1703, and Euler, 1744.

James Gregory. James Gregory, born at Drumoak near 
Aberdeen in 1638, and died at Edinburgh in October 1675, was 
successively professor at St. Andrews and Edinburgh. In 1660 
he published his Optica Promota, in which the reflecting 
telescope known by his name is described. In 1667 he issued 
his Jrera Circuli et Hyperbolae Quadratura, in which he shewed 
hov the areas of the circle and hyperbola could be obtained in 
the form of infinite convergent series, and here (I believe for 
the first time) we find a distinction drawn between convergent 
and divergent series. This work contains a remarkable geo
metrical proposition to the effect that the ratio of the area of 
an; arbitrary sector of a circle to that of the inscribed or 
circumscribed regular polygons is not expressible by a finite

On these investigations, see his papers in the Philosophical Trans
actons, London, 1668, 1672,1673, and 1678.

! On the history of continued fractions, see papers by S. Giinther and 
A. Favaro in Boncompagni’s Bulletino di bibliografia, Rome, 1874, vol. vii, pp. 
21¾ 451, 533 ; and Cantor, vol. ii, pp. 622, 762, 766. Bombelli used them 
in 1572 ; but Cataldi introduced the usual notation for them.
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number of algebraical terms. Hence he inferred that the 
quadrature of a circle was impossible; this was accepted by 
Montucla, but it is not conclusive, for it is conceivable that 
some particular sector might be squared, and this particular 
sector might be the w,hole circle. This book contains also the 
earliest enunciation of the expansions in series of sin x, cos λ,, 
sin-1x or arc sin x, and cos-1# or arc cos x. It was reprinted 
in 1668 with an appendix, Geometriae Pars, in which Gregory 
explained how the volumes of solids of revolution could be 
determined. In 1671, or perhaps earlier, he established the 
theorem that

the result being true only if θ lie between - ∣π and ∣π. This 
is the theorem on which many of the subsequent calculations 
of approximations to the numeral value of τr have been based.

Wren. Sir Christopher Wren was born at Knoyle, Wilt
shire, on October 20, 1632, and died in London on February 
25, 1723. Wren’s reputation as a mathematician has been 
overshadowed by his fame as an architect, but he was Savilian 
professor of astronomy at Oxford from 1661 to 1673, and for 
some time president of the Royal Society. Together with 
Wallis and Huygens he investigated the laws of collision of 
bodies; he also discovered the two systems of generating lines 
on the hyperboloid of one sheet, though it is probable that 
he confined his attention to a hyperboloid of revolution.1 
Besides these he wrote papers on the resistance of fluids, and 
the motion of the pendulum. He was a friend of Newton 
and (like Huygens, Hooke, Halley, and others) had made 
attempts to shew that the force under which the planets move 
varies inversely as the square of the distance from the sun.

Wallis, Brouncker, Wren, and Boyle (the last-named being 
a chemist and physicist rather than a mathematician) were the 
leading philosophers who founded the Royal Society of London. 
The society arose from the self-styled “ indivisible college ” in

1 See the Philosophical Transactions London, 1669.
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London in 1645 ; most of its members moved to Oxford during 
the civil war, where Hooke, who was then an assistant in Boyle’s 
laboratory, joined in their meetings; the society was formally 
constituted in London in 1660, and was incorporated on July 
15, 1662. The French Academy was founded in 1666, and 
the Berlin Academy in 1700. The Accademia dei Lincei was 
founded in 1603, but was dissolved in 1630.

Hooke. Robert Hooke, born at Freshwater on July 18, 
1635, and died in London on March 3, 1703, was educated at 
Westminster, and Christ Church, Oxford, and in 1665 became 
professor of geometry at Gresham College, a post which he 
occupied till his death. He is still known by the law which 
he discovered, that the tension exerted by a stretched string 
is (within certain limits) proportional to the extension, or, in 
other words, that the stress is proportional to the strain. He 
invented and discussed the conical pendulum, and was the 
first to state explicitly that the motions of the heavenly bodies 
were merely dynamical problems. He was as jealous as he was 
vain and irritable, and accused both Newton and Huygens of 
unfairly appropriating his results. Like Huygens, Wren, and 
Halley, he made efforts to find the law of force under which the 
planets move about the sun, and he believed the law to be 
that of the inverse square of the distance. He, like Huygens, 
discovered that the small oscillations of a coiled spiral spring 
were practically isochronous, and was thus led to recommend 
(possibly in 1658) the use of the balance spring in watches. 
He had a watch of this kind made in London in 1675; it was 
finished just three months later than a similar one made in 
Paris under the directions of Huygens.

Collins. John Collins, born near Oxford on March 5, 
1625, and died in London on November 10, 1683, was a man 
of great natural ability, but of slight education. Being devoted 
to mathematics, he spent his spare time in correspondence with 
the leading mathematicians of the time, for whom he was 
always ready to do anything in his power, and he has been 
described—not inaptly—as the English Mersenne. To him
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we are indebted for much information on the details of the 
discoveries of the period.1

1 See the Commercium Epistolicum, and S. P. Rigaud’s Correspondence of 
Scientific Men of the Seventeenth Century, Oxford, 1841.

2 Some of his papers were published by Le Paige in vol. xvii of 
Boneompagni’s Bulletino di bibliografia, Rome, 1884.

Pell. Another mathematician who devoted a considerable 
part of his time to making known the discoveries of others, and 
to correspondence with leading mathematicians, was John Pell. 
Pell was born in Sussex on March 1, 1610, and died in London 
on December 10, 1685. He was educated at Trinity College, 
Cambridge; he occupied in succession the mathematical chairs 
at Amsterdam and Breda; he then entered the English diplo
matic service; but finally settled in 1661 in London, where he 
spent the last twenty years of his life. His chief works were 
an edition, with considerable new matter, of the Algebra by 
Branker and Rhonius, London, 1668; and a table of square 
numbers, London, 1672.

Sluze. Rene Franςois Walther de Sluze (Slτιsius), canon of 
Liege, born on July 7, 1622, and died on March 19, 1685, 
found for the subtangent of a curve f(x, y) = 0 an expression 

which is equivalent to — yg^/ g^-; he wrote numerous tracts,1 2 

and in particular discussed at some length spirals and points of 
inflexion.

Viviani. Vincenzo Viviani, a pupil of Galileo and Torricelli, 
born at Florence on April 5, 1622, and died there on September 
22, 1703, brought out in 1659 a restoration of the lost book of 
Apollonius on conic sections, and in 1701 a restoration of the 
work of Aristaeus. He explained in 1677 how an angle could 
be trisected by the aid of the equilateral hyperbola or the 
conchoid. In 1692 he proposed the problem to construct four 
windows in a hemispherical vault so that the remainder of the 
surface can be accurately determined; a celebrated problem, of 
which analytical solutions were given by Wallis, Leibnitz, David 
Gregory, and James Bernoulli.
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Tschirnhausen. Ehrenfried Walther von Tschirnhausen was 
born at Kislingswalde on April 10, 1631, and died at Dresden 
on October 11, 1708. In 1682 he worked out the theory of 
caustics by reflexion, or, as they were usually called, catacaustics, 
and shewed that they were rectifiable. This was the second 
case in which the envelope of a moving line was determined. 
He constructed burning mirrors of great power. The trans
formation by which he removed certain intermediate terms from 
a given algebraical equation is well known ; it was published in 
the Acta Eruditorum for 1683.

De la Hire. Philippe De la Hire (or Lahire), born in Paris 
on March 18, 1640, and died there on April 21, 1719, wrote on 
graphical methods, 1673; on the conic sections, 1685 ; a treatise 
on epicycloids, 1694 ; one on roulettes, 1702; and, lastly, 
another on conchoids, 1708. His works on conic sections and 
epicycloids were founded on the teaching of Desargues, whose 
favourite pupil he was. He also translated the essay of 
Moschopulus on magic squares, and collected many of the 
theorems on them which were previously known; this was 
published in 1705.

Roemer. Olof Roemer, born at Aarhuus on September 25, 
1644, and died at Copenhagen on September 19, 1710, was the 
first to measure the velocity of light; this was done in 1675 by 
means of the eclipses of Jupiter’s satellites. He brought the 
transit and mural circle into common use, the altazimuth having 
been previously generally employed, and it was on his recom
mendation that astronomical observations of stars were subse
quently made in general on the meridian. He was also the first 
to introduce micrometers and reading microscopes into an obser
vatory. He also deduced from the properties of epicycloids the 
form of the teeth in toothed-wheels best fitted to secure a uniform 
motion.

Rolle. Michel Rolle, born at Ambert on April 21, 1652, 
and died in Paris on November 8, 1719, wrote an algebra in 
1689, which contains the theorem on the position of the roots 
of an equation which is known by his name. He published in

www.rcin.org.pl



318 HISTORY OF MATHEMATICS [ch. xv

1696 a treatise on the solutions of equations, whether deter
minate or indeterminate, and he produced several other minor 
works. He taught that the differential calculus, which, as we 
shall see later, had been introduced towards the close of the 
seventeenth century, was nothing but a collection of ingenious 
fallacies.
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CHAPTER XVI.

THE LIFE AND WORKS OF NEWTON.1

The mathematicians considered in the last chapter commenced 
the creation of those processes which distinguish modern mathe
matics. The extraordinary abilities of Newton enabled him 
within a few years to perfect the more elementary of those 
processes, and to distinctly advance every branch of mathe
matical science then studied, as well as to create some new 
subjects. Newton was the contemporary and friend of Wallis, 
Huygens, and others of those mentioned in the last chapter, but 
though most of his mathematical work was done between the 
years 1665 and 1686, the bulk of it was not printed—at any 
rate in book-form—till some years later.

I propose to discuss the works of Newton more fully than 
those of other mathematicians, partly because of the intrinsic 
importance of his discoveries, and partly because this book is 
mainly intended for English readers, and the development of 
mathematics in Great Britain was for a century entirely in the 
hands of the Newtonian school.

1 Newton’s life and works are discussed in The Memoirs of Newton, by D. 
Brewster, 2 volumes, Edinburgh, second edition, 1860. An edition of most 
of Newton’s works was published by S. Horsley in 5 volumes, London, 1779- 
1785 ; and a bibliography of them was issued by G. J. Gray, Cambridge, 
second edition, 1907 ; see also the catalogue of the Portsmouth Collection of 
Newton’s papers, Cambridge, 1888. My Essay on the Genesis, Contents, and 
History of Newton's Principia, London, 1893, may be also consulted.
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Isaac Nezvton was born in Lincolnshire, near Grantham, o∣n 
December 25, 1642, and died at Kensington, London, on Marc h 
20, 1727. He was educated at Trinity College, Cambridge, anal 
lived there from 1661 till 1696, during which time he produce∣d 
the bulk of his work in mathematics; in 1696 he was appointe∣d 
to a valuable Government office, and moved to London, where 
he resided till his death.

His father, who had died shortly before Newton was bom, 
was a yeoman farmer, and it was intended that Neλvton should 
carry on the paternal farm. He was sent to school at Grantham, 
where his learning and mechanical proficiency excited some 
attention. In 1656 he returned home to learn the business of a 
farmer, but spent most of his time solving problems, making 
experiments, or devising mechanical models ; his mother noticing 
this, sensibly resolved to find some more congenial occupation 
for him, and his uncle, having been himself educated at Trinity 
College, Cambridge, recommended that he should be sent there.

In 1661 Newton accordingly entered as a student at Cam
bridge, where for the first time he found himself among 
surroundings which were likely to develop his powers. He 
seems, however, to have had but little interest for general society 
or for any pursuits save science and mathematics. Luckily he 
kept a diary, and we can thus form a fair idea of the course of 
education of the most advanced students at an English univer
sity at that time. He had not read any mathematics before 
coming into residence, but was acquainted with Sanderson’s 
Logic, which was then frequently read as preliminary to mathe
matics. At the beginning of his first October term he happened 
to stroll down to Stourbridge Fair, and there picked up a book 
on astrology, but could not understand it on account of the 
geometry and trigonometry. He therefore bought a Euclid, and 
was surprised to find how obvious the propositions seemed. He 
thereupon read Oughtred’s Claris and Descartes’s Geometrie, the 
latter of which he managed to master by himself, though with 
some difficulty. The interest he felt in the subject led him to 
take up mathematics rather than chemistry as a serious study.
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His subsequent mathematical reading as an undergraduate was 
Hounded on Kepler’s Optics, the works of Vieta, van Schooten’s 
Miscellanies, Descartes’s Geometrie, and Wallis’s Arithmetica 
Infinitorum : he also attended Barrow’s lectures. At a later 
time, on reading Euclid more carefully, he formed a high 
<opinion of it as an instrument of education, and he used to 
∣express his regret that he had not applied himself to geometry 
before proceeding to algebraic analysis.

There is a manuscript of his, dated May 28, 1665, written in 
the same year as that in which he took his B.A. degree, which 
is the earliest documentary proof of his invention of fluxions. 
It was about the same time that he discovered the binomial 
theorem.1

On account of the plague the college was sent down during 
parts of the year 1665 and 1666, and for several months at this 
time Newton lived at home. This period was crowded with 
brilliant discoveries. He thought out the fundamental prin
ciples of his theory of gravitation, namely, that every particle of 
matter attracts every other particle, and he suspected that the 
attraction varied as the product of their masses and inversely as 
the square of the distance between them. He also worked out 
the fluxional calculus tolerably completely : thus in a manuscript 
dated November 13, 1665, he used fluxions to find the tangent 
and the radius of curvature at any point on a curve, and in 
October 1666 he applied them to several problems in the theory 
of equations. Newton communicated these results to his friends 
and pupils from and after 1669, but they were not published in 
print till many years later. It was also whilst staying at home 
at this time that he devised some instruments for grinding 
lenses to particular forms other than spherical, and perhaps he 
decomposed solar light into different colours.

Leaving out details and taking round numbers only, his 
reasoning at this time on the theory of gravitation seems to 
have been as follows. He suspected that the force which 
retained the moon in its orbit about the earth was the same as

1 See below, pp. 327, 341.
Y 
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terrestrial gravity, and to verify this hypothesis he proceeded 
thus. He knew that, if a stone were allowed to fall near tlhe 
surface of the earth, the attraction of the earth (that is, the 
weight of the stone) caused it to move through 16 feet in 
one second. The moon’s orbit relative to the earth is nearly 
a circle; and as a rough approximation, taking it to be so, he 
knew the distance of the moon, and therefore the length of its 
path; he also knew the time the moon took to go once round 
it, namely, a month. Hence he could easily find its velocity at

any point such as M. He could therefore find the distance 
MT through which it would move in the next second if it 
were not pulled by the earth’s attraction. At the end of that 
second it was however at M,, and therefore the earth E must 
have pulled it through the distance TM' in one second (assuming 
the direction of the earth’s pull to be constant). Now he and 
several physicists of the time had conjectured from Kepler’s third 
law that the attraction of the earth on a body would be found 
to decrease as the body was removed farther away from the 
earth inversely as the square of the distance from the centre 
of the earth ;1 if this were the actual law and if gravity were 
the sole force which retained the moon in its orbit, then TM' 
should be to 16 feet inversely as the square of the distance

1 An argument leading to this result is given below on page 332.
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of the moon from the centre of the earth to the square of 
the radius of the earth. In 1679, when he repeated the 
investigation, TM' was found to have the value which was 
required by the hypothesis, and the verification was complete; 
but in 1666 his estimate of the distance of the moon was 
inaccurate, and when he made the calculation he found that 
TM' was about one-eighth less than it ought to have been on 
his hypothesis.

This discrepancy does not seem to have shaken his faith in 
the belief that gravity extended as far as the moon and varied 
inversely as the square of the distance; but, from Whiston’s 
notes of a conversation with Newton, it would seem that 
Newton inferred that some other force—probably Descartes’s 
vortices—acted on the moon as well as gravity. This statement 
is confirmed by Pemberton’s account of the investigation. It 
seems, moreover, that Newton already believed firmly in the 
principle of universal gravitation, that is, that every particle 
of matter attracts every other particle, and suspected that the 
attraction varied as the product of their masses and inversely 
as the square of the distance between them; but it is certain 
that he did not then know what the attraction of a spherical 
mass on any external point would be, and did not think it 
likely that a particle would be attracted by the earth as if the 
latter were concentrated into a single particle at its centre.

On his return to Cambridge in 1667 Newton was elected 
to a fellowship at his college, and permanently took up his 
residence there. In the early part of 1669, or perhaps in 
1668, he revised Barrow’s lectures for him. The end of the 
fourteenth lecture is known to have been written by Newton, 
but how much of the rest is due to his suggestions cannot now 
be determined. As soon as this was finished he was asked by 
Barrow and Collins to edit and add notes to a translation of 
Kinckhuysen’s Algebra ∙, he consented to do this, but on condition 
that his name should not appear in the matter. In 1670 he also 
began a systematic exposition of his analysis by infinite series, 
the object of which was to express the ordinate of a curve 
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in an infinite algebraical series every term of which can be 
integrated by Wallis’s rule ; his results on this subject had been 
communicated to Barrow, Collins, and others in 1669. This 
was never finished: the fragment was published in 1711, but 
the substance of it had been printed as an appendix to the 
Optics in 1704. These works were only the fruit of Newton’s 
leisure, most of his time during these two years being given up 
to optical researches.

In October, 1669, Barrow resigned the Lucasian chair in 
favour of Newton. During his tenure of the professorship, 
it was Newton’s practice to lecture publicly once a week, for 
from half-an-hour to an hour at a time, in one term of each 
year, probably dictating his lectures as rapidly as they could 
be taken down; and in the week following the lecture to 
devote four hours to appointments which he gave to students 
who wished to come to his rooms to discuss the results of the 
previous lecture. He never repeated a course, which usually 
consisted of nine or ten lectures, and generally the lectures of 
one course began from the point at which the preceding course 
had ended. The manuscripts of his lectures for seventeen out 
of the first eighteen years of his tenure are extant.

When first appointed Newton chose optics for the subject 
of his lectures and researches, and before the end of 1669 he 
had worked out the details of his discovery of the decom
position of a ray of white light into rays of different colours 
by means of a prism. The complete explanation of the theory 
of the rainbow followed from this discovery. These discoveries 
formed the subject-matter of the lectures which he delivered 
as Lucasian professor in the years 1669, 1670, and 1671. The 
chief new results were embodied in a paper communicated 
to the Royal Society in February, 1672, and subsequently 
published in the Philosophical Transactions. The manuscript 
of his original lectures was printed in 1729 under the title 
Lectiones Opticae. This work is divided into two books, the 
first of which contains four sections and the second five. The 
first section of the first book deals with the decomposition
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of solar light by a prism in consequence of the unequal re- 
frangibility of the rays that compose it, and a description 
of his experiments is added. The second section contains an 
account of the method which Newton invented for the deter
mining the coefficients of refraction of different bodies. This 
is done by making a ray pass through a prism of the material 
so that the deviation is a minimum; and he proves that, if the 
angle of the prism be i and the deviation of the ray be δ, the 
refractive index will be sin ⅜ (z + δ) cosec ⅜ i. The third section 
is on refractions at plane surfaces; he here shews that if a 
ray pass through a prism with minimum deviation, the angle 
of incidence is equal to the angle of emergence; most of this 
section is devoted to geometrical solutions of different problems. 
The fourth section contains a discussion of refractions at curved 
surfaces. The second book treats of his theory of colours and 
of the rainbow.

By a curious chapter of accidents Newton failed to correct 
the chromatic aberration of two colours by means of a couple 
of prisms. He therefore abandoned the hope of making a 
refracting telescope which should be achromatic, and instead 
designed a reflecting telescope, probably on the model of a 
small one which he had made in 1668. The form he used is 
that still known by his name; the idea of it was naturally 
suggested by Gregory’s telescope. In 1672 he invented a 
reflecting microscope, and some years later he invented the 
sextant which was rediscovered by J. Hadley in 1731.

His professorial lectures from 1673 to 1683 were on 
algebra and the theory of equations, and are described below; 
but much of his time during these years was occupied with 
other investigations, and I may remark that throughout his 
life Newton must have devoted at least as much attention to 
chemistry and theology as to mathematics, though his conclusions 
are not of sufficient interest to require mention here. His theory 
of colours and his deductions from his optical experiments were 
at first attacked with considerable vehemence. The correspond
ence which this entailed on Newton occupied nearly all his 
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leisure in the years 1672 to 1675, and proved extremely distaste
ful to him. Writing on December 9, 1675, he says, “I was so 
persecuted with discussions arising out of my theory of light, 
that I blamed my own imprudence for parting with so substantial 
a blessing as my quiet to run after a shadow.” Again, on 
November 18, 1676, he observes, “ I see I have made myself a 
slave to philosophy; but, if I get rid of Mr. Linus’s business, I 
will resolutely bid adieu to it eternally, excepting what I do for 
my private satisfaction, or leave to come out after me; for I see 
a man must either resolve to put out nothing new, or to become 
a slave to defend it.” The unreasonable dislike to have his 
conclusions doubted or to be involved in any correspondence 
about them was a prominent trait in Newton’s character.

Newton was deeply interested in the question as to how the 
effects of light were really produced, and by the end of 1675 he 
had worked out the corpuscular or emission theory, and had 
shewn how it would account for all the various phenomena of 
geometrical optics, such as reflexion, refraction, colours, diffrac
tion, &c. To do this, however, he was obliged to add a some
what artificial rider, that the corpuscles had alternating fits of 
easy reflexion and easy refraction communicated to them by an 
ether which filled space. The theory is now known to be 
untenable, but it should be noted that Newton enunciated it as 
a hypothesis from which certain results would follow : it w,ould 
seem that he believed the wave theory to be intrinsically more 
probable, but it was the difficulty of explaining diffraction on 
that theory that led him to suggest another hypothesis.

Newton’s corpuscular theory was expounded in memoirs com
municated to the Royal Society in December 1675, which are 
substantially reproduced in his Optics, published in 1704. In 
the latter work he dealt in detail with his theory of fits of easy 
reflexion and transmission, and the colours of thin plates, to 
which he added an explanation of the colours of thick plates 
[bk. ιι, part 4] and observations on the inflexion of light [bk. 
πι].

Two letters written by Newton in the year 1676 are sufficiently
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interesting to justify an allusion to them.1 Leibnitz, in 1674, in 
a correspondence with Oldenburg, wrote saying that he possessed 
“ general analytical methods depending on infinite series.” 
Oldenburg, in reply, told him that Newton and Gregory had 
used such series in their work. In answer to a request for 
information, Newton wrote on June 13, 1676, giving a brief 
account of his method. He here enunciated the binomial 
theorem, which he stated, in effect, in the form that if A, B, C, D, 
. . . denote the successive terms in the expansion of (P + PQ)m/”, 
then

where A = P”‘/n. He gave examples of its use. He also gave the 
expansion of sin-⅛, from which he deduced that of sin x : this 
seems to be the earliest known instance of a reversion of series. 
He also inserted an expression for the rectification of an elliptic 
arc in an infinite series.

Leibnitz wrote on August 27 asking for fuller details; and 
Newton, on October 24, 1676, sent, through Oldenburg, an 
account of the way in which he had been led to some of his 
results. The main results may be briefly summarized. He 
begins by saying that altogether he had used three methods 
for expansion in series. His first was arrived at from the 
study of the method of interpolation. Thus, by considering
the series of expressions for
he deduced by interpolations a rule connecting the successive
coefficients in the expansions of and
then by analogy obtained the expression for the general term 
in the expansion of a binomial. He then tested his result in
various ways; for instance in the case of by ex
tracting the square root of 1 — x1, more arithmetico, and by
forming the square of the expansion of which reduced
to 1 - x2. He also used the series to determine the areas of 
the circle and the hyperbola in infinite series, and found that

1 See J. Wallis, Opera, vol. iii, Oxford, 1699, p. 622 et seq.
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the results were the same as those he had arrived at by other 
means.

Having established this result, he then discarded the method 
of interpolation, and employed his binomial theorem to express 
(when possible) the ordinate of a curve in an infinite series 
in ascending powers of the abscissa, and thus by Wallis’s 
method he obtained expressions in infinite series for the areas 
and arcs of curves in the manner described in the appendix to 
his Optics and in his De Analysi per Eqτιationes Numero Terτni- 
norum Infinitas. He states that he had employed this second 
method before the plague in 1665-66, and goes on to say that 
he was then obliged to leave Cambridge, and subsequently 
(presumably on his return to Cambridge) he ceased to pursue 
these ideas, as he found that Nicholas Mercator had employed 
some of them in his Logarithmo-teclιnica, published in 1668∙ 
and he supposed that the remainder had been or would be found 
out before he himself was likely to publish his discoveries.

Newton next explains that he had also a third method, of 
which (he says) he had about 1669 sent an account to Barrow 
and Collins, illustrated by applications to areas, rectification, 
cubature, &c. This was the method of fluxions; but Newton 
gives no description of it here, though he adds some illustrations 
of its use. The first illustration is on the quadrature of the 
curve represented by the equation

which he says can be effected as a sum of (wι÷l)∕n terms if 
(m+V)∕n be a positive integer, and which he thinks cannot 
otherwise be effected except by an infinite series.1 He also gives 
a list of other forms which are immediately integrable, of which 
the chief are
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where m is a positive integer and n is any number whatever. 
Lastly, he points out that the area of any curve can be easily 
determined approximately by the method of interpolation 
described below in discussing his Methodus Differentialis.

At the end of his letter Newton alludes to the solution of the 
“ inverse problem of tangents,” a subject on which Leibnitz had 
asked for information. He gives formulae for reversing any 
series, but says that besides these formulae he has two methods 
for solving such questions, which for the present he will not 
describe except by an anagram which, being read, is as follows, 
“Una methodus consistit in extractione fluentis quantitatis ex 
acquatione simul involvente fluxionem ejus : altera tantum in 
assumptione seriei pro quantitate qualibet incognita ex qua 
caetera commode derivari possunt, et in collatione terminorum 
homologorum aequationis resultantis, ad eruendos terminos 
assumptae seriei.”

He implies in this letter that he is worried by the questions 
he is asked and the controversies raised about every new matter 
which he produces, which shew his rashness in publishing “quod 
umbram captando eatenus perdideram quietem meam, rem prorsus 
substantialem.”

Leibnitz, in his answer, dated June 21, 1677, explains his 
method of drawing tangents to curves, which he says proceeds 
“not by fluxions of lines, but by the differences of numbers”; 
and he introduces his notation of dx and dy for the infini
tesimal differences between the co-ordinates of two consecutive 
points on a curve. He also gives a solution of the problem to 
find a curve whose subtangent is constant, which shews that he 
could integrate.

In 1679 Hooke, at the request of the Royal Society, wrote 
to Newton expressing a hope that he would make further com
munications to the Society, and informing him of various facts 
then recently discovered. Newton replied saying that he had 
abandoned the study of philosophy, but he added that the 
earth’s diurnal motion might be proved by the experiment of 
observing the deviation from the perpendicular of a stone 
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dropped from a height to the ground—an experiment which 
was subsequently made by the Society and succeeded. Hooke 
in his letter mentioned Picard’s geodetical researches; in these 
Picard used a value of the radius of the earth which is substan
tially correct. This led Newton to repeat, with Picard’s data, 
his calculations of 16C6 on the lunar orbit, and he thus verified 
his supposition that gravity extended as far as the moon and 
varied inversely as the square of the distance. He then pro
ceeded to consider the general theory of motion of a particle 
under a centripetal force, that is, one directed to a fixed point, 
and showed that the vector would sweep over equal areas in equal 
times. He also proved that, if a particle describe an ellipse under 
a centripetal force to a focus, the law must be that of the inverse 
square of the distance from the focus, and conversely, that the 
orbit of a particle projected under the influence of such a force 
would be a conic (or, it may be, he thought only an ellipse). 
Obeying his rule to publish nothing w7hich could land him in a 
scientific controversy these results w7ere locked up in his note
books, and it wτas only a specific question addressed to him five 
years later that led to their publication.

The Universal Arithmetic, which is on algebra, theory of 
equations, and miscellaneous problems, contains the substance 
of Newton’s lectures during the years 1673 to 1683. His 
manuscript of it is still extant; Whiston1 extracted a somewhat 
reluctant permission from Newton to print it, and it was 
published in 1707. Amongst several new theorems on various 
points in algebra and the theory of equations Newton here 
enunciates the following important results. He explains that 
the equation whose roots are the solution of a given problem 
will have as many roots as there are different possible cases;

1 William Whiston, born in Leicestershire on December 9, 1667, educated 
at Clare College, Cambridge, of which society he was a fellow, and died in 
London on August 22, 1752, wrote several works on astronomy. He acted as 
Newton’s deputy in the Lucasian chair from 1699, and in 1703 succeeded hinr 
as professor, but he was expelled in 1711, mainly for theological reasons. He 
was succeeded by Nicholas Saunderson, the blind mathematician, who was 
born in Yorkshire in 1682, and died at Christ’s College, Cambridge, on 
April 19, 1739.
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and lie considers how it happens that the equation to which 
a problem leads may contain roots which do not satisfy the 
original question. He extends Descartes’s rule of signs to give 
limits to the number of imaginary roots. He uses the principle 
of continuity to explain how two. real and unequal roots may 
become imaginary in passing through equality, and illustrates 
this by geometrical considerations; thence he shews that 
imaginary roots’must occur in pairs. Newton also here gives 
rules to find a superior limit to the positive roots of a numerical 
equation, and to determine the approximate values of the 
numerical roots. He further enunciates the theorem known by 
his name for finding the sum of the «th powers of the roots of 
an equation, and laid the foundation of the theory of symmetri
cal functions of the roots of an equation.

The most interesting theorem contained in the work is his 
attempt to find a rule (analogous to that of Descartes for real 
roots) by which the number of imaginary roots of an equation 
can be determined. He knew that the result which he obtained 
was not universally true, but he gave no proof and did not 
explain what were the exceptions to the rule. His theorem is as 
follows. Suppose the equation to be of the nth degree arranged 
in descending powers of x (the coefficient of xn being positive), 
and suppose the n + 1 fractions

to be formed and written below the corresponding terms of the 
equation, then, if the square of any term when multiplied by the 
corresponding fraction be greater than the product of the terms 
on each side of it, put a plus sign above it: otherwise put a 
minus sign above it, and put a plus sign above the first and last 
terms. Now consider any two consecutive terms in the original 
equation, and the tvvo symbols written above them. Then we 
nay have any one of the four following cases : (a) the terms of 
file same sign and the symbols of the same sign ; (β) the terms 
<f the same sign and the symbols of opposite signs; (γ) the
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terms of opposite signs and the symbols of the same sign ∙ (δ) 
the terms of opposite signs and the symbols of opposite signs. 
Then it has been shewn that the number of negative roots will 
not exceed the number of cases (a), and the number of positive 
roots will not exceed the number of cases (γ); and therefore the 
number of imaginary roots is not less than the number of cases 
(βy) and (δ). In other words the number of changes of signs in 
the row of symbols written above the equation is an inferior 
limit to the number of imaginary roots. Newton, however, 
asserted that “you may almost know how many roots are 
impossible ” by counting the changes of sign in the series of 
symbols formed as above. That is to say, he thought that in 
general the actual number of positive, negative, and imaginary 
roots could be got by the rule and not merely superior or 
inferior limits to these numbers. But though he knew that the 
rule was not universal he could not find (or at any rate did 
not state) what were the exceptions to it: this problem was 
subsequently discussed by Campbell, Maclaurin, Euler, and 
other writers; at last in 1865 Sylvester succeeded in proving 
the general result.1

In August, 1684, Halley came to Cambridge in order to con
sult Newton about the law of gravitation. Hooke, Huygens, 
Halley, and Wren had all conjectured that the force of the 
attraction of the sun or earth on an external particle varied 
inversely as the square of the distance. These writers seem 
independently to have shewn that, if Kepler’s conclusions were 
rigorously true, as to which they were not quite certain, the 
law of attraction must be that of the inverse square. Probably 
their argument was as follows. If v be the velocity of a planet, 
r the radius of its orbit taken as a circle, and T its periodic
time, But, if/be the acceleration to the centre of
the circle, we have Therefore, substituting the above
value of Now, by Kepler’s third law, T2 varies
as r3 ; hence f varies inversely as r2. They could not, however,

1 See the Proceedings of the London Mathematical Society, 1865, vol. i. 
no. 2.
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deduce from the law the orbits of the planets. Halley explained 
that their investigations were stopped by their inability to solve 
this problem, and asked Newton if he could find out what the 
orbit of a planet would be if the law of attraction were that of 
the inverse square. Newton immediately replied that it was an 
ellipse, and promised to send or write out afresh the demonstra
tion of it which he had found in 1679. This was sent in 
November, 1684.

Instigated by Halley, Newton now returned to the problem 
of gravitation ; and before the autumn of 1684, he had worked 
out the substance of propositions 1-19, 21, 30, 32-35 in the 
first book of the Principia. These, together with notes on the 
laws of motion and various lemmas, were read for his lectures 
in the Michaelmas Term, 1684.

In November Halley received Newton’s promised communi
cation, which probably consisted of the substance of proposi
tions 1, 11, and either proposition 17 or the first corollary of 
proposition 13; thereupon Halley again went to Cambridge, 
where he saw “a curious treatise, De Motu, drawn up since 
August.” Most likely this contained Newton’s manuscript 
notes of the lectures above alluded to : these notes are now 
in the university library, and are headed “ De Motu Cor- 
2)orum.” Halley begged that the results might be published, 
and finally secured a promise that they should be sent to the 
Royal Society: they were accordingly communicated to the 
Society not later than February, 1685, in the paper De Motu, 
which contains the substance of the following propositions in 
tle Principia, book ι, props. 1, 4, 6, 7, 10, 11, 15, 17, 32; 
book π, props. 2, 3, 4.

It seems also to have been due to the influence and tact of 
Halley at this visit in November, 1684, that Newton undertook 
to attack the whole problem of gravitation, and practically 
p.edged himself to publish his results : these are contained in 
tle Principia. As yet Newton had not determined the attrac
tion of a spherical body on an external point, nor had he 
c<lculated the details of the planetary motions even if the 

www.rcin.org.pl



334 THE LIFE AND WORKS OF NEWTON [ch. xvi 

members of the solar system could be regarded as points. The 
first problem was solved in 1685, probably either in January 
or February. “No sooner,” to quote from Dr. Glaisher’s 
address on the bicentenary of the publication of the Principia, 
“had Newton proved this superb theorem—and we know from 
his own words that he had no expectation of so beautiful a 
result till it emerged from his mathematical investigation— 
than all the mechanism of the universe at once lay spread before 
him. When he discovered the theorems that form the first 
three sections of book I, when he gave them in his lectures of 
1684, he was unaware that the sun and earth exerted their 
attractions as if they were but points. How different must 
these propositions have seemed to Newton’s eyes when he 
realized that these results, which he had believed to be only 
approximately true when applied to the solar system, were 
really exact! Hitherto they had been true only in so far as he 
could regard the sun as a point compared to the distance of 
the planets, or the earth as a point compared to the distance 
of the moon—a distance amounting to only about sixty times 
the earth’s radius—but now they were mathematically true, ex
cepting only for the slight deviation from a perfectly spherical 
form of the sun, earth, and planets. We can imagine the effect 
of this sudden transition from approximation to exactitude in 
stimulating Newton’s mind to still greater efforts. It was now 
in his power to apply mathematical analysis with absolute 
precision to the actual problems of astronomy.”

Of the three fundamental principles applied in the Principia 
we may say that the idea that every particle attracts every 
other particle in the universe was formed at least as early as 
1666 ; the law of equable description of areas, its consequences, 
and the fact that if the law of attraction were that of the 
inverse square the orbit of a particle about a centre of force 
would be a conic were proved in 1679 ; and, lastly, the discovery 
that a sphere, whose density at any point depends only on the 
distance from the centre, attracts an external point as if the 
whole mass were collected at its centre was made in 1685.
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It was this last discovery that enabled him to apply the first 
two principles to the phenomena of bodies of finite size.

The draft of the first book of the Principia was finished 
before the summer of 1685, but the corrections and additions 
took some time, and the book was not presented to the Royal 
Society until April 28, 1686. This book is given up to the 
consideration of the motion of particles or bodies in free space 
either in known orbits, or under the action of known forces, 
or under their mutual attraction; and in particular to in
dicating how the effects of disturbing forces may be calculated. 
In it also Newton generalizes the law of attraction into a 
statement that every particle of matter in the universe attracts 
every other particle with a force which varies directly as the 
product of their masses, and inversely as the square of the 
distance between them; and he thence deduces the law of 
attraction for spherical shells of constant density. The book 
is prefaced by an introduction on the science of dynamics, 
which defines the limits of mathematical investigation. His 
object, he says, is to apply mathematics to the phenomena 
of nature; among these phenomena motion is one of the 
most important; now motion is the effect of force, and, 
though he does not know what is the nature or origin of 
force, still many of its effects can be measured; and it is 
these that form the subject-matter of the work.

The second book of the Principia was completed by the 
summer of 1686. This book treats of motion in a resisting 
medium, and of hydrostatics and hydrodynamics, with special 
applications to waves, tides, and acqμstics∙ He concludes it 
by shewing that the Cartesian theory of vortices was in
consistent both with the known facts and with the laws of 
motion.

The next nine or ten months were devoted to the third 
book. Probably for this originally he had no materials ready. 
He commences by discussing when and how far it is justi
fiable to construct hypotheses or theories to account for 
known phenomena. He proceeds to apply the theorems 
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obtained in the first book to the chief phenomena of the 
solar system, and to determine the masses and distances of 
the planets and (whenever sufficient data existed) of their 
satellites. In particular the motion of the moon, the various 
inequalities therein, and the theory of the tides are worked 
out in detail. He also investigates the theory of comets, 
shews that they belong to the solar system, explains how 
from three observations the orbit can be determined, and 
illustrates his results by considering certain special comets. 
The third book as we have it is but little more than a sketch 
of what Newton had finally proposed to himself to accomplish; 
his original scheme is among the “Portsmouth papers,” and 
his notes shew that he continued to work at it for some years 
after the publication of the first edition of the Principia : the 
most interesting of his memoranda are those in which by 
means of fluxions he has carried his results beyond the point 
at which he was able to translate them into geometry.1

The demonstrations throughout the work are geometrical, 
but to readers of ordinary ability are rendered unnecessarily 
difficult by the absence of illustrations and explanations, and 
by the fact that no clue is given to the method by which 
Newton arrived at his results. The reason why it was pre
sented in a geometrical form appears to have been that the 
infinitesimal calculus was then unknown, and, had Newton 
used it to demonstrate results which were in themselves 
opposed to the prevalent philosophy of the time, the contro
versy as to the truth of his results would have been hampered 
by a dispute concerning the validity of the methods used 
in proving them. He therefore cast the whole reasoning 
into a geometrical shape which, if somewhat longer, can at 
any rate be made intelligible to all mathematical students, 
So closely did he follow the lines of Greek geometry that he 
constantly used graphical methods, and represented forces, 
velocities, and other magnitudes in the Euclidean way by

1 For a fuller account of the Principia see my Essay on the Genesis, 
Contents, and History of Newton's Principia, London, 1893.
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straight lines (ex. gr. book I, lemma 10), and not by a certain 
number of units. The latter and modern method had been 
introduced by Wallis, and must have been familiar to Newton. 
The effect of his confining himself rigorously to classical 
geometry is that the Principia is written in a language which 
is archaic, even if not unfamiliar.

The adoption of geometrical methods in the Principia for 
purposes of demonstration does not indicate a preference on 
Newton’s part for geometry over analysis as an instrument 
of research, for it is known now that Newton used the fluxional 
calculus in the first instance in finding some of the theorems, 
especially those towards the end of book ι and in book ιι; 
and in fact one of the most important uses of that calculus is 
stated in book π, lemma 2. But it is only just to remark 
that, at the time of its publication and for nearly a century 
afterwards, the differential and fluxional calculus were not fully 
developed, and did not possess the same superiority over the 
method he adopted which they do now; and it is a matter for 
astonishment that when Newton did employ the calculus he 
was able to use it to so good an effect.

The printing of the work was slow, and it was not finally 
published till the summer of 1G87. The cost was borne by 
Halley, who also corrected the proofs, and even put his own 
researches on one side to press the printing forward. The 
conciseness, absence of illustrations, and synthetical character 
of the book restricted the numbers of those who were able to 
appreciate its value; and, though nearly all competent critics 
admitted the validity of the conclusions, some little time 
elapsed before it affected the current beliefs of educated men. 
I should be inclined to say (but on this point opinions differ 
widely) that within ten years of its publication it was generally 
⅛ccepted in Britain as giving a correct account of the laws of 
the universe; it was similarly accepted within about twenty 
years on the continent, except in France, where the Cartesian 
hypothesis held its ground until Voltaire in 1738 took up the 
advocacy of the Newtonian theory.

z
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The manuscript of the Principia was finished by 1686. 
Newton devoted the remainder of that year to his paper on 
physical optics, the greater part of which is given up to the 
subject of diffraction.

In 1687 James IT. having tried to force the university to 
admit as a master of arts a Roman Catholic priest who refused 
to take the oaths of supremacy and allegiance, Newton took a 
prominent part in resisting the illegal interference of the king, 
and was one of the deputation sent to London to protect the 
rights of the university. The active part taken by Newton in 
this affair led to his being in 1689 elected member for the 
university. This parliament only lasted thirteen months, and 
on its dissolution he gave up his seat. He was subsequently 
returned in 1701, but he never took any prominent part in 
politics.

On his coming back to Cambridge in 1690 he resumed his 
mathematical studies and correspondence, but probably did not 
lecture. The two letters to Wallis, in which he explained his 
method of fluxions and fluents, were written in 1692 and pub
lished in 1693. Towards the close of 1692 and throughout the 
two following years, Newton had a long illness, suffering from 
insomnia and general nervous irritability. Perhaps he never 
quite regained his elasticity of mind, and, though afteι his 
recovery he shewed the same power in solving any question 
propounded to him, he ceased thenceforward to do original 
work on his own initiative, and it was somewhat difficmt to 
stir him to activity in new subjects.

In 1694 Newton began to collect data connected- with the 
irregularities of the moon’s motion with the view of revising the 
part of the Principia which dealt with that subject. To render 
the observations more accurate, he forwarded to Flamsteed1 a

1 John Flamsteed, born at Derby in 1646 and died at Greenwich in 1719, 
was one of the most distinguished astronomers of this age, and the first 
astronomer-royal. Besides much valuable work in astronomy, he invented 
the system (published in 1680) of drawing maps by projecting the surface of 
the sphere on an enveloping cone, which can then be unwrapped. Hκ life 
by R. F. Baily was published in London in 1835, but various statements in 
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table of corrections for refraction which he had previously made. 
This was not published till 1721, when Halley communicated it 
to the Royal Society. The original calculations of Newton and 
the papers connected with them are in the Portsmouth collection, 
and shew that Newton obtained it by finding the path of a ray, 
by means of quadratures, in a manner equivalent to the solution 
of a differential equation. As an illustration of Newton’s 
genius, I may mention that even as late as 1754 Euler failed to 
solve the same problem. In 1782 Laplace gave a rule for con
structing such a table, and his results agree substantially with 
those of Newton.

I do not suppose that Newton would in any case have pro
duced much more original work after his illness; but his 
appointment in 1696 as warden, and his promotion in 1699 
to the mastership of the Mint, at a salary of £1500 a year, 
brought his scientific investigations to an end, though it was 
only after this that many of his previous investigations were 
published in the form of books. In 1696 he moved to London, 
in 1701 he resigned the Lucasian chair, and in 1703 he was 
elected president of the Royal Society.

In 1704 Newton published his Optics, which contains the 
results of the papers already mentioned. To the first edition 
of this book were appended two minor works which have no 
special connection with optics; one being on cubic curves, the 
other on the quadrature of curves and on fluxions. Both of 
them were manuscripts with which his friends and pupils 
were familiar, but they were here published urbi et orbi for the 
first time.

The first of these appendices is entitled Enumeratio Linearum 
Tertii Ordinis;1 the object seems to be to illustrate the use of 
analytical geometry, and as the application to conics was well 
known, Newton selected the theory of cubics.
it should be read side by side with those in Brewster’s life of Newton. 
Flamsteed was succeeded as astronomer-royal by Edmund Halley (see below, 
pp. 379-380).

1 On this work and its bibliography, see my memoir in the Transactions 
of the London Mathematical Society, 1891, vol. xxii, pp. 104-143.
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He begins with some general theorems, and classifies curves 
according as their equations are algebraical or transcendental; 
the former being cut by a straight line in a number of points 
(real or imaginary) equal to the degree of the curve, the latter 
being cut by a straight line in an infinite number of points. 
Newton then shews that many of the most important properties 
of conics have their analogues in the theory of cubics, and he 
discusses the theory of asymptotes and curvilinear diameters.

After these general theorems, he commences his detailed 
examination of cubics by pointing out that a cubic must have 
at least one real point at infinity. If the asymptote or tangent 
at this point be at a finite distance, it may be taken for the 
axis of y. This asymptote will cut the curve in three points 
altogether, of which at least two are at infinity. If the third 
point be at a finite distance, then (by one of his general theorems 
on asymptotes) the equation can be written in the form

where the axes of x and y are the asymptotes of the hyperbola 
which is the locus of the middle points of all chords drawn 
parallel to the axis of y; -while, if the third point in which this 
asymptote cuts the curve be also at infinity, the equation can be 
written in the form

Next he takes the case where the tangent at the real point 
at infinity is not at a finite distance. A line parallel to the 
direction in which the curve goes to infinity may be taken as 
the axis of y. Any such line will cut the curve in three points 
altogether, of which one is by hypothesis at infinity, and one is 
necessarily at a finite distance. He then shews that if the 
remaining point in which this line cuts the curve be at a finite 
distance, the equation can be wτritten in the form

while if it be at an infinite distance, the equation can be 
written in the form
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Any cubic is therefore reducible to one of four characteristic 
f<orms. Each of these forms is then discussed in detail, and the 
possibility of the existence of double points, isolated ovals, &c., 
is worked out. The final result is that in all there are seventy
eight possible forms which a cubic may take. Of these Newton 
enumerated only seventy-two; four of the remainder were 
mentioned by Stirling in 1717, one by Nicole in 1731, and one 
by Nicholas Bernoulli about the same time.

In the course of the work Newton states the remarkable 
theorem that, just as the shadow of a circle (cast by a luminous 
point on a plane) gives rise to all the conics, so the shadows of 
the curves represented by the equation y2 = ax2 + bx2 + ex + d 
give rise to all the cubics. This remained an unsolved puzzle 
until 1731, when Nicole and Clairaut gave demonstrations of 
it; a better proof is that given by Murdoch in 1740, which 
depends on the classification of these curves into five species 
according as to whether their points of intersection with the axis 
of x are real and unequal, real and two of them equal (two 
cases), real and all equal, or two imaginary and one real.

In this tract Newton also discusses double points in the 
plane and at infinity, the description of curves satisfying given 
conditions, and the graphical solution of problems by the use of 
curves.

The second appendix to the Optics is entitled De Quadratura 
Curvarum. Most of it had been communicated to Barrow in 
1G68 or 16G9, and probably was familiar to Newton’s pupils 
and friends from that time onwards. It consists of two parts.

The bulk of the first part is a statement of Newton’s method 
of effecting the quadrature and rectification of curves by means 
of infinite series; it is noticeable as containing the earliest use 
in print of literal indices, and a printed statement of the 
binomial theorem, but these novelties are introduced only 
incidentally. The main object is to give rules for developing a 
function of a: in a series in ascending powers of x, so as to 
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enable mathematicians to effect the quadrature of any curve 
in which the ordinate y can be expressed as an explicit 
algebraical function of the abscissa x. Wallis had shewn how 
this quadrature could be found when y was given as a sum of a 
number of multiples of powers of x, and Newton’s rules of 
expansion here established rendered possible the similar quad
rature of any curve whose ordinate can be expressed as the sum 
of an infinite number of such terms. In this way he effects the 
quadrature of the curves

but naturally the results are expressed as infinite series. He 
then proceeds to curves whose ordinate is given as an implicit 
function of the abscissa; and he gives a method by which y can 
be expressed as an infinite series in ascending powers of x, 
but the application of the rule to any curve demands in general 
such complicated numerical calculations as to render it of little 
value. He concludes this part by shewing that the rectification 
of a curve can be effected in a somewhat similar way. His 
process is equivalent to finding the integral with regard to x 
of (l+y2)i in the form of an infinite series. I should add 
that Newton indicates the importance of determining whether 
the series are convergent—an observation far in advance of 
his time — but he knew of no general test for the purpose; 
and in fact it was not until Gauss and Cauchy took up the 
question that the necessity of such limitations was commonly 
recognized.

The part of the appendix which I have just described is 
practically the same as Newton’s manuscript De Analyst per 
Equationes Numero Terminorurn Infinitas, which was subse
quently printed in 1711. It is said that this was originally 
intended to form an appendix to Kinckhuysen’s Algebra, 
which, as I have already said, he at one time intended to edit. 
The substance of it was communicated to Barrow, and by him 
to Collins, in letters of July 31 and August 12, 1GG9; and a
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summary of part of it was included in the letter of October 24, 
1676, sent to Leibnitz.

It should be read in connection with Newton’s Methodus 
Differentialis, also published in 1711. Some additional 
theorems are there given, and he discusses his method of 
interpolation, which had been briefly described in the letter 
of October 24, 1676. The principle is this. If y = φ(ir) be a 
function of x, and if, when x is successively put equal to 
α1, a2,..., the values of y be known and be δ1, δ2,..., then a 
parabola whose equation is y =p + qx + rχ- + ... can be drawn 
through the points (α1, δ1), (a2, δ2),..., and the ordinate of this 
parabola may be taken as an approximation to the ordinate of 
the curve. The degree of the parabola will of course be one 
less than the number of given points. Newton points out 
that in this way the areas of any curves can be approximately 
determined.

The second part of this appendix to the Optics contains a 
description of Newton’s method of fluxions. This is best con
sidered in connection with Newton’s manuscript on the same 
subject which was published by John Colson in 1736, and of 
which it is a summary.

The invention of the infinitesimal calculus was one of the 
great intellectual achievements of the seventeenth century. This 
method of analysis, expressed in the notation of fluxions and 
fluents, was used by Newton in or before 1666, but no account 
of it was published until 1693, though its general outline was 
known by his friends and pupils long anterior to that year, and 
no complete exposition of his methods was given before 1736.

The idea of a fluxion or differential coefficient, as treated at 
this time, is simple. When two quantities—e.g. the radius of a 
sphere and its volume—are so related that a change in one 
causes a change in the other, the one is said to be a function of 
the other. The ratio of the rates at which they change is 
termed the differential coefficient or fluxion of the one with 
regard to the other, and the process by which this ratio is 
determined is known as differentiation. Knowing the differential 
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coefficient and one set of corresponding values of the two 
quantities, it is possible by summation to determine the relation 
between them, as Cavalieri and others had shewn ; but often the 
process is difficult. If, however, we can reverse the process of 
differentiation we can obtain this result directly. This process 
of reversal is termed integration. It was at once seen that 
problems connected with the quadrature of curves, and the 
determination of volumes (which were soluble by summation, as 
had been shewn by the employment of indivisibles), were 
reducible to integration. In mechanics also, by integration, 
velocities could be deduced from known accelerations, and 
distances traversed from known velocities. In short, wherever 
things change according to known laws, here was a possible 
method of finding the relation between them. It is true that, 
when we try to express observed phenomena in the language of 
the calculus, we usually obtain an equation involving the 
variables, and their differential coefficients—and possibly the 
solution may be beyond our powers. Even so, the method is 
often fruitful, and its use marked a real advance in thought and 
power.

I proceed to describe somewhat fully Newton’s methods as 
described by Colson. Newton assumed that all geometrical 
magnitudes might be conceived as generated by continuous 
motion; thus a line may be considered as generated by the 
motion of a point, a surface by that of a line, a solid by that of 
a surface, a plane angle by the rotation of a line, and so on. 
The quantity thus generated was defined by him as the fluent 
or flowing quantity. The velocity of the moving magnitude 
was defined as the fluxion of the fluent. This seems to be the 
earliest definite recognition of the idea of a continuous function, 
though it had been foreshadowed in some of Napier’s papers.

Newton’s treatment of the subject is as follows. There are 
two kinds of problems. The object of the first is to find the 
fluxion of a given quantity, or more generally “ the relation of 
the fluents being given, to find the relation of their fluxions.’' 
This is equivalent to differentiation. The object of the second 
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or inverse method of fluxions is from the fluxion or some 
relations involving it to determine the fluent, or more generally 
“an equation being proposed exhibiting the relation of the 
fluxions of quantities, to find the relations of those quantities, 
or fluents, to one another.”1 This is equivalent either to 
integration which Newton termed the method of quadrature, 
or to the solution of a differential equation which was called 
by Newton the inverse method of tangents. The methods for 
solving these problems are discussed at considerable length.

Newton then went on to apply these results to questions 
connected with the maxima and minima of quantities, the 
method of drawing tangents to curves, and the curvature of 
curves (namely, the determination of the centre of curvature, 
the radius of curvature, and the rate at which the radius of 
curvature increases). He next considered the quadrature of 
curves, and the rectification of curves.2 In finding the maxi
mum and minimum of functions of one variable we regard the 
change of sign of the difference between two consecutive values 
of the function as the true criterion; but his argument is that 
when a quantity increasing has attained its maximum it can 
have no further increment, or when decreasing it has attained 
its minimum it can have no further decrement; consequently 
the fluxion must be equal to nothing.

It has been remarked that neither Newton nor Leibnitz 
produced a calculus, that is, a classified collection of rules; and 
that the problems they discussed were treated from first prin
ciples. That, no doubt, is the usual sequence in the history of 
such discoveries, though the fact is frequently forgotten by 
subsequent writers. In this case I think the statement, so far 
as Newton’s treatment of the differential or fluxional part of 
the calculus is concerned, is incorrect, as the foregoing account 
sufficiently shews.

If a flowing quantity or fluent were represented by xi 
Newton denoted its fluxion by «, the fluxion of x or second

1 Colson’s edition of Newton’s manuscript, pp. xxi, xxii.
2 Ibid. pp. xxii, xxiii.
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fluxion of x by ⅛, and so on. Similarly the fluent of x was 
denoted by ∣ x ∣, or sometimes by x' or [a?]. The infinitely small 
part by which a fluent such as x increased in a small interval of 
time measured by o was called the moment of the fluent; and 
its value was shewn1 to be io. Newton adds the important 
remark that thus we may in any problem neglect the terms 
multiplied by the second and higher powers of o, and we can 
always find an equation between the co-ordinates x, y of a 
point on a curve and their fluxions i, y. It is an application of 
this principle which constitutes one of the chief values of the 
calculus; for if we desire to find the effect produced by 
several causes on a system, then, if we can find the effect pro
duced by each cause when acting alone in a very small time, 
the total effect produced in that time will be equal to the sum 
of the separate effects. I should here note the fact that Vince 
and other English wτriters in the eighteenth century used i to 
denote the increment of x and not the velocity with which it 
increased; that is, x in their writings stands for what Newton 
would have expressed by xo and what Leibnitz would have 
written as dx.

I need not discuss in detail the manner in which Newton 
treated the problems above mentioned. I will only add that, 
in spite of the form of his definition, the introduction into 
geometry of the idea of time was evaded by supposing that 
some quantity (ex. gτ. the abscissa of a point on a curve) 
increased equably; and the required results then depend on 
the rate at which other quantities (ex. gr. the ordinate or 
radius of curvature) increase relatively to the one so chosen.2 
The fluent so chosen is what we now call the independen: 
variable ; its fluxion was termed the “ principal fluxion ”; and. 
of course, if it were denoted by x, then x was constant, and 
consequently x = 0.

There is no question that Newton used a method of fluxions 
in 1666, and it is practically certain that accounts of it were

1 Colson’s edition of Newton’s manuscript, p. 24.
2 Ibid. p. 20. 
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communicated in manuscript to friends and pupils from and 
after 1669. The manuscript, from which most of the above 
summary has been taken, is believed to have been written 
between 1671 and 1677, and to have been in circulation at 
Cambridge from that time onwards, though it is probable that 
parts were rewritten from time to time. It was unfortunate that 
it was not published at once. Strangers at a distance naturally 
judged of the method by the letter to Wallis in 1692, or by the 
Tractatus de Quadratura Cur varum, and were not aware that 
it had been so completely developed at an earlier date. This 
was the cause of numerous misunderstandings. At the same 
time it must be added that all mathematical analysis was leading 
up to the ideas and methods of the infinitesimal calculus. Fore
shadowings of the principles and even of the language of that 
calculus can be found in the writings of Napier, Kepler, Cava
lieri, Pascal, Fermat, Wallis, and Barrow. It was Newton’s 
good luck to come at a time when everything was ripe for the 
discovery, and his ability enabled him to construct almost at 
once a complete calculus.

The infinitesimal calculus can also be expressed in the notation 
of the differential calculus : a notation which was invented by 
Leibnitz probably in 1675, certainly by 1677, and was published 
in 1684, some nine years before the earliest printed account of 
Newton’s method of fluxions. But the question whether the 
general idea of the calculus expressed in that notation was 
obtained by Leibnitz from Newton, or whether it was discovered 
independently, gave rise to a long and bitter controversy. The 
leading facts are given in the next chapter.

The remaining events of Newton’s life require little or no 
comment. In 1705 he was knighted. From this time onwards 
lie devoted much of his leisure to theology, and wrote at great 
length on prophecies and predictions, subjects which had always 
been of interest to him. His Universal Arithmetic was pub
lished by Whiston in 1707, and his Analysis by Infinite Series 
in 1711 ; but Newton had nothing to do with the preparation 
of either of these for the press. His evidence before the House 
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of Commons in 1714 on the determination of longitude at sea 
marks an important epoch in the history of navigation.

The dispute with Leibnitz as to whether he had derived the 
ideas of the differential calculus from Newton or invented it 
independently originated about 1708, and occupied much 
of Newton’s time, especially between the years 1709 and 
1716.

In 1709 Newton was persuaded to allow Cotes to prepare 
the long-talked-of second edition of the Principia; it was issued 
in March 1713. A third edition was published in 1726 under 
the direction of Henry Pemberton. In 1725 Newton’s health 
began to fail. He died on March 20, 1727, and eight days 
later was buried in Westminster Abbey.

His chief works, taking them in their order of publication, 
are the Principia, published in 1687; the Optics (with appen
dices on cubic curves, the quadrature and rectification of curves 
by the use of infinite series, and the method of fluxions'), pub
lished in 1704; the Universal Arithmetic, published in 1707 ; 
the Analysis per Series, Fluxiones, &c., and the Afethodus Diffe- 
rentialis, published in 1711; the Lecticmes Opticae, published in 
1729 ; the Method of Fluxions, <fcc. (that is, Newton,s manuscript 
on fluxions'), translated by J. Colson and published in 1736 ; and 
the Geometria Analytica, printed in 1779 in the first volume of 
Horsley’s edition of Newton’s works.

In appearance Newton was short, and towards the close of 
his life rather stout, but well set, with a square lower jaw, 
brown eyes, a broad forehead, and rather sharp features. His 
hair turned grey before he was thirty, and remained thick and 
white as silver till his death.

As to his manners, he dressed slovenly, was rather languid, 
and was often so absorbed in his own thoughts as to be any
thing but a lively companion. Many anecdotes of his extreme 
absence of mind when engaged in any investigation have been 
preserved. Thus once when riding home from Grantham he 
dismounted to lead his horse up a steep hill; when he turned at 
the top to remount, he found that lie had the bridle in his hand, 
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while his horse had slipped it and gone away. Again, on the 
few occasions when he sacrificed his time to entertain his friends, 
if he left them to get more wine or for any similar reason, he 
would as often as not be found after the lapse of some time 
working out a problem, oblivious alike of his expectant guests 
and of his errand. He took no exercise, indulged in no amuse
ments, and worked incessantly, often spending eighteen or nine
teen hours out of the twenty-four in writing.

In character he was religious and conscientious, with an 
exceptionally high standard of morality, having, as Bishop 
Burnet said, “the whitest soul” he ever knew. Newton was 
always perfectly straightforward and honest; but in his con
troversies with Leibnitz, Hooke, and others, though scrupulously 
just, he was not generous ; and it would seem that he frequently 
took offence at a chance expression when none was intended. 
He modestly attributed his discoveries largely to the admirable 
work done by his predecessors; and once explained that, if he 
had seen farther than other men, it was only because he had 
stood on the shoulders of giants. He summed up his own 
estimate of his work in the sentence, “I do not know what I 
may appear to the world; but to myself I seem to have been 
only like a boy, playing on the sea-shore, and diverting myself, 
in now and then finding a smoother pebble, or a prettier shell 
than ordinary, whilst the great ocean of truth lay all undis
covered before me.” He was morbidly sensitive to being 
involved in any discussions. I believe that, with the exception 
of his papers on optics, every one of his λvorks was published 
only under pressure from his friends and against his own wishes. 
There are several instances of his communicating papers and 
results on condition that his name should not be published : 
thus when in 1669 he had, at Collins’s request, solved some 
problems on harmonic series and on annuities which had previ
ously baffled investigation, he only gave permission that his 
results should be published “ so it be,” as he says, “ without my 
name to it; for I see not what there is desirable in public 
esteem, were I able to acquire and maintain it: it would per- 
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haps increase my acquaintance, the thing which I chiefly study 
to decline.”

Perhaps the most wronderful single illustration of his powers 
was the composition in seven months of the first book of the 
Principia, and the expression of the numerous and complex 
results in classical geometrical form. As other illustrations of 
his ability I may mention his solutions of the problem of Pappus, 
of John Bernoulli’s challenge, and of the question of orthogonal 
trajectories. The problem of Pappus, here alluded to, is to find 
the locus of a point such that the rectangle under its distances 
from two given straight lines shall be in a given ratio to the 
rectangle under its distances from two other given straight lines. 
Many geometricians from the time of Apollonius had tried to 
find a geometrical solution and had failed, but what had proved 
insuperable to his predecessors seems to have presented little 
difficulty to Newton who gave an elegant demonstration that 
the locus was a conic. Geometry, said Lagrange when recom
mending the study of analysis to his pupils, is a strong bow, 
but it is one which only a Newton can fully utilize. As another 
example I may mention that in 1696 John Bernoulli challenged 
mathematicians (i) to determine the brachistochrone, and (ii) 
to find a curve such that if any line drawn from a fixed point 0 
cut it in P and Q then OPn + OQn would be constant. Leibnitz 
solved the first of these questions after an interval of rather 
more than six months, and then suggested they should be sent 
as a challenge to Newton and others. Newton received the 
problems on Jan. 29, 1697, and the next day gave the complete 
solutions of both, at the same time generalising the second 
question. An almost exactly similar case occurred in 1716 
when Newton was asked to find the orthogonal trajectory of a 
family of curves. In five hours Newton solved the problem in 
the form in which it was propounded to him, and laid down the 
principles for finding trajectories.

It is almost impossible to describe the effect of Newton’s 
writings without being suspected of exaggeration. But, if the 
state of mathematical knowledge in 1669 or at the death of
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Pascal or Fermat be compared with what was known in 1700 
it will be seen how immense was the advance. In fact we 
may say that it took mathematicians half a century or more 
before they were able to assimilate the λvork produced in those 
years.

In pure geometry Newton did not establish any new methods, 
but no modern writer has sheλvn the same power in using those 
of classical geometry. In algebra and the theory of equations 
he introduced the system of literal indices, established the 
binomial theorem, and created no inconsiderable part of the 
theory of equations: one rule which he enunciated in this 
subject remained till a few years ago an unsolved riddle which 
had overtaxed the resources of succeeding mathematicians. In 
analytical geometry, he introduced the modern classification of 
curves into algebraical and transcendental; and established 
many of the fundamental properties of asymptotes, multiple 
points, and isolated loops, illustrated by a discussion of cubic 
curves. The fluxional or infinitesimal calculus was invented by 
Newton in or before the year 1666, and circulated in manuscript 
amongst his friends in and after the year 1669, though no 
account of the method was printed till 1693. The fact that the 
results are nowadays expressed in a different notation has led 
to Newton’s investigations on this subject being somewhat 
overlooked.

Newton, further, was the first to place dynamics on a 
satisfactory basis, and from dynamics he deduced the theory of 
statics : this was in the introduction to the Principia published 
in 1687. The theory of attractions, the application of the 
principles of mechanics to the solar system, the creation of 
physical astronomy, and the establishment of the law of uni
versal gravitation are due to him, and were first published in the 
same work, but of the nature of gravity he confessed his 
ignorance, though he found inconceivable the idea of action at 
a distance. The particular questions connected with the motion 
of the earth and moon were worked out as fully as was then 
possible. The theory of hydrodynamics was created in the 
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second book of the Principia, and he added considerably to the 
theory of hydrostatics which may be said to have been first 
discussed in modern times by Pascal. The theory of the pro
pagation of waves, and in particular the application to determine 
the velocity of sound, is due to Newton and was published in 
1687. In geometrical optics, he explained amongst other things 
the decomposition of light and the theory of the rainbow; he 
invented the reflecting telescope known by his name, and the 
sextant. In physical optics, he suggested and elaborated the 
emission theory of light.

The above list does not exhaust the subjects he investigated, 
but it will serve to illustrate how marked was his influence on 
the history of mathematics. On his writings and on their 
effects, it will be enough to quote the remarks of two or three 
of those whe were subsequently concerned with the subject- 
matter of the Principia. Lagrange described the Principia as 
the greatest production of the human mind, and said he felt 
dazed at such an illustration of what man’s intellect might be 
capable. In describing the effect of his own writings and those 
of Laplace it was a favourite remark of his that Newton was 
not only the greatest genius that had ever existed, but he was 
also the most fortunate, for as there is but one universe, it can 
happen but to one man in the world’s history to be the inter
preter of its laws. Laplace, who is in general very sparing of 
his praise, makes of Newton the one exception, and the words 
in which he enumerates the causes which “ will always assure 
to the Principia a pre-eminence above all the other productions 
of human genius ” have been often quoted. Not less remarkable 
is the homage rendered by Gauss; for other great mathematicians 
or philosophers he used the epithets magnus, or clarus, or 
clarissimus: for Newton alone he kept the prefix summus. 
Finally Biot, who had made a special study of Newton’s works, 
sums up his remarks by saying, “ comme góometre et comme 
experimentateur Newton est sans egal; par la reunion de ces 
deux genres de gónies a leur plus haut degre, il est sans 
exemple.”
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CHAPTER XVΠ.

LEIBNITZ AND THE MATHEMATICIANS OF THE FIRST HALF
OF THE EIGHTEENTH CENTURY.1

I have briefly traced in the last chapter the nature and extent 
of Newton’s contributions to science. Modern analysis is, 
however, derived directly from the works of Leibnitz and the 
elder Bernoullis ; and it is immaterial to us whether the funda
mental ideas of it were obtained by them from Newton, or 
discovered independently. The English mathematicians of 
the years considered in this chapter continued to use the 
language and notation of Newton ; they are thus somewhat 
distinct from their continental contemporaries, and I have there
fore grouped them together in a section by themselves.

Leibnitz and the Bernoullis.

Leibnitz.2 Gottfried Wilhelm Leibnitz (or Leibniz) was born 
at Leipzig on June 21 (O.S.), 1646, and died at Hanover on 
November 14, 1716. His father died before he was six, and the 
teaching at the school to which he was then sent was ineffi-

1 See Cantor, vol. iii; other authorities for the mathematicians of the 
period are mentioned in the footnotes.

2 See the life of Leibnitz by G. E. Guhrauer, two volumes and a supple
ment, Breslau, 1842 and 1846. Leibnitz’s mathematical papers have been 
collected and edited by C. J. Gerhardt in seven volumes, Berlin and Halle, 
1849-63.

2 A
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cient, but his industry triumphed over all difficulties ; by the 
time he was twelve he had taught himself to read Latin easily, 
and had begun Greek; and before he was twenty he had 
mastered the ordinary text-books on mathematics, philosophy, 
theology, and law. Refused the degree of doctor of laws at 
Leipzig by those who were jealous of his youth and learning, he 
moved to Nuremberg. An essay which he there wrote on the 
study of law was dedicated to the Elector of Mainz, and led to 
his appointment by the elector on a commission for the revision 
of some statutes, from which he was subsequently promoted to 
the diplomatic service. In the latter capacity he supported 
(unsuccessfully) the claims of the German candidate for the 
crown of Poland. The violent seizure of various small places in 
Alsace in 1670 excited universal alarm in Germany as to the 
designs of Louis XIV.; and Leibnitz drew up a scheme by which 
it was proposed to offer German co-operation, if France liked to 
take Egypt, and use the possession of that country as a basis for 
attack against Holland in Asia, provided France λvould agree to 
leave Germany undisturbed. This bears a curious resemblance 
to the similar plan by which Napoleon I. proposed to attack 
England. In 1672 Leibnitz went to Paris on the invitation of 
the French government to explain the details of the scheme, but 
nothing came of it.

At Paris he met Huygens who was then residing there, 
and their conversation led Leibnitz to study geometry, which 
he described as opening a new world to him; though as a 
matter of fact he had previously written some tracts on various 
minor points in mathematics, the most important being a paper 
on combinations written in 1668, and a description of a new 
calculating machine. In January, 1673, he was sent on a 
political mission to London, where he stopped some months and 
made the acquaintance of Oldenburg, Collins, and others; it 
was at this time that he communicated the memoir to the Royal 
Society in which he was found to have been forestalled by 
Mouton.

In 1673 the Elector of Mainz died, and in the following year
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Leibnitz entered the service of the Brunswick family; in 1676 
he again visited London, and then moved to Hanover, where, 
till his death, he occupied the well-paid post of librarian in the 
ducal library. His pen was thenceforth employed in all the 
political matters which affected the Hanoverian family, and his 
services were recognized by honours and distinctions of various 
kinds; his memoranda on the various political, historical, and 
theological questions which concerned the dynasty during the 
forty years from 1673 to 1713 form a valuable contribution to 
the history of that time.

Leibnitz’s appointment in the Hanoverian service gave him 
more time for his favourite pursuits. He used to assert that as 
the first-fruit of his increased leisure, he invented the differential 
and integral calculus in 1674, but the earliest traces of the use 
of it in his extant note-books do not occur till 1675, and it was 
not till 1677 that we find it developed into a consistent system ; 
it was not published till 1684. Most of his mathematical 
papers were produced within the ten years from 1682 to 1692, 
and many of them in a journal, called the Acta Eruditorum, 
founded by himself and Otto Mencke in 1682, which had a 
wide circulation on the continent.

Leibnitz occupies at least as large a place in the history of 
philosophy as he does in the history of mathematics. Most of 
his philosophical writings were composed in the last twenty or 
twenty-five years of his life; and the point as to whether his 
views were original or whether they were appropriated from 
Spinoza, whom he visited in 1676, is still in question among 
philosophers, though the evidence seems to point to the origin
ality of Leibnitz. As to Leibnitz’s system of philosophy it will 
be enough to say that he regarded the ultimate elements of the 
universe as individual percipient beings whom he called monads. 
According to him the monads are centres of force, and substance 
is force, while space, matter, and motion are merely phenomenal; 
finally, the existence of God is inferred from the existing 
harmony among the monads. His services to literature were 
almost as considerable as those to philosophy ; in particular, I
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may single out his overthrow of the then prevalent belief that 
Hebrew was the primeval language of the human race.

In 1700 the academy of Berlin was created on his advice, and 
he drew up the first body of statutes for it. On the accession 
in 1714 of his master, George I., to the throne of England, 
Leibnitz was thrown aside as a useless tool ; he was forbidden 
to come to England; and the last two years of his life were 
spent in neglect and dishonour. He died at Hanover in 1716. 
He was overfond of money and personal distinctions; was 
unscrupulous, as perhaps might be expected of a professional 
diplomatist of that time ; but possessed singularly attractive 
manners, and all who once came under the charm of his personal 
presence remained sincerely attached to him. His mathematical 
reputation was largely augmented by the eminent position that 
he occupied in diplomacy, philosophy, and literature; and the 
power thence derived was considerably increased by his influence 
in the management of the Acta Eruditorum,.

The last years of his life—from 1709 to 1716—were em
bittered by the long controversy with John Keill, Newton, and 
others, as to whether he had discovered the differential calculus 
independently of Newton’s previous investigations, or whether 
he had derived the fundamental idea from Newton, and merely 
invented another notation for it. The controversy1 occupies a 
place in the scientific history of the early years of the eighteenth 
century quite disproportionate to its true importance, but it so 
materially affected the history of mathematics in western 
Europe, that I feel obliged to give the leading facts, though I

1 The case in favour of the independent invention by Leibnitz is stated in 
Gerhardt’s Leibnizens nudhematische Schriften ; and in the third volume of 
M. Cantor’s Geschichte der Mathematik. The arguments on the other side 
are given in H. Sloman’s Leibnitzens Anspruch auf die Erfindung der 
Differenzialrechnung, Leipzig, 1857, of which an English translation, with 
additions by Dr. Slornan, was published at Cambridge in 1860. A summary 
of the evidence will be found in G. A. Gibson’s memoir, Proceedings of the 
Edinburgh Mathematical Society, vol. xiv, 1896, pp. 148-174. The history 
of the invention of the calculus is given in an article on it in the ninth edition 
of the Encyclopaedia Britannica, and in P. Mansion’s Esquisse de Γhistoire 
du calcul infinitesimal, Gand, 1887.
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am reluctant to take up so much space with questions of a 
personal character.

The ideas of the infinitesimal calculus can be expressed 
either in the notation of fluxions or in that of differentials. 
The former was used by Newton in 1666, but no distinct 
account of it was printed till 1693. The earliest use of the 
latter in the note-books of Leibnitz may be probably referred to 
1675, it was employed in the letter sent to Newton in 1677, and 
an account of it was printed in the memoir of 1684 described 
below. There is no question that the differential notation is due 
to Leibnitz, and the sole question is as to whether the general 
idea of the calculus was taken from Newton or discovered 
independently.

The case in favour of the independent invention by Leibnitz 
rests on the ground that he published a description of his 
method some years before Newton printed anything on fluxions, 
that he always alluded to the discovery as being his own inven
tion, and that for some years this statement was unchallenged ; 
while of course there must be a strong presumption that he 
acted in good faith. To rebut this case it is necessary to shew 
(i) that he saw some of Newton’s papers on the subject in or 
before 1675, or at least 1677, and (ii) that he thence derived the 
fundamental ideas of the calculus. The fact that his claim was 
unchallenged for some years is, in the particular circumstances 
of the case, immaterial.

That Leibnitz saw some of Newton’s manuscripts was always 
intrinsically probable; but when, in 1849, C. J. Gerhardt1 
examined Leibnitz’s papers he found among them a manuscript 
copy, the existence of which had been previously unsuspected, 
in Leibnitz’s handwriting, of extracts from Newton’s De Analyst 
per E<ριationes Numero Terminorum Infinitas (which was 
printed in the De Quddratura Cur varum in 1704), together 
with notes on their expression in the differential notation. 
The question of the date at which these extracts were made is 
therefore all-important. Tschirnhausen seems to have possessed 

1 Gerhardt, Leibnizens mathematische Schriften, vol. i, p. 7.
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a copy of Newton’s De Analysi in 1675, and as in that year 
he and Leibnitz were engaged together on a piece of work, 
it is not impossible that these extracts were made then. It 
is also possible that they may have been made in 1676, for 
Leibnitz discussed the question of analysis by infinite series 
with Collins and Oldenburg in that year, and it is a priori 
probable that they would have then shewn him the manuscript 
of Newton on that subject, a copy of which was possessed by 
one or both of them. On the other hand it may be supposed 
that Leibnitz made the extracts from the printed copy in or 
after 1704. Leibnitz shortly before his death admitted in a 
letter to Conti that in 1676 Collins had shewn him some 
Newtonian papers, but implied that they were of little or no 
value,—presumably he referred to Newton’s letters of June 13 
and Oct. 24, 1676, and to the letter of Dec. 10, 1672, on the 
method of tangents, extracts from which accompanied1 the 
letter of June 13,—but it is remarkable that, on the receipt of 
these letters, Leibnitz should have made no further inquiries, 
unless he was already aware from other sources of the method 
followed by Newton.

1 Gerhardt, vol. i, p. 91.
2 Catalogue of Portsmouth Papers, pp. xvi, xvii, 7, 8.

Whether Leibnitz made no use of the manuscript from 
which he had copied extracts, or whether he had previously 
invented the calculus, are questions on which at this distance 
of time no direct evidence is available. It is, however, worth 
noting that the unpublished Portsmouth Papers shew that 
when, in 1711, Newton went carefully into the whole dispute, 
he picked out this manuscript as the one which had probably 
somehow fallen into the hands of Leibnitz.1 2 At that time 
there was no direct evidence that Leibnitz had seen this 
manuscript before it was printed in 1704, and accordingly 
Newton’s conjecture was not published; but Gerhardt’s dis
covery of the copy made by Leibnitz tends to confirm the 
accuracy of Newton’s judgment in the matter. It is said by
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those who question Leibnitz’s good faith that to a man of his 
ability the manuscript, especially if supplemented by the letter 
of Dec. 10, 1672, would supply sufficient hints to give him a 
clue to the methods of the calculus, though as the fluxional 
notation is not employed in it anyone who used it would have 
to invent a notation ; but this is denied by others.

There was at first no reason to suspect the good faith of 
Leibnitz; and it was not until the appearance in 1704 of an 
anonymous review of Newton’s tract on quadrature, in which 
it was implied that Newton had borrowed the idea of the 
fluxional calculus from Leibnitz, that any responsible mathe
matician 1 questioned the statement that Leibnitz had invented 
the calculus independently of Newton. It is universally 
admitted that there was no justification or authority for the 
statements made in this review, which was rightly attributed 
to Leibnitz. But the subsequent discussion led to a critical 
examination of the whole question, and doubt was expressed as 
to whether Leibnitz had not derived the fundamental idea from 
Newton. The case against Leibnitz as it appeared to Newton’s 
friends was summed up in the Commerciunι Epistolicum issued 
in 1712, and detailed references are given for all the facts 
mentioned.

No such summary (with facts, dates, and references) of the 
case for Leibnitz was issued by his friends ; but John Bernoulli 
attempted to indirectly weaken the evidence by attacking the 
personal character of Newton : this was in a letter dated June 7, 
1713. The charges were false, and, when pressed for an 
explanation of them, Bernoulli most solemnly denied having 
written the letter. In accepting the denial Newton added in a 
private letter to him the following remarks, which are interesting 
as giving Newton’s account of why he was at last induced to 
take any part in the controversy. “ I have never,” said he, 
“ grasped at fame among foreign nations, but I am very 
desirous to preserve my character for honesty, which the

1 In 1699 Duillier had accused Leibnitz of plagiarism from Newton, but 
Duillier was not a person of much importance.
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author of that epistle, as if by the authority of a great 
judge, had endeavoured to wrest from me. Now that I am 
old, I have little pleasure in mathematical studies, and I have 
never tried to propagate my opinions over the world, but have 
rather taken care not to involve myself in disputes on account 
of them.”

Leibnitz’s defence or explanation of his silence is given in 
the following letter, dated April 9, 1716, from him to Conti. 
“ Pour repondre de point en point a 1’ouvrage publie contrę 
moi, il falloit un autre ouvrage aussi grand pour le moins que 
celui-lk : il falloit entrer dans un grand detail de quantity de 
minuties passees il y a trente a quarante ans, dont je ne me 
souvenois guere: il me falloit chercher mes vieilles lettres, 
dont plusieurs se sont perdues, outre que le plus souvent je 
n’ai point garde les minutes des miennes : et les autres sont 
ensevelies dans un grand tas de papiers, que je ne pouvois 
debrouiller qu’avec du temps et de la patience ; mais je n’en 
avois guere le loisir, etant charge presentement d’occupations 
d’une toute autre nature.”

The death of Leibnitz in 1716 only put a temporary stop 
to the controversy which was bitterly debated for many years 
later. The question is one of difficulty; the evidence is con
flicting and circumstantial; and every one must judge for 
himself which opinion seems most reasonable. Essentially it 
is a case of Leibnitz’s word against a number of suspicious 
details pointing against him. His unacknowledged possession 
of a copy of part of one of Newton’s manuscripts may be 
explicable; but the fact that on more than one occasion he 
deliberately altered or added to important documents (ex. gr. 
the letter of June 7, 1713, in the Charta Volans, and that of 
April 8, 1716, in the Acta Eruditorum), before publishing 
them, and, what is worse, that a material date in one of his 
manuscripts has been falsified1 (1675 being altered to 1673), 
makes his own testimony on the subject of little value. It

1 Cantor, who advocates Leibnitz’s claims, ∙ thinks that the falsification 
must be taken to be Leibnitz’s act: see Cantor, vol. iii, p. 176.
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must be recollected that what he is alleged to have received was 
rather a number of suggestions than an account of the calculus; 
and it is possible that as he did not publish his results of 
1677 until 1684, and that as the notation and subsequent 
development of it were all of his own invention, he may have 
been led, thirty years later, to minimize any assistance which 
he had obtained originally, and finally to consider that it was 
immaterial. During the eighteenth century the prevalent 
opinion was against Leibnitz, but to-day the majority of writers 
incline to think it more likely that the inventions were 
independent.

If we must confine ourselves to one system of notation then 
there can be no doubt that that which was invented by Leibnitz 
is better fitted for most of the purposes to which the infinites
imal calculus is applied than that of fluxions, and for some 
(such as the calculus of variations) it is indeed almost essential. 
It should be remembered, however, that at the beginning of the 
eighteenth century the methods of the infinitesimal calculus had 
not been systematized, and either notation was equally good. 
The development of that calculus was the main work of the 
mathematicians of the first half of the eighteenth century. The 
differential form was adopted by continental mathematicians. 
The application of it by Euler, Lagrange, and Laplace to the 
principles of mechanics laid down in the Principia was the great 
achievement of the last half of that century, and finally demon
strated the superiority of the differential to the fluxional calculus. 
The translation of the Principia into the language of modern 
analysis, and the filling in of the details of the Newtonian theory 
by the aid of that analysis, were effected by Laplace.

The controversy with Leibnitz was regarded in England as 
an attempt by foreigners to defraud Newton of the credit of 
his invention, and the question was complicated on both sides 
by national jealousies. It was therefore natural, though it was 
unfortunate, that in England the geometrical and fluxional 
methods as used by Newton were alone studied and employed. 
For more than a century the English school was thus out of
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touch with continental mathematicians. The consequence was 
that, in spite of the brilliant band of scholars formed by Nexvton, 
the improvements in the methods of analysis gradually effected 
on the continent were almost unknown in Britain. It was not 
until 1820 that the value of analytical methods was fully recog
nized in England, and that Newton’s countrymen again took any 
large share in the development of mathematics.

Leaving now this long controversy I come to the discussion 
of the mathematical papers produced by Leibnitz, all the more 
important of which were published in the Acta Eruditorum. 
They are mainly concerned with applications of the infinitesimal 
calculus and with various questions on mechanics.

The only papers of first-rate importance which he produced 
are those on the differential calculus. The earliest of these was 
one published in the Acta Eruditorum for October, 1684, in 
which he enunciated a general method for finding maxima and 
minima, and for drawing tangents to curves. One inverse 
problem, namely, to find the curve whose subtangent is constant, 
was also discussed. The notation is the same as that with 
which we are familiar, and the differential coefficients of xn and 
of products and quotients are determined. In 1686 he wrote 
a paper on the principles of the new calculus. In both of these 
papers the principle of continuity is explicitly assumed, while 
his treatment of the subject is based on the use of infinitesimals 
and not on that of the limiting value of ratios. In answer to 
some objections which were raised in 1694 by Bernard Nieuwentyt, 
who asserted that dy∣dx stood for an unmeaning quantity like 
0/0, Leibnitz explained, in the same way as Barrow had 
previously done, that the value of dy∣dx in geometry could be 
expressed as the ratio of two finite quantities. I think that 
Leibnitz’s statement of the objects and methods of the infinites
imal calculus as contained in these papers, which are the three 
most important memoirs on it that he produced, is somewhat 
obscure, and his attempt to place the subject on a metaphysical 
basis did not tend to clearness; but the fact that all the results 
of modern mathematics are expressed in the language invented
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by Leibnitz has proved the best monument of his work. Like 
Newton, he treated integration not only as a summation, but as 
the inverse of differentiation.

In 1686 and 1692 he wrote papers on osculating curves. 
These, however, contain some bad blunders, as, for example, the 
assertion that an osculating circle will necessarily cut a curve 
in four consecutive points : this error was pointed out by John 
Bernoulli, but in his article of 1692 Leibnitz defended his 
original assertion, and insisted that a circle could never cross a 
curve where it touched it.

In 1692 Leibnitz wrote a memoir in which he laid the 
foundation of the theory of envelopes. This was further de
veloped in another paper in 1694, in which he introduced for the 
first time the terms “ co-ordinates ” and “ axes of co-ordinates.”

Leibnitz also published a good many papers on mechanical 
subjects; but some of them contain mistakes which shew that 
he did not understand the principles of the subject. Thus, in 
1685, he wrote a memoir to find the pressure exerted by a 
sphere of weight W placed between two inclined planes of com
plementary inclinations, placed so that the lines of greatest 
slope are perpendicular to the line of the intersection of the 
planes. He asserted that the pressure on each plane must 
consist of two components, “ unum quo decliviter descendere 
tendit, alterum quo planum declive premit.” He further said 
that for metaphysical reasons the sum of the two pressures must 
be equal to W. Hence, if R and R' be the required pressures,
and α and the inclinations of the planes, he finds that

The true values are R = TΓcos α and R, = JV^ sin a. Nevertheless 
some of lι is papers on mechanics are valuable. Of these the 
most important were two, in 1689 and 1694, in which he solved 
the problem of finding an isochronous curve; one, in 1697, on 
the curve of quickest descent (this was the problem sent as a 
challenge to Newton); and two, in 1691 and 1692, in which 
he stated the intrinsic equation of the curve assumed by a
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flexible rope suspended from tvro points, that is, the catenary, 
but gave no proof. This last problem had been originally 
proposed by Galileo.

In 1689, that is, two years after the Principia had been 
published, he wrote on the movements of the planets which he 
stated were produced by a motion of the ether. Not only 
were the equations of motion which he obtained wrong, but his 
deductions from them were not even in accordance with his own 
axioms. In another memoir in 1706, that is, nearly twenty 
years after the Principia had been written, he admitted that 
he had made some mistakes in his former paper, but adhered 
to his previous conclusions, and summed the matter up by 
saying “it is certain that gravitation generates a new force at 
each instant to the centre, but the centrifugal force also generates 
another away from the centre. . . . The centrifugal force may 
be considered in two aspects according as the movement is 
treated as along the tangent to the curve or as along the arc 
of the circle itself.” It seems clear from this paper that he did 
not really understand the principles of dynamics, and it is hardly 
necessary to consider his work on the subject in further detail. 
Much of it is vitiated by a constant confusion between momentum 
and kinetic energy : when the force is “ passive ” he uses the 
first, which he calls the vis mortua, as the measure of a force ; 
when the force is “ active ” he uses, the latter, the double of 
which he calls the vis viva.

The series quoted by Leibnitz comprise those for (x, 
log (l+ir), sin z, vers x, and tan1a,j all of these had been 
previously published, and he rarely, if ever, added any demon
strations. Leibnitz (like Newton) recognised the importance 
of James Gregory’s remarks on the necessity of examining 
whether infinite series are convergent or divergent, and proposed 
a test to distinguish series whose terms are alternately positive 
and negative. In 1693 he explained the method of expansion 
by indeterminate coefficients, though his applications were net 
free from error.

To sum the matter up briefly, it seems to me that Leibnitz’s
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work exhibits great skill in analysis, but much of it is un
finished, and when he leaves his symbols and attempts to in
terpret his results he frequently commits blunders. No doubt 
the demands of politics, philosophy, and literature on his time 
may have prevented him from elaborating any problem com
pletely or writing a systematic exposition of his views, though 
they are no excuse for the mistakes of principle which occur in 
his papers. Some of his memoirs contain suggestions of 
methods which have now become valuable means of analysis, 
such as the use of determinants and of indeterminate co
efficients ; but when a writer of manifold interests like Leibnitz 
throws out innumerable suggestions, some of them are likely to 
turn out valuable; and to enumerate these (which he did not 
work out) without reckoning the others (which are wrong) gives 
a false impression of the value of his work. But in spite of 
this, his title to fame rests on a sure basis, for by his advocacy 
of the differential calculus his name is inseparably connected 
with one of the chief instruments of analysis, as that of 
Descartes—another philosopher—is similarly connected with 
analytical geometry.

Leibnitz was but one amongst several continental writers 
whose papers in the Acta Eruditorum familiarised mathe
maticians with the use of the differential calculus. Among the 
most important of these were James and John Bernoulli, both 
of whom were warm friends and admirers of Leibnitz, and to 
their devoted advocacy his reputation is largely due. Not only 
did they take a prominent part in nearly every mathematical 
question then discussed, but nearly all the leading mathe
maticians on the continent during the first half of the eighteenth 
century came directly or indirectly under the influence of one 
or both of them.

The Bernoullis1 (or as they are sometimes, and perhaps 
more correctly, called, the Bernouillis) were a family of Dutch 
origin, who were driven from Holland by the Spanish persecu-

1 See the account in the Allgenιeine deutsche Biographie, vol. ii, Leipzig, 
1875, pp. 470-483.
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tions, and finally settled at Bale in Switzerland. The first 
member of the family who attained distinction in mathematics 
was James.

James Bernoulli.1 Jacob or James Bernoulli was born at 
Bale on December 27, 1654; in 1687 he was appointed to a 
chair of mathematics in the university there; and occupied it 
until his death on August 16, 1705.

1 See the eloge by B. de Fontenelle, Paris, 1766 ; also Montucla’s Histoire, 
vol. ii. A collected edition of the works of James Bernoulli λvas published 
in two volumes at Geneva in 1744, and an account of his life is prefixed to 
the first volume.

He was one of the earliest to realize how powerful as an 
instrument of analysis was the infinitesimal calculus, and he 
applied it to several problems, but he did not himself invent 
any new processes. His great influence was uniformly and 
successfully exerted in favour of the use of the differential cal
culus, and his lessons on it, which were written in the form of 
two essays in 1691 and are published in the second volume of 
his works, shew how completely he had even then grasped the 
principles of the new analysis. These lectures, which contain 
the earliest use of the term integral, were the first published 
attempt to construct an integral calculus; for Leibnitz had 
treated each problem by itself, and had not laid down any 
general rules on the subject.

The most important discoveries of James Bernoulli were 
his solution of the problem to find an isochronous curve; his 
proof that the construction for the catenary which had been 
given by Leibnitz was correct, and his extension of this to 
strings of variable density and under a central force; his 
determination of the form taken by an elastic rod fixed at one 
end and acted on by a given force at the other, the elastica; 
also of a flexible rectangular sheet with two sides fixed hori
zontally and filled with a heavy liquid, the lintearia; and, lastly, 
of a sail filled with wind, the velaria. In 1696 he offered a 
reward for the general solution of isoperimetrical figures, that 
is, of figures of a given species and given perimeter which shall
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include a maximum area : lιis own solution, published in 1701, 
is correct as far as it goes. In 1698 he published an essay on 
the differential calculus and its applications to geometry. He 
here investigated the chief properties of the equiangular spiral, 
and especially noticed the manner in which various curves 
deduced from it reproduced the original curve : struck by this 
fact he begged that, in imitation of Archimedes, an equiangular 
spiral should be engraved on his tombstone with the inscription 
eadem numero mutata resurgo. He also brought out in 1695 
an edition of Descartes’s Geometrie. In his Ars Conjectandi, 
published in 1713, he established the fundamental principles of 
the calculus of probabilities; in the course of the work he 
defined the numbers known by his name 1 and explained their 
use, he also gave some theorems on finite differences. His 
higher lectures were mostly on the theory of series; these were 
published by Nicholas Bernoulli in 1713.

John Bernoulli.2 John Bernoulli, the brother of James 
Bernoulli, was born at Bale on August 7, 1667, and died there 
on January 1, 1748. He occupied the chair of mathematics 
at Groningen from 1695 to 1705; and at Bale, where he 
succeeded his brother, from 1705 to 1748. To all who did not 
acknowledge his merits in a manner commensurate with his 
own view of them he behaved most unjustly : as an illustration 
of his character it may be mentioned that he attempted to sub
stitute for an incorrect solution of his own on the problem of 
isoperimetrical curves another stolen from his brother James, 
while he expelled his son Daniel from his house for obtaining 
a prize from the French Academy which he had expected to 
receive himself. He was, however, the most successful teacher 
of his age, and had the faculty of inspiring his pupils with

1 A bibliography of Bernoulli’s Numbers was given by G. S. Ely, in the 
American Journal of Mathematics, 1882, vol. v, pp. 228-235.

2 D’Alembert wrote a eulogistic Hoge on the work and influence of John 
Bernoulli, but he explicitly refused to deal with his private life or quarrels ; 
see also Montucla’s Histoire, vol. ii. A collected edition of the works of 
John Bernoulli was published at Geneva in four volumes in 1742, and his 
correspondence with Leibnitz was published in two volumes at the same 
place in 1745.

www.rcin.org.pl



368 JOHN BERNOULLI [ch. xvii

almost as passionate a zeal for mathematics as he felt himself. 
The general adoption on the continent of the differential rather 
than the fluxional notation was largely due to his influence.

Leaving out of account his innumerable controversies, the 
chief discoveries of John Bernoulli were the exponential cal
culus, the treatment of trigonometry as a branch of analysis, 
the conditions for a geodesic, the determination of orthogonal 
trajectories, the solution of the brachistochrone, the statement 
that a ray of light pursues such a path that ∑μds is a minimum, 
and the enunciation of the principle of virtual work. I believe 
that he was the first to denote the accelerating effect of gravity 
by an algebraical sign g, and he thus arrived at the formula 
v2 = 2gh : the same result would have been previously expressed 
by the proportion v12 : v22 = h1 : h2. The notation <∕>∙r to indicate 
a function 1 of a? was introduced by him in 1718, and displaced 
the notation X or £ proposed by him in 1698; but the general 
adoption of symbols like f, F, φ, ψ,... to represent functions, 
seems to be mainly due to Euler and Lagrange.

1 On the meaning assigned at first to the word function see a note by 
M. Cantor, L,lntermediaire des mathematiciens, January 1896, vol. iii, pp. 
22-23.

Several members of the same family, but of a younger 
generation, enriched mathematics by their teaching and 
writings. The most important of these wrere the three sons of 
John; namely, Nicholas, Daniel, and John the younger; and 
the two sons of John the younger, who bore the names of 
John and James. To make the account complete I add here 
their respective dates. Nicholas Bernoulli, the eldest of the 
three sons of John, was born on Jan. 27, 1695, and was 
drowned at St. Petersburg, where he was professor, on July 26, 
1726. Daniel Bernoulli, the second son of John, was born on 
Feb. 9, 1700, and died on March 17, 1782; he wτas professor 
first at St. Petersburg and afterwards at Bale, and shares with 
Euler the unique distinction of having gained the prize proposed 
annually by the French Academy no less than ten times : I refer 
to him again a few pages later. John Bernoulli, the younger,
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a brother of Nicholas and Daniel, was born on May 18, 1710, 
and died in 1790; he also was a professor at Bale. He left 
two sons, John and James : of these, the former, who was born 
on Dec. 4, 1744, and died on July 10, 1807, was astronomer
royal and director of mathematical studies at Berlin ; while 
the latter, who was born on Oct. 17, 1759, and died in 
July 1789, was successively professor at Bale, Verona, and 
St. Petersburg.

The development of analysis on the continent.

Leaving for a moment the English mathematicians of the 
first half of the eighteenth century we come next to a number 
of continental writers who barely escape mediocrity, and to 
whom it will be necessary to devote but few words. Their 
writings mark the steps by which analytical geometry and the 
differential and integral calculus were perfected and made 
familiar to mathematicians. Nearly all of them were pupils 
of one or other of the two elder Bernoullis, and they were so 
nearly contemporaries that it is difficult to arrange them 
chronologically. The most eminent of them are Cramer, de 
Gua, de Montmort, Fagnano, V Hospital, Nicole, Parent, 
Riccati, Saurin, and Varignon.

L’Hospital. Guillaume Franęois Antoine VHospital, Mar
quis de St.-Mesme, born at Paris in 1661, and died there on 
Feb. 2, 1704, was among the earliest pupils of John Bernoulli, 
who, in 1691, spent some months at l’Hospital’s house in 
Paris for the purpose of teaching him the new calculus. It 
seems strange, but it is substantially true, that a knowledge of 
the infinitesimal calculus and the power of using it was then 
confined to Newton, Leibnitz, and the two elder Bernoullis— 
and it will be noticed that they were the only mathematicians 
who solved the more difficult problems then proposed as chal
lenges. There was at that time no text-book on the subject, 
and the credit of putting together the first treatise which 
explained the principles and use of the method is due to 

2 B
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l’Hospital; it was published in 1696 under the title Analyse des 
infiniment petits. This contains a partial investigation of 
the limiting value of the ratio of functions which for a certain 
value of the variable take the indeterminate form 0:0, a 
problem solved by John Bernoulli in 1704. This work had 
a wide circulation; it brought the differential notation into 
general use in France, and helped to make it known in 
Europe. A supplement, containing a similar treatment of 
the integral calculus, together with additions to the differential 
calculus which had been made in the following half century, 
was published at Paris, 1754-56, by L. A. de Bougainville.

L’Hospital took part in most of the challenges issued 
by Leibnitz, the Bernoullis, and other continental mathe
maticians of the time; in particular he gave a solution of 
the brachistochrone, and investigated the form of the solid 
of least resistance of which Newton in the Principia had 
stated the result. He also wrote a treatise on analytical 
conics, which -was published in 1707, and for nearly a century 
was deemed a standard work on the subject.

Varignon.1 Pierre Varignon, born at Caen in 1654, and 
died in Paris on Dec. 22, 1722, was an intimate friend of 
Newton, Leibnitz, and the Bernoullis, and, after l’Hospital, was 
the earliest and most powerful advocate in France of the use of 
the differential calculus. He realized the necessity of obtaining 
a test for examining the convergency of series, but the 
analytical difficulties were beyond his powers. He simplified 
the proofs of many of the leading propositions in mechanics, 
and in 1687 recast the treatment of the subject, basing it on 
the composition of forces. His works were published at Paris 
in 1725.

De Montmort. Nicole. Pierre Raymond de Montmort, 
born at Paris on Oct. 27, 1678, and died there on Oct. 7, 
1719, was interested in the subject of finite differences. He 
determined in 1713 the sum of n terms of a finite series of 
the form

1 See the doge by B. de Fontenelle, Paris, 1766.
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a theorem which seems to have been independently re
discovered by Chr. Goldbach in 1718. Franęois Nicole, who 
was born at Paris on Dec. 23, 1683, and died there on 
Jan. 18, 1758, published his Traite du calcul des differences 
finies in 1717; it contains rules both for forming differences 
and for effecting the summation of given series. Besides this, 
in 1706 he wrote a work on roulettes, especially spherical 
epicycloids; and in 1729 and 1731 he published memoirs on 
Newton’s essay on curves of the third degree.

Parent. Saurin. De Gua. Antoine Parent, born at 
Paris on Sept. 16, 1666, and died there on Sept. 26, 1716, 
wrote in 1700 on analytical geometry of three dimensions. 
His works were collected and published in three volumes at 
Paris in 1713. Joseph Saurin, born at Courtaison in 1659, 
and died at Paris on Dec. 29, 1737, was the first to show how 
the tangents at the multiple points of curves could be deter
mined by analysis. Jean Paul de Gua de Halves was born at 
Carcassonne in 1713, and died at Paris on June 2, 1785. He 
published in 1740 a work on analytical geometry in which he 
applied it, without the aid of the differential calculus, to find 
the tangents, asymptotes, and various singular points of an 
algebraical curve; and he further shewed how singular points 
and isolated loops were affected by conical projection. He 
gave the proof of Descartes’s rule of signs which is to be 
found in most modern works. It is not clear whether Descartes 
ever proved it strictly, and Newton seems to have regarded it 
as obvious.

Cramer. Gabriel Cramer, born at Geneva in 1704, and 
died at Bagnols in 1752, was professor at Geneva. The work 
by which he is best known is his treatise on algebraic 
curves1 published in 1750, which, as far as it goes, is fairly 
complete; it contains the earliest demonstration that a curve

1 See Cantor, chapter cxvi.
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of the nth degree is in general determined if ⅜n(n + 3) points 
on it be given. This work is still sometimes read. Besides 
this, he edited the works of the two elder Bernoullis; and 
wrote on the physical cause of the spheroidal shape of the 
planets and the motion of their apses, 1730, and on Newton’s 
treatment of cubic curves, 1746.

Riccati. Jacopo Francesco, Count Riccati, born at Venice 
on May 28, 1676, and died at Treves on April 15, 1754, did 
a great deal to disseminate a knowledge of the Neλvtonian 
philosophy in Italy. Besides the equation knoλvn by his 
name, certain cases of which he succeeded in integrating, he 
discussed the question of the possibility of lowering the order 
of a given differential equation. His works were published at 
Treves in four volumes in 1758. He had two sons who wrote 
on several minor points connected with the integral calculus 
and differential equations, and applied the calculus to several 
mechanical questions: these were Vincenzo, who was born in 
1707 and died in 1775, and Giordano, who was born in 1709 
and died in 1790.

Fagnano. Giulio Carlo, Count Fagnano, and Marquis de 
Toschi, born at Sinigaglia on Dec. 6, 1682, and died on Sept. 26, 
1766, may be said to have been the first writer who directed 
attention to the theory of elliptic functions. Failing to rectify 
the ellipse or hyperbola, Fagnano attempted to determine arcs 
whose difference should be rectifiable. He also pointed out 
the remarkable analogy existing between the integrals which 
represent the arc of a circle and the arc of a lemniscate. 
Finally he proved the formula

where i stands for His works were collected and
published in two volumes at Pesaro in 1750.

It was inevitable that some mathematicians should object to 
methods of analysis founded on the infinitesimal calculus. The 
most prominent of these were Viυiani, De la Hire, and Rolle, 
whose names were mentioned at the close of chapter xv.
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So far no one of the school of Leibnitz and the two elder 
Bernoullis had shewn any exceptional ability, but by the action 
of a number of second-rate writers the methods and language 
of analytical geometry and the differential calculus had become 
well known by about 1740. The close of this school is marked 
by the appearance of Clairaut, D’Alembert, and Daniel Bernoulli. 
Their lives overlap the period considered in the next chapter, 
but, though it is difficult to draw a sharp dividing line which 
shall separate by a definite date the mathematicians there con
sidered from those whose writings are discussed in this chapter, 
I think that on the whole the works of these three writers are 
best treated here.

Clairaut. Alexis Claude Clairaut was born at Paris on 
May 13, 1713, and died there on May 17, 1765. He belongs 
to the small group of children who, though of exceptional 
precocity, survive and maintain their powers when grown up. 
As early as the age of twelve he wrote a memoir on four 
geometrical curves; but his first important work was a treatise 
on tortuous curves, published when he was eighteen—a work 
which procured for him admission to the French Academy. In 
1731 he gave a demonstration of the fact noted by Newton 
that all curves of the third order were projections of one of five 
parabolas.

In 1741 Clairaut went on a scientific expedition to measure 
the length of a meridian degree on the earth’s surface, and on 
his return in 1743 he published his Tlιeorie de la figure de la 
terre. This is founded on a paper by Maclaurin, wherein it had 
been shewn that a mass of homogeneous fluid set in rotation 
about a line through its centre of mass would, under the mutual 
attraction of its particles, take the form of a spheroid. This 
work of Clairaut treated of heterogeneous spheroids and contains 
the proof of his formula for the accelerating effect of gravity in 
a place of latitude I, namely,

where G is the value of equatorial gravity, m the ratio of the
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centrifugal force to gravity at the equator, and ∈ the ellipticity 
of a meridian section of the earth. In 1849 Stokes1 shewed 
that the same result was true whatever was the interior con
stitution or density of the earth, provided the surface was a 
spheroid of equilibrium of small ellipticity.

Impressed by the power of geometry as shewn in the writings 
of Newton and Maclaurin, Clairaut abandoned analysis, and his 
next work, the Theorie de la lune, published in 1752, is strictly 
Newtonian in character. This contains the explanation of the 
motion of the apse which had previously puzzled astronomers, 
and which Clairaut had at first deemed so inexplicable that he 
was on the point of publishing a new hypothesis as to the law 
of attraction when it occurred to him to carry the approximation 
to the third order, and he thereupon found that the result was 
in accordance with the observations. This was followed in 1754 
by some lunar tables. Clairaut subsequently wrote various 
papers on the orbit of the moon, and on the motion of comets 
as affected by the perturbation of the planets, particularly on 
the path of Halley’s comet.

His growing popularity in society hindered his scientific 
work : “ engage,” says Bossut, “ a des soupers, a des veilles, 
entraine par un goιιt vif pour les femmes, voulant allier le 
plaisir ⅛ ses travaux ordinaires, il perdit le repos, la sante, 
enfin la vie a l’age de cinquante-deux ans.”

D’Alembert.2 Jean-le-Rond D'Alembert was born at Paris 
on November 16, 1717, and died there on October 29, 1783. 
He was the illegitimate child of the chevalier Destouches. 
Being abandoned by his mother on the steps of the little church 
of St. Jean-le-Rond, which then nestled under the great porch 
of Notre-Dame, he was taken to the parish commissary, who, 
following the usual practice in such cases, gave him the Christian 
name of Jean-le-Rond; I do not know by what authority he

1 See Cambridge Philosophical Transactions, vol. viii, pp. 672-695.
2 Bertrand, Condorcet, and J. Bastien have left sketches of D’Alembert’s 

life. His literary works have been published, but there is no complete edition 
of his scientific writings. Some papers and letters, discovered comparatively 
recently, were published by C. Henry at Paris in 1887.
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subsequently assumed the right to prefix de to his name. He 
was boarded out by the parish with the wife of a glazier in a 
small way of business who lived near the cathedral, and here he 
found a real home, though a humble one. His father appears 
to have looked after him, and paid for his going to a school 
where he obtained a fair mathematical education.

An essay written by him in 1738 on the integral calculus, 
and another in 1740 on “ducks and drakes” or ricochets, 
attracted some attention, and in the same year he was elected 
a member of the French Academy; this was probably due to 
the influence of his father. It is to his credit that he absolutely 
refused to leave his adopted mother, with whom he continued 
to live until her death in 1757. It cannot be said that she 
sympathised with his success, for at the height of his fame she 
remonstrated with him for wasting his talents on such work : 
“ ^Vous ne serez jamais qu’un philosophe,” said she, “ et qu’est-ce 
qu’in philosophe ? c’est un fou qui se tourmente pendant sa vie, 
pour qu’on parle de lui lorsqu’il n’y sera plus.”

Nearly all his mathematical works were produced during 
the years 1743 to 1754. The first of these was his Traite de 
dyvamique, published in 1743, in which he enunciates the prin
ciple known by his name, namely, that the “ internal forces of 
ine?tia ” (that is, the forces which resist acceleration) must be 
equal and opposite, to the forces which produce the acceleration. 
Th.s may be inferred from Newton’s second reading of his third 
lav of motion, but the full consequences had not been realized 
previously. The application of this principle enables us to obtain 
the differential equations of motion of any rigid system.

In 1744 D’Alembert published his Traite de Vequilibre et 
du mouvement des fiuides, in which he applies his principle to 
fluffs; this led to partial differential equations which he was 
then unable to solve. In 1745 he developeel that part of the 
subject which dealt with the motion of air in his Theorie generale 
des vents, and this again led him to partial differential equations. 
A second edition of this in 1746 was dedicated to Frederick the 
Gnat of Prussia, and procured an invitation to Berlin and the
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offer of a pension; he declined the former, but subsequently, 
after some pressing, pocketed his pride and the latter. In 1747 
he applied the differential calculus to the problem of a vibrating 
string, and again arrived at a partial differential equation.

His analysis had three times brought him to an equation 
of the form

and he now succeeded in shewing that it was satisfied by

where φ and φ are arbitrary functions. It may be interesting 
to give his solution which was published in the transactions 
of the Berlin Academy for 1747. He begins by saying that, if

be denoted by p and by q, then

But, by the given equation, and therefore is

also an exact differential: denote it by dv.
Therefore
Hence
and
Thus u + v must be a function of x + t, and u - v must be a 
function of x - t. We may therefore put

and
Hence

D’Alembert added that the conditions of the physical problem 
of a vibrating string demand that, when x = 0, u should vanish 
for all values of t. Hence identically

Assuming that both functions can be expanded in integral
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powers of t, this requires that they should contain only odd 
powers. Hence

Therefore
Euler now took the matter up and shewed that the equation 

of the form of the string was and that the general

integral was where and are
arbitrary functions.

The chief remaining contributions of D’Alembert to mathe
matics were on physical astronomy, especially on the precession 
of the equinoxes, and on variations in the obliquity of the 
ecliptic. These were collected in his Systeme du monde, pub
lished in three volumes in 1754.

During the latter part of his life he was mainly occupied 
with the great French encyclopaedia. For this he wrote the 
introduction, and numerous philosophical and mathematical 
articles; the best are those on geometry and on probabilities. 
His style is brilliant, but not polished, and faithfully reflects 
his character, which was bold, honest, and frank. He defended 
a severe criticism which he had offered on some mediocre work 
by the remark, “j’aime mieux etre incivil qu’ennuye ”; and 
with his dislike of sycophants and bores it is not surprising that 
during his life he had more enemies than friends.

Daniel Bernoulli.1 Daniel Bernoulli, whose name I mentioned 
above, and who was by far the ablest of the younger Bernoullis, 
was a contemporary and intimate friend of Euler, whose works

1 The only account of Daniel Bernoulli’s life with which I am acquainted is 
the eloge by his friend Condorcet. Marie Jean Antoine Nicolas Caritat, Marquis 
de Condorcet, was born in Picardy on Sept. 17, 1743, and fell a victim to the 
republican terrorists on March 28, 1794. He was secretary to the Academy, 
and is the author of numerous eloges. He is perhaps more celebrated for his 
studies in philosophy, literature, and politics than in mathematics, but his 
mathematical treatment of probabilities, and his discussion of differential 
equations and finite differences, shew an ability which might have put him in 
the first rank had he concentrated his attention on mathematics. He sacri
ficed himself in a vain effort to guide the revolutionary torrent into a consti
tutional channel.
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are mentioned in the next chapter. Daniel Bernoulli was born 
on Feb. 9, 1700, and died at Bale, where he was professor of 
natural philosophy, on March 17, 1782. He went to St. Peters
burg in 1724 as professor of mathematics, but the roughness of 
the social life was distasteful to him, and he was not sorry when 
a temporary illness in 1733 allowed him to plead his health as 
an excuse for leaving. He then returned to Bale, and held 
successively chairs of medicine, metaphysics, and natural philo
sophy there.

His earliest mathematical work was the Exercitationes, pub
lished in 1724, which contains a solution of the differential 
equation proposed by Riccati. Two years later he pointed out 
for the first time the frequent desirability of resolving a com
pound motion into motions of translation and motions of rota
tion. His chief work is his IIydrodynamique, published in 1738 ; 
it resembles Lagrange’s Mecanique analytique in being arranged 
so that all the results are consequences of a single principle, 
namely, in this case, the conservation of energy. This was 
followed by a memoir on the theory of the tides, to which, con
jointly with memoirs by Euler and Maclaurin, a prize was 
awarded by the French Academy : these three memoirs contain 
all that was done on this subject between the publication of 
Newton’s Principia and the investigations of Laplace. Ber
noulli also wrote a large number of papers on various mechanical 
questions, especially on problems connected with vibrating strings, 
and the solutions given by Taylor and by D’Alembert. He is 
the earliest writer who attempted to formulate a kinetic theory 
of gases, and he applied the idea to explain the law associated 
with the names of Boyle and Mariotte.

The English mathematicians of the eighteenth century.

I have reserved a notice of the English mathematicians who 
succeeded Newton, in order that the members of the English 
school may be all treated together. It was almost a matter of 
course that the English should at first have adopted the notation
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of Newton in the infinitesimal calculus in preference to that of 
Leibnitz, and consequently the English school would in any case 
have developed on somewhat different lines to that on the conti
nent, where a knowledge of the infinitesimal calculus was derived 
solely from Leibnitz and the Bernoullis. But this separation 
into two distinct schools became very marked owing to the 
action of Leibnitz and John Bernoulli, which was naturally 
resented by Newton’s friends; and so for forty or fifty years, to 
the disadvantage of both sides, the quarrel raged. The leading 
members of the English school were Cotes, Demoivre, Ditton, 
David Gregory, Halley, Maclaurin, Simpson, and Taylor. I 
may, however, again remind my readers that as we approach 
modern times the number of capable mathematicians in Britain, 
France, Germany, and Italy becomes very considerable, but that 
in a popular sketch like this book it is only the leading men 
whom I propose to mention.

To David Gregory, Halley, and Ditton I need devote but few 
words.

David Gregory. David Gregory, the nephew of the James 
Gregory mentioned above, born at Aberdeen on June 24, 1661, 
and died at Maidenhead on Oct. 10, 1708, was appointed 
professor at Edinburgh in 1684, and in 1691 was on Newton’s 
recommendation elected Savilian professor at Oxford. His 
chief works are one on geometry, issued in 1684; one on optics, 
published in 1695, which contains [p. 98] the earliest suggestion 
of the possibility of making an achromatic combination of lenses ; 
and one on the Newtonian geometry, physics, and astronomy, 
issued in 1702.

Halley. Edmund Halley, born in London in 1656, and 
died at Greenwich in 1742, was educated at St. Paul’s School, 
London, and Queen’s College, Oxford, in 1703 succeeded Wallis 
as Savilian professor, and subsequently in 1720 was appointed 
astronomer-royal in succession to Flamsteed, whose Historia 
Coelestis Britannica he edited; the first and imperfect edition 
was issued in 1712. Halley’s name will be recollected for the 
generous manner in which he secured the immediate publication
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of Newton’s Principia in 1687. Most of his original work was 
on astronomy and allied subjects, and lies outside the limits of 
this book ; it may be, however, said that the work is of excellent 
quality, and both Lalande and Mairan speak of it in the highest 
terms. Halley conjecturally restored the eighth and lost book 
of the conics of Apollonius, and in 1710 brought out a magnifi
cent edition of the whole work; he also edited the works of 
Serenus, those of Menelaus, and some of the minor works of 
Apollonius. He was in his turn succeeded at Greenwich as 
astronomer-royal by Bradley.1

1 James Bradley, born in Gloucestershire in 1692, and died in 1762, was 
the most distinguished astronomer of the first half of the eighteenth century. 
Among his more important discoveries were the explanation of astronomical 
aberration (1729), the cause of nutation (1748), and his empirical formula 
for corrections for refraction. It is perhaps not too much to say that he was 
the first astronomer who made the art of observing part of a methodical 
science.

2 An account of his life by Sir William Young is prefixed to the Content- 
platio Philosophica. This was printed at London in 1793 for private 
circulation and is now extremely rare.

Ditton. Humphry Ditton was born at Salisbury on May 29, 
1675, and died in London in 1715 at Christ’s Hospital, where 
he was mathematical master. He does not seem to have paid 
much attention to mathematics until he came to London about 
1705, and his early death was a distinct loss to English science. 
He published in 1706 a text book on fluxions; this and another 
similar work by William Jones, which was issued in 1711, 
occupied in England much the same place that l’Hospital’s 
treatise did in France. In 1709 Ditton issued an algebra, and 
in 1712 a treatise on perspective. He also wrote numerous 
papers in the Philosophical Transactions. He was the earliest 
writer to attempt to explain the phenomenon of capillarity 
on mathematical principles; and he invented a method for 
finding the longitude, which has been since used on various 
occasions.

Taylor.1 2 Brook Taylor, born at Edmonton on August 18, 
1685, and died in London on December 29, 1731, was educated 
at St. John’s College, Cambridge, and was among the most 
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enthusiastic of Newton’s admirers. From the year 171'2 onwards 
he wrote numerous papers in the Philosophical Transactions, 
in which, among other things, he discussed the motion of 
prcjectiles, the centre of oscillation, and the forms taken by 
liqιids when raised by capillarity. In 1719 he resigned the 
secetaryship of the Royal Society and abandoned the study 
of mathematics. His earliest work, and that by which he is 
geιerally known, is his Methodus Incrementorum Directa et 
Iwersa, published in London in 1715. This contains [prop. 7] 
a {roof of the well-known theorem

by which a function of a single variable can be expanded in 
povers of it. He does not consider the convergency of the 
ser.es, and the proof which involves numerous assumptions is 
noι worth reproducing. The work also includes several 
theorems on interpolation. Taylor was the earliest writer to 
de⅛l with theorems on the change of the independent variable; 
he was perhaps the first to realize the possibility of a calculus 
of operation, and just as he denotes the nth differential coeffi- 
cieιt of y by yn, so he uses y _1 to represent the integral of y; 
lasly, he is usually recognized as the creator of the theory of 
finte differences.

The applications of the calculus to various questions given in 
th( Methodus have hardly received that attention they deserve. 
The most important of them is the theory of the transverse 
vilrations of strings, a problem which had baffled previous 
investigators. In this investigation Taylor shews that the 
nunber of half-vibrations executed in a second is

where L is the length of the string, N its weight, P the weight 
wHch stretches it, and D the length of a seconds pendulum. 
This is correct, but in arriving at it he assumes that every 
pont of the string will pass through its position of equi-
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librium at the same instant, a restriction which D’Alembert 
subsequently shewed to be unnecessary. Taylor also found the 
form which the string assumes at any instant.

The Methodus also contains the earliest determination of 
the differential equation of the path of a ray of light when 
traversing a heterogeneous medium ; and, assuming that the 
density of the air depends only on its distance from the 
earth’s surface, Taylor obtained by means of quadratures the 
approximate form of the curve. The form of the catenary and 
the determination of the centres of oscillation and percussion 
are also discussed.

A treatise on perspective by Taylor, published in 1719, 
contains the earliest general enunciation of the principle of 
vanishing points; though the idea of vanishing points for 
horizontal and parallel lines in a picture hung in a vertical 
plane had been enunciated by Guido Ubaldi in his Perspectivae 
Libri, Pisa, 1600, and by Stevinus in his Sciagraphia, Leyden, 
1608.

Cotes. Roger Cotes was born near Leicester on July 10, 
1682, and died at Cambridge on June 5, 1716. He was 
educated at Trinity College, Cambridge, of which society he 
was a fellow, and in 1706 was elected to the newly-created 
Plumian chair of astronomy in the university of Cambridge. 
From 1709 to 1713 his time was mainly occupied in editing 
the second edition of the Principia. The remark of Newton 
that if only Cotes had lived “ we might have known some
thing ” indicates the opinion of his abilities held by most of 
his contemporaries.

Cotes’s writings were collected and published in 1722 
under the titles Harmonia Mensurarum and Opera Miscel
lanea. His lectures on hydrostatics were published in 1738. 
A large part of the Harmonia Mensurarum is given up 
to the decomposition and integration of rational algebraical 
expressions. That part which deals with the theory of partial 
fractions was left unfinished, but was completed by Demoivre. 
Cotes’s theorem in trigonometry, which depends on forming the
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qujdratic factors of xn - 1, is well known. The proposition that 
“ ii from a fixed point 0 a line be drawn cutting a curve in 
Q1, Q2i ..., Qn, and a point P be taken on the line so that the 
rec procal of OP is the arithmetic mean of the reciprocals of 
OQv, OQ2, ..., OQn, then the locus of P will be a straight line” 
is ιlso due to Cotes. The title of the book was derived from 
the latter theorem. The Opera Miscellanea contains a paper 
on the method for determining the most probable result from 
a lumber of observations. This was the earliest attempt to 
frane a theory of errors. It also contains essays on Newton’s 
Mehodus Differentialis, on the construction of tables by the 
me<hod of differences, on the descent of a body under gravity, 
on the cycloidal pendulum, and on projectiles.

Demoivre. Abraham Demoivre (more correctly wτritten 
as le Moivre) wτas born at Vitry on May 26, 1667, and died in 
Loιdon on November 27, 1754. His parents came to England 
whm he was a boy, and his education and friends wτere alike 
English. His interest in the higher mathematics is said to 
haτe originated in his coming by chance across a copy of 
Newton’s Princip>ia. From the eloge on him delivered in 1754 
before the French Academy it would seem that his work 
as a teacher of mathematics had led him to the house of the 
Eal of Devonshire at the instant when Newton, who had 
asled permission to present a copy of his work to the earl, 
waι coming out. Taking up the book, and charmed by the far- 
reaching conclusions and the apparent simplicity of the reasoning, 
Denoivre thought nothing would be easier than to master the 
sulject, but to his surprise found that to follow the argument 
ov(rtaxed his powers. He, however, bought a copy, and as he 
hac but little leisure he tore out the pages in order to carry one 
or two of them loose in his pocket so that he could study them 
in the intervals of his work as a teacher. Subsequently he 
joiιed the Royal Society, and became intimately connected with 
Newton, Halley, and other mathematicians of the English 
school. The manner of his death has a certain interest for 
psychologists. Shortly before it he declared that it was neces-
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sary for him to sleep some ten minutes or a quarter of an hour 
longer each day than the preceding one. The day after he had thus 
reached a total of something over twenty-three hours he slept 
up to the limit of twenty-four hours, and then died in his sleep.

He is best known for having, together with Lambert, 
created that part of trigonometry which deals with imaginary 
quantities. Two theorems on this part of the subject are still 
connected with his name, namely, that which asserts that 
sin nx + i cos nx is one of the values of (sin x + i cos x')n, and 
that which gives the various quadratic factors of x2n - 2jo#w + 1. 
His chief works, other than numerous papers in the Philo
sophical Transactions, were The Doctrine of Chances, published 
in 1718, and the Miscellanea Analytica, published in 1730. In 
the former the theory of recurring series was first given, and 
the theory of partial fractions which Cotes's premature death 
had left unfinished was completed, while the rule for finding 
the probability of a compound event was enunciated. The 
latter book, besides the trigonometrical propositions mentioned 
above, contains some theorems in astronomy, but they are treated 
as problems in analysis.

Maclaurin.1 Colin Maclaurin, who was born at Kilmodan 
in Argyllshire in February 1698, and died at York on June 14, 
1746, was educated at the university of Glasgow; in 1717 
he was elected, at the early age of nineteen, professor of 
mathematics at Aberdeen; and in 1725 he was appointed the 
deputy of the mathematical professor at Edinburgh, and ulti
mately succeeded him. There was some difficulty in securing a 
stipend for a deputy, and Newton privately wrote offering to 
bear the cost so as to enable the university to secure the services 
of Maclaurin. Maclaurin took an active part in opposing the 
advance of the Young Pretender in 1745; on the approach of 
the Highlanders he fled to York, but the exposure in the 
trenches at Edinburgh and the privations he endured in his 
escape proved fatal to him.

1 A sketch of Maclaurin’s life is prefixed to his posthumous account of 
Newton’s discoveries, London, 1748.
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His chief works are his Geometria Organica, London, 1720; 
his De Linearum Geometricarum Proprietatibus, London, 1720; 
his Treatise cm Fluxions, Edinburgh, 1742 ; his Algebra, 
London, 1748 ; and his Account of Newton’s Discoveries, London, 
1748.

The first section of the first part of the Geometria Organica 
is on conics; the second on nodal cubics; the third on other 
cubics and on quartics; and the fourth section is on general 
properties of curves. Newton had shewn that, if two angles 
bounded by straight lines turn round their respective summits 
so that the point of intersection of two of these lines moves 
along a straight line, the other point of intersection will 
describe a conic; and, if the first point move along a conic, the 
second will describe a quartic. Maclaurin gave an analytical 
discussion of the general theorem, and shewed how by this 
method various curves could be practically traced. This work 
contains an elaborate discussion on curves and their pedals, 
a branch of geometry which he had created in two papers 
published in the Philosophical Transactions for 1718 and 
1719.

The second part of the work is divided into three sections 
and an appendix. The first section contains a proof of Cotes’s 
theorem above alluded to; and also the analogous theorem 
(discovered by himself) that, if a straight line 0P1P2... drawn 
through a fixed point 0 cut a curve of the wth degree in n 
points P1, P2,..., and if the tangents at P1, P2,.-. cut a fixed 
line Ox in points Al, A2,..., then the sum of the reciprocals 
of the distances OA1, OA2,... is constant for all positions of 
the line OI∖P2.... These two theorems are generalizations of 
those given by Newton on diameters and asymptotes. Either 
is deducible from the other. In the second and third sections 
these theorems are applied to conics and cubics; most of the 
harmonic properties connected with a quadrilateral inscribed 
in a conic are determined; and in particular the theorem on 
an inscribed hexagon which is known by the name of Pascal is 
deduced. Pascal’s essay was not published till 1779, and 

2 c 
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the earliest printed enunciation of his theorem was that given 
by Maclaurin. Amongst other propositions he shews that, 
if a quadrilateral be inscribed in a cubic, and if the points 
of intersection of the opposite sides also lie on the curve, then 
the tangents to the cubic at any two opposite angles of the 
quadrilateral will meet on the curve. In the fourth section 
he considers some theorems on central force. The fifth section 
contains some theorems on the description of curves through 
given points. One of these (which includes Pascal’s as a par
ticular case) is that if a polygon be deformed so that while 
each of its sides passes through a fixed point its angles (save 
one) describe respectively curves of the with, nth, ∕>th,... 
degrees, then shall a remaining angle describe a curve of the 
degree 2mnp...∙, but if the given points be collinear, the 
resulting curve will be only of the degree τnnp.... This essay 
was reprinted with additions in the Philosophical Transactions 
for 1735.

The Treatise of Fluxions, published in 1742, was the first 
logical and systematic exposition of the method of fluxions. 
The cause of its publication was an attack by Berkeley on the 
principles of the infinitesimal calculus. In it [art. 751, p. 610] 
Maclaurin gave a proof of the theorem that

This was obtained in the manner given in many modern text
books by assuming that f(x) can be expanded in a form like

then, on differentiating and putting a? = 0 in the successive 
results, the values of Λo, Λ1,... are obtained; but he did not 
investigate the convergency of the series. The result had been 
previously given in 1730 by James Stirling in his Methodus 
Differentialis [p. 102], and of course is at once deducible from 
Taylor’s theorem. Maclaurin also here enunciated [art. 350, 
p. 289] the important theorem that, if φ(x) be positive and 
decrease as x increases from x = a to x-∞ , then the series

www.rcin.org.pl



ch. xvπ] MACLAURIN 387

is ccnvergent or divergent as the integral from x = a to x = oo of 
<t>(x] is finite or infinite. The theorem had been given by 
Euler1 in 1732, but in so awkwarel a form that its value escaped 
general attention. Maclaurin here also gave the correct theory of 
maxma and minima, and rules for finding and discriminating 
multiple points.

This treatise is, however, especially valuable for the solutions 
it contains of numerous problems in geometry, statics, the theory 
of attractions, and astronomy. To solve these Maclaurin re
verted to classical methods, and so powerful did these processes 
seem, when used by him, that Clairaut, after reading the work, 
abanloned analysis, and attacked the problem of the figure of 
the earth again by pure geometry. At a later time this part of 
the book was described by Lagrange as the “chef-d’oeuvre de 
geometrie qu’on peut comparer a tout ce qu’Archimede nous a 
laisse de plus beau et de plus ingenieux.” Maclaurin also 
determined the attraction of a homogeneous ellipsoid at an 
internal point, and gave some theorems on its attraction at an 
external point; in attacking these questions he introduced 
the (onception of level surfaces, that is, surfaces at every point 
of which the resultant attraction is perpendicular to the surface. 
No further advance in the theory of attractions was made until 
Lagr⅛nge in 1773 introduced the idea of the potential. Mac
laurin also shewed that a spheroid was a possible form of 
equilibrium of a mass of homogeneous liquid rotating about an 
axis passing through its centre of mass. Finally he discussed 
the tides ; this part had been previously published (in 17 40) and 
had received a prize from the French Academy.

Among Maclaurin’s minor works is his Algebra, published 
in 1748, and founded on Newton’s Universal Arithmetic. It 
contains the results of some early papers of Maclaurin; notably 
of two, written in 1726 and 1729, on the number of imaginary 
roots of an equation, suggested by Newton’s theorem; and of

1 See Cantor, vol. iii, p. 663.
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one, written in 1729, containing the well-known rule for finding 
equal roots by means of the derived equation. In this book 
negative quantities are treated as being not less real than 
positive quantities. To this work a treatise, entitled De 
Linearum Geometricarum Proprietatibus Generalibus, was added 
as an appendix; besides the paper of 1720 above alluded to, 
it contains some additional and elegant theorems. Maclaurin 
also produced in 1728 an exposition of the Newtonian philosophy, 
which is incorporated in the posthumous work printed in 1748. 
Almost the last paper he wrote was one printed in the Philo
sophical Transactions for 1743 in which he discussed from a 
mathematical point of view the form of a bee’s cell.

Maclaurin was one of the most able mathematicians of the 
eighteenth century, but his influence on the progress of British 
mathematics was on the whole unfortunate. By himself 
abandoning the use both of analysis and of the infinitesimal 
calculus, he induced Newton’s countrymen to confine themselves 
to Newton’s methods, and it was not until about 1820, when 
the differential calculus was introduced into the Cambridge 
curriculum, that English mathematicians made any general use 
of the more powerful methods of modern analysis.

Stewart. Maclaurin was succeeded in his chair at Edinburgh 
by his pupil Matthew Stewart, born at Rothesay in 1717 and 
died at Edinburgh on January 23, 1785, a mathematician of 
considerable power, to whom I allude in passing, for his theorems 
on the problem of three bodies, and for his discussion, treated by 
transversals and involution, of the properties of the circle and 
straight line.

Simpson.1 The last member of the English school whom 
I need mention here is Thomas Simpson, who was born in 
Leicestershire on August 20, 1710, and died on May 14, 17G1. 
His father was a weaver, and he owed his education to his own 
efforts. His mathematical interests were first aroused by the

1 A sketch of Simpson’s life, with a bibliography of his writings, by J. 
Bevis and C. Hutton, was published in London in 1764. A short memoir is 
also prefixed to the later editions of his work on fluxions.
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solar eclipse which took place in 1724, and with the aid of a 
fortune-telling pedlar he mastered Cocker’s Arithmetic and the 
elements of algebra. He then gave up his weaving and became 
an usher at a school, and by constant and laborious efforts 
improved his mathematical education, so that by 1735 he was 
able to solve several questions which had been recently proposed 
and which involved the infinitesimal calculus. He next moved 
to London, and in 1743 was appointed professor of mathematics 
at Woolwich, a post which he continued to occupy till his death.

The works published by Simpson prove him to have been 
a man of extraordinary natural genius and extreme industry. 
The most important of them are his Fluxions, 1737 and 1750, 
with numerous applications to physics and astronomy; his Laws 
of Chance and his Essays, 1740; his theory of Annuities and 
Reversions (a branch of mathematics that is due to James 
Dodson, died in 1757, who was a master at Christ’s Hospital, 
Loudon), with tables of the value of lives, 1742; his Disserta
tions, 1743, in which the figure of the earth, the force of 
attraction at the surface of a nearly spherical body, the theory 
of the tides, and the law of astronomical refraction are discussed; 
his Algebra, 1745; his Geometry, 1747 ; his Trigonometry, 
1748, in which he introduced the current abbreviations for 
the trigonometrical functions; his Select Exercises, 1752, con
taining the solutions of numerous problems and a theory of 
gunnery; and lastly, his Miscellaneous Tracts, 1754.

The work last mentioned consists of eight memoirs, and these 
contain his best known investigations. The first three papers 
are on various problems in astronomy; the fourth is on the 
theory of mean observations; the fifth and sixth on problems in 
fluxions and algebra; the seventh contains a general solution of 
the isoperimetrical problem; the eighth contains a discussion 
of the third and ninth sections of the Principia, and their 
application to the lunar orbit. In this last memoir Simpson 
obtained a differential equation for the motion of the apse of the 
lunar orbit similar to that arrived at by Clairaut, but instead of 
solving it by successive approximations, he deduced a general
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solution by indeterminate coefficients. The result agrees with 
that given by Clairaut. Simpson solved this problem in 1747, 
two years later than the publication of Clairaut’s memoir, 
but the solution was discovered independently of Clairaut’s 
researches, of which Simpson first heard in 1748.
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CHAPTER XVIII.

LAGRANGE, LAPLACE, AND THEIR CONTEMPORARIES.1 

ciRC. 1740-1830.

1 A fourth volume of M. Cantor’s History, covering the period from 1759 
to 1799, was brought out in 1907. It contains memoirs by S. Giinther 
on 1he mathematics of the period ; by F. Cajori on arithmetic, algebra, and 
numbers ; by E. Netto on series, imaginaries, &c. ; by V. von Braunmiihl on 
trigonometry; by V. Bobynin and G. Loria on pure geometry; by V. 
Kommerell on analytical geometry; by G. Vivanti on the infinitesimal 
calculus ; and by C. R. Wallner on differential equations.

The last chapter contains the history of two separate schools 
—the continental and the British. In the early years of the 
eighteenth century the English school appeared vigorous and 
fruitful, but decadence rapidly set in, and after the deaths of 
Maclaurin and Simpson no British mathematician appeared 
who is at all comparable to the continental mathematicians of 
the latter half of the eighteenth century. This fact is partly 
explicable by the isolation of the school, partly by its tendency 
to rely too exclusively on geometrical and fluxional methods. 
Some attention was, however, given to practical science, but, 
except for a few remarks at the end of this chapter, I do not 
thir.k it necessary to discuss English mathematics in detail, 
until about 1820, when analytical methods again came into 
vogue.

On the continent, under the influence of John Bernoulli, the 
calculus had become an instrument of great analytical power
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expressed in an admirable notation—and for practical applica
tions it is impossible to over-estimate the value of a good 
notation. The subject of mechanics remained, however, in much 
the condition in wτhich Newton had left it, until D’Alembert, by 
making use of the differential calculus, did something to extend 
it. Universal gravitation as enunciated in the Principia was 
accepted as an established fact, but the geometrical methods 
adopted in proving it were difficult to follow or to use in 
analogous problems; Maclaurin, Simpson, and Clairaut may 
be regarded as the last mathematicians of distinction who 
employed them. Lastly, the Newtonian theory of light was 
generally received as correct.

The leading mathematicians of the era on which we are now 
entering are Euler, Lagrange, Laplace, and Legendre. Briefly 
we may say that Euler extended, summed up, and completed 
the work of his predecessors; while Lagrange with almost un
rivalled skill developed the infinitesimal calculus and theoretical 
mechanics, and presented them in forms similar to those in 
which we now know them. At the same time Laplace made 
some additions to the infinitesimal calculus, and applied that 
calculus to the theory of universal gravitation; he also created 
a calculus of probabilities. Legendre invented spherical har
monic analysis and elliptic integrals, and added to the theory 
of numbers. The works of these writers are still standard 
authorities. I shall content myself with a mere sketch of the 
chief discoveries embodied in them, referring any one who wishes 
to know more to the works themselves. Lagrange, Laplace, 
and Legendre created a French school of mathematics of which 
the younger members are divided into two groups; one (includ
ing Poisson and Fourier) began to apply mathematical analysis to 
physics, and the other (including Monge, Carnot, and Poncelet) 
created modern geometry. Strictly speaking, some of the great 
mathematicians of recent times, such as Gauss and Abel, were 
contemporaries of the mathematicians last named; but, except 
for this remark, I think it convenient to defer any consideration 
of them to the next chapter.
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The development of analysis and mechanics.

Euler.1 Leonhard Euler was born at Bale on April 15, 1707, 
and died at St Petersburg on September 7, 1783. He was 
the son of a Lutheran minister who had settled at Bale, and 
was educated in his native town under the direction of John 
Bernoulli, with whose sons Daniel and Nicholas he formed a 
lifelong friendship. When, in 1725, the younger Bernoullis 
went to Russia, on the invitation of the empress, they procured 
a place there for Euler, which in 1733 he exchanged for the 
chair of mathematics, then vacated by Daniel Bernoulli. The 
severity of the climate affected his eyesight, and in 1735 he lost 
the use of one eye completely. In 1741 he moved to Berlin at 
the request, or rather command, of Frederick the Great; here 
he stayed till 1766, when he returned to Russia, and was 
succeeded at Berlin by Lagrange. Within two or three years of 
his going back to St. Petersburg he became blind; but in spite 
of this, and although his house, together with many of his 
papers, were burnt in 1771, he recast and improved most of his 
earlier works. He died of apoplexy in 1783. He was married 
twice.

I think we may sum up Euler’s work by saying that he 
created a good deal of analysis, and revised almost all the 
branches of pure mathematics which were then known, filling 
up the details, adding proofs, and arranging the whole in a 
consistent form. Such work is very important, and it is 
fortunate for science when it falls into hands as competent as 
those of Euler.

Euler wrote an immense number of memoirs on all kinds of 
mathematical subjects. His chief works, in which many of the 
results of earlier memoirs are embodied, are as follows.

1 The chief facts in Euler’s life are given by N. Fuss, and a list of Euler’s 
writings is prefixed to his Correspondence, 2 vols., St Petersburg, 1843 ; see 
also Index 0perum Euleri by J. G. Hagen, Berlin, 1896. Euler’s earlier 
works are discussed by Cantor, chapters cxi, cxiii, cxv, and cxvii. No com
plete edition of Euler’s writings has been published, though the work has 
been begun twice.
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In the first place, he wrote in 1748 his Introductio in 
Analysin Infinitorum, which was intended to serve as an intro
duction to pure analytical mathematics. This is divided into 
two parts.

The first part of the Analysis Infinitorum contains the bulk 
of the matter which is to be found in modern text-books on 
algebra, theory of equations, and trigonometry. In the algebra 
he paid particular attention to the expansion of various func
tions in series, and to the summation of given series; and 
pointed out explicitly that an infinite series cannot be safely 
employed unless it is convergent. In the trigonometry, much 
of which is founded on F. C. Mayer’s Arithmetic of Sines, which 
had been published in 1727, Euler developed the idea of John 
Bernoulli, that the subject was a branch of analysis and not a 
mere appendage of astronomy or geometry. He also introduced 
(contemporaneously with Simpson) the current abbreviations for 
the trigonometrical functions, and shewed that the trigono
metrical and exponential functions were connected by the 
relation cos θ + i sin θ = eiθ.

Here, too [pp. 85, 90, 93], we meet the symbol e used to 
denote the base of the Napierian logarithms, namely, the incom
mensurable number 2'71828..., and the symbol 7r used to denote 
the incommensurable number 3T4159.... The use of a single 
symbol to denote the number 2'71828... seems to be due to 
Cotes, who denoted it by JZ; Euler in 1731 denoted it by e. 
To the best of my knowledge, Newton had been the first to 
employ the literal exponential notation, and Euler, using the 
form az, had taken a as the base of any system of logarithms. It 
is probable that the choice of e for a particular base was deter
mined by its being the vowel consecutive to a. The use of a 
single symbol to denote the number 3'14159... appears to have 
been introduced about the beginning of the eighteenth century. 
W. Jones in 1706 represented it by 7r, a symbol which had been 
used by Oughtred in 1647, and by Barrow a few years later, to 
denote the periphery of a circle. John Bernoulli represented 
the number by c; Euler in 1734 denoted it by p, and in
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a letter of 1736 (in which he enunciated the theorem that the 
sum of the squares of the reciprocals of the natural numbers 
is 7Γ2zβ) he used the letter c; Chr. Goldbach in 1742 used t; 
and after the publication of Euler’s Analysis the symbol π was 
generally employed.

The numbers e and 7r would enter into mathematical analysis 
from whatever side the subject was approached. The latter 
represents among other things the ratio of the circumference of 
a circle to its diameter, but it is a mere accident that that is 
taken for its definition. De Morgan in the Budget of Paradoxes 
tells an anecdote which illustrates how little the usual definition 
suggests its real origin. He was explaining to an actuary what 
was the chance that at the end of a given time a certain propor
tion of some group of people would be alive; and quoted the 
actuarial formula involving π, which, in answer to a question, he 
explained stood for the ratio of the circumference of a circle to 
its diameter. His acquaintance, who had so far listened to the 
explanation with interest, interrupted him and explained, “ My 
dear friend, that must be a delusion; what can a circle have to 
do with the number of people alive at the end of a given 
time ? ”

The second part of the Analysis Infinitorum is on analytical 
geometry. Euler commenced this part by dividing curves into 
algebraical and transcendental, and established a variety of pro
positions which are true for all algebraical curves. He then 
applied these to the general equation of the second degree in 
two dimensions, shewed that it represents the various conic 
sections, and deduced most of their properties from the general 
equation. He also considered the classification of cubic, quartic, 
and other algebraical curves. He next discussed the question as 
to what surfaces are represented by the general equation of the 
second degree in three dimensions, and how they may be dis
criminated one from the other : some of these surfaces had not 
been previously investigated. In the course of this analysis he 
laid down the rules for the transformation of co-ordinates in 
space. Here also we find the earliest attempt to bring the
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curvature of surfaces within the domain of mathematics, and the 
first complete discussion of tortuous curves.

The Analysis Infinitorum was followed in 1755 by the 
Institutiones Calculi Differentialis, to which it was intended as 
an introduction. This is the first text-book on the differential 
calculus which has any claim to be regarded as complete, and it 
may be said that until recently many modern treatises on the 
subject are based on it; at the same time it should be added 
that the exposition of the principles of the subject is often prolix 
and obscure, and sometimes not altogether accurate.

This series of works was completed by the publication in 
three volumes in 1768 to 1770 of the Institutiones Calculi 
Integralis, in which the results of several of Euler’s earlier 
memoirs on the same subject and on differential equations are 
included. This, like the similar treatise on the differential 
calculus, summed up what was then known on the subject, but 
many of the theorems were recast and the proofs improved. 
The Beta and Gamma1 functions were invented by Euler and 
are discussed here, but only as illustrations of methods of 
reduction and integration. His treatment of elliptic integrals 
is superficial; it was suggested by a theorem, given by John 
Landen in the Philosophical Transactions for 1775, connecting 
the arcs of a hyperbola and an ellipse. Euler’s works that 
form this trilogy have gone through numerous subsequent 
editions.

The classic problems on isoperimetrical curves, the brachisto
chrone in a resisting medium, and the theory of geodesics (all of 
which had been suggested by his master, John Bernoulli) had 
engaged Euler’s attention at an early date ; and in solving them 
he was led to the calculus of variations. The idea of this was 
given in his Curvarum Maxinιi Minimive Proprietate Gaudentium 
Inventio, published in 1741 and extended in 1744, but the 
complete development of the new calculus was first effected by 
Lagrange in 1759. The method used by Lagrange is described

1 The history of the Gamma function is given in a monograph by Brunel in 
the Mevwires de la societe des sciences, Bordeaux, 1886.
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in Euler’s integral calculus, and is the same as that given in 
most modern text-books on the subject.

In 1770 Euler published his Vollstandige Anleitung zur 
Algebra. A French translation, with numerous and valuable 
additions by Lagrange, was brought out in 1774 ; and a 
treatise on arithmetic by Euler was appended to it. The first 
volume treats of determinate algebra. This contains one of 
the earliest attempts to place the fundamental processes on a 
scientific basis: the same subject had attracted D’Alembert’s 
attention. This work also includes the proof of the binomial 
theorem for an unrestricted real index which is still known by 
Euler’s name ; the proof is founded on the principle of the 
permanence of equivalent forms, but Euler made no attempt to 
investigate the convergency of the series : that he should have 
omitted this essential step is the more curious as he had himself 
recognized the necessity of considering the convergency of 
infinite series: Vandermonde’s proof given in 1764 suffers from 
the same defect.

The second volume of the algebra treats of indeterminate 
or Diophantine algebra. This contains the solutions of some 
of the problems proposed by Fermat, and which had hitherto 
remained unsolved.

As illustrating the simplicity and directness of Euler’s 
methods I give the substance of his demonstration,1 alluded to 
above, that all even perfect numbers are included in Euclid’s 
formula, 2n-1jp, where p stands for 2n-l and is a prime.1 2 
Let N be an even perfect number. N is even, hence it can be 
written in the form 2n-1α, where a is not divisible by 2. N 
is perfect, that is, is equal to the sum of all its integral sub
divisors ; therefore (if the number itself be reckoned as one of 
its divisors) it is equal to half the sum of all its integral divisors,

1 Coιmnentationes Arithmeticae Collectae, St. Petersburg, 1849, vol. ii, 
p. 514, art. 107. Sylvester published an analysis of the argument in Nature, 
December 15, 1887, vol. xxxvii, p. 152.

2 Euc. ix, 36 ; see above, page 307.

which we may denote by Since we have
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therefore Hence and
and since the ratio is in its lowest

terms, must be a positive integer. Now, unless we
have 1, and as factors of ; moreover, if p be not
prime, there will be other factors also. Hence, unless and
p be a prime, we have

But this is inconsistent with the result
Hence must be equal to 1 and p must be a prime. There
fore a=p, therefore I may add the
corollary that since p is a prime, it follows that n is a prime; 
and the determination of what values of n (less than 257) 
make p prime falls under Mersenne’s rule.

The four works mentioned above comprise most of what 
Euler produced in pure mathematics. He also wrote numerous 
memoirs on nearly all the subjects of applied mathematics and 
mathematical physics then studied : the chief novelties in them 
are as follows.

In the mechanics of a rigid system he determined the 
general equations of motion of a body about a fixed point, 
which are ordinarily written in the form

and he gave the general equations of motion of a free body, 
which are usually presented in the form

He also defended and elaborated the theory of “ least action ” 
which had been propounded by Maupertuis in 1751 in his 
Essai de cosmologie [p. 70],

In hydrodynamics Euler established the general equations of 
motion, which are commonly expressed in the form
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At the time of his death he was engaged in writing a treatise 
on hydromechanics in which the treatment of the subject would 
have been completely -recast.

His most important works on astronomy are his Theoria 
Motuum Planetarum et Cometarum, published in 1744;’ his 
Theoria Mot us Lunaris, published in 1753; and his Theoria 
Motuum Lunae, published in 1772. In these he attacked the 
problem of three bodies: he supposed the body considered 
(ex. gr. the moon) to carry three rectangular axes with it in 
its motion, the axes moving parallel to themselves, and to 
these axes all the motions were referred. This method is not 
convenient, but it was from Euler’s results that Mayer1 con
structed the lunar tables for which his widow in 1770 received 
£5000 from the English parliament, and in recognition of 
Euler’s services a sum of £300 was also voted as an honorarium 
to him.

1 Johann Tobias Mayer, born in Wiirtemberg in 1723, and died in 1762, 
was director of the English observatory at Gottingen. Most of his memoirs, 
other than his lunar tables, were published in 1775 under the title Opera 
Inedita.

Euler was much interested in optics. In 1746 he discussed 
the relative merits of the emission and undulatory theories of 
light; he on the whole preferred the latter. In 1770-71 he 
published his optical researches in three volumes under the 
title Dioptrica.

He also wrote an elementary work on physics and the 
fundamental principles of mathematical philosophy. This 
originated from an invitation he received when he first went 
to Berlin to give lessons on physics to the princess of Anhalt- 
Dessau. These lectures were published in 1768-1772 in 
three volumes under the title Lettres...sur quelques sujets de 
physique..., and for half a century remained a standard treatise 
on the subject.

Of course Euler’s magnificent works were not the only
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text-books containing original matter produced at this time. 
Amongst numerous writers I would specially single out Daniel 
Bernoulli, Simpson, Lambert, Bezout, Trembley, and Arbogast, 
as having influenced the development of mathematics. To the 
two first-mentioned I have already alluded in the last chapter.

Lambert.1 Johann Heinrich Lambert was born at Miil- 
hausen on August 28, 1728, and died at Berlin on September 
25, 1777. He was the son of a small tailor, and had to rely 
on his own efforts for his education; from a clerk in some iron
works he got a place in a newspaper office, and subsequently, 
on the recommendation of the editor, he was appointed tutor in 
a private family, which secured him the use of a good library 
and sufficient leisure to use it. In 1759 he settled at Augsburg, 
and in 1763 removed to Berlin where he was given a small 
pension, and finally made editor of the Prussian astronomical 
almanack.

Lambert’s most important works were one on optics, issued 
in 1759, which suggested to Arago the lines of investigation he 
subsequently pursued; a treatise on perspective, published in 
1759 (to which in 1768 an appendix giving practical applica
tions were added); and a treatise on comets, printed in 1761, 
containing the well-known expression for the area of a focal 
sector of a conic in terms of the chord and the bounding radii. 
Besides these he communicated numerous papers to the Berlin 
Academy. Of these the most important are his memoir in 1768 
on transcendental magnitudes, in which he proved that 7r is 
incommensurable (the proof is given in Legendre’s Geometrie, 
and is there extended to 7r2): his paper on trigonometry, read 
in 1768, in which he developed Demoivre’s theorems on the 
trigonometry of complex variables, and introduced the hyper
bolic sine and cosine 2 denoted by the symbols sinh x, cosh x :

1 See Lambert nach seinem Leben und Wirken, by D. Huber, Bale, 1829. 
Most of Lambert’s memoirs are collected in his Beitrdge zum Gebrauche der 
Mathematik, published in four volumes, Berlin, 1765-1772.

2 These functions are said to have been previously suggested by 
F. C. Mayer, see Die Lehre von den Hyperbelfunktionen by S. Giinther, Halle, 
1881, and Beitrdge zur Geschichte der neueren Mathematik, Ansbach, 1881. 
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his essay entitled analytical observations, published in 1771, 
which is the earliest attempt to form functional equations by 
expressing the given properties in the language of the differential 
calculus, and then integrating his researches on non-Euclidean 
geometry: lastly, his paper on vis viva, published in 1783, in 
which for the first time he expressed Newton’s second law of 
motion in the notation of the differential calculus.

Bćzout. Trembley. Arbogast. Of the other mathema
ticians above mentioned I here add a few words. Ftienne 
Bezout, born at Nemours on March 31, 1730, and died on 
September 27, 1783, besides numerous minor works, wrote a 
The'orie generale des equations algebriques, published at Paris in 
1779, which in particular contained much new and valuable 
matter on the theory of elimination and symmetrical functions 
of the roots of an equation : he used determinants in a paper 
in the Histoire de Vacademie rogale, 1764, but did not treat 
of the general theory. Jean Trembley, born at Geneva in 1749, 
and died on September 18, 1811, contributed to the develop
ment of differential equations, finite differences, and the calculus 
of probabilities. Louis Franęois Antoine Arbogast, born in 
Alsace on October 4, 1759, and died at Strassburg, where he 
was professor, on April 8, 1803, wrote on series and the deriva
tives known by his name : he was the first writer to separate 
the symbols of operation from those of quantity.

I do not wish to crowd r∩y pages with an account of those 
who have not distinctly advanced the subject, but I have 
mentioned the above writers because their names are still well 
known. We may, however, say that the discoveries of Euler 
and Lagrange in the subjects which they treated were so com
plete and far-reaching that what their less gifted contemporaries 
added is not of sufficient importance to require mention in a 
book of this nature.

Lagrange.1 Joseph Louis Lagrange, the greatest mathe- 1 2

1 Summaries of the life and works of Lagrange are given in the English 
Cyclopaedia and the Encyclopaedia Britannica (ninth edition), of which I 
have made considerable use: the former contains a bibliography of his

2 D
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matician of the eighteenth century, was born at Turin on 
January 25, 1736, and died at Paris on April 10, 1813. His 
father, who had charge of the Sardinian military chest, was 
of good social position and wealthy, but before his son grew up 
he had lost most of his property in speculations, and young 
Lagrange had to rely for his position on his own abilities. He 
was educated at the college of Turin, but it was not until he 
was seventeen that he shewed any taste for mathematics—his 
interest in the subject being first excited by a memoir by Halley,1 
across which he came by accident. Alone and unaided he threw 
himself into mathematical studies; at the end of a year’s 
incessant toil he was already an accomplished mathematician, 
and was made a lecturer in the artillery school.

The first fruit of Lagrange’s labours here was his letter, 
written when he was still only nineteen, to Euler, in which he 
solved the isoperimetrical problem which for more than half a 
century had been a subject of discussion. To effect the solution 
(in which he sought to determine the form of a function so 
that a formula in which it entered should satisfy a certain con
dition) he enunciated the principles of the calculus of variations. 
Euler recognized the generality of the method adopted, and its 
superiority to that used by himself; and with rare courtesy he 
withheld a paper he had previously written, which covered some 
of the same ground, in order that the young Italian might 
have time to complete his work, and claim the undisputed 
invention of the new calculus. The name of this branch of 
analysis was suggested by Euler. This memoir at once placed 
Lagrange in the front rank of mathematicians then living.

In 1758 Lagrange established with the aid of his pupils a 
society, which was subsequently incorporated as the Turin 
Academy, and in the five volumes of its transactions, usually 
known as the Miscellanea Taurinensia, most of his early 
writings. Lagrange’s works, edited by MM. J. A. Serret and G. Darboux, 
were published in 14 volumes, Paris, 1867-1892. Delambre’s account of his 
life is printed in the first volume.

1 On the excellence of the modern algebra in certain optical problems, 
Philosophical Transactions, 1693, vol. xviii, p. 960.
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writings are to be found. Many of these are elaborate memoirs. 
The first volume contains a memoir on the theory of the 
propagation of sound; in this he indicates a mistake made by 
Newton, obtains the general differential equation for the motion, 
and integrates it for motion in a straight line. This volume 
also contains the complete solution of the problem of a string 
vibrating transversely; in this paper he points out a lack 
of generality in the solutions previously given by Taylor, 
D’Alembert, and Euler, and arrives at the conclusion that 
the form of the curve at any time t is given by the equation 
y — a sin mx sin nt. The article concludes with a masterly 
discussion of echoes, beats, and compound sounds. Other 
articles in this volume are on recurring series, probabilities, and 
the calculus of variations.

The second volume contains a long paper embodying the 
results of several memoirs in the first volume on the theory and 
notation of the calculus of variations; and he illustrates its 
use by deducing the principle of least action, and by solutions 
of various problems in dynamics.

The third volume inclμdes the solution of several dynamical 
problems by means of the calculus of variations ; some papers 
on the integral calculus; a solution of Fermat’s problem 
mentioned above, to find a number x which will make (x⅝ + 1) 
a square where n is a given integer which is not a square; and 
the general differential equations of motion for three bodies 
moving under their mutual attractions.

In 1761 Lagrange stood without a rival as the foremost 
mathematician living; but the unceasing labour of the pre
ceding nine years had seriously affected his health, and the 
doctors refused to be responsible for his reason or life unless 
he would take rest and exercise. Although his health was 
temporarily restored his nervous system never quite recovered 
its tone, and henceforth he constantly suffered from attacks of 
profound melancholy.

The next work he produced was in 1764 on the libration of 
the moon, and an explanation as to why the same face was
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always turned to the earth, a problem which he treated by the 
aid of virtual work. His solution is especially interesting as 
containing the germ of the idea of generalized equations 
of motion, equations which he first formally proved in 
1780.

He now started to go on a visit to London, but on the way 
fell ill at Paris. There he was received with marked honour, 
and it was with regret he left the brilliant society of that city 
to return to his provincial life at Turin. His further stay in 
Piedmont was, however, short. In 1766 Euler left Berlin, and 
Frederick the Great immediately wrote expressing the wish of 
“the greatest king in Europe” to have “the greatest mathe
matician in Europe ” resident at his court. Lagrange accepted 
the offer and spent the next twenty years in Prussia, where he 
produced not only the long series of memoirs published in the 
Berlin and Turin transactions, but his monumental work, the 
Mecanique analytique. His residence at Berlin commenced 
with an unfortunate mistake. Finding most of his colleagues 
married, and assured by their wives that it was the only way 
to be happy, he married; his wife soon died, but the union was 
not a happy one.

Lagrange was a favourite of the king, who used frequently 
to discourse to him on the advantages of perfect regularity of 
life. The lesson went home, and thenceforth Lagrange studied 
his mind and body as though they were machines, and found 
by experiment the exact amount of work which he was able to 
do without breaking down. Every night he set himself a 
definite task for the next day, and on completing any branch 
of a subject he wrote a short analysis to see what points in the 
demonstrations or in the subject-matter were capable of im
provement. He always thought out the subject of his papers 
before he began to compose them, and usually wrote them 
straight off without a single erasure or correction.

His mental activity during these twenty years was amazing. 
Not only did he produce his splendid Mecanique analytique, 
but he contributed between one and two hundred papers to
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the Academies of Berlin, Turin, and Paris. Some of these are 
really treatises, and all without exception are of a high order 
of excellence. Except for a short time when he was ill he 
produced on an average about one memoir a month. Of these 
I note the following as among the most important.

First, his contributions to the fourth and fifth volumes, 
1766-1773, of the Miscellanea Taurinensia; of which the most 
important was the one in 1771, in which he discussed how 
numerous astronomical observations should be combined so as to 
give the most probable result. And later, his contributions to 
the first two volumes, 1784-1785, of the transactions of the 
Turin Academy; to the first of which he contributed a paper 
on the pressure exerted by fluids in motion, and to the second 
an article on integration by infinite series, and the kind of 
problems for which it is suitable.

Most of the memoirs sent to Paris were on astronomical 
questions, and among these I ought particularly to mention 
his memoir on the Jovian system in 1766, his essay on the 
problem of three bodies in 1772, his work on the secular 
equation of the moon in 1773, and his treatise on cometary 
perturbations in 1778. These were all written on subjects 
proposed by the French Academy, and in each case the prize 
was awarded to him.

The greater number of his papers during this* time were, 
however, contributed to the Berlin Academy. Several of them 
deal with questions on algebra. In particular I may mention 
the following, (i) His discussion of the solution in integers of 
indeterminate quadratics, 1769, and generally of indeterminate 
equations, 1770. (ii) His tract on the theory of elimination, 
1770. (iii) His memoirs on a general process for solving an 
algebraical equation of any degree, 1770 and 1771 ; this method 
fails for equations of an order above the fourth, because it then 
involves the solution of an equation of higher dimensions than 
the one proposed, but it gives all the solutions of his predecessors 
as modifications of a single principle, (iv) The complete solution 
of a binomial equation of any degree; this is contained in the
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memoirs last mentioned, (v) Lastly, in 1773, his treatment of 
determinants of the second and third order, and of invariants.

Several of his early papers also deal with questions con
nected with the neglected but singularly fascinating subject 
of the theory of numbers. Among these are the following, 
(i) His proof of the theorem that every integer which is not 
a square can be expressed as the sum of two, three, or four 
integral squares, 1770. (ii) His proof of Wilson’s theorem that 
if to be a prime, then ∣ to - 1 + 1 is always a multiple of to, 
1771. (iii) His memoirs of 1773, 1775, and 1777, which 
give the demonstrations of several results enunciated by Fermat, 
and not previously proved, (iv) And, lastly, his method for 
determining the factors of numbers of the form x2 + ay2.

There are also numerous articles on various points of analytical 
geometry. In two of them, written rather later, in 1792 and 
1793, he reduced the equations of the quadrics (or conicoids) to 
their canonical forms.

During the years from 1772 to 1785 he contributed a long 
series of memoirs which created the science of differential 
equations, at any rate as far as partial differential equations 
are concerned. I do not think that any previous writer had 
done anything beyond considering equations of some particular 
form. A large part of these results were collected in the 
second edition of Euler’s integral calculus which was published 
in 1794.

Lagrange’s papers on mechanics require no separate mention 
here as the results arrived at are embodied in the Mecanique 
analytique which is described below.

Lastly, there are numerous memoirs on problems in astronomy. 
Of these the most important are the following, (i) On the 
attraction of ellipsoids, 1773: this is founded on Maclaurin’s 
work, (ii) On the secular equation of the moon, 1773; also 
noticeable for the earliest introduction of the idea of the 
potential. The potential of a body at any point is the sum 
of the mass of every element of the body when divided by its 
distance from the point. Lagrange shewed that if the potential
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of a body at an external point were known, the attraction in 
any direction could be at once found. The theory of the 
potential was elaborated in a paper sent to Berlin in 1777.
(iii) On the motion of the nodes of a planet’s orbit, 1774.
(iv) On the stability of the planetary orbits, 1776. (v) Two 
memoirs in which the method of determining the orbit of a 
comet from three observations is completely worked out, 1778 
and 1783: this has not indeed proved practically available, 
but his system of calculating the perturbations by means of 
mechanical quadratures has formed the basis of most subsequent 
researches on the subject, (vi) His determination of the secular 
and periodic variations of the elements of the planets, 1781-1784: 
the upper limits assigned for these agree closely with those 
obtained later by Leverrier, and Lagrange proceeded as far as 
the knowledge then possessed of the masses of the planets 
permitted, (vii) Three memoirs on the method of interpolation, 
1783, 1792, and 1793: the part of finite differences dealing 
therewith is now in the same stage as that in which Lagrange 
left it.

Over and above these various papers he composed his great 
treatise, the Mecanique analytique. In this he lays down the 
law of virtual work, and from that one fundamental principle, 
by the aid of the calculus of variations, deduces the whole 
of mechanics, both of solids and fluids. The object of the 
book is to shew that the subject is implicitly included in a 
single principle, and to give general formulae from which any 
particular result can be obtained. The method of generalized 
co-ordinates by which he obtained this result is perhaps the 
most brilliant result of his analysis. Instead of following the 
motion of each individual part of a material system, as 
D’Alembert and Euler had done, he shewed that, if we deter
mine its configuration by a sufficient number of variables 
whose number is the same as that of the degrees of freedom 
possessed by the system, then the kinetic and potential energies 
of the system can be expressed in terms of these variables, and 
the differential equations of motion thence deduced by simple
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differentiation. For example, in dynamics of a rigid system 
he replaces the consideration of the particular problem by 
the general equation which is now usually written in the form

Amongst other theorems here given are the proposition that the 
kinetic energy imparted by given impulses to a material system 
under given constraints is a maximum, and the principle of least 
action. All the analysis is so elegant that Sir William Rowan 
Hamilton said the work could be only described as a scientific 
poem. Lagrange held that mechanics was really a branch of 
pure mathematics analogous to a geometry of four dimensions, 
namely, the time and the three co-ordinates of the point in space;1 
and it is said that he prided himself that from the beginning to 
the end of the work there was not a single diagram. At first no 
printer could be found who would publish the book; but 
Legendre at last persuaded a Paris firm to undertake it, and it 
was issued in 1788.

1 On the development of this idea, see H. Minkowski, Raum und Zeit, 
Leipzig, 1909.

In 1787 Frederick died, and Lagrange, who had found 
the climate of Berlin trying, gladly accepted the offer of 
Louis XVI. to migrate to Paris. He received similar invita
tions from Spain and Naples. In France he was received with 
every mark of distinction, and special apartments in the Louvre 
were prepared for his reception. At the beginning of his 
residence here he was seized with an attack of melancholy, 
and even the printed copy of his Mecanique on which he had 
worked for a quarter of a century lay for more than two years 
unopened on his desk. Curiosity as to the results of the 
French revolution first stirred him out of his lethargy, a 
curiosity which soon turned to alarm as the revolution 
developed. It was about the same time, 1792, that the un
accountable sadness of his life and his timidity moved the 
compassion of a young girl who insisted on marrying him, and
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proved a devoted wife to whom he became warmly attached. 
Although the decree of October 1793, which ordered all 
foreigners to leave France, specially exempted him by name, 
he was preparing to escape when he was offered the presidency 
of the commission for the reform of weights and measures. 
The choice of the units finally selected was largely due to him, 
and it was mainly owing to his influence that the decimal 
subdivision was accepted by the commission of 1799.

Though Lagrange had determined to escape from France 
while there was yet time, he was never in any danger; and 
the different revolutionary governments (and, at a later time, 
Napoleon) loaded him with honours and distinctions. A 
striking testimony to the respect in which he was held was 
shown in 1796 when the French commissary in Italy was 
ordered to attend in full state on Lagrange’s father, and tender 
the congratulations of the republic on the achievements of his 
son, who “ had done honour to all mankind by his genius, and 
whom it was the special glory of Piedmont to have produced.” 
It may be added that Napoleon, when he attained power, 
warmly encouraged scientific studies in France, and was a 
liberal benefactor of them.

In 1795 Lagrange was appointed to a mathematical chair at 
the newly-established Ecole normale, which enjoyed only a 
brief existence of four months. His lectures here were quite 
elementary, and contain nothing of any special importance, but 
they were published because the professors had to “pledge 
themselves to the representatives of the people and to each 
other neither to read nor to repeat from memory,” and the 
discourses were ordered to be taken down in shorthand in order 
to enable the deputies to see how the professors acquitted 
themselves.

On the establishment of the Ecole polytechnique in 1797 
Lagrange was made a professor; and his lectures there are 
described by mathematicians who had the good fortune to be 
able to attend them, as almost perfect both in form and matter. 
Beginning with the merest elements, he led his hearers on until,
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almost unknown to themselves, they were themselves extending 
the bounds of the subject: above all he impressed on his pupils 
the advantage of always using general methods expressed in a 
symmetrical notation.

His lectures on the differential calculus form the basis of his 
Theorie des fauctions analytiques which was published in 1797. 
This work is the extension of an idea contained in a paper he 
had sent to the Berlin Memoirs in 1772, and its object is to 
substitute for the differential calculus a group of theorems based 
on the development of algebraic functions in series. A some
what similar method had been previously used by John Landen 
in his Residual Analysis, published in London in 1758. 
Lagrange believed that he could thus get rid of those diffi
culties, connected with the use of infinitely large and infinitely 
small quantities, to which philosophers objected in the usual 
treatment of the differential calculus. The book is divided into 
three parts : of these, the first treats of the general theory of 
functions, and gives an algebraic proof of Taylor’s theorem, the 
validity of which is, however, open to question; the second 
deals with applications to geometry; and the third with appli
cations to mechanics. Another treatise on the same lines was 
his Leςons sur le calcul des fonctions, issued in 1804. These 
works may be considered as the starting-point for the researches 
of Cauchy, Jacobi, and Weierstrass.

At a later period Lagrange reverted to the use of infini
tesimals in preference to founding the differential calculus on 
a study of algebraic forms; and in the preface to the second 
edition of the Mecanique, which was issued in 1811, he justifies 
the employment of infinitesimals, and concludes by saying that 
“ when we have grasped the spirit of the infinitesimal method, 
and have verified the exactness of its results either by the 
geometrical method of prime and ultimate ratios, or by the 
analytical method of derived functions, we may employ infinitely 
small quantities as a sure and valuable means of shortening and . 
simplifying our proofs.”

His Resolution des equations nuιneriques, published in 1798,
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was also the fruit of his lectures at the Polytechnic. In this he 
givts the method of approximating to the real roots of an 
equation by means of continued fractions, and enunciates several 
other theorems. In a note at the end he shows how Fermat’s 
thee rem that aP~1 — 1 ≡ 0 (mod jt>), where is a prime and a is 
prime to p, may be applied to give the complete algebraical 
solution of any binomial equation. He also here explains how 
the equation whose roots are the squares of the differences of 
the roots of the original equation may be used so as to give 
comiderable information as to the position and nature of those 
roots.

The theory of the planetary motions had formed the subject 
of some of the most remarkable of Lagrange’s Berlin papers. 
In 1806 the subject was reopened by Poisson, who, in a paper 
read before the French Academy, showed that Lagrange’s 
formulae led to certain limits for the stability of the orbits. 
Lagrange, who was present, now discussed the whole subject 
afresh, and in a memoir communicated to the Academy in 
1803 explained how, by the variation of arbitrary constants, the 
periodical and secular inequalities of any system of mutually 
interacting bodies could be determined.

In 1810 Lagrange commenced a thorough revision of the 
AIecιnique analytique, but he was able to complete only about 
two thirds of it before his death.

In appearance he was of medium height, and slightly formed, 
with pale blue eyes and a colourless complexion. In character 
he vas nervous and timid, he detested controversy, and to avoid 
it wllingly allowed others to take the credit for what he had 
himself done.

lagrange’s interests were essentially those of a student of 
purt mathematics : he sought and obtained far-reaching abstract 
results, and was content to leave the applications to others. 
Indeed, no inconsiderable part of the discoveries of his great 
contemporary, Laplace, consists of the application of the 
Lagrangian formulae to the facts of nature; for example, 
Laphce’s conclusions on the velocity of sound and the secular
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acceleration of the moon are implicitly involved in Lagrange’s 
results. The only difficulty in understanding Lagrange is that 
of the subject-matter and the extreme generality of his pro
cesses; but his analysis is “as lucid and luminous as it is 
symmetrical and ingenious.”

A recent writer speaking of Lagrange says truly that he 
took a prominent part in the advancement of almost every 
branch of pure mathematics. Like Diophantus and Fermat, he 
possessed a special genius for the theory of numbers, and in this 
subject he gave solutions of many of the problems which had 
been proposed by Fermat, and added some theorems of his own. 
He developed the calculus of variations. To him, too, the theory 
of differential equations is indebted for its position as a science 
rather than a collection of ingenious artifices for the solution of 
particular problems. To the calculus of finite differences he 
contributed the formula of interpolation which bears his name. 
But above all he impressed on mechanics (which it will be 
remembered he considered a branch of pure mathematics) that 
generality and completeness towards which his labours invari
ably tended.

Laplace.1 Pierre Simon Laplace was born at Beaumont-en- 
Auge in Normandy on March 23, 1749, and died at Paris on 
March 5, 1827. He was the son of a small cottager or perhaps 
a farm-labourer, and owed his education to the interest excited 
in some wealthy neighbours by his abilities and engaging 
presence. Very little is known of his early years, for when he 
became distinguished he had the pettiness to hold himself aloof 
both from his relatives and from those who had assisted him. 
It would seem that from a pupil he became an usher in the 
school at Beaumont; but, having procured a letter of introduc
tion to D’Alembert, he went to Paris to push his fortune. A 
paper on the principles of mechanics excited D’Alembert’s

1 The following account of Laplace’s life and writings is mainly 
founded on the articles in the English Cyclopaedia and the Encyclopaedia 
Britannica. Laplace’s works were published in seven volumes by the 
French government in 1843-7 ; and a new edition with considerable 
additional matter was issued at Paris in six volumes, 1878-84.
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interest, and on his recommendation a place in the military 
school was offered to Laplace.

Secure of a competency, Laplace now threw himself into 
original research, and in the next seventeen years, 1771-1787, 
he produced much of his original work in astronomy. This 
commenced with a memoir, read before the French Academy 
in 1773, in which he shewed that the planetary motions were 
stable, and carried the proof as far as the cubes of the eccen
tricities and inclinations. This was followed by several papers 
on points in the integral calculus, finite differences, differential 
equations, and astronomy.

During the years 1784-1787 he produced some memoirs of 
exceptional power. Prominent among these is one read in 1784, 
and reprinted in the third volume of the Mecanique celeste, in 
which he completely determined the attraction of a spheroid on 
a particle outside it. This is memorable for the introduction 
into analysis of spherical harmonics or Laplace’s coefficients, as 
also for the development of the use of the potential—a name 
first given by Green in 1828.

If the co-ordinates of two points be (r, μ, ω) and (r', μ!, ω'), 
and if r' <∕r, then the reciprocal of the distance between them 
can be expanded in powers of r∕r', and the respective coefficients 
are Laplace’s coefficients. Their utility arises from the fact that 
every function of the co-ordinates of a point on a sphere can be 
expanded in a series of them. It should be stated that the 
similar coefficients for space of two dimensions, together with 
some of their properties, had been previously given by Legendre 
in a paper sent to the French Academy in 1783. Legendre had 
good reason to complain of the way in which he was treated in 
this matter.

This paper is also remarkable for the development of the 
idea of the potential, which was appropriated from Lagrange,1 
who had used it in his memoirs of 1773, 1777, and 1780. Laplace 
shewed that the potential always satisfies the differential equation

1 See the Bulletin of the New York Mathematical Society, 1892, vol. i. 
pp. 66-74.
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and on this result his subsequent work on attractions was based. 
The quantity V2 V has been termed the concentration of V, and 
its value at any point indicates the excess of the value of V 
there over its mean value in the neighbourhood of the point. 
Laplace’s equation, or the more general form V2 Fr= - 4τrp, 
appears in all branches of mathematical physics. According to 
some writers this follows at once from the fact that V2 is a 
scalar operator; or the equation may represent analytically 
some general law of nature which has not been yet reduced to 
words; or possibly it might be regarded by a Kantian as the 
outward sign of one of the necessary forms through which all 
phenomena are perceived.

This memoir was followed by another on planetary inequali
ties, which was presented in three sections in 1784, 1785, and 
1786. This deals mainly with the explanation of the “great 
inequality ” of Jupiter and Saturn. Laplace shewed by general 
considerations that the mutual action of two planets could never 
largely affect the eccentricities and inclinations of their orbits; 
and that the peculiarities of the Jovian system were due to the 
near approach to commensurability of the mean motions of 
Jupiter and Saturn : further developments of these theorems 
on planetary motion were given in his two memoirs of 1788 
and 1789. It was on these data that Delambre computed his 
astronomical tables.

The year 1787 was rendered memorable by Laplace’s explana
tion and analysis of the relation between the lunar acceleration 
and the secular changes in the eccentricity of the earth’s orbit: 
this investigation completed the proof of the stability of the 
whole solar system on the assumption that it consists of a 
collection of rigid bodies moving in a vacuum. All the me
moirs above alluded to were presented to the French Academy, 
and they are printed in the Memoires presentes par divers 
savans.

Laplace now set himself the task to write a work which
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should “ offer a complete solution of the great mechanical 
problem presented by the solar system, and bring theory to 
coincide so closely with observation that empirical equations 
should no longer find a place in astronomical tables.” The 
result is embodied in the Exposition du systeme du monde and 
the Mecanique celeste.

The former was published in 1796, and gives a general 
explanation of the phenomena, but omits all details. It con
tains a summary of the history of astronomy : this summary 
procured for its author the honour of admission to the forty 
of the French Academy; it is commonly esteemed one of the 
masterpieces of French literature, though it is not altogether 
reliable for the later periods of which it treats.

The nebular hypothesis was here enunciated.1 According to 
this hypothesis the solar system has been evolved from a globular 
mass of incandescent gas rotating round an axis through its 
centre of mass. As it cooled this mass contracted and successive 
rings broke off from its outer edge. These rings in their turn 
cooled, and finally condensed into the planets, while the sun 
represents the central core which is still left. On this view we 
should expect that the more distant planets would be older than 
those nearer the sun. The subject is one of great difficulty, and 
though it seems certain that the solar system has a common 
origin, there are various features which appear almost inexplicable 
on the nebular hypothesis as enunciated by Laplace.

Another theory which avoids many of the difficulties raised 
by Laplace’s hypothesis has recently found favour. According 
to this, the origin of the solar system is to be found in the 
gradual aggregation of meteorites which swarm through our 
system, and perhaps through space. These meteorites which 
are normally cold may, by repeated collisions, be heated, melted, 
or even vaporized, and the resulting mass would, by the effect 
of gravity, be condensed into planet - like bodies — the larger 
aggregations so formed becoming the chief bodies of the solar

1 Oil the history of the nebular hypothesis and of suggested modifications, 
see A. M. Clerke, Modern Cosmogonies, London, 1905. 
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system. To account for these collisions and condensations it 
is supposed that a vast number of meteorites were at some 
distant epoch situated in a spiral nebula, and that condensations 
and collisions took place at certain knots or intersections of 
orbits. As the resulting planetary masses cooled, moons or rings 
would be formed either by collisions of outlying parts or in the 
manner suggested in Laplace’s hypothesis. This theory seems 
to be primarily due to Sir Norman Lockyer. It does not 
conflict with any of the known facts of cosmical science, but 
as yet our knowledge of the facts is so limited that it would be 
madness to dogmatize on the subject. Recent investigations 
have shown that our moon broke off from the earth while the 
latter was in a plastic condition owing to tidal friction. Hence 
its origin is neither nebular nor meteoric.

Probably the best modern opinion inclines to the vieλv that 
nebular condensation, meteoric condensation, tidal friction, and 
possibly other causes as yet unsuggested, have all played their 
part in the evolution of the system.

The idea of the nebular hypothesis had been outlined by 
Kant1 in 1755, and he had also suggested meteoric aggrega
tions and tidal friction as causes affecting the formation of the 
solar system: it is probable that Laplace was not aware of 
this.

According to the rule published by Titius of Wittemberg 
in 1766—but generally known as Bode’s law, from the fact 
that attention was called to it by Johann Elert Bode in 
1778—the distances of the planets from the sun are nearly in 
the ratio of the numbers 0 + 4, 3 + 4, 6 + 4, 12 + 4, <tc., the 
(n + 2)th term being (2n × 3) + 4. It would be an interesting 
fact if this could be deduced from the nebular, meteoric, or any 
other hypotheses, but so far as I am aware only one writer has 
made any serious attempt to do so, and his conclusion seems 
to be that the law is not sufficiently exact to be more than a 
convenient means of remembering the general result.

Laplace’s analytical discussion of the solar system is given
1 See Kant's Cosmogony, edited by W. Hastie, Glasgow, 1900.
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in his Mecanique celeste published in five volumes. An analysis 
of the contents is given in the English Cyclopaedia. The first 
two volumes, published in 1799, contain methods for calculating 
the motions of the planets, determining their figures, and re
solving tidal problems. The third and fourth volumes, published 
in 1802 and 1805, contain applications of these methods, and 
several astronomical tables. The fifth volume, published in 
1825, is mainly historical, but it gives as appendices the results 
of Laplace’s latest researches. Laplace’s own investigations 
embodied in it are so numerous and valuable that it is regret
table to have to add that many results are appropriated from 
writers with scanty or no acknowledgment, and the conclusions 
—which have been described as the organized result of a century 
of patient toil—are frequently mentioned as if they were due to 
Laplace.

The matter of the Mecanique celeste is excellent, but it is 
by no means easy reading. Biot, who assisted Laplace in 
revising it for the press, says that Laplace himself was fre
quently unable to recover the details in the chain of reasoning, 
and, if satisfied that the conclusions were correct, he was 
content to insert the constantly recurring formula, “ Il est aisó 
a voir.” The Mecanique celeste is not only the translation of 
the Principia into the language of the differential calculus, 
but it completes parts of which Newton had been unable to 
fill in the details. F. F. Tisserand’s recent work may be taken 
as the modern presentation of dynamical astronomy on classical 
lines, but Laplace’s treatise will always remain a standard 
authority.

Laplace went in state to beg Napoleon to accept a copy of 
his work, and the following account of the interview is well 
authenticated, and so characteristic of all the parties concerned 
that I quote it in full. Someone had told Napoleon that the 
book contained no mention of the name of God; Napoleon, 
who was fond of putting embarrassing questions, received it 
with the remark, “ M. Laplace, they tell me you have written 
this large book on the system of the universe, and have never 

2 E 
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even mentioned its Creator.” Laplace, who, though the most 
supple of politicians, was as stiff as a martyr on every point of 
his philosophy, drew himself up and answered bluntly, “ Je 
n’avais pas besoin de cette hypothese-la.” Napoleon, greatly 
amused, told this reply to Lagrange, who exclaimed, “ Ah! 
c’est une belle hypothese ; ęa explique beaucoup de choses.”

In 1812 Laplace issued his Theorie analytique des proba- 
bilites.1 The theory is stated to be only common sense ex
pressed in mathematical language. The method of estimating 
the ratio of the number of favourable cases to the whole 
number of possible cases had been indicated by Laplace 
in a paper written in 1779. It consists in treating the suc
cessive values of any function as the coefficients in the expan
sion of another function with reference to a different variable. 
The latter is therefore called the generating function of the 
former. Laplace then shews how, by means of interpolation, 
these coefficients may be determined from the generating func
tion. Next he attacks the converse problem, and from the 
coefficients he finds the generating function; this is effected by 
the solution of an equation in finite differences. The method 
is cumbersome, and in consequence of the increased power of 
analysis is now rarely used.

This treatise includes an exposition of the method of least 
squares, a remarkable testimony to Laplace’s command over the 
processes of analysis. The method of least squares for the com
bination of numerous observations had been given empirically 
by Gauss and Legendre, but the fourth chapter of this work 
contains a formal proof of it, on which the whole of the theory 
of errors has been since based. This was effected only by a 
most intricate analysis specially invented for the purpose, but 
the form in which it is presented is so meagre and unsatis
factory that in spite of the uniform accuracy of the results it was 
at one time questioned whether Laplace had actually gone through 
the difficult work he so briefly and often incorrectly indicates.

1 A summary of Laplace’s reasoning is given in the article on Probability 
in the Encyclopaedia Metropolitana.
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In 1819 Laplace published a popular account of his work 
on probability. This book bears the same relation to the 
Theorie des probabilites that the Systeme du monde does to 
the Mecanique celeste.

Amongst the minor discoveries of Laplace in pure mathe
matics I may mention his discussion (simultaneously with Van
dermonde) of the general theory of determinants in 1772 ; his 
proof that every equation of an even degree must have at least 
one real quadratic factor; his reduction of the solution of linear 
differential equations to definite integrals; and his solution of 
the linear partial differential equation of the second order. He 
was also the first to consider the difficult problems involved in 
equations of mixed differences, and to prove that the solution of 
an equation in finite differences of the first degree and the 
second order might be always obtained in the form of a 
continued fraction. Besides these original discoveries he 
determined, in his theory of probabilities, the values of a 
number of the more common definite integrals; and in the 
same book gave the general proof of the theorem enunciated 
by Lagrange for the development of any implicit function in 
a series by means of differential coefficients.

In theoretical physics the theory of capillary attraction 
is due to Laplace, who accepted the idea propounded by 
Hauksbee in the Philosophical Transactions for 1709, that 
the phenomenon was due to a force of attraction which was 
insensible at sensible distances. The part which deals with 
the action of a solid on a liquid and the mutual action of two 
liquids was not worked out thoroughly, but ultimately was 
completed by Gauss : Neumann later filled in a few details. 
In 1862 Lord Kelvin (Sir William Thomson) shewed that, if 
we assume the molecular constitution of matter, the laws of 
capillary attraction can be deduced from the Newtonian law of 
gravitation.

Laplace in 1816 was the first to point out explicitly why 
Newton’s theory of vibratory motion gave an incorrect value for 
the velocity of sound. The actual velocity is greater than that 
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calculated by Newton in consequence of the heat developed by 
the sudden compression of the air which increases the elasticity 
and therefore the velocity of the sound transmitted. Laplace’s 
investigations in practical physics were confined to those carried 
on by him jointly with Lavoisier in the years 1782 to 1784 on 
the specific heat of various bodies.

Laplace seems to have regarded analysis merely as a means 
of attacking physical problems, though the ability with which 
he invented the necessary analysis is almost phenomenal. As 
long as his results were true he took but little trouble to ex
plain the steps by which he arrived at them; he never studied 
elegance or symmetry in his processes, and it was sufficient 
for him if he could by any means solve the particular question 
he was discussing.

It would have been well for Laplace’s reputation if he had 
been content with his scientific work, but above all things he 
coveted social fame. The skill and rapidity with which he 
managed to change his politics as occasion required would be 
amusing had they not been so servile. As Napoleon’s power 
increased Laplace abandoned his republican principles (which, 
since they had faithfully reflected the opinions of the party in 
power, had themselves gone through numerous changes) and 
begged the first consul to give him the post of minister of the 
interior. Napoleon, who desired the support of men of science, 
agreed to the proposal; but a little less than six weeks saw 
the close of Laplace’s political career. Napoleon’s memorandum 
on his dismissal is as follows: “ Geometre de premier rang, 
Laplace ne tarda pas a se montrer administrateur plus que 
mediocre; des son premier travail nous reconnumes que nous 
nous etions trompe. Laplace ne saisissait aucune question sous 
son veritable point de vue : il cherchait des subtilites partout, 
n’avait que des idees problematiques, et portait enfin Γesprit des 
‘ infiniment petits ’ j usque dans l’administration.”

Although Laplace was removed from office it was desirable 
to retain his allegiance. He was accordingly raised to the 
senate, and to the third volume of the Mecanique celeste he
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prefixed a note that of all the truths therein contained the most 
precious to the author was the declaration he thus made of his 
devotion towards the peacemaker of Europe. In copies sold 
after the restoration this was struck out. In 1814 it was 
evident that the empire was falling; Laplace hastened to 
tender his services to the Bourbons, and on the restoration 
was rewarded with the title of marquis : the contempt that his 
more honest colleagues felt for his conduct in the matter may 
be read in the pages of Paul Louis Courier. His knowledge 
was useful on the numerous scientific commissions on which 
he served, and probably accounts for the manner in which his 
political insincerity was overlooked; but the pettiness of his 
character must not make us forget how great were his services 
to science.

That Laplace was vain and selfish is not denied by his 
warmest admirers; his conduct to the benefactors of his youth 
and his political friends was ungrateful and contemptible; while 
his appropriation of the results of those who were comparatively 
unknown seems to be well established and is absolutely in
defensible—of those whom he thus treated three subsequently 
rose to distinction (Legendre and Fourier in France and Young 
in England) and never forgot the injustice of which they had 
been the victims. On the other side it may be said that on 
some questions he shewed independence of character, and he 
never concealed his views on religion, philosophy, or science, 
however distasteful they might be to the authorities in power; 
it should be also added that towards the close of his life, and 
especially to the work of his pupils, Laplace was both generous and 
appreciative, and in one case suppressed a paper of his own in 
order that a pupil might have the sole credit of the investigation.

Legendre. Adrian Marie Legendre was born at Toulouse 
on September 18, 1752, and died at Paris on January 10, 1833. 
The leading events of his life are very simple and may be 
summed up briefly. He was educated at the Mazarin College 
in Paris, appointed professor at the military school in Paris 
in 1777, was a member of the Anglo-French commission of
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1787 to connect Greenwich and Paris geodetically; served on 
several of the public commissions from 1792 to 1810; was made 
a professor at the Normal school in 1795; and subsequently 
held a few minor government appointments. The influence 
of Laplace was steadily exerted against his obtaining office or 
public recognition, and Legendre, who was a timid student, 
accepted the obscurity to which the hostility of his colleague 
condemned him.

Legendre’s analysis is of a high order of excellence, and is 
second only to that produced by Lagrange and Laplace, though 
it is not so original. His chief works are his Geometrie, his 
Theorie des nombres, his Exercices de calcul integral, and his 
Fonctions elliptiques. These include the results of his various 
papers on these subjects. Besides these he wrote a treatise 
which gave the rule for the method of least squares, and two 
groups of memoirs, one on the theory of attractions, and the 
other on geodetical operations.

The memoirs on attractions are analyzed and discussed in 
Todhunter’s History of the Theories of Attraction. The earliest 
of these memoirs, presented in 1783, was on the attraction 
of spheroids. This contains the introduction of Legendre’s 
coefficients, which are sometimes called circular (or zonal) 
harmonics, and which are particular cases of Laplace’s co
efficients ; it also includes the solution of a problem in which 
the potential is used. The second memoir was communicated 
in 1784, and is on the form of equilibrium of a mass of 
rotating liquid which is approximately spherical. The third, 
written in 1786, is on the attraction of confocal ellipsoids. 
The fourth is on the figure which a fluid planet would assume, 
and its law of density.

His papers on geodesy are three in number, and were 
presented to the Academy in 1787 and 1788. The most 
important result is that by which a spherical triangle may 
be treated as plane, provided certain corrections are applied 
to the angles. In connection with this subject he paid con
siderable attention to geodesics.
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The method of least squares was enunciated in his Nouvelles 
metiodes published in 1806, to which supplements were added 
in .810 and 1820. Gauss independently had arrived at the 
sane result, had used it in 1795, and published it and the 
law of facility in 1809. Laplace was the earliest writer to 
give a proof of it; this was in 1812.

Of the other books produced by Legendre, the one most 
widely known is his Elements de geometrie which was published 
in 1794, and was at one time widely adopted on the continent 
as a substitute for Euclid. The later editions contain the 
elenents of trigonometry, and proofs of the irrationality of 
7r aid 7γ2. An appendix on the difficult question of the theory 
of ιarallel lines was issued in 1803, and is bound up with most 
of the subsequent editions.

His Tlιeorie des nombres was published in 1798, and ap- 
perdices were added in 1816 and 1825 ; the third edition, 
issιed in two volumes in 1830, includes the results of his 
vanous later papers, and still remains a standard work on the 
subject. It may be said that he here carried the subject as 
far as was possible by the application of ordinary algebra; but 
he did not realize that it might be regarded as a higher 
arithmetic, and so form a distinct subject in mathematics.

Γhe law of quadratic reciprocity, which connects any two 
odd primes, was first proved in this book, but the result had 
been enunciated in a memoir of 1785. Gauss called the pro
poation “ the gem of arithmetic,” and no less than six separate 
prcofs are to be found in his works. The theorem is as follows. 
If p be a prime and n be prime to p, then we know that the 
renainder when niP~υi2 is divided by p is either +1 or - 1. 
Lejendre denoted this remainder by (n∕p'). When the re
mainder is + 1 it is possible to find a square number which 
when divided by p leaves a remainder n, that is, n is a quadratic 
resdue of p; when the remainder is - 1 there exists no such 
sqιare number, and n is a non-residue of p. The law of 
quιdratic reciprocity is expressed by the theorem that, if a 
ani b be any odd primes, then

www.rcin.org.pl



424 LAGRANGE, LAPLACE, ETC. [ch. xvι∏

thus, if δ be a residue of a, then a is also a residue of b, unless 
both of the primes a and b are of the form 4τzι + 3. In other 
words, if a and b be odd primes, we know that

and, by Legendre’s law, the two ambiguities will be either both 
positive or both negative, unless a and b are both of the form 
4m + 3. Thus, if one odd prime be a non-residue of another, 
then the latter will be a non-residue of the former. Gauss 
and Kummer have subsequently proved similar laws of cubic 
and biquadratic reciprocity; and an important branch of the 
theory of numbers has been based on these researches.

This work also contains the useful theorem by which, when 
it is possible, an indeterminate equation of the second degree 
can be reduced to the form ax2 + by2 + cz2 = 0. Legendre here 
discussed the forms of numbers which can be expressed as the 
sum of three squares; and he proved [art. 404] that the number 
of primes less than n is approximately w∕(loge n- l,08366).

The Exercices de calcul integral was published in three 
volumes, 1811, 1817, 1826. Of these the third and most of 
the first are devoted to elliptic functions; the bulk of this . 
being ultimately included in the Fonctions elliptiques. The 
contents of the remainder of the treatise are of a miscellaneous 
character; they include integration by series, definite integrals, 
and in particular an elaborate discussion of the Beta and the 
Gamma functions.

The Traite des fonctions elliptiques was issued in two volumes 
in 1825 and 1826, and is the most important of Legendre’s 
works. A third volume was added a few weeks before his 
death, and contains three memoirs on the researches of Abel and 
Jacobi. Legendre’s investigations had commenced with a paper 
written in 1786 on elliptic arcs, but here and in his other papers 
he treated the subject merely as a problem in the integral 
calculus, and did not see that it might be considered as a

www.rcin.org.pl



ch. xvπι] LEGENDRE. PFAFF 425

higher trigonometry, and so constitute a distinct branch of 
analysis. Tables of the elliptic integrals were constructed by 
him. The modern treatment of the subject is founded on that 
of Abel and Jacobi. The superiority of their methods was at 
once recognized by Legendre, and almost the last act of his 
life was to recommend those discoveries which he knew would 
consign his own labours to comparative oblivion.

This may serve to remind us of a fact which I wish to 
specially emphasize, namely, that Gauss, Abel, Jacobi, and some 
others of the mathematicians alluded to in the next chapter, were 
contemporaries of the members of the French school.

Pfaff. I may here mention another writer who also made 
a special study of the integral calculus. This was Johann 
Friederich Pfaff, born at Stuttgart on Dec. 22, 1765, and died 
at Halle on April 21, 1825, who was described by Laplace as 
the most eminent mathematician in Germany at the beginning 
of this century, a description which, had it not been for Gauss’s 
existence, would have been true enough.

Pfaff was the precursor of the German school, which under 
Gauss and his followers largely determined the lines on which 
mathematics developed during the nineteenth century. He was 
an intimate friend of Gauss, and in fact the two mathematicians 
lived together at Helmstadt during the year 1798, after Gauss 
had finished his university course. Pfaff’s chief work was his 
(unfinished) Disquisitiones Analyticae on the integral calculus, 
published in 1797 ; and his most important memoirs were either 
on the calculus or on differential equations : on the latter subject 
his paper read before the Berlin Academy in 1814 is noticeable.

The creation of modern geometry.

While Euler, Lagrange, Laplace, and Legendre were per
fecting analysis, the members of another group of French 
mathematicians were extending the range of geometry by 
methods similar to those previously used by. Desargues and 
Pascal. The revival of the study of synthetic geometry is 
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largely due to Poncelet, but the subject is also associated with 
the names of Monge and L. Carnot; its great development in 
more recent times is mainly due to Steiner, von Staudt, and 
Cremona.

Monge.1 Gaspard Monge was born at Beaune on May 10, 
1746, and died at Paris on July 28, 1818. He was the son of 
a small pedlar, and was educated in the schools of the Oratorians, 
in one of which he subsequently became an usher. A plan of 
Beaune which he had made fell into the hands of an officer who 
recommended the military authorities to admit him to their 
training-school at Mezieres. His birth, however, precluded his 
receiving a commission in the army, but his attendance at an 
annexe of the school where surveying and drawing were taught 
was tolerated, though he was told that he was not sufficiently 
well born to be allowed to attempt problems which required 
calculation. At last his opportunity came. A plan of a fortress 
having to be drawn from the data supplied by certain observa
tions, he did it by a geometrical construction. At first the 
officer in charge refused to receive it, because etiquette required 
that not less than a certain time should be used in making such 
drawings, but the superiority of the method over that then 
taught was so obvious that it was accepted; and in 1768 
Monge was made professor, on the understanding that the 
results of his descriptive geometry were to be a military secret 
confined to officers above a certain rank.

In 1780 he was appointed to a chair of mathematics in Paris, 
and this with some provincial appointments which he held gave 
him a comfortable income. The earliest paper of any special 
importance which he communicated to the French Academy was 
one in 1781, in which he discussed the lines of curvature drawn 
on a surface. These had been first considered by Euler in 17 60, 
and defined as those normal sections whose curvature was a 
maximum or a minimum. Monge treated them as the locus of 
those points on the surface at which successive normals intersect,

1 On the authorities for Monge’s life and works, see the note by H. Brocard 
in L'lntermćdiaire des mathematiciens, 1906, vol. xiii, pp. 118, 119.
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and thus obtained the general differential equation. He applied 
his results to the central quadrics in 1795. In 1786 he pub
lished his well-known work on statics.

Monge eagerly embraced the doctrines of the revolution. 
In 1792 he became minister of the marine, and assisted the 
committee of public safety in utilizing science for the defence 
of the republic. When the Terrorists obtained power he was 
denounced, and escaped the guillotine only by a hasty flight. 
On his return in 1794 he was made a profe⅛sor at the short
lived Normal school, where he gave lectures on descriptive 
geometry; the notes of these were published under the regula
tion above alluded to. In 1796 he went to Italy on the roving 
commission which was sent with orders to compel the various 
Itaian towns to offer pictures, sculpture, or other works of art 
tha; they might possess, as a present or in lieu of contributions 
to the French republic for removal to Paris. In 1798 he 
accepted a mission to Rome, and after executing it joined 
Napoleon in Egypt. Thence after the naval and military 
victories of England he escaped to France.

Monge then settled down at Paris, and was made professor 
at the Polytechnic school, where he gave lectures on descriptive 
geometry ; these were published in 1800 in the form of a text
bock entitled Geometrie descriptive. This work contains pro
postions on the form and relative position of geometrical figures 
deduced by the use of transversals. The theory of perspective 
is :onsidered; this includes the art of representing in two 
dimensions geometrical objects which are of three dimensions, 
a problem which Monge usually solved by the aid of two 
diagrams, one being the plan and the other the elevation. 
Mαιge also discussed the question as to whether, if in solving 
a p,oblem certain subsidiary quantities introduced to facilitate 
the solution become imaginary, the validity of the solution is 
the,eby impaired, and he shewed that the result would not be 
affected. On the restoration he was deprived of his offices and 
hoιours, a degradation which preyed on his mind and cvhich he 
did not long survive.
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Most of his miscellaneous papers are embodied in his works, 
Application de I’algebre a la geometrie, published in 1805, and 
Application de I’analyse a la geometrie, the fourth edition of 
which, published in 1819, was revised by him just before his 
death. It contains among other results his solution of a partial 
differential equation of the second order.

Carnot.1 Lazare Nicholas Marguerite Carnot, born at 
Nolay on May 13, 1753, and died at Magdeburg on Aug. 22, 
1823, was educated at Burgundy, and obtained a commission 
in the engineer corps of Conde. Although in the army, he 
continued his mathematical studies in which he felt great 
interest. His first w70rk, published in 1784, was on machines; 
it contains a statement which foreshadows the principle of 
energy as applied to a falling weight, and the earliest proof of 
the fact that kinetic energy is lost in the collision of imperfectly 
elastic bodies. On the outbreak of the revolution in 1789 he 
threw himself into politics. In 1793 he was elected on the 
committee of public safety, and the victories of the French army 
were largely due to his powers of organization and enforcing 
discipline. He continued to occupy a prominent place in every 
successive form of government till 1796 when, having opposed 
Napoleon’s coup d’etat, he had to fly from France. He took 
refuge in Geneva, and there in 1797 issued his La metaphysique 
du calcul infinitesimal. In 1802 he assisted Napoleon, but his 
sincere republican convictions were inconsistent with the re
tention of office. In 1803 he produced his Geometrie de 
position. This work deals with projective rather than descriptive 
geometry, it also contains an elaborate discussion of the geo
metrical meaning of negative roots of an algebraical equation. 
In 1814 he offered his services to fight for France, though not 
for the empire; and on the restoration he was exiled.

1 See the eloge by Arago, which, like most obituary notices, is a panegyric 
rather than an impartial biography.

2 See La Vie el les ouvrages de P<mcelet, by I. Didion and C. Dupin, Paris,
1869.

Poncelet.1 2 * Jean Victor Poncelet, born at Metz on July 1, 

www.rcin.org.pl



ch.xviii] THE DEVELOPMENT OF PHYSICS 429 

1788, and died at Paris on Dec. 22, 1867, held a commission 
in the French engineers. Having been made a prisoner in the 
French retreat from Moscow in 1812 he occupied his enforced 
leisure by writing the Traite des proprietes projectives des 
figures, published in 1822, which was long one of the best 
known text-books on modern geometry. By means of pro
jection, reciprocation, and homologous figures, he established 
all the chief properties of conics and quadrics. He also treated 
the theory of polygons. His treatise on practical mechanics in 
1826, his memoir on water-mills in 1826, and his report on 
the English machinery and tools exhibited at the International 
Exhibition held in London in 1851 deserve mention. He 
contributed numerous articles to Crelle’s journal ; the most 
valuable of these deal with the explanation, by the aid of the 
doctrine of continuity, of imaginary solutions in geometrical 
problems.

The development of mathematical physics.

It will be noticed that Lagrange, Laplace, and Legendre 
mostly occupied themselves with analysis, geometry, and astro
nomy. I am inclined to regard Cauchy and the French mathe
maticians of the present day as belonging to a different school 
of thought to that considered in this chapter, and I place them 
amongst modern mathematicians, but I think that Fourier, 
Poisson, and the majority of then- contemporaries, are the lineal 
successors of Lagrange and Laplace. If this view be correct, we 
may say that the successors of Lagrange and Laplace devoted 
much of their attention to the application of mathematical 
analysis to physics. Before considering these mathematicians 
I may mention the distinguished English experimental physicists 
who were their contemporaries, and whose merits have only 
recently received an adequate recognition. Chief among these 
are Cavendish and Young.

Cavendish.1 The Honourable Henry Cavendish was born at
1 An account of his life by G. Wilson will be found in the first volume 

of the publications of the Cavendish Society, London, 1851. His Electrical
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Nice on October 10, 1731, and died in London on February 4, 
1810. His tastes for scientific research and mathematics were 
formed at Cambridge, where he resided from 1749 to 1753. He 
created experimental electricity, and was one of the earliest 
writers to treat chemistry as an exact science. I mention him 
here on account of his experiment in 1798 to determine the 
density of the earth, by estimating its attraction as compared 
with that of two given lead balls : the result is that the mean 
density of the earth is about five and a half times that of water. 
This experiment was carried out in accordance with a suggestion 
which had been first made by John Mitchell (1724-1793), a 
fellow of Queens’ College, Cambridge, who had died before he 
was able to carry it into effect.

Rumford.1 Sir Benjamin Thomson, Count Rumford, born 
at Concord on March 26, 1753, and died at Auteuil on August 
21, 1815, was of English descent, and fought on the side of the 
loyalists in the American War of Secession : on the conclusion 
of peace he settled in England, but subsequently entered the 
service of Bavaria, where his powers of organization proved of 
great value in civil as well as military affairs. At a later period 
he again resided in England, and when there founded the Royal 
Institution. The majority of his papers were communicated to 
the Royal Society of London; of these the most important is 
his memoir in which he showed that heat and work are mutually 
convertible.

Young.2 Among the most eminent physicists of his time 
was Thomas Young, who was born at Milverton on June 13, 
1773, and died in London on May 10, 1829. He seems as a 
boy to have been somewhat of a prodigy, being well read in 
modern languages and literature, as well as in science ; he always

Researches were edited by J. C. Maxwell, and published at Cambridge in 
1879.

1 An edition of Rumford’s works, edited by George Ellis, accompanied by 
a biography, was published by the American Academy of Sciences at Boston 
in 1872.

2 Young’s collected works and a memoir on his life were published by G. 
Peacock, four volumes, London, 1855.

www.rcin.org.pl



ch.iviπ] YOUNG. DALTON 431

kep up his literary tastes, and it was he who in 1819 first 
suggested the key to decipher the Egyptian hieroglyphics, which 
J. I. Champoilion used so successfully. Young was destined 
to b a doctor, and after attending lectures at Edinburgh and 
Gδtingen entered at Emmanuel College, Cambridge, from which 
he ook his degree in 1799 ; and to his stay at the University 
he ιttributed much of his future distinction. His medical 
carer was not particularly successful, and his favourite maxim 
that a medical diagnosis is only a balance of probabilities was 
not appreciated by his patients, who looked for certainty in 
return for their fee. Fortunately his private means were ample. 
Seviral papers contributed to various learned societies from 
1793 onwards prove him to have been a mathematician of 
considerable power; but the researches which have immortalised 
his name are those by which he laid down the laws of inter- 
fereιce of waves and of light, and was thus able to suggest the 
meaιs by which the chief difficulties then felt in the way of the 
acc<ptance of the undulatory theory of light could be overcome.

)alton.1 Another distinguished writer of the same period 
was John Dalton, who was born in Cumberland on September 5, 
1766, and died at Manchester on July 27, 1844. Dalton 
investigated the tension of vapours, and the law of the expansion 
of ι gas under changes of temperature. He also founded the 
atonic theory in chemistry.

A will be gathered from these notes that the English school 
of physicists at the beginning of this century were mostly 
comerned with the experimental side of the subject. But in 
fact no satisfactory theory could be formed without some similar 
careful determination of the facts. The most eminent French 
physicists of the same time were Fourier, Poisson, Ampere, 
ant Fresnel. Their method of treating the subject is more 
ma∙hematical than that of their English contemporaries, and 
the two first named were distinguished for general mathematical 
abi ity.

1 See the Memoir of Dalton, by R. A. Smith, London, 1856 ; and W. C. 
Henry’s memoir in the Cavendish Society Transactions, London, 1854.

www.rcin.org.pl



432 FOURIER [ch. xviπ

Fourier.1 The first of these French physicists was Jean 
Baptiste Joseph Fourier, who was born at Auxerre on March 21, 
1768, and died at Paris on May 16, 1830. He was the son of 
a tailor, and was educated by the Benedictines. The commis
sions in the scientific corps of the army were, as is still the case 
in Russia, reserved for those of good birth, and being thus 
ineligible he accepted a military lectureship on mathematics. 
He took a prominent part in his own district in promoting the 
revolution, and was rewarded by an appointment in 1795 in the 
Normal school, and subsequently by a chair in the Polytechnic 
school.

Fourier went with Napoleon on his Eastern expedition in 
1798, and was made governor of Lower Egypt. Cut off from 
France by the English fleet, he organised the workshops on 
which the French army had to rely for their munitions of war. 
He also contributed several mathematical papers to the Egyptian 
Institute which Napoleon founded at Cairo, with a view of 
weakening English influence in the East. After the British 
victories and the capitulation of the French under General 
Menou in 1801, Fourier returned to France, and was made 
prefect of Grenoble, and it was while there that he made his 
experiments on the propagation of heat. He moved to Paris 
in 1816. In 1822 he published his Theorie analytique de la 
chaleur, in which he bases his reasoning on Newton’s law of 
cooling, namely, that the flow of heat between two adjacent 
molecules is proportional to the infinitely small difference of 
their temperatures. In this work he shows that any function 
of a variable, whether continuous or discontinuous, can be 
expanded in a series of sines of multiples of the variable—a 
result which is constantly used in modern analysis. Lagrange 
had given particular cases of the theorem, and had implied that 
the method was general, but he had not pursued the subject. 
Dirichlet was the first to give a satisfactory demonstration 
of it.

1 An edition of his works, edited by G. Darboux, was published in two 
volumes, Paris, 1888, 1890.
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Fourier left an unfinished work on determinate equations 
which was edited by Navier, and published in 1831 ; this 
contains much original matter, in particular there is a demon
stration of Fourier’s theorem on the position of the roots of an 
algebraical equation. Lagrange had shewn how the roots of an 
algebraical equation might be separated by means of another 
equation whose roots were the squares of the differences of the 
roots of the original equation. Budan, in 1807 and 1811, had 
enunciated the theorem generally known by the name of 
Fourier, but the demonstration was not altogether satisfactory. 
Fourier’s proof is the same as that usually given in text
books on the theory of equations. The final solution of the 
problem was given in 1829 by Jacques Charles Franςois Sturm 
(1803-1855).

Sadi Carnot.1 Among Fourier’s contemporaries who were 
interested in the theory of heat the most eminent was Sadi 
Carnot, a son of the eminent geometrician mentioned above. 
Sadi Carnot was born at Paris in 1796, and died there of 
cholera in August 1832 ; he was an officer in the French 
army. In 1824 he issued a short work entitled Reflexions 
sur la puissance motrice du feu, in which he attempted to 
determine in what way heat produced its mechanical effect. 
He made the mistake of assuming that heat was material, but 
his essay may be taken as initiating the modern theory of 
thermodynamics.

Poisson.2 Sime'on Denis Poisson, born at Pithiviers on 
June 21, 1781, and died at Paris on April 25, 1840, is almost 
equally distinguished for his applications of mathematics to 
mechanics and to physics. His father had been a private 
soldier, and on his retirement was given some small adminis
trative post in his native village; when the revolution broke 
out he appears to have assumed the government of the place,

1 A sketch of S. Carnot’s life and an English translation of his Reflexions 
was published by R. H. Thurston, London and New York, 1890.

2 Memoirs of Poisson will be found in the Encyclopaedia Britannica, the 
Transactions of the Royal Astronomical Society, vol. v, and Arago’s Eloges, 
vol. ii ; the latter contains a bibliography of Poisson’s papers and works.

2f
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and, being left undisturbed, became a person of some local 
importance. The boy was put out to nurse, and he used to tell 
how one day his father, coming to see him, found that the nurse 
had gone out, on pleasure bent, having left him suspended by a 
small cord attached to a nail fixed in the wall. This, she 
explained, was a necessary precaution to prevent him from 
perishing under the teeth of the various animals and animalculae 
that roamed on the floor. Poisson used to add that his gymnastic 
efforts carried him incessantly from one side to the other, and it 
was thus in his tenderest infancy that he commenced those 
studies on the pendulum that λvere to occupy so large a part of 
his mature age.

He was educated by his father, and destined much against 
his will to be a doctor. His uncle offered to teach him the art, 
and began by making him prick the veins of cabbage-leaves 
with a lancet. When perfect in this, he was allowed to put on 
blisters; but in almost the first case he did this by himself, the 
patient died in a few hours, and though all the medical practi
tioners of the place assured him that “ the event was a very 
common one,” he vowed he would have nothing more to do with 
the profession.

Poisson, on his return home after this adventure, discovered 
amongst the official papers sent to his father a copy of the 
questions set at the Polytechnic school, and at once found his 
career. At the age of seventeen he entered the Polytechnic, and 
his abilities excited the interest of Lagrange and Laplace, whose 
friendship he retained to the end of their lives. A memoir on 
finite differences which he wrote when only eighteen was 
reported on so favourably by Legendre that it was ordered to be 
published in the Recueil des savants etrangers. As soon as he 
had finished his course he was made a lecturer at the school, 
and he continued through his life to hold various government 
scientific posts and professorships. He was somewhat of a 
socialist, and remained a rigid republican till 1815, when, with 
a view to making another empire impossible, he joined the 
legitimists. He took, however, no active part in politics, and
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made the study of mathematics his amusement as well as his 
business.

His works and memoirs are between three and four hundred 
in number. The chief treatises which he wrote were his Traite 
de mecanique1 published in two volumes, 1811 and 1833, which 
was lθLg a standard work; his Theoτie nouvelle de Vaction 
capillaire, 1831 ; his Theorie mathematique de la chaleur, 1835, 
to which a supplement was added in 1837; and his Recherches 
sur la probabilite des jugements, 1837. He had intended, if he 
had lived, to write a work which should cover all mathematical 
physics and in which the results of the three books last named 
would have been incorporated.

1 Amorg Poisson’s contemporaries who studied mechanics and of whose 
works he nade use I may mention Louis Poinsot, who was born in Paris on 
Jan. 3, 17'7, and died there on Dec. 5, 1859. In his Statique, published in 
1803, he treated the subject without any explicit reference to dynamics. The 
theory of couples is largely due to him (1806), as also the motion of a body 
in space uιder the action of no forces.

2 See the Journal polytechnique from 1813 to 1823, and the Memoires de 
Vacademie for 1823 ; the Memoires de l'academie, 1833 ; and the Connaissance 
des temps, 1827 and following years. Most of his memoirs were published in 
the three periodicals here mentioned.

Of his memoirs in pure mathematics the most important are 
those OL definite integrals, and Fourier’s series, their application 
to physical problems constituting one of his chief claims to dis
tinction ; his essays on the calculus of variations; and his 
papers cn the probability of the mean results of observations.1 2

Perhaps the most remarkable of his memoirs in applied 
mathematics are those on the theory of electrostatics and 
magnetism, which originated a new branch of mathematical 
physics; he supposed that the results were due to the attrac
tions ard repulsions of imponderable particles. The most 
important of those on physical astronomy are the two read in 
1806 (printed in 1809) on the secular inequalities of the mean 
motions of the planets, and on the variation of arbitrary 
constants introduced into the solutions of questions on 
mechanics; in these Poisson discusses the question of the 
stability of the planetary orbits (which Lagrange had already 
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proved to the first degree of approximation for the disturbing 
forces), and shews that the result can be extended to the third 
order of small quantities : these were the memoirs which led 
to Lagrange’s famous memoir of 1808. Poisson also published 
a paper in 1821 on the libration of the moon ; and another in 
1827 on the motion of the earth about its centre of gravity. 
His most important memoirs on the theory of attraction are 
one in 1829 on the attraction of spheroids, and another in 1835 
on the attraction of a homogeneous ellipsoid: the substitu
tion of the correct equation involving the potential, namely, 
V2 V= - ∙iπp, for Laplace’s form of it, V 2 F= 0, was first pub
lished 1 in 1813. Lastly, I may mention his memoir in 1825 
on the theory of waves.

Amp⅛re.2 Andre Marie Ampere was born at Lyons on 
January 22, 1775, and died at Marseilles on June 10, 1836. 
He was widely read in all branches of learning, and lectured 
and wrote on many of them, but after the year 1809, when he 
was made professor of analysis at the Polytechnic school in 
Paris, he confined himself almost entirely to mathematics and 
science. His papers on the connection between electricity and 
magnetism were written in 1820. According to his theory, 
propounded in 1826, a molecule of matter which can be 
magnetized is traversed by a closed electric current, and 
magnetization is produced by any cause which makes the 
direction of these currents in the different molecules of the 
body approach parallelism.

Fresnel. Biot. Augustin Jean Fresnel, born at Broglie on 
May 10, 1788, and died at Ville-d’Avray on July 14, 1827, was 
a civil engineer by profession, but he devoted his leisure to the 
study of physical optics. The undulatory theory of light, which 
Hooke, Huygens, and Euler had supported on a priori grounds, 
had been based on experiment by the researches of Young. 
Fresnel deduced the mathematical consequences of these experi
ments, and explained the phenomena of interference both of

1 In the Bulletin des sciences of the Societe philomatique.
2 See C. A. Valson’s Etude sur la vie et les ouυraaes d'Amυere. Lvons. 1885.
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ordinary and polarized light. Fresnel’s friend and contemporary, 
Jean Baptiste Biot, who was born at Paris on April 21, 1774, 
and died there in 1862, requires a word or two in passing. 
Most of his mathematical work was in connection with the 
subject of optics, and especially the polarization of light. His. 
systematic works were produced within the years 1805 and 
1817 ; a selection of his more valuable memoirs was published 
in Paris in 1858.

Arago.1 Franęois Jean Dominique Arago was born at 
Estagel in the Pyrenees on February 26, 1786, and died in 
Paris on October 2, 1853. He was educated at the Polytechnic 
school, Paris, and we gather from his autobiography that 
however distinguished were the professors of that institution 
they were remarkably incapable of imparting their knowledge 
or maintaining discipline.

1 Arago’s works, which include eloges on many of the leading mathema
ticians of the last five or six centuries, have been edited by M. J. A. Barral, 
and published in fourteen volumes, Paris, 1856-57. An autobiography is 
prefixed to the first volume.

In 1804 Arago was made secretary to the observatory at 
Paris, and from 1806 to 1809 he was engaged in measuring a 
meridian arc in order to determine the exact length of a metre. 
He was then appointed to a leading post in the observatory, 
given a residence there, and made a professor at the Polytechnic 
school, where he enjoyed a marked success as a lecturer. He 
subsequently gave popular lectures on astronomy, which were 
both lucid and accurate—a combination of qualities which was 
rarer then than now. He reorganized the national observatory, 
the management of which had long been inefficient, but in doing 
this his want of tact and courtesy raised many unnecessary 
difficulties. He remained to the end a consistent republican, 
and after the coup d’etat of 1852, though half blind and dying, 
he resigned his post as astronomer rather than take the oath of 
allegiance. It is to the credit of Napoleon III. that he gave 
directions that the old man should be in no way disturbed, and 
should be left free to say and do what he liked.
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Arago’s earliest physical researches were on the pressure of 
steam at different temperatures, and the velocity of sound, 1818 
to 1822. His magnetic observations mostly took place from 
1823 to 1826. He discovered what has been called rotatory 
magnetism, and the fact that most bodies could be magnetized; 
these discoveries were completed and explained by Faraday. 
He warmly supported Fresnel’s optical theories, and the two 
philosophers conducted together those experiments on the 
polarization of light which led to the inference that the vibra
tions of the luminiferous ether -were transverse to the direction 
of motion, and that polarization consisted in a resolution of 
rectilinear motion into components at right angles to each other. 
The subsequent invention of the polariscope and discovery of 
rotatory polarization are due to Arago. The general idea of the 
experimental determination of the velocity of light in the 
manner subsequently effected by Fizeau and Foucault wras 
suggested by him in 1838, but his failing eyesight prevented 
his arranging the details or making the experiments.

It will be noticed that some of the last members of the 
French school were alive at a comparatively recent date, but 
nearly all their mathematical work was done before the year 
1830. They are the direct successors of the French writers who 
flourished at the commencement of the nineteenth century, and 
seem to have been out of touch with the great German mathe
maticians of the early part of it, on whose researches much of 
the best work of that century is based; they are thus placed 
here, though their writings are in some cases of a later date 
than those of Gauss, Abel, and Jacobi.

The introduction of analysis into England.

The complete isolation of the English school and its devotion 
to geometrical methods are the most marked features in its 
history during the latter half of the eighteenth century; and 
the absence of any considerable contribution to the advancement 
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of mathematical science was a natural consequence. One result 
of tιis was that the energy of English men of science was 
largdy devoted to practical physics and practical astronomy, 
which were in consequence studied in Britain perhaps more 
than elsewhere.

Dory. Almost the only English mathematician at the 
begiιning of this century who used analytical methods, and 
whose work requires mention here, is Ivory, to whom the cele- 
brat<d theorem in attractions is due. Sir James Ivory was 
born in Dundee in 1765, and died on September 21, 1842. 
Afte, graduating at St. Andrews he became the managing 
partier in a flax-spinning company in Forfarshire, but continued 
to devote most of his leisure to mathematics. In 1804 he was 
made professor at the Royal Military College at Marlow, which 
was subsequently moved to Sandhurst; he was knighted in 
183.. He contributed numerous papers to the Philosophical 
71raιsactions, the most remarkable being those on attractions. 
In cne of these, in 1809, he shewed how the attraction of a 
hom)geneous ellipsoid on an external point is a multiple of that 
of another ellipsoid on an internal point: the latter can be 
easily obtained. He criticized Laplace’s solution of the method 
of least squares with unnecessary bitterness, and in terms which 
sheved that he had failed to understand it.

The Cambridge Analytical School. Towards the beginning 
of tie last century the more thoughtful members of the Cambridge 
scho)l of mathematics began to recognize that their isolation 
from their continental contemporaries was a serious evil. The 
earliest attempt in England to explain the notation and methods 
of tie calculus as used on the continent was due to Woodhouse, 
who stands out as the apostle of the new movement. It is 
dou⅛tful if he could have brought the analytical methods into 
vogιe by himself; but his views were enthusiastically adopted 
by !hree students, Peacock, Babbage, and Herschel, who suc
ceeded in carrying out the reforms he had suggested. In a 
bool which will fall into the hands of few but English readers 
I mty be pardoned for making space for a few remarks on these 
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four mathematicians, though otherwise a notice of them would 
not be required in a work of this kind.1 The original stimulus 
came from French sources, and I therefore place these remarks 
at the close of my account of the French school; but I should 
add that the English mathematicians of this century at once 
struck out a line independent of their French contemporaries.

Woodhouse. Robert Woodhouse was born at Norwich on 
April 28, 1773 ; was educated at Caius College, Cambridge, of 
which society he was subsequently a fellow; was Plumian pro
fessor in the university; and continued to live at Cambridge till 
his death on December 23, 1827.

Woodhouse’s earliest work, entitled the Principles of Ana
lytical Calculation, was published at Cambridge in 1803. In 
this he explained the differential notation and strongly pressed 
the employment of it; but he severely criticized the methods 
used by continental writers, and their constant assumption of 
non-evident principles. This was followed in 1809 by a trigono
metry (plane and spherical), and in 1810 by a historical treatise 
on the calculus of variations and isoperimetrical problems. He 
next produced an astronomy; of which the first book (usually 
bound in two volumes), on practical and descriptive astronomy, 
was issued in 1812, and the second book, containing an account 
of the treatment of physical astronomy by Laplace and other 
continental writers, was issued in 1818. All these works deal 
critically with the scientific foundation of the subjects considered 
—a point which is not unfrequently neglected in modern text
books.

A man like Woodhouse, of scrupulous honour, universally 
respected, a trained logician, and with a caustic wit, was well 
fitted to introduce a new system; and the fact that when he 
first called attention to the continental analysis he exposed the 
unsoundness of some of the usual methods of establishing it, 
more like an opponent than a partisan, was as politic as it 
was honest. Woodhouse did not exercise much influence on

1 The following account is condensed from my History of the Study of 
Mathematics at Cambridge, Cambridge, 1889. 
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the majority of his contemporaries, and the movement might 
have died away for the time being if it had not been for the 
advocacy of Peacock, Babbage, and Herschel, who formed an 
Analytical Society, with the object of advocating the general use 
in the university of analytical methods and of the differential 
notation.

Peacock. George Peacock, who was the most influential of 
the early members of the new school, was born at Denton on 
April 9, 1791. He was educated at Trinity College, Cambridge, 
of which society he was subsequently a fellow and tutor. The 
establishment of the university observatory was mainly due to 
his efforts, and in 1836 he was appointed to the Lowndean 
professorship of astronomy and geometry. In 1839 he was 
male dean of Ely, and resided there till his death on Nov. 8, 
1858. Although Peacock’s influence on English mathematicians 
was considerable, he has left but few memorials of his work; 
but I may note that his report on progress in analysis, 1833, 
conmenced those valuable summaries of current scientific progress 
which enrich many of the annual volumes of the Transactions of 
the British Association.

Babbage. Another important member of the Analytical 
Society was Charles Babbage, who was born at Totnes on Dec. 
26. 1792 ; he entered at Trinity College, Cambridge, in 1810; 
subsequently became Lucasian professor in the university; and 
died in London on Oct. 18, 1871. It was he who gave the 
name to the Analytical Society, which, he stated, was formed 
to advocate “ the principles of pure d-ism as opposed to the dob
age of the university.” In 1820 the Astronomical Society was 
founded mainly through his efforts, and at a later time, 1830 to 
1832, he took a prominent part in the foundation of the British 
Association. He will be remembered for his mathematical 
memoirs on the calculus of functions, and his invention of an 
analytical machine which could not only perform the ordinary 
processes of arithmetic, but could tabulate the values of any func
tion and print the results.

Herschel. The third of those who helped to bring analytical 
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methods into general use in England was the son of Sir William 
Herschel (1738-1822), the most illustrious astronomer of the 
latter half of the eighteenth century and the creator of modern 
stellar astronomy. Sir John Frederick William Herschel was born 
on March 7, 1792, educated at St. John’s College, Cambridge, 
and died on May 11, 1871. His earliest original work was a 
paper on Cotes’s theorem, and it was followed by others on 
mathematical analysis, but his desire to complete his father’s 
work led ultimately to his taking up astronomy. His papers 
on light and astronomy contain a clear exposition of the 
principles which underlie the mathematical treatment of those 
subjects.

In 1813 the Analytical Society published a volume of 
memoirs, of which the preface and the first paper (on continued 
products) are due to Babbage; and three years later they 
issued a translation of Lacroix’s Traite elementaire du calcul 
differentiel et du calcul integral. In 1817, and again in 1819, 
the differential notation was used in the university examinations, 
and after 1820 its use was well established. The Analytical 
Society followed up this rapid victory by the issue in 1820 of 
two volumes of examples illustrative of the new method; one 
by Peacock on the differential and integral calculus, and the 
other by Herschel on the calculus of finite differences. Since 
then English works on the infinitesimal calculus have abandoned 
the exclusive use of the fluxional notation. It should be noticed 
in passing that Lagrange and Laplace, like the majority of other 
modern writers, employ both the fluxional and the differential 
notation; it was the exclusive adoption of the former that was 
so hampering.

Amongst those who materially assisted in extending the 
use of the new analysis were William Whewell (1794-1866) 
and George Biddell Airy (1801-1892), both Fellows of Trinity 
College, Cambridge. The former issued in 1819 a work on 
mechanics, and the latter, who was a pupil of Peacock, published 
in 1826 his Tracts, in which the new method was applied with 
great success to various physical problems. The efforts of the 
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society were supplemented by the rapid publication of good 
text-books in which analysis was freely used. The employment 
of analytical methods spread from Cambridge over the rest of 
Br.tain, and by 1830 these methods had come into general use 
there.
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CHAPTER XIX.

MATHEMATICS OF THE NINETEENTH CENTURY.

The nineteenth century saw the creation of numerous new 
departments of pure mathematics—notably of a theory of 
numbers, or higher arithmetic; of theories of forms and 
groups, or a higher algebra; of theories of functions of 
multiple periodicity, or a higher trigonometry; and of a 
general theory of functions, embracing extensive regions of 
higher analysis. Further, the developments of synthetic and 
analytical geometry created what practically were new subjects. 
The foundations of the subject and underlying assumptions 
(notably in arithmetic, geometry, and the calculus) were also 
subjected to a rigorous scrutiny. Lastly, the application of 
mathematics to physical problems revolutionized the foundations 
and treatment of that subject. Numerous Schools, Journals, 
and Teaching Posts were established, and the facilities for the 
study of mathematics were greatly extended.

Developments, such as these, may be taken as opening a 
new period in the history of the subject, and I recognize that in 
the future a writer who divides the history of mathematics as I 
have done would probably treat the mathematics of the seven
teenth and eighteenth centuries as forming one period, and 
would treat the mathematics of the nineteenth century as 
commencing a new period. This, however, λvould imply a 
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tolerably complete and systematic account of the development 
of the subject in the nineteenth century. But evidently it is 
impossible for me to discuss adequately the mathematics of a 
time so near to us, and the works of mathematicians some of 
whom are living and some of whom I have met and knoλvn. 
Hence I make no attempt to give a complete account of the 
mathematics of the nineteenth century, but as a sort of appendix 
to the preceding chapters I mention the more striking features 
in the history of recent pure mathematics, in which I include 
theoretical dynamics and astronomy ; I do not, however, propose 
to discuss in general the recent application of mathematics to 
physics.

In only a few cases do I give an account of the life and 
works of the mathematicians mentioned ; but I have added brief 
notes about some of those to whom the development of any 
branch of the subject is chiefly due, and an indication of that 
part of it to which they have directed most attention. Even 
with these limitations it has been very difficult to put together a 
connected account of the mathematics of recent times; and I 
wish to repeat explicitly that I do not suggest, nor do I wish 
my readers to suppose, that my notes on a subject give the 
names of all the chief writers who have studied it. In fact the 
quantity of matter produced has been so enormous that no one 
can expect to do more than make himself acquainted with the 
works produced in some special branch or branches. As an 
illustration of this remark I may add that the committee 
appointed by the Royal Society to report on a catalogue of 
periodical literature estimated, in 1900, that more than 1500 
memoirs on pure mathematics were then issued annually, and 
more than 40,000 a year on scientific subjects.

Most histories of mathematics do not treat of the work 
produced during this century. The chief exceptions with which 
I am acquainted are R. d’Adliemar’s L,(Euvre mathematique 
du xixe siecle; K. Fink’s Geschichte dev Mathematik, Tubingen, 
1890 ; E. J. Gerhardt’s Geschichte der Mathematik in Deutsch
land, Munich, 1877 ; S. Gunther’s Verm. Unt. zur Geschichte 

www.rcin.org.pl



446 NINETEENTH CENTURY MATHEMATICS [ch. xιx 

der mathematischen Wissenschaften, Leipzig, 1876, and Ziele iιnd 
llesultate der neueren mathematisch - historischen Forschung, 
Erlangen, 1876 ; J. G. Hagen, Synopsis der hoheren Mathematik, 
3 volumes, Berlin, 1891, 1893, 1906 ; a short dissertation by H. 
Hankel, entitled Die Entwickelung der Mathematik in den letzten 
Jahrhunderten, Tubingen, 1885; a Discours on the professors 
at the Sorbonne by C. Hermite in the Bulletin des sciences 
mathe'matiques, 1890; F. C. Klein’s Lectures on Mathematics, 
Evanston Colloquium, New York and London, 1894 ; E. Lampe’s 
Die reine Mathematik in den Jahren 188Jf,-1899, Berlin, 1899 ; 
the eleventh and twelfth volumes of Marie’s Histoire des 
sciences, in which are some notes on mathematicians who were 
born in the last century; P. Painleve’s Les Sciences mathe- 
matiques au xixe siecle ; a chapter by D. E. Smith in Higher 
Mathematics, by M. Merriman and R. S. Woodward, New York, 
1900; and V. Volterra’s lecture at the Rome Congress, 1908, 
“ On the history of mathematics in Italy during the latter half of 
the nineteenth century.”

A few histories of the development of particular subjects 
have been written—such as those by Isaac Todhunter on the 
theories of attraction and on the calculus of probabilities; those 
by T. Muir on determinants, that by A. von Braunmiihl on 
trigonometry, that by R. Reiff on infinite series, that by G. 
Loria, Il passato ed il presente delle principali teorie geometriche, 
and that by F. Engel and P. Stackel on the theory of parallels. 
The transactions of some of the scientific societies and academies 
also contain reports on the progress in different branches of the 
subject, while information on the memoirs by particular mathe
maticians is given in the invaluable volumes of J. C. Poggendorff’s 
Biographisch - literarisch.es Handτvorterl>uch zur Geschichte der 
exacten Wissenschaften, Leipzig. The Encyklopddie der mathe
matischen Wissenschaften, which is now in course of issue, aims 
at representing the present state of knowledge in pure and 
applied mathematics, and doubtless in some branches of mathe
matics it will supersede these reports. The French translation 
of this encyclopaedia contains numerous and valuable additions.
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I have found these authorities and these reports useful, and I 
ha,e derived further assistance in writing this chapter from the 
obtuary notices in the proceedings of various learned Societies. 
I <m also indebted to information kindly furnished me by 
various friends, and if I do not further dwell on this, it is only 
thιt I would not seem to make them responsible for my errors 
anl omissions.

A period of exceptional intellectual activity in any subject 
is usually followed by one of comparative stagnation; and 
after the deaths of Lagrange, Laplace, Legendre, and Poisson, 
th< French school, which had occupied so prominent a position 
at the beginning of this century, ceased for some years to 
pr∙duce much new work. Some of the mathematicians whom 
I intend to mention first, Gauss, Abel, and Jacobi, were 
coιtemporaries of the later years of the French mathematicians 
juft named, but their writings appear to me to belong to a 
diferent school, and thus are properly placed at the beginning 
of ι fresh chapter.

There is no mathematician of this century whose writings 
haτe had a greater effect than those of Gauss; nor is it on only 
om branch of the science that his influence has left a permanent 
m<rk. I cannot, therefore, commence my account of the 
nuthematics of recent times better than by describing very 
brefly his more important researches.

Gauss.1 Karl Friedrich Gauss was born at Brunswick on 
Ap?il 23, 1777, and died at Gottingen on February 23, 1855. 
Hb father was a bricklayer, and Gauss was indebted for a 
literal education (much against the will of his parents, who 
willed to profit by his wages as a labourer) to the notice which 
hi. talents procured from the reigning duke. In 1792 he was 
seιt to the Caroline College, and by 1795 professors and pupils

Biographies of Gauss have been published by L. Hiinselιnann, Leipzig, 
188, and by S. von Waiterhausen, Leipzig, 1856. The Royal Society of 
Gótingen undertook the issue of a collection of Gauss’s works, and nine 
vohmes are already published. Further additions are expected, and some 
hilts of what may be expected have been given by F. C. Klein, 
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alike admitted that he knew all that the former could teach 
him : it was while there that he investigated the method of 
least squares, and proved by induction the law of quadratic 
reciprocity. Thence he went to Gottingen, where he studied 
under Kiistner: many of his discoveries in the theory of 
numbers were made while a student here. In 1798 he 
returned to Brunswick, where he earned a somewhat precarious 
livelihood by private tuition.

In 1799 Gauss published a demonstration that every integral 
algebraical function of one variable can be expressed as a product 
of real linear or quadratic factors. Hence every algebraical 
equation has a root of the form a + bi, a theorem of which he 
gave later two other distinct proofs. His Disquisitiones 
Arithmetical appeared in 1801. A large part of this had 
been submitted as a memoir to the French Academy in the 
preceding year, and had been rejected in a most regrettable 
manner : Gauss was deeply hurt, and his reluctance to publish 
his investigations may be partly attributable to this unfortunate 
incident.

The next discovery of Gauss was in a totally different 
department of mathematics. The absence of any planet in the 
space between Mars and Jupiter, where Bode’s law would have 
led observers to expect one, had been long remarked, but it 
was not till 1801 that any one of the numerous group of minor 
planets which occupy that space was observed. The discovery 
was made by G. Piazzi of Palermo ; and was the more interesting 
as its announcement occurred simultaneously with a publication 
by Hegel in which he severely criticised astronomers for not 
paying more attention to philosophy,—a science, said he, which 
would at once have shewn them that there could not possibly 
be more than seven planets, and a study of which would there
fore have prevented an absurd waste of time in looking for 
what in the nature of things could never be found. The new 
planet was named Ceres, but it was seen under conditions 
which appeared to render it impracticable to forecast its orbit. 
The observations were fortunately communicated to Gauss; he
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cal<ulated its elements, and his analysis put him in the first 
raιfc of theoretical astronomers.

Γhe attention excited by these investigations procured for 
bin in 1807 the offer of a chair at St. Petersburg, which he 
dedined. In the same year he was appointed director of the 
Gδtingen Observatory and professor of Astronomy there. 
Th<se offices he retained to his death; and after his appoint- 
meιt he never slept away from his Observatory except on one 
occιsion when he attended a scientific congress at Berlin. His 
lectures were singularly lucid and perfect in form, and it is 
saic that he used here to give the analysis by which he had 
arrived at his various results, and which is so conspicuously 
absmt from his published demonstrations; but for fear his 
audtors should lose the thread of his discourse, he never 
wilingly permitted them to take notes.

. have already mentioned Gauss’s publications in 1799, 
1801, and 1802. For some years after 1807 his time was 
ιnaiιly occupied by work connected with his Observatory. In 
180) he published at Hamburg his Theoria Motus Corporum 
Coeestium, a treatise which contributed largely to the im
provement of practical astronomy, and introduced the principle 
of (urvilinear triangulation; and on the same subject, but 
conιected with observations in general, we have his memoir 
The>ria Combinationis Observationum Erroribus Minimis 
0bn>xia, with a second part and a supplement.

Somewhat later he took up the subject of geodesy, acting 
fron 1821 to 1848 as scientific adviser to the Danish and 
Hanoverian Governments for the survey then in progress; 
his oapers of 1843 and 1866, Ueber Gegenstdnde der hbhern 
Geoóasie, contain his researches on the subject.

Gauss’s researches on electricity and magnetism date from 
about the year 1830. His first paper on the theory of 
magιetism, entitled Intensitas Vis Magneticae Terrestris ad 
Menιuram Λbsolutam Revocata, was published in 1833. A few 
monιhs afterwards he, together with W. E. Weber, invented 
the declination instrument and the bifilar magnetometer;

2 G
⅞ 
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and in the same year they erected at Gottingen a magnetic 
observatory free from iron (as Humboldt and Arago had 
previously done on a smaller scale) where they made magnetic 
observations, and in particular showed that it was practicable 
to send telegraphic signals. In connection with this Observa
tory Gauss founded an association with the object of securing 
continuous observations at fixed times. The volumes of their 
publications, llesultate aus der Beobachtungen des magnetischen 
Vereins for 1838 and 1839, contain two important memoirs by 
Gauss : one on the general theory of earth-magnetism, and the 
other on the theory of forces attracting according to the inverse 
square of the distance.

Gauss, like Poisson, treated the phenomena in electrostatics 
as due to attractions and repulsions between imponderable 
particles. Lord Kelvin, then William Thomson (1824-1907), 
of Glasgow, shewed in 1846 that the effects might also be 
supposed analogous to a flow of heat from various sources of 
electricity properly distributed.

In electrodynamics Gauss arrived (in 1835) at a result 
equivalent to that given by W. E. Weber of Gottingen in 
1846, namely, that the attraction between two electrified 
particles e and e', whose distance apart is r, depends on their 
relative motion and position according to the formula

Gauss, however, held that no hypothesis was satisfactory which 
rested on a formula and was not a consequence of a physical 
conjecture, and as he could not frame a plausible physical con
jecture he abandoned the subject.

Such conjectures were proposed by Riemann in 1858, and by 
C. Neumann, now of Leipzig, and E. Betti (1823-1892) of Pisa 
in 1868, but Helmholtz in 1870, 1873, and 1874 showed that 
they were untenable. A simpler view which regards all electric 
and magnetic phenomena as stresses and motions of a material 
elastic medium had been outlined by Michael Faraday (1791 - 
1867), and was elaborated by James Clerk Maxwell (1831-
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1879 of Cambridge in 1873 ; the latter, by the use of generalised 
co-oriinates, was able to deduce the consequences, and the agree
ment with experiment is close. Maxwell concluded by showing 
that f the medium were the same as the so-called luminiferous 
ether the velocity of light would be equal to the ratio of the 
electromagnetic and electrostatic units, and subsequent experi
ment) have tended to confirm this conclusion. The theories 
previ>usly current had assumed the existence of a simple elastic 
solid or an action between matter and ether.

Tie above and other electric theories were classified by 
J. J. Thomson of Cambridge, in a report to the British 
Asso<iation in 1885, into those not founded on the principle 
of tłu conservation of energy (such as those of Ampere, Grass
mann Stefan, and Korteweg); those which rest on assumptions 
concerning the velocities and positions of electrified particles 
(such as those of Gauss, W. E. Weber, Riemann, and R. J. E. 
Clauaus); those which require the existence of a kind of energy 
of wlich we have no other knowledge (such as the theory of C. 
Neunann); those which rest on dynamical considerations, but 
in which no account is taken of the action of the dielectric (such 
as the theory of F. E. Neumann); and, finally, those which rest 
on dmamical considerations and in which the action of the 
dieleαric is considered (such as Maxwell’s theory). Tn the 
reporl these theories are described, criticised, and compared with 
the results of experiments.

Gauss’s researches on optics, and especially on systems 
of leιses, were published in 1840 in his Dicφtrische Unter- 
suchu∕ιgen.

Fr>m this sketch it will be seen that the ground covered 
by Gauss’s researches was extraordinarily wide, and it may be 
added that in many cases his investigations served to initiate 
new Lnes of work. He was, however, the last of the great 
mathematicians whose interests were nearly universal: since his 
time tho literature of most branches of mathematics has grown 
so fart that mathematicians have been forced to specialise in 
some particular department or departments. I will now mention 
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very briefly some of the most important of his discoveries in 
pure mathematics.

His most celebrated work in pure mathematics is the Dis- 
quisitiones Arithmetic ae, which has proved a starting-point for 
several valuable investigations on the theory of numbers. This 
treatise and Legendre’s Theorie des nombres remain standard 
works on the theory of numbers; but, just as in his discussion 
of elliptic functions Legendre failed to rise to the conception 
of a new subject, and confined himself to regarding their theory 
as a chapter in the integral calculus, so he treated the theory of 
numbers as a chapter in algebra. Gauss, however, realised that 
the theory of discrete magnitudes or higher arithmetic was of 
a different kind from that of continuous magnitudes or algebra, 
and he introduced a new notation and new methods of analysis, 
of which subsequent writers have generally availed themselves. 
The theory of numbers may be divided into two main divisions, 
namely, the theory of congruences and the theory of forms. 
Both divisions were discussed by Gauss. In particular the 
Disquisitiones Arithmeticae introduced the modern theory of 
congruences of the first and second orders, and to this Gauss 
reduced indeterminate analysis. In it also he discussed the 
solution of binomial equations of the form xtl=l : this involves 
the celebrated theorem that it is possible to construct, by 
elementary geometry, regular polygons of 2wι(2n+l) sides, 
where m and n are integers and 2n + 1 is a prime—a discovery 
he had made in 1796. He developed the theory of ternary quad
ratic forms involving two indeterminates. He also investigated 
the theory of determinants, and it was on Gauss’s results that 
Jacobi based his researches on that subject.

The theory of functions of double periodicity had its origin 
in the discoveries of Abel and Jacobi, which I describe later. 
Both these mathematicians arrived at the theta functions, which 
play so large a part in the theory of the subject. Gauss, how
ever, had independently, and indeed at a far earlier date, 
discovered these functions and some of their properties, having 
been led to them by certain integrals which occurred in the
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Determinatio Attractionis, to evaluate which he invented the 
transformation now associated with the name of Jacobi. Though 
Gauss at a later time communicated the fact to Jacobi, he did 
not publish his researches; they occur in a series of note-books 
of a date not later than 1808, and are included in his collected 
worts.

Cf the remaining memoirs in pure mathematics the most 
remtrkable are those on the theory of biquadratic residues 
(wh(rein the notion of complex numbers of the form a + bi was 
first introduced into the theory of numbers), in which are in- 
cludid several tables, and notably one of the number of the 
classes of binary quadratic forms; that relating to the proof of 
the theorem that every algebraical equation has a real or 
imaginary root; that on the summation of series; and, lastly, 
one m interpolation. His introduction of rigorous tests for the 
conwrgency of infinite series is worthy of attention. Specially 
noticeable also are his investigations on hypergeometric 
series ; these contain a discussion of the gamma function. 
This subject has since become one of considerable im- 
portιnce, and has been written on by (among others) Kummer 
and Riemann ; later the original conceptions were greatly 
exteιded, and numerous memoirs on it and its extensions 
have appeared. I should also mention Gauss’s theorems on the 
curvature of surfaces, wherein he devised a new and general 
metlod of treatment which has led to many new results. 
Finally, we have his important memoir on the conformal 
representation of one surface upon another, in which 
the results given by Lagrange for surfaces of revolution are 
generalised for all surfaces. It would seem also that Gauss 
had discovered some of the properties of quaternions, 
though these investigations were not published until a few 
years ago.

Iι the theory of attractions we have a paper on the attraction 
of hιmogeneous ellipsoids; the already-mentioned memoir of 
183f, on the theory of forces attracting according to the 
inverse square of the distance ; and the memoir, Determinatio 
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Λttractionis, in which it is shown that the secular variations, 
which the elements of the orbit of a planet experience from 
the attraction of another planet which disturbs it, are the same 
as if the mass of the disturbing planet were distributed over 
its orbit into an elliptic ring in such a manner that equal masses 
of the ring would correspond to arcs of the orbit described 
in equal times.

The great masters of modern analysis are Lagrange, Laplace, 
and Gauss, who were contemporaries. It is interesting to note 
the marked contrast in their styles. Lagrange is perfect both 
in form and matter, he is careful to explain his procedure, 
and though his arguments are general they are easy to follow. 
Laplace, on the other hand, explains nothing, is indifferent to 
style, and, if satisfied that his results are correct, is content 
to leave them either with no proof or with a faulty one. Gauss 
is as exact and elegant as Lagrange, but even more difficult 
to follow than Laplace, for he removes every trace of the 
analysis by which he reached his results, and studies to give 
a proof which, while rigorous, shall be as concise and synthetical 
as possible.

Dirichlet.1 One of Gauss’s pupils to whom I may here 
allude is Lejeune Dirichlet, whose masterly exposition of the 
discoveries of Jacobi (who was his father-in-law) and of Gauss 
has unduly overshadowed his own original investigations on 
similar subjects. Peter Gustav Lejeune Dirichlet was born at 
Diiren on February 13, 1805, and died at Gottingen on May 5, 
1859. He held successively professorships at Breslau and 
Berlin, and on Gauss’s death in 1855 was appointed to succeed 
him as professor of the higher mathematics at Gottingen. He 
intended to finish Gauss’s incomplete works, for which he was

1 Dirichlet’s works, edited by L. Kronecker, were issued in two volumes, 
Berlin, 1889, 1897. His lectures on the theory of numbers were edited by 
J. W. R. Dedekind, third edition, Brunswick, 1879-81. His investigations 
on the theory of the potential were edited by F. Grube, second edition, Leipzig, 
1887. His researches on definite integrate have been edited by G. Arendt, 
Brunswick, 1904. There is a note on some of his researches by C. W. 
Borchardt in Crelle’s Journal, vol. lvii, 1859, pp. 91-92.
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admirably fitted, but his early death prevented this. He pro
duced, however, several memoirs which have considerably facili
tate! the comprehension of some of Gauss’s more abstruse methods. 
Of Dirichlet’s original researches the most celebrated are those 
deaing with the establishment of Fourier’s theorem, those in 
the theory of numbers on asymptotic laws (that is, laws which 
approximate more closely to accuracy as the numbers concerned 
become larger), and those on primes.

It is convenient to take Gauss’s researches as the starting- 
point for the discussion of various subjects. Hence the length 
witι which I have alluded to them.

The Theory of Numbers, or Higher Arithmetic. The researches 
of Jauss on the theory of numbers were continued or supple
mented by Jacobi, who first proved the law of cubic reciprocity; 
dis<ussed the theory of residues ; and, in his Canon Arithmeticus, 
gave a table of residues of prime roots. Dirichlet also paid 
sone attention to this subject.

Eisenstein.1 The subject was next taken up by Ferdinand 
Goτthold Eisenstein, a professor at the University of Berlin, who 
was born at Berlin on April 16, 1823, and died there on 
October 11, 1852. The solution of the problem of the re
presentation of numbers by binary quadratic forms is one of 
the great achievements of Gauss, and the fundamental principles 
up<n which the treatment of such questions rest were given by 
bin in the Disquisitiones Arithmeticae. Gauss there added 
sone results relating to ternary quadratic forms, but the general 
extension from two to three indeterminates was the work of 
Eisenstein, who, in his memoir Neue Theoreme der h∂heren 
Arthmetik, defined the ordinal and generic characters of ternary 
quadratic forms of an uneven determinant; and, in the case of 
defnite forms, assigned the weight of any order or genus; but 
he did not consider forms of an even determinant, nor give any 
denonstrations of his work.

For a sketch of Eisenstein’s life and researches see A l∣ handlung en zur 
Geschichte der Mathematik, 1895, p. 143 et seq.
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Eisenstein also considered the theorems relating to the 
possibility of representing a number as a sum of squares, and 
showed that the general theorem was limited to eight squares. 
The solutions in the cases of two, four, and six squares may 
be obtained by means of elliptic functions, but the cases in 
which the number of squares is uneven involve special pro
cesses peculiar to the theory of numbers. Eisenstein gave the 
solution in the case of three squares. He also left a statement 
of the solution he had obtained in the case of five squares;1 
but his results were published without proofs, and apply only 
to numbers which are not divisible by a square.

Henry Smith.2 One of the most original mathematicians 
of the school founded by Gauss was Henry Smith. Henry 
John Stephen Smith was born in London on November 2, 
1826, and died at Oxford on February 9, 1883. He was 
educated at Rugby, and at Balliol College, Oxford, of which 
latter society he was a fellow ∙ and in 1861 he was elected 
Savilian professor of Geometry at Oxford, where he resided till 
his death.

The subject in connection with which Smith’s name is specially 
associated is the theory of numbers, and to this he devoted the 
years from 1854 to 1864. The results of his historical researches 
were given in his report published in parts in the Transactions 
of the British Association from 1859 to 1865. This report 
contains an account of what had been done on the subject to 
that time together with some additional matter. The chief 
outcome of his own original work on the subject is included 
in two memoirs printed in the Philosophical Transactions for 
1861 and 1867 ; the first being on linear indeterminate equations 
and congruences, and the second on the orders and genera of 
ternary quadratic forms. In the latter memoir demonstrations 
of Eisenstein’s results and their extension to ternary quadratic

1 Crelles Journal, vol. xxxv, 1847, p. 368.
2 Smith’s collected mathematical works, edited by J. W. L. Glaisher, and 

prefaced by a biographical sketch and other papers, were published in two 
volumes, Oxford, 1894. The following account is extracted from the obituary 
notice in the monthly notices of the Astronomical Society, 1884, pp. 138-149.
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forns of an even determinant were supplied, and a complete 
Gasification of ternary quadratic forms was given.

Smith, however, did not confine himself to the case of three 
ind<terminates, but succeeded in establishing the principles on 
whi:h the extension to the general case of n indeterminates 
depmds, and obtained the general formulae — thus effecting 
the greatest advance made in the subject since the publication 
of Gauss’s work. In the account of his methods and results 
whfeh appeared in the Proceedings of the Royal Society,1 Smith 
remιrked that the theorems relating to the representation of 
nunbers by four squares and other simple quadratic forms, 
are deducible by a uniform method from the principles there 
indicated, as also are the theorems relating to the representation 
of lumbers by six and eight squares. He then proceeded to 
say that as the series of theorems relating to the representation 
of lumbers by sums of squares ceases, for the reason assigned 
by Eisenstein, when the number of squares surpasses eight, it 
was desirable to complete it. The results for even squares were 
kno>vn. The principal theorems relating to the case of five 
squires had been given by Eisenstein, but he had considered only 
those numbers which are not divisible by a square, and he had 
not considered the case of seven squares. Smith here completed 
the enunciation of the theorems for the case of five squares, and 
addid the corresponding theorems for the case of seven squares.

This paper was the occasion of a dramatic incident in the 
history of mathematics. Fourteen years later, in ignorance of 
Smith’s work, the demonstration and completion of Eisenstein’s 
the(τems for five squares were set by the French Academy as 
the subject of their “ Grand prix des sciences mathematiques.” 
Smith wrote out the demonstration of his general theorems so 
far is was required to prove the results in the special case of 
five squares, and only a month after his death, in March 1883, 
the prize was awarded to him, another prize being also awarded 
to E. Minkowski of Bonn. No episode could bring out in a 
mor; striking light the extent of Smith’s researches than that

See vol. xiii, 1864, pp. 199-203, and vol. xvi, 1868, pp. 197-208.
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a question, of which he had given the solution in 1867, as a 
corollary from general formulae which governed the whole class 
of investigations to which it belonged, should have been regarded 
by the French Academy as one whose solution -was of such 
difficulty and importance as to be worthy of their great prize. 
It has been also a matter of comment that they should have 
known so little of contemporary English and German researches 
on the subject as to be unaware that the result of the problem 
they were proposing was then lying in their own library.

J. W. L. Glaisher of Cambridge has recently extended 1 these 
results, and investigated, by the aid of elliptic functions, the 
number of representations of a number as the sum of 2n squares 
where n is not greater than 9.

Among Smith’s other investigations I may specially mention 
his geometrical memoir, Sur quelques problemes cubiques et 
biquadratiques, for which in 1868 he was awarded the Steiner 
prize of the Berlin Academy. In a paper which he contributed 
to the Λtti of the Accademia dei Lincei for 1877 he established 
a very remarkable analytical relation connecting the modular 
equation of order n, and the theory of binary quadratic forms 
belonging to the positive determinant n. In this paper the 
modular curve is represented analytically by a curve in such a 
manner as to present an actual geometrical image of the complete 
systems of the reduced quadratic forms belonging to the deter
minant, and a geometrical interpretation is given to the ideas of 
“class,” “equivalence,” and “ reduced form.” He was also the 
author of important papers in which he succeeded in extending 
to complex quadratic forms many of Gauss’s investigations 
relating to real quadratic forms. He was led by his researches 
on the theory of numbers to the theory of elliptic functions, and 
the results he arrived at, especially on the theories of the theta 
and omega functions, are of importance.

Kummer. The theory of primes received a somewhat unex
pected development by E. E. Kummer of Berlin, who was

1 For a summary of his results see his paper in the Proceedings of the 
London Mathematical Society, 1907, vol. v, second series, pp. 479-490.
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born in 1810 and died in 1893. In particular lie treated 
higher complex members of the form a + Σ6√, where j is a com
plex root of jP - 1 — 0, p being a prime. His theory brought out 
tin. unexpected result that the proposition that a number can be 
resolved into the product of powers of primes in one and only 
one way is not necessarily true of every complex number. This 
led to the theory of ideal primes, a theory which was developed 
later by J. W. R. Dedekind. Kummer also extended Gauss’s 
theorems on quadratic residues to residues of a higher order, 
and wrote on the transformations of hypergeometric functions.

The theory of numbers, as treated to-day, may be said to 
originate with Gauss. I have already mentioned very briefly 
the investigations of Jacobi, Dirichlet, Eisenstein, Henry Smith, 
and Kummer. I content myself with adding some notes on the 
subsequent development of certain branches of the theory.1

The distribution of primes has been discussed in particular 
by P. L. Tchebycheff2 (1821-1894) of St. Petersburg, G. F. B. 
Riemann, and J. J. Sylvester. Riemann’s short tract on the 
number of primes which lie between two given numbers affords 
a striking instance of his analytical powers. Legendre had 
previously shown that the number of primes less than n is 
aporoximately n∕(logen - 1'08366); but Riemann went farther, 
anl this tract and a memoir by Tchebycheff contain nearly all 
thιt has been done yet in connection with a problem of so 
obvious a character, that it has suggested itself to all who have 
considered the theory of numbers, and yet which overtaxed the 
powers even of Lagrange and Gauss. In this paper also 
Riemann stated that all the roots of

are of the form where t is real. It is believed that the
theorem is true, but as yet it has defied all attempts to prove it. 

The partition of numbers, a problem to which Euler had
1 See H. J. S. Smith, Report on the Theory of Numbers in vol. i of his 

woιks, and 0. Stolz, Groessen und Zahlen, Leipzig, 1891.
2 Tchebycheff’s collected works, edited by H. Markoff and N. Sonin, have 

been published in two volumes. A French translation was issued 1900, 1907.
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paid considerable attention, has been treated by A. Cayley, 
J. J. Sylvester, and P. A. MacMahcn. The representation of 
numbers in special forms, the possible divisors of numbers 
of specified forms, and general theorems concerned with the 
divisors of numbers, have been discussed by J. Lionville 
(1809-1882), the editor from 1836 to 1874 of the well-known 
mathematical journal, and by J. TP^. L. Glaisher of Cambridge. 
The subject of quadratic binomials has been studied by A. L. 
Cauchy; of ternary and quadratic forms by L. Kronecker1 
(1823-1891) of Berlin; and of ternary forms by C. Hermite 
of Paris.

1 See the Bulletin of the New York (American) Mathematical Society, vol. 
i, 1891-2, pp. 173-184.

2 Dedekind’s Essays may serve as an introduction to the subject. They 
have been translated into English, Chicago, 1901.

The most common text-books are, perhaps, that by O. Stolz 
of Innspruck, Leipzig, 1885-6 ; that by G. B. Mathews, Cam
bridge, 1892; that by E. Lucas, Paris, 1891; and those by 
P. Bachmann, Leipzig, 1892-1905. Possibly it may be found 
hereafter that the subject is approached better on other lines 
than those now usual.

The conception of Number has also been discussed at 
considerable length during the last quarter of the nineteenth 
century.

Transcendent numbers had formed the subject of two 
memoirs by Liouville, but were subsequently treated as a 
distinct branch of mathematics, notably by L. Kronecker and 
G. Cantor. Irrational numbers and the nature of numbers 
have also been treated from first principles, in particular by 
J. W. R. Dedekind,1 2 G. Cantor, K. Weierstrass, H. C. R. Meray, 
and E. W. Hobson. This subject has attracted much attention of 
late years, and is now one of the most flourishing branches of 
modern mathematics. Transfinite, cardinal, and ordinal arith
metic, the theory of sets of points, and more generally the theory 
of aggregates, may be mentioned as prominent divisions of the 
subject.
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Elliptic and Abelian Functions, or Higher Trigonometry.1 
The theory of functions of double and multiple periodicity 
is another subject to which much attention has been paid during 
this century. I have already mentioned that as early as 1808 
Gauss had discovered the theta functions and some of their 
properties, but his investigations remained for many years con
cealed in his notebooks; and it was to the researches made 
between 1820 and 1830 by Abel and Jacobi that the modern 
development of the subject is due. Their treatment of it has 
completely superseded that used by Legendre, and they are 
justly reckoned as the creators of this branch of mathematics.

Abel.2 Niels Henrich Abel was born at Findoe, in Norway, 
on August 5, 1802, and died at Arendal on April 6, 1829, at 
the age of twenty-six. His memoirs on elliptic functions, 
originally published in Crellels Journal (of which he was one of 
the founders), treat the subject from the point of view of the 
theory of equations and algebraic forms, a treatment to which 
his researches naturally led him.

The important and very general result known as Abel’s 
theorem, which was subsequently applied by Riemann to the 
theory of transcendental functions, was sent to the French 
Academy in 1826, but was not printed until 1841 : its publica
tion then was due to inquiries made by Jacobi, in consequence 
of a statement on the subject by B. Holmboe in his edition of 
Abel’s works issued in 1839. It is far from easy to state Abel’s 
theorem intelligently and yet concisely, but, broadly speaking, 
it may be described as a theorem for evaluating the sum of a 
number of integrals which have the same integrand, but different

1 See the introduction to Elliptische Functionen, by A. Enneper, second 
edition (ed. by F. Miiller), Halle, 1890 ; and Geschichte der Theorie der ellip- 
tischen Transcendenten, by L. Kδnigsbeτger, Leipzig, 1879. On the history 
of Abelian functions see the Transactions of the British Association, vol. lxvii, 
London, 1897, pp. 246-286.

2 The life of Abel by C. A. Bjerknes was published at Stockholm in 1880, 
and another by L. de Pesloiian at Paris in 1906. Two editions of Abel’s 
works have been published, of which the last, edited by Sylow and Lie, and 
issued at Christiania in two volumes in 1881, is the more complete. See also 
the Abel centenary volume, Christiania, 1902 ; and a memoir by G. Mittag- 
Leffler.
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limits—these limits being the roots of an algebraic equation. 
The theorem gives the sum of the integrals in terms of the con
stants occurring in this equation and in the integrand. We 
may regard the inverse of the integral of this integrand as a 
new transcendental function, and if so the theorem furnishes a 
property of this function. For instance, if Abel’s theorem be 
applied to the integrand (1 - x2)-ιz2 it gives the addition theorem 
for the circular (or trigonometrical) functions.

The name of Abelian function has been given to the higher 
transcendents of multiple periodicity which were first discussed 
by Abel. The Abelian functions connected with a curve f (x, y) 
are of the form J^udx where u is a rational function of x and y. 
The theory of Abelian functions has been studied by a very large 
number of modern writers.

Abel criticised the use of infinite series, and discovered the 
well-known theorem which furnishes a test for the validity of 
the result obtained by multiplying one infinite series by 
another. He also proved1 the binomial theorem for the 
expansion of (l+ar)n when x and n are complex. As 
illustrating his fertility of ideas I may, in passing, notice his 
celebrated demonstration that it is impossible to express a root 
of the general quintic equation in terms of its coefficients by 
means of a finite number of radicals and rational functions ; this 
theorem was the more important since it definitely limited a field 
of mathematics which had previously attracted numerous writers. 
I should add that this theorem had been enunciated as early as 
1798 by Paolo Ruffini, an Italian physician practising at 
Modena; but I believe that the proof he gave was deficient in 
generality.

Jacobi.2 Carl Gustav Jacob Jacobi, born of Jewish parents
1 See Abel, (Euυres, 1881, vol. i, pp. 219-250; and E. W. Barnes, 

Quarterly Journal of Mathematics, vol. xxxviii, 1907, pp. 108-116.
2 See C. J. Gerhardt’s Geschichte der Mathematik in Deutschland, Munich, 

1877. Jacobi’s collected works were edited by Dirichlet, three volumes, Berlin, 
1846-71, and accompanied by a biography, 1852 ; a new edition, under the 
supervision of C. W. Borchardt and K. Weierstrass, was issued at Berlin in 
seven volumes, 1881-91. See also L. Konigsberger’s C. G. J. Jacobi, Leipzig, 
1904.
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at Iotsdam on Dec. 10, 1804, and died at Berlin on Feb. 18, 
1851, was educated at the University of Berlin, where he ob
tained the degree of Doctor of Philosophy in 1825. In 1827 he 
becιme extraordinary professor of Mathematics at Kδnigsberg, 
and in 1829 was promoted to be an ordinary professor. This 
chair he occupied till 1842, when the Prussian Government gave 
him a pension, and he moved to Berlin, where he continued to 
live till his death in 1851. He was the greatest mathematical 
teacher of his generation, and his lectures, though somewhat 
unsystematic in arrangement, stimulated and influenced the 
mon able of his pupils to an extent almost unprecedented at 
the time.

facobi’s most celebrated investigations are those on elliptic 
functions, the modern notation in which is substantially due to 
him, and the theory of which he established simultaneously with 
Abd, but independently of him. Jacobi’s results are given in 
his treatise on elliptic functions, published in 1829, and in some 
later papers in Crelle’s Journal; they are earlier than Weier- 
strass’s researches which are mentioned below. The correspond
ence between Legendre and Jacobi on elliptic functions has been 
reρ,inted in the first volume of Jacobi’s collected works. Jacobi, 
like Abel, recognised that elliptic functions were not merely a 
groιp of theorems on integration, but that they were types 
of ι new kind of function, namely, one of double periodicity; 
herce he paid particular attention to the theory of the theta 
function. The following passage,1 in which he explains 
this view, is sufficiently interesting to deserve textual reproduc- 
tioι:—

E quo, cum universam, quae fingi potest, amplectatur periodicitatem 
anayticam elucet, functiones ellipticas non aliis adnumerari debere 
traιscendentibus, quae quibusdam gaudent elegantiis, fortasse pluribus 
illaι aut maioribus, sed specieπι quandam iis inesse perfecti et absoluti.

Among Jacobi’s other investigations I may specially single

1 See Jacobi’s collected works, vol. i, 1881, p. 87.
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out his papers on Determinants, which did a great deal to bring 
them into general use; and particularly his introduction of the 
Jacobian, that is, of the functional determinant formed by the 
n2 partial differential coefficients of the first order of n given 
functions of n independent variables. I ought also to mention 
his papers on Abelian transcendents; his investigations on the 
theory of numbers, to which I have already alluded; his im
portant memoirs on the theory of differential equations, both 
ordinary and partial; his development of the calculus of varia
tions ; and his contributions to the problem of three bodies, 
and other particular dynamical problems. Most of the results of 
the researches last named are included in his Vorlesungen uber 
Dynamik.

Riemann.1 Georg Friedrich Bernhard Riemann was born 
at Breselenz on Sept. 17, 1826, and died at Selasca on July 20, 
1866. He studied at Gottingen under Gauss, and subsequently 
at Berlin under Jacobi, Dirichlet, Steiner, and Eisenstein, all 
of whom were professors there at the same time. In spite of 
poverty and sickness he struggled to pursue his researches. In 
1857 he was made professor at Gottingen, general recognition 
of his powers soon followed, but in 1862 his health began to 
give way, and four years later he died, working, to the end, 
cheerfully and courageously.

Riemann must be esteemed one of the most profound and 
brilliant mathematicians of his time; he was a creative genius. 
The amount of matter he produced is small, but its originality 
and power are manifest—his investigations on functions and on 
geometry, in particular, initiating developments of great im
portance.

His earliest paper, written in 1850, was on the general theory 
of functions of a complex variable. This gave rise to a new method

1 Riemann’s collected works, edited by H. Weber and prefaced by an 
account of his life by Dedekind, were published at Leipzig, second edition, 
1892 ; an important supplement, edited by M. Ndther and W. Wirtinger, was 
issued in 1902. His lectures on elliptic functions, edited by H. B. L. Stahl, 
were published separately, Leipzig, 1899. Another short biography of 
Riemann has been written by E. J. Schering, Gottingen, 1867.
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of τeating the theory of functions. The development of this 
method is specially due to the Gottingen school, with which the 
nanes of Riemann and Klein are so closely associated. In 1854 
Rienann wrote his celebrated memoir on the hypotheses on 
whi:h geometry is founded : to this subject I allude below. 
Thiι was succeeded by memoirs on elliptic functions and on 
the distribution of primes : these have been already mentioned. 
He ιlso investigated the conformal representation of areas, one 
on !he other. The solution of this problem has been advanced 
by ιhe subsequent labours of H. A. Schwarz and F. H. Schottky, 
hot! of Berlin. Lastly, in multiple periodic functions, it is 
hardy too much to say that in his memoir in Borchardt’s 
Journal for 1857, he did for the Abelian functions what Abel 
had done for the elliptic functions.

1 have already alluded to the researches of Legendre, Gauss, 
Abe', Jacobi, and Riemann on elliptic and Abelian functions. 
The subject has been also discussed by (among other writers) 
J. Rosenhain (1816-1887) of Kδnigsberg, who wrote (in 
1844) on the hyperelliptic, and double theta functions ; A. Gopel 
(18j2-1847) of Berlin, who discussed1 hyperelliptic functions; 
L. Kronecker2 of Berlin, who wrote on elliptic functions; L. 
Kbri,gberger3 of Heidelberg and F. Brioschii (1824-1897) of Milan, 
botlof whom wrote on elliptic and hyperelliptic functions; Henry 
Smih of Oxford, who discussed the transformation theory, the 
thetι and omega functions, and certain functions of the modulus ; 
A. Cayley of Cambridge, who was the first to work out (in 1845) 
the heory of doubly infinite products and determine their period
icity and who has written at length on the connection between 
the researches of Legendre and Jacobi; and C. Hermite of Paris, 
whoιe researches are mostly concerned with the transformation 
theo-y and the higher development of the theta functions.

1 See Crellds Journal, vol. xxxv, 1847, pp. 277-312 ; an obituary notice, 
by J:cobi, is given on pp. 313-317.

2 <ronecker,s collected works in four volumes, edited by K. Hensel, are 
now h course of publication at Leipzig, 1895, &c.

3 See Kδnigberger,s lectures, published at Leipzig in 1874.
4 Iis collected works were published in two volumes, Milan, 1901, 1902.

2 H
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Weierstrass.1 The subject of higher trigonometry was put 
on a somewhat different footing by the researches of Weierstrass. 
Karl Weierstrass, born in Westphalia on October 31, 1815, and 
died at Berlin on February 19, 1897, was one of the greatest 
mathematicians of the nineteenth century. He took no part in 
public affairs; his life was uneventful; and he spent the last 
forty years of it at Berlin, where he was professor.

1 Weierstrass’s collected works are now in course of issue, Berlin, 1894, &c. 
Sketches of his career by G. Mittag-Leffler and H. Poincare are given in Acta 
Mathematical, 1897, vol. xxi, pp. 79-82, and 1899, vol. xxii, pp. 1-18.

With two branches of pure mathematics—elliptic and Abelian 
functions, and the theory of functions—his name is inseparably 
connected. His earlier researches on elliptic functions related 
to the theta functions, which he treated under a modified form 
in which they are expressible in poxvers of the modulus. At a 
later period he developed a method for treating all elliptic func
tions in a symmetrical manner. Jacobi had shown that a 
function of n variables might have 2n periods. Accordingly 
Weierstrass sought the most general expressions for such func
tions, and showed that they enjoyed properties analogous to 
those of the hyperelliptic functions. Hence the properties of 
the latter functions could be reduced as particular cases of 
general results.

He was naturally led to this method of treating hyperelliptic 
functions by his researches on the general theory of functions; 
these co-ordinated and comprised various lines of investigation 
previously treated independently. In particular he constructed 
a theory of uniform analytic functions. The representation of 
functions by infinite products and series also claimed his especial 
attention. Besides functions he also wrote or lectured on the 
nature of the assumptions made in analysis, on the calculus of 
variations, and on the theory of minima surfaces. His methods 
are noticeable for their wide - reaching and general character. 
Recent investigations on elliptic functions have been largely 
based on Weierstrass’s method.

Among other prominent mathematicians who have recently
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wri>ten on elliptic and hyperelliptic functions, I may mention 
thenames of G. II. Halphen1 (1844-1889), an officer in the 
Freιch army, whose investigations were largely founded on 
Weerstrass’s work; F. C. Klein of Gottingen, who has written 
on xbelian functions, elliptic modular functions, and hyperelliptic 
fundions ; II. A. Schwarz of Berlin; II. Weber of Strassburg; 
M. Nδther of Erlangen; II. B. L. Stahl of Tubingen ; F. G. 
Frd>enius of Berlin ; J. W. L. Glaisher of Cambridge, who has 
in particular developed the theory of the zeta function; and 
II. F. Baker of Cambridge.

The usual text-books of to-day on elliptic functions are 
those by J. Tannery and J. Molk, 4 volumes, Paris, 1893- 
190by P. E. Appell and E. Lacour, Paris, 1896 ; by H. 
Weler, Brunswick, 1891; and by G. H. Halphen, 3 volumes, 
Paris, 1886-1891. To these I may add one by A. G. Greenhill 
on tie Applications of Elliptic Functions, London, 1892.

7he Theory of Functions. I have already mentioned that 
the modern theory of functions is largely due to Weierstrass. 
It is a singularly attractive subject, and has proved an import
ant and far-reaching branch of mathematics. Historically its 
mod?rn presentation may be said to have been initiated by 
A. Cauchy, who laid the foundations of the theory of synectic 
functions of a complex variable. Work on these lines was 
continued by J. Lionville, who wrote chiefly on doubly periodic 
functions. These investigations were extended and connected 
in th? work by A. Briot (1817-1882), and J. G. Bouquet (1819- 
1885), and subsequently were further developed by C. Hermite.

Next I may refer to the researches on the theory of algebraic 
functions which have their origin in V. A. Puiseux,s memoir of 
1851 and G. F. B. Riemann's papers of 1850 and 1857 ; in con
tinuation of which II. A. Schtυarz of Berlin established accurately 
certan theorems of which the proofs given by Riemann were 
open to objection. To Riemann also we are indebted for

1 A sketch of Halphen’s life and works is given in Liouville's Journal for 
1889, ;>p. 345-359, and in the Comptcs Rendus, 1890, vol. ex, pp. 489-497. 
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valuable work on nodular functions which has been recently 
published in his Nachtrdge. Subsequently F. C. Klein of 
Gottingen connected Riemann’s theory of functions with the 
theory of groups, and wrote on automorphic and modular 
functions; II. Poincare of Paris also wrote on automorphic 
functions, and on the general theory with special applications to 
differential equations. Quite recently C. Hensel of Marburg 
has written on algebraic functions; and W. Wirtinger of Vienna 
on Abelian functions.

I have already said that the work of Weierstrass shed a new 
light on the whole subject. His theory of analytical functions 
has been developed by G. Mittag-Leffler of Stockholm ; and 
C. Hermite, P. E. Appell, C. E. Picard, E. Goursat, E. N.' 
Laguerre, and J. S. Hadamard, all of Paris, have also written 
on special branches of the general theory; while E. Borel, 
R. L. Baire, II. L. Lebesgue have produced a series of tracts on 
uniform functions which have had a wide circulation and 
influence.

As text-books I may mention the Theory of Functions of 
a Complex Variable, by A. R. Forsyth, second edition, Cam
bridge, 1900; Abel’s Theorem∖ry H. F. Baker, Cambridge, 1897, 
and Multiple Periodic Functions by the same writer, Cambridge, 
1907 ; the Theorie des fonctions algebriques by P. E. Appell 
and E. Goursat, Paris, 1895; parts of C. E. Picard’s Traite 
d’Analyse, in 3 volumes, Paris, 1891 to 1896; the Theory of 
Functions by J. Harkness and F. Morley, London, 1893; the 
Theory of Functions of a Real Variable and of Fourier’s 
Series by E. W. Hobson, Cambridge, 1907 ; and Die Theorie 
des Abel,schen Functionen by H. B. L. Stahl, Leipzig, 1896.

Higher Algebra. The theory of numbers may be considered 
as a higher arithmetic, and the theory of elliptic and Abelian 
functions as a higher trigonometry. The theory of higher 
algebra (including the theory of equations) has also attracted 
considerable attention, and was a favourite subject of study of 
the mathematicians whom I propose to mention next, though
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the interests of these writers were by no means limited to this 
sulject.

Cauchy.1 Augustin Louis Cauchy, the leading representa- 
tiv*. of the French school of analysis in the nineteenth century, 
waι born at Paris on Aug. 21, 1789, and died at Sceaux on 
Mεy 25, 1857. He was educated at the Polytechnic school, the 
nu,sery of so many French mathematicians of that time, and 
adφted the profession of a civil engineer. His earliest mathe
matical paper was one on polyhedra in 1811. Legendre thought 
so iιighly of it that he asked Cauchy to attempt the solution of 
an analogous problem which had baffled previous investigators, 
anl his choice was justified by the success of Cauchy in 1812. 
Memoirs on analysis and the theory of numbers, presented in 
18.3, 1814, and 1815, showed that his ability was not confined 
to geometry alone. In one of these papers he generalised some 
resilts which had been established by Gauss and Legendre; in 
another of them he gave a theorem on the number of values 
which an algebraical function can assume when the literal 
coιstants it contains are interchanged. It was the latter 
th(θrem that enabled Abel to show that in general an algebraic 
eqιation of a degree higher than the fourth cannot be solved by 
tłu use of a finite number of purely algebraical expressions.

To Abel, Cauchy, and Gauss we owe the scientific treatment 
of series which have an infinite number of terms. In particular, 
Caιchy established general rules for investigating the con- 
veιgency and divergency of such series, rules which were extended 
by J. L. F. Bertrand (1822-1900) of Paris, Secretary of the 
Frmch Academie des Sciences, A. Pringsheim of Munich, 
ani considerably amplified later by E. Borel, by M. G. 
Se?vant, both of Paris, and by other writers of the modern 
Frmch school. In only a few works of an earlier date 
is there any discussion as to the limitations of the series 
employed. It is said that Laplace, who was present when

See La Vie et les travaux de Cauchy by L. Valson, two volumes, Paris, 
18(8. A complete edition of his works is now being issued by the French 
Government.
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Cauchy read his first paper on the subject, was so im
pressed by the illustrations of the danger of employing such 
series without a rigorous investigation of their convergency, 
that he put on one side the work on which he was then 
engaged and denied himself to all visitors, in order to see 
if any of the demonstrations given in the earlier volumes of the 
Mecanique celeste were invalid; and he was fortunate enough to 
find that no material errors had been thus introduced. The 
treatment of series and of the fundamental conceptions of the 
calculus in most of the text-books then current was based on 
Euler’s works, and was not free from objection. It is one 
of the chief merits of Cauchy that he placed these subjects 
on a stricter foundation.

On the restoration in 1816 the French Academy was 
purged, and, incredible though it may seem, Cauchy accepted 
a seat procured for him by the expulsion of Monge. He 
was also at the same time made professor at the Polytechnic; 
and his lectures there on algebraic analysis, the calculus, and 
the theory of curves, were published as text-books. On the 
revolution in 1830 he went into exile, and was first appointed 
professor at Turin, whence he soon moved to Prague to 
undertake the education of the Comte de Chambord. He 
returned to France in 1837; and in 1848, and again in 1851, 
by special dispensation of the Emperor was allowed to occupy 
a chair of mathematics without taking the oath of allegiance.

His activity was prodigious, and from 1830 to 1859 he 
published in the Transactions of the Academy, or the Comptes 
Rendus, over 600 original memoirs and about 150 reports. 
They cover an extraordinarily wide range of subjects, but are of 
very unequal merit.

Among the more important of his other researches are those 
on the legitimate use of imaginary quantities ; the determination 
of the number of real and imaginary roots of any algebraic 
equation -within a given contour; his method of calculating 
these roots approximately ; his theory of the symmetric functions 
of the coefficients of equations of any degree; his a priori
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valuation of a quantity less than the least difference between the 
roots of an equation; his papers on determinants in 1841, which 
assisted in bringing them into general use; and his investiga
tions on the theory of numbers. Cauchy also did something to 
reduce the art of determining definite integrals to a science; 
the rule for finding the principal values of integrals was 
enunciated by him. The calculus of residues was his invention. 
His proof of Taylor’s theorem seems to have originated from a 
discussion of the double periodicity of elliptic functions. The 
means of showing a connection between different branches of a 
subject by giving complex values to independent variables is 
largely due to him.

He also gave a direct analytical method for determining 
planetary inequalities of long period. To physics he con
tributed memoirs on waves and on the quantity of light 
reflected from the surfaces of metals, as well as other papers 
on optics.

Argand. I may mention here the name of Jean Robert 
Λrgand, who was born at Geneva on July 18, 1768, and 
died at Paris on August 13, 1822. In his Essai, issued 
in 1806, he gave a geometrical representation of a complex 
number, and applied it to show that every algebraic equation 
has a root. This was prior to the memoirs of Gauss and 
Cauchy on the same subject, but the essay did not attract 
much attention when it was first published. An even 
earlier demonstration that λ∕( -1) may be interpreted to 
indicate perpendicularity in two-dimensional space, and even 
the extension of the idea to three-dimensional space by a 
method foreshadowing the use of quaternions, had been given 
in a memoir by C. Wessel, presented to the Copenhagen 
Academy of Sciences in March 1797 ; other memoirs on the 
same subject had been published in the Philosophical 
Transactions for 1806, and by H. Kiihn in the Transactions 
for 1750 of the St. Petersburg Academy.1

1 See W. W. Beman in the Proceedings of the American Association for 
the Advancement of Science, vol. xlvi, 1897.
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I have already said that the idea of a simple complex number 
like a + bi where z2 = 0 was extended by Kummer. The general 
theory has been discussed by K. Weierstrass, H. A. Schwarz 
of Berlin, J. W. R. Dedekind, H. Poincare, and other writers.

Hamilton.1 In the opinion of some writers the theory 
of quaternions will be ultimately esteemed one of the great 
discoveries of the nineteenth century in pure mathematics. That 
discovery is due to Sir William Rowan Hamilton, who was 
born in Dublin on August 4, 1805, and died there on September 
2, 1865. His education, which was carried on at home, seems 
to have been singularly discursive. Under the influence of an 
uncle who was a good linguist, he first devoted himself to 
linguistic studies; by the time he was seven he could read 
Latin, Greek, French, and German with facility; and when 
thirteen he was able to boast that he was familiar with as many 
languages as he had lived years. It was about this time that 
he came across a copy of Newton’s Universal Arithmetic. This 
was his introduction to modern analysis, and he soon mastered 
the elements of analytical geometry and the calculus. He next 
read the Principia and the four volumes then published of 
Laplace’s Mecanigue celeste. In the latter he detected a mistake, 
and his paper on the subject, written in 1823, attracted con
siderable attention. In the following year he entered at Trinity 
College, Dublin. His university career is unique, for the chair of 
Astronomy becoming vacant in 1827, while he was yet an under
graduate, he was asked by the electors to stand for it, and was 
elected unanimously, it being understood that he should be left 
free to pursue his own line of study.

His earliest paper on optics was written in 1823, and 
published in 1828 under the title of a Theory of Systems of 
Rays, to which two supplements, written in 1831 and 1832, 
were afterwards added ; in the latter of these the phenomenon 
of conical refraction is predicted. This was followed by a paper

1 See the life of Hamilton (with a bibliography of his writings) by R. P. 
Graves, three volumes, Dublin, 1882-89 ; the leading facts are given in an 
article in the North British Review for 1886.
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in 827 on the principle of Varying Action, and in 1834 and 
18.’5 by memoirs on a General Method in Dynamics—the 
sulject of theoretical dynamics being properly treated as a 
braτch of pure mathematics. His lectures on Quaternions 
weιe published in 1852. Some of his results on this subject 
world seem to have been previously discovered by Gauss, 
but these were unknown and unpublished until long after 
Hanilton’s death. Amongst his other papers, I may specially 
meιtion one on the form of the solution of the general algebraic 
equition of the fifth degree, which confirmed Abel’s conclusion 
tha; it cannot be expressed by a finite number of purely 
alg*braical expressions; one on fluctuating functions; one on 
the hodograph; and, lastly, one on the numerical solution of 
differential equations. His Elements of Quaternions was issued 
in .866 : of this a competent authority says that the methods 
of ιnalysis there given show as great an advance over those of 
analytical geometry, as the latter showed over those of Euclidean 
geometry. In more recent times the subject has been further 
developed by P. G. Tait (1831-1901) of Edinburgh, by A. 
Ma:farlane of America, and by C. J. Joly in his Marniał of 
Quaternions, London, 1905.

Hamilton was painfully fastidious on what he published, and 
he left a large collection of manuscripts which are now in the 
library of Trinity College, Dublin, some of which it is to be 
hojed will be ultimately printed.

Grrassmann.1 The idea of non-commutative algebras and of 
quaternions seems to have occurred to Grassmann and Boole at 
about the same time as to Hamilton. Hermann Giinther Grass- 
mam was born in Stettin on April 15, 1809, and died there in 
1877. He was professor at the gymnasium at Stettin. His 
researches on non-commutative algebras are contained in his 
Auιdelιnungslelιre, first published in 1844 and enlarged in 1862. 
This work has had great influence, especially on the continent, 
where Grassmann’s methods have generally been followed in

1 Grassmann’s collected works in three volumes, edited by F. Engel, are 
nowin course of issue at Leipzig, 1894, &c.
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preference to Hamilton’s. Grassmann’s researches have been 
continued and extended, notably by S. F. V. Schlegel and G. 
Peano.

The scientific treatment of the fundamental principles of 
algebra initiated by Hamilton and Grassmann was continued by 
De Morgan and Boole in England, and was further developed 
by H. Hankel (1839-1873) in Germany in his work on com
plexes, 1867, and, on somewhat different lines, by G. Cantor in 
his memoirs on the theory of irrationals, 1871; the discussion 
is, however, so technical that I am unable to do more than allude 
to it. Of Boole and De Morgan I say a word or two in passing.

Boole. George Boole, born at Lincoln on November 2, 1815, 
and died at Cork on December 8, 1864, independently invented a 
system of non-commutative algebra, and was one of the creators 
of symbolic and mathematical logic. From his memoirs on 
linear transformations part of the theory of invariants has 
developed. His Finite Differences remains a standard work on 
that subject.

De Morgan.1 Augustus de Morgan, born in Madura 
(Madras) in June 1806, and died in London on March 18, 
1871, was educated at Trinity College, Cambridge. In 1828 
he became professor at the then newly-established University of 
London (University College). There, through his works and 
pupils, he exercised a wide influence on English mathematicians. 
The London Mathematical Society was largely his creation, and 
he took a prominent part in the proceedings of the Royal Astro
nomical Society. He was deeply read in the philosophy and 
history of mathematics, but the results are given in scattered 
articles; of these I have made considerable use in this book. 
His memoirs on the foundation of algebra; his treatise on the 
differential calculus published in 1842, a work of great ability, 
and noticeable for the rigorous treatment of infinite series; and 
his articles on the calculus of functions and on the theory of 
probabilities, are worthy of special note. The article on the

1 De Morgan’s life was written by his widow, S. E. de Morgan, London, 
1882.
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cal<ulus of functions contains an investigation of the principles 
of tymbolic reasoning, but the applications deal with the solution 
of unctional equations rather than with the general theory of 
functions.

4alois.1 A new development of algebra — the theory of 
groιps of substitutions—was suggested by Evariste Galois, who 
pronised to be one of the most original mathematicians of the 
nimteenth century, born at Paris on October 26, 1811, and 
kilbd in a duel on May 30, 1832, at the early age of 20.

Γhe theory of groups, and of subgroups or invariants, has 
pro'oundly modified the treatment of the theory of equations. 
An immense literature has grown up on the subject. The 
molern theory of groups originated with the treatment by 
Gaois, Cauchy, and J. A. Serret (1819-1885), professor at 
Paιis; their work is mainly concerned with finite discontinuous 
substitution groups. This line of investigation has been 
puκued by C. Jordan of Paris and E. Netto of Strassburg. 
Th< problem of operations with discontinuous groups, with 
applications to the theory of functions, has been further taken 
up by (among others) F. G. Frobenius of Berlin, F. C. Klein 
of 4δttingen, and W. Burnside formerly of Cambridge and now 
of Greenwich.

Jayley.2 Another Englishman whom we may reckon 
am∣ng the great mathematicians of this prolific century was 
Arhur Cayley. Cayley was born in Surrey, on Aug. 16, 1821, 
anc after education at Trinity College, Cambridge, was called 
to the bar. But his interests centred on mathematics; in 1863 
he was elected Sadlerian Professor at Cambridge, and he spent 
there the rest of his life. He died on Jan. 26, 1895.

Cayley’s writings deal with considerable parts of modern 
puιe mathematics. I have already mentioned his writings on 
the partition of numbers and on elliptic functions treated from 
Jaeobi’s point of view; his later writings on elliptic func-

1 On Galois’s investigations, see the edition of his works with an intro
duction by E. Picard, Paris, 1897.

2 Cayley’s collected works in thirteen volumes were issued at Cam- 
bri⅛e, 1889-1898.
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tions dealt mainly with the theory of transformation and 
the modular equation. It is, however, by his investigations 
in analytical geometry and on higher algebra that he will be 
best remembered.

In analytical geometry the conception of what is called 
(perhaps, not very happily) the absolute is due to Cayley. As 
stated by himself, the ζζ theory, in effect, is that the metrical 
properties of a figure are not the properties of the figure 
considered per se . . . but its properties when considered in 
connection with another figure, namely, the conic termed the 
absolute ”; hence metric properties can be subjected to de
scriptive treatment. He contributed largely to the general 
theory of curves and surfaces, his work resting on the 
assumption of the necessarily close connection between alge
braical and geometrical operations.

In higher algebra the theory of invariants is due to Cayley ; 
his ten classical memoirs on binary and ternary forms, and his 
researches on matrices and non-commutative algebras, mark an 
epoch in the development of the subject.

Sylvester.1 Another teacher of the same time was James 
Joseph Sylvester, born in London on Sept. 3, 1814, and died on 
March 15, 1897. He too was educated at Cambridge, and 
while there formed a lifelong friendship with Cayley. Like 
Cayley he was called to the bar, and yet preserved all his 
interests in mathematics. He held professorships successively 
at Woolwich, Baltimore, and Oxford. He had a strong 
personality and was a stimulating teacher, but it is difficult 
to describe his writings, for they are numerous, disconnected, 
and discursive.

On the theory of numbers Sylvester wrote valuable papers 
on the distribution of primes and on the partition of numbers. 
On analysis he wrote on the calculus and on differential 
equations. But perhaps his favourite study was higher 
algebra, and from his numerous memoirs on this subject I

1 Sylvester’s collected works, edited by H. F. Baker, are iu course of 
publication at Cambridge ; 2 volumes are already issued.
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may iy in particular single out those on canonical forms, on the 
theorjory <of contravariants, on reciprocants or differential in- 
variariants, and on the theory of equations, notably on Newton’s 
rule. e. I may also add that he created the language and 
notattationι of considerable parts of those subjects on which he 
wroteote.

Tl The writings of Cayley and Sylvester stand in marked 
contr.-ιtrast : Cayley’s are methodical, precise, formal, and com
plete >te; Sylvester’s are impetuous, unfinished, but none the 
less s vigorous and stimulating. Both mathematicians found 
the e greatest attraction in higher algebra, and to both that 
subj<bject in its modern form is deeply indebted.

L Lie.1 Among the great analysts of the nineteenth century 
to v whom I must allude here, is Marius Sophus Lie, born on 
Dec.ec. 12, 1842, and died on Feb. 18, 1899. Lie was educated 
at ( Christiania, whence he obtained a travelling scholarship, 
and id in the course of his journeys made the acquaintance of 
Kleilein, Darboux, and Jordan, to whose influence his subse- 
que∏ent career is largely due.

J In 1870 he discovered the transformation by which a sphere 
can m be made to correspond to a straight line, and, by the use 
of V which theorems on aggregates of lines can be translated into 
the∙ιeorems on aggregates of spheres. This was followed by a 
thenesis on the theory of tangential transformations for space.

In 1872 he became professor at Christiania. His earliest 
reseseaτches here were on the relations between differential equa- 
tioions and infinitesimal transformations. This naturally led him 
to b the general theory of finite continuous groups of substitutions; 
thche results of his investigations on this subject are embodied in 
hi⅛is Theorie der Transformationsgruppen, Leipzig, three volumes, 
18 888- 1893. He proceeded next to consider the theory of 
ininfiιite continuous groups, and his conclusions, edited by 
G.}. Scheffers, were published in 1893. About 1879 Lie 
tu.urιed his attention to differential geometry; a systematic

1 See the obituary notice by A. R. Forsyth in the Year-Book of the 
RλRoyιl Society, London, 1901.
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exposition of this is in course of issue in his Geometrie der 
Beriihrungstransformationen.

Lie seems to have been disappointed and soured by the 
absence of any general recognition of the value of his results. 
Reputation came, but it came slowly. In 1886 he moved to 
Leipzig, and in 1898 back to Christiania, where a post had 
been created for him. He brooded, however, over what he 
deemed was the undue neglect of the past, and the happiness 
of the last decade of his life was much affected by it.

Hermite.1 Another great algebraist of the century was 
Charles llermite, born in Lorraine on December 24, 1822, and 
died at Paris, January 14, 1901. From 1869 he was professor at 
the Sorbonne, and through his pupils exercised a profound in
fluence on the mathematicians of to-day. He takes a high position 
among the distinguished professors of that distinguished school.

While yet a student he wrote to Jacobi on Abelian functions, 
and the latter embodied the results in his works. Hermite’s 
earlier papers were largely on the transformation of these 
functions, a problem which he finally effected by the use of 
modular functions. He applied elliptic functions to find solutions 
of the quintic equation and of Lame’s differential equation.

Later he took up the subject of algebraic continued fractions, 
and this led to his celebrated proof, given in 1873, that e cannot 
be the root of an algebraic equation, from which it follows that 
e is a transcendental number. F. Lindemann showed in a 
similar way in 1882 that π is transcendental. The proofs have 
been subsequently improved and simplified by K. Weierstrass, 
D. Hilbert, and F. C. Klein.

To the end of his life Hermite maintained his creative 
interest in the subjects of the integral calculus and the 
theory of functions. He also discussed the theory of associ
ated covariants in binary quantics and the theory of ternary 
quantics.

So many other writers have treated the subject of Higher
1 Hermite’s collected works, edited by E. Picard, are being issued in three 

volumes; vol. i, 1905, vol. ii, 1908.
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Algtbra (including therein the theory of forms and the theory 
of equations) that it is difficult to summarise their conclusions 
or to single out individuals.

The convergency of series has been discussed by J. L. Raabe, 
(18)1-1859) of Zurich, J. L. F. Bertrand, the secretary of the 
French Academy; E. E. Kummer, of Berlin; U. Dini of Pisa; 
A. Pringsheim of Munich1; and Sir George Gabriel Stokes 
(1819-1903) of Cambridge,2 to whom the well-known theorem 
on she critical values of the sums of periodic series is due. The 
last-named writer introduced the important conception of non
uni'orm convergence.

Perhaps here, too, I may allude in passing to the work of 
G. F. B. Riemann, G. G. Stokes, II. IIankel, and G. Darboux 
on asymptotic expansions; of II. Poincare on the application 
of meh expansions to differential equations ; and of E. Borel 
anc E. Cesaro on divergent series.

On the theory of groups of substitutions I have already 
meιtioned the work, on the one hand, of Galois, Cauchy, Serret, 
Joιdan, and Netto, and, on the other hand, of Frobenius, Klein, 
anc Burnside in connection with discontinuous groups, and that 
of Lie in connection with continuous groups.

I may also mention the following writers : C. W. Borchardt3 
(1817-1880) of Berlin, who in particular discussed generating 
fuιctions in the theory of equations, and arithmetic-geometric 
meins. C. Hermite, to whose work I have alluded above. 
Enrico Betti of Pisa and F. Brioschi of Milan, both of whom 
discussed binary quantics; the latter applied hyperelliptic func- 
tioιs to give a general solution of a sextic equation. S. II. 
Aιonhold (1819- 1884) of Berlin, who developed symbolic 
ιmthods in connection with the invariant theory of quantics.

On the researches of Raabe, Bertrand, Kummer, Dini, and Pringsheim, 
seethe Bulletin of the New York (American) Mathematical Society, vol. ii, 
18S2-3, pp. 1-10.

! Stokes’s collected mathematical and physical papers in five volumes, and 
his memoir and scientific correspondence in two volumes, were issued at 
Canbridge, 1880 to 1907.

1 A collected edition of Borchardt’s works, edited by G. Hettner, was 
issιed at Berlin in 1888.
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P. A. Gordan1 of Erlangen, who has written on the theory of 
equations, the theories of groups and forms, and shown that there 
are only a finite number of concomitants of quantics. R. F. A. 
Clebsch1 2 (1833-1872) of Gottingen, who independently investi
gated the theory of binary forms in some papers collected and 
published in 1871 ; he also wrote on Abelian functions. P. A. 
MacMahon, formerly an officer in the British army, who has 
written on the connection of symmetric functions, invariants and 
covariants, the concomitants of binary forms, and combinatory 
analysis. F. C. Klein of Gottingen, who, in addition to his 
researches, already mentioned, on functions and on finite dis
continuous groups, has written on differential equations. A. R. 
Forsyth of Cambridge, who has developed the theory of invariants 
and the general theory of differential equations, ternariants, and 
quaternariants. P. Painleve of Paris, who has written on the 
theory of differential equations. And, lastly, D. Hilbert of 
Gottingen, who has treated the theory of homogeneous forms.

1 An edition of Gordan’s work on invariants (determinants and binary 
forms), edited by G. Kerschensteiner, was issued at Leipzig in three volumes, 
1885, 1887, 1908.

2 An account of Clebscli’s life and works is printed in the Mathematische 
Annalen, 1873, vol. vi, ρp. 197-202, and 1874, vol. vii, pp. 1-55.

No account of contemporary writings on higher algebra 
would be complete without a reference to the admirable Higher 
Algebra by G. Salmon (1819-1904), provost of Trinity College, 
Dublin, and the Cours d,algebre superieure by J. A. Serret, in 
which the chief discoveries of their respective authors are 
embodied. An admirable historical summary of the theory of 
the complex variable is given in the Vorlesungen uber die 
complexen Zahlen, Leipzig, 1867, by H. Hankel, of Tubingen.

Analytical Geometry. It will be convenient next to call 
attention to another division of pure mathematics—analytical 
geometry — which has been greatly developed in recent years. 
It has been studied by a host of modern writers, but I do not 
propose to describe their investigations, and I shall content
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myself by merely mentioning the names of the following 
mathematicians.

James Booth1 (1806-1878) and James MacCullagh2 (1809- 
1846)y both of Dublin, were two of the earliest British writers 
in this century to take up the subject of analytical geometry, 
bu! they worked mainly on lines already studied by others. 
Fπsh developments were introduced by Julius Plilcker'i (1801- 
1868) of Bonn, who devoted himself especially to the study of 
algebraic curves, of a geometry in w7hich the line is the element 
in space, and to the theory of congruences and complexes; his 
equations connecting the singularities of curves are well known; in 
18⅛7 he exchanged his chair for one of physics, and subsequently 
gam up most of his time to researches on spectra and magnetism.

Γhe majority of the memoirs on analytical geometry by 
A. Cayley and by Henry Smith deal with the theory of curves 
anc surfaces; the most remarkable of those of L. 0. Hesse 
(1811-1874) of Munich are on the plane geometry of curves; 
of those of J. G. Darboux of Paris are on the geometry of 
surfaces; of those of G. H. Halphen (1844-1889) of Paris are 
on the singularities of surfaces and on tortuous curves; and of 
these of P. 0. Bonnet are on ruled surfaces, curvature, and 
torsion. The singularities of curves and surfaces have also been 
corsidered by H. G. Zeuthen of Copenhagen, and by H. C. H. 
Schubert4 of Hamburg. The theory of tortuous curves has 
been discussed by M. Nother of Erlangen ; and R. F. A. Clebsch5 
of 4δttingen has applied Abel’s theorem to geometry.

Among more recent text-books on analytical geometry are 
J. Gr. Darboux’s Theorie generale des surfaces, and Les Systemes 
orthogonaux et les coordonnees curvilignes; R. F. A. Clebsch’s 
Vodesungen uber Geometrie, edited by F. Lindemann; and

3 See Booth’s Treatise on some new Geometrical Methods, London, 1873.
s See MacCullagh’s collected works edited by Jellett and Haughton, 

Du∏in, 1880.
s Pliicker’s collected works in two volumes, edited by A. Schoenflies and 

F. Pockels, were published at Leipzig, 1875, 1896.
4 Schubert’s lectures were published at Leipzig, 1879.
ε Clebsch’s lectures have been published by F. Lindemann, two volumes, 

Leipzig, 1875, 1891.
2 ι
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G. Salmon’s Conic Sections, Geometry of Three Dimensions, and 
Higher Plane Curves; in which the chief discoveries of these 
writers are embodied.

Pliicker suggested in 1846 that the straight line should be 
taken as the element of space. This formed the subject of investi
gations by G. Battaglini (1826-1892) of Rome, F. C. Klein, and 
A. Lie1 Recent works on it are R. Sturm’s Die Gebilde ersten und 
zweiten Grades der Liniengeometrie, 3 volumes, Leipzig, 1892, 
1893, 1896, and C. M. Jessop’s Treatise on the Line Complex, 
Cambridge, 1903.

Finally, I may allude to the extension of the subject-matter 
of analytical geometry in the writings of A. Cayley in 1844, 
II. G. Grassmann in 1844 and 1862, G. F. B. Riemann in 
1854, whose work was continued by G. Veronese of Padua, 
II. C. II. Schubert of Hamburg, C. Segre of Turin, (J. Castel- 
nuovo of Rome, and others, by the introduction of the idea of 
space of n dimensions.

Analysis. Among those who have extended the range of 
analysis (including the calculus and differential equations) or 
whom it is difficult to place in any of the preceding categories 
are the following, whom I mention in alphabetical order. 
P. E. Appell2 of Paris; J. L. F. Bertrand of Paris; G. Boole 
of Cork; A. L. Cauchy of Paris; J. G. Darboux2 of Paris; 
A. R. Forsyth of Cambridge ; F. G. Frobenius of Berlin : 
J. Lazarus Fuchs (1833-1902) of Berlin; G. H. Halphen of 
Paris ; C. G. J. Jacobi of Berlin ; C. Jordan of Paris ; L. Kbnigs- 
berger of Heidelberg; Sophie Kowalevski3 (1850-1891) of 
Stockholm; M. S. Lie of Leipzig; E. Picard2 of Paris; II. 
Poincare2 of Paris; G. F. B. Riemann of Gottingen; II. A. 
Schwarz of Berlin ; J. J. Sylvester ; and K. Weierstrass of Berlin, 
who developed the calculus of variations.

The subject of differential equations should perhaps have been
1 On the history of this subject see G. Loria, Il passato ed il presente delle 

principali teorie geometriche, Turin, 1st ed. 1887 ; 2nd ed. 1896.
2 Biographies of Appell, Darboux, Picard, and Poincare, with biblio

graphies, by E. Lebon, were issued in Paris in 1909, 1910.
3 See the Bulletin des sciences mathematiques, vol. xv, pp. 212-220.
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separated and treated by itself. But it is so vast that it is 
difficult—indeed impossible—to describe recent researches in a 
single paragraph. It will perhaps suffice to refer to the admirable 
seri«s of treatises, seven volumes, on the subject by A. R. 
Forty th, which give a full presentation of the subjects treated.

A recent development on integral equations, or the inversion 
of & definite integral, has attracted considerable attention. It 
orignated in a single instance given by Abel, and has been 
treated by V. Volterra of Rome, J. Fredholm of Stockholm, D. 
Hibert of Gottingen, and numerous other recent writers.

Synthetic Geometry. The writers I have mentioned above 
mostly concerned themselves with analysis. I will next describe 
soπb of the more important works produced in this century on 
synthetic geometry.1

Modern synthetic geometry may be said to have had its 
orign in the works of Monge in 1800, Carnot in 1803, and 
Pomelet in 1822, but these only foreshadowed the great ex- 
tens on it was to receive in Germany, of which Steiner and von 
Staιdt are perhaps the best known exponents.

Steiner.2 Jacob Steiner, “ the greatest geometrician since 
the ',ime of Apollonius,” was born at Utzensdorf on March 18, 
179(, and died at Bern on April 1, 1863. His father was a 
peasιnt, and the boy had no opportunity to learn reading and 
writ ng till the age of fourteen. He subsequently went to 
Heicelberg and thence to Berlin, supporting himself by giving 
lessens. His Systematische Entwickelungen 'wt∖,s published in 
1835, and at once made his reputation : it contains a full dis- 
cuss.on of the principle of duality, and of the projective and 
hom>graphic relations of rows, pencils, <fcc., based on metrical

1 The Aperęu historique sur Voτigine et le develoρpement des methodes en 
geomirie, by M. Chasles, Paris, second edition, 1875 ; and Die synthetische 
Geometrie im Alterthum und in der Neuzeit, by Th. Reye, Strassburg, 1886, 
contan interesting summaries of the history of geometry, but Chasles’s work 
is wrtten from an exclusively French point of view.

2 Steiner’s collected works, edited by Weierstrass, were issued in two 
volunes, Berlin, 1881-82. A sketch of his life is contained in the Erin- 
neruιg an Steiner, by C. F. Geiser, Schaffhausen, 1874. 
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properties. By the influence of Crelle, Jacobi, and the von 
Humboldts, who were impressed by the power of this work, 
a chair of geometry was created for Steiner at Berlin, and 
he continued to occupy it till his death. The most important 
of his other researches are contained in papers which appeared 
in Crelle's Journal: these relate chiefly to properties of algebraic 
curves and surfaces, pedals and roulettes, and maxima and 
minima : the discussion is purely geometrical. Steiner’s works 
may be considered as the classical authority on recent synthetic 
geometry.

Von Staudt. A system of pure geometry, quite distinct 
from that expounded by Steiner, was proposed by Karl Georg 
Christian von Staudt, born at Rothenburg on Jan. 24, 1798, 
and died in 1867, who held the chair of mathematics at 
Erlangen. In his Geometrie der Lage, published in 1847, he 
constructed a system of geometry built up without any reference 
to number or magnitude, but, in spite of its abstract form, he 
succeeded by means of it alone in establishing the non-metrical 
projective properties of figures, discussed imaginary points, lines, 
and planes, and even obtained a geometrical definition of a 
number : these views were further elaborated in his Beitrdge zur 
Geometrie der Lage, 1856-1860. This geometry is curious and 
brilliant, and has been used by Culmann as the basis of his 
graphical statics.

As usual text-books on synthetic geometry I may mention 
M. Chasles’s Traite de geometrie superieure, 1852; J. Steiner’s 
Vorlesungen uber synthetische Geometrie, 1867 ; L. Cremona’s 
Elements de geometrie projective, English translation by 
C. Leudesdorf, Oxford, second edition, 1893 ; and Th. Reye’s 
Geometrie der Lage, Hanover, 1866-1868, English translation 
by T. F. Holgate, New York, part i, 1898. A good presenta
tion of the modern treatment of pure geometry is contained in 
the Introduzione ad una teoria geometrica delle curve piane, 
1862, and its continuation Preliminari di una teoria geometrica 
delle superficie by Luigi Cremona (1830-1903), of the Polytechnic 
School at Rome.
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The differences in ideas and methods formerly observed in 
analytic and synthetic geometries tend to disappear with their 
further development.

Non-Euclidean Geometry. Here I may fitly add a few words 
on recent investigations on the foundations of geometry.

The question of the truth of the assumptions usually 
made in our geometry had been considered by J. Saccheri 
as long ago as 1733 ; and in more recent times had been 
discussed by N. I. Lobatschewsky (1793-1856) of Kasan, 
in 1826 and again in 1840; by Gauss, perhaps as early as 
1792, certainly in 1831 and in 1846; and by J. Bolyai (1802- 
1860) in 1832 in the appendix to the first volume of his 
father’s Tentamen; but Riemann’s memoir of 1854 attracted 
general attention to the subject of non-Euclidean geometry, 
and the theory has been since extended and simplified by various 
writers, notably by A. Cayley of Cambridge, E. Beltrami1 
(1835-1900) of Pavia, by H. L. F. von Helmholtz (1821-1894) 
of Berlin, by S. P. Tannery (1843-1904) of Paris, by F. C. 
Klein of Gottingen, and by A. N. Whitehead of Cambridge in 
his Universal Algebra. The subject is so technical that I confine 
myself to a bare sketch of the argument 2 from which the idea 
is derived.

The Euclidean system of geometry, with which alone most 
people are acquainted, rests on a number of independent 
axioms and postulates. Those which are necessary for Euclid’s 
geometry have, within recent years, been investigated and 
scheduled. They include not only those explicitly given by 
him, but some others which he unconsciously used. If these are

1 Beltrami’s collected works are (1908) in course of publication at Milan. 
A list of his writings is given in the Annali di matematica, March 1900.

2 For references see my Mathematical Recreations and Essays, London, 
fourth edition, 1905, chap. xii. A historical summary of the treatment 
of Non-Euclidean geometry is given in Die Theorie der Parallellinien by 
F. Engel and P. Stackel, Leipzig, 1895, 1899 ; see also J. Frischauf’s Elemente 
der dbsoluten Geometrie, Leipzig, 1876 ; and a report by G. B. Halsted on 
progress in the subject is printed in Science, N.S., vol. x, New York, 1899, 
pp. 545-557.
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varied, or other axioms are assumed, we get a different series 
of propositions, and any consistent body of such propositions 
constitutes a system of geometry. Hence there is no limit to 
the number of possible Non-Euclidean geometries that can be 
constructed.

Among Euclid’s axioms and postulates is one on parallel 
lines, which is usually stated in the form that if a straight 
line meets two straight lines, so as to make the sum of the two 
interior angles on the same side of it taken together less than 
two right angles, then these straight lines being continually 
produced will at length meet upon that side on which 
are the angles which are less than two right angles. Ex
pressed in this form the axiom is far from obvious, and from 
early times numerous attempts have been made to prove 
it.1 All such attempts failed, and it is now known that the 
axiom cannot be deduced from the other axioms assumed by 
Euclid.

1 Some of the more interesting and plausible attempts have been collected 
by T. P. Thompson in his Geometry without Axioms, London, 1833, and later 
by J. Richard in his Philosophic de mathematique, Paris, 1903.

The earliest conception of a body of Non-Euclidean geometry 
was due to the discovery, made independently by Saccheri, 
Lobatschewsky, and John Bolyai, that a consistent system of 
geometry of two dimensions can be produced on the assump
tion that the axiom on parallels is not true, and that through 
a point a number of straight (that is, geodetic) lines can be 
drawn parallel to a given straight line. The resulting geometry 
is called hyperbolic.

Riemann later distinguished between boundlessness of space 
and its infinity, and showed that another consistent system of 
geometry of two dimensions can be constructed in which all 
straight lines are of a finite length, so that a particle moving 
along a straight line will return to its original position. This 
leads to a geometry of two dimensions, called elliptic geometry, 
analogous to the hyperbolic geometry, but characterised by the 
fact that through a point no straight line can be drawn which,
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if produced far enough, will not meet any other given straight 
line. This can be compared with the geometry of figures drawn 
on the surface of a sphere.

Thus according as no straight line, or only one straight line, 
or a pencil of straight lines can be drawn through a point 
parallel to a given straight line, we have three systems of 
geometry of two dimensions known respectively as elliptic, 
parabolic or homaloidal or Euclidean, and hyperbolic.

In the parabolic and hyperbolic systems straight lines are 
infinitely long. In the elliptic they are finite. In the hyper
bolic system there are no similar figures of unequal size ; the 
area of a triangle can be deduced from the sum of its angles, 
which is always less than two right angles; and there is a finite 
maximum to the area of a triangle. In the elliptic system all 
straight lines are of the same finite length; any two lines inter
sect ; and the sum of the angles of a triangle is greater than 
two right angles.

In spite of these and other peculiarities of hyperbolic and 
elliptical geometries, it is impossible to prove by observation 
that one of them is not true of the space in which we live. 
For in measurements in each of these geometries we must 
have a unit of distance; and if we live in a space whose 
properties are those of either of these geometries, and such 
that the greatest distances with which we are acquainted 
(ex. gr. the distances of the fixed stars) are immensely smaller 
than any unit, natural to the system, then it may be impossible 
for us by our observations to detect the discrepancies between the 
three geometries. It might indeed be possible by observations 
of the parallaxes of stars to prove that the parabolic system and 
either the hyperbolic or elliptic system were false, but never 
can it be proved by measurements that Euclidean geometry 
is true. Similar difficulties might arise in connection with 
excessively minute quantities. In short, though the results of 
Euclidean geometry are more exact than present experiments 
can verify for finite things, such as those with which we have 
to deal, yet for much larger things or much smaller things or 
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for parts of space at present inaccessible to us they may not 
be true.

Other systems of Non-Euclidean geometry might be con
structed by changing other axioms and assumptions made by 
Euclid. Some of these are interesting, but those mentioned 
above have a special importance from the somewhat sensational 
fact that they lead to no results inconsistent with the properties 
of the space in which we live.

We might also approach the subject by remarking that in 
order that a space of two dimensions should have the geometrical 
properties with which we are familiar, it is necessary that it 
should be possible at any place to construct a figure congruent 
to a given figure; and this is so only if the product of the 
principal radii of curvature at every point of the space or 
surface be constant. This product is constant in the case (i) 
of spherical surfaces, where it is positive; (ii) of plane surfaces 
(which lead to Euclidean geometry), where it is zero; and (iii) 
of pseudo-spherical surfaces, where it is negative. A tractroid 
is an instance of a pseudo-spherical surface; it is saddle-shaped 
at every point. Hence on spheres, planes, and tractroids we 
can construct normal systems of geometry. These systems are 
respectively examples of hyperbolic, Euclidean, and elliptic 
geometries. Moreover, if any surface be bent without dilation 
or contraction, the measure of curvature remains unaltered. Thus 
these three species of surfaces are types of three kinds on which 
congruent figures can be constructed. For instance a plane can 
be rolled into a cone, and the system of geometry on a conical 
surface is similar to that on a plane.

In the preceding sketch of the foundations of Non-Euclidean 
geometry I have assumed tacitly that the measure of a distance 
remains the same everywhere.

The above refers only to hyper-space of two dimensions. 
Naturally there arises the question whether there are different 
kinds of hyper-space of three or more dimensions. Riemann 
showed that there are three kinds of hyper-space of three 
dimensions having properties analogous to the three kinds of
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hyper-space of two dimensions already discussed. These are 
differentiated by the test whether at every point no geodetical 
surfaces, or one geodetical surface, or a fasciculus of geodetical 
surfaces can be drawn parallel to a given surface; a geodetical 
surface being defined as such that every geodetic line joining 
two points on it lies wholly on the surface.

Foundations of Mathematics. Assumptions made in the 
Subject. The discussion on the Non - Euclidean geometry 
brought into prominence the logical foundations of the subject. 
The questions of the principles of and underlying assumptions 
made in mathematics have been discussed of late by J. W. R. 
Dedekind of Brunswick, G. Cantor of Halle, G. Peano of Turin, 
the Hon. B. A. W. Russell, A. N. Whitehead, and E. W. 
Hobson, all of Cambridge.

Kinematics. The theory of kinematics, that is, the investiga
tion of the properties of motion, displacement, and deformation, 
considered independently of force, mass, and other physical con
ceptions, has been treated by various writers. It is a branch 
of pure mathematics, and forms a fitting introduction to the 
study of natural philosophy. Here I do no more than allude 
to it.

I shall conclude the chapter with a few notes—more or less 
discursive — on branches of mathematics of a less abstract 
character and concerned with problems that occur in nature. 
I commence by mentioning the subject of Mechanics. The 
subject may be treated graphically or analytically.

Graphics. In the science of graphics rules are laid down 
for solving various problems by the aid of the drawing-board : 
the modes of calculation which are permissible are considered 
in modern projective geometry, and the subject is closely 
connected with that of modern geometry. This method of 
attacking questions has been hitherto applied chiefly to problems 
in mechanics, elasticity, and electricity ; it is especially useful in 
engineering, and in that subject an average draughtsman ought 
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to be able to obtain approximate solutions of most of the 
equations, differential or otherwise, with which he is likely to 
be concerned, which will not involve errors greater than would 
have to be allowed for in any case in consequence of our imper
fect knowledge of the structure of the materials employed.

The theory may be said to have originated with Poncelet’s 
work, but I believe that it is only within the last twenty years 
that systematic expositions of it have been published. Among 
the best known of such works I may mention the Grapliische 
Statik, by C. Culmann, Zurich, 1875, recently edited by 
W. Ritter; the Lezioni di statica grafica, by A. Favaro, Padua, 
1877 (French translation annotated by P. Terrier in 2 volumes, 
1879-85); the Calcolo grafico, by L. Cremona, Milan, 1879 
(English translation by T. H. Beare, Oxford, 1889), which is 
largely founded on Mobius’s work; La statique graphique, by 
M. Levy, Paris, 4 volumes, 1886-88; and La statica grafica, by 
C. Sairotti, Milan, 1888.

The general character of these books will be sufficiently 
illustrated by the following note on the contents of Culmann’s 
work. Culmann commences with a description of the geo
metrical representation of the four fundamental processes of 
addition, subtraction, multiplication, and division; and pro
ceeds to evolution and involution, the latter being effected by 
the use of equiangular spiral. He next shows how the quantities 
considered—such as volumes, moments, and moments of inertia 
—may be represented by straight lines; thence deduces the 
laws for combining forces, couples, &c. ; and then explains the 
construction and use of the ellipse and ellipsoid of inertia, 
the neutral axis, and the kern; the remaining and larger part 
of the book is devoted to showing how geometrical drawings, 
made on these principles, give the solutions of many practical 
problems connected with arches, bridges, frameworks, earth 
pressure on walls and tunnels, &c.

The subject has been treated during the last twenty years 
by numerous writers, especially in Italy and Germany, and 
applied to a large number of problems. But as I stated at the
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beginning of this chapter that I should as far as possible avoid 
discussion of the works of living authors I content myself 
with a bare mention of the subject.1

1 In an English work, I may add here a brief note on Clifford, who was 
one of the earliest British mathematicians of later times to advocate the use of 
graphical and geometrical methods in preference to analysis. William 
Kingdon Clifford, born at Exeter on May 4, 1845, and died at Madeira on 
March 3, 1879, was educated at Trinity College, Cambridge, of which society 
he was a fellow. In 1871 he was appointed professor of applied mathematics 
at University College, London, a post which he retained till his death. His 
remarkable felicity of illustration and power of seizing analogies made him 
one of the most brilliant expounders of mathematical principles. His health 
failed in 1876, when the writer of this book undertook his work for a few 
months ; Clifford then went to Algeria and returned at the end of the year, 
but only to break down again in 1878. His most important works are his 
Theory of Biquaternions, On the Classification of Loci (unfinished), and The 
Theory of Graphs (unfinished). His Canonical Dissection of a Riemann’s 
Surface, and the Elements of Dynamics also contain much interesting matter. 
For further details of Clifford’s life and work see the authorities quoted in the 
article on him in the Dictionary of National Biography, vol xi.

Analytical Mechanics. I next turn to the question of 
mechanics treated analytically. The knowledge of mathematical 
mechanics of solids attained by the great mathematicians of the 
last century may be said to be summed up in the admirable 
Mecanique analytique by Lagrange and Traite de mecanique 
by Poisson, and the application of the results to astronomy 
forms the subject of Laplace’s Mecanique celeste. These works 
have been already described. The mechanics of fluids is 
more difficult than that of solids and the theory is less 
advanced.

Theoretical Statics, especially the theory of the potential 
and attractions, has received considerable attention from the 
mathematicians of this century.

I have previously mentioned that the introduction of the idea 
of the potential is due to Lagrange, and it occurs in a memoir 
of a date as early as 1773. The idea was at once grasped by
Laplace, who, in his memoir of 1784, used it freely and to
whom the credit of the invention was formerly, somewhat 
unjustly, attributed. In the same memoir Laplace also ex
tended the idea of zonal harmonic analysis which had been 
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introduced by Legendre in 1783. Of Gauss’s work on attractions 
I have already spoken. The theory of level surfaces and lines 
of force is largely due to Chasles, who also determined the 
attraction of an ellipsoid at any external point. I may also here 
mention the Barycentrisches Calcul, published in 1826 by 
A. F. Mobius1 (1790-1868), who was one of the best known of 
Gauss’s pupils. Attention must also be called to the important 
memoir, published in 1828, on the potential and its properties, 
by G. Green2 (1793-1841) of Cambridge. Similar results were 
independently established, in 1839, by Gauss, to whom their 
general dissemination was due.

Theoretical Dynamics, which was cast into its modern form 
by Jacobi, has been studied by most of the writers above 
mentioned. I may also here repeat that the principle of 
“ Varying Action ” was elaborated by Sir William Hamilton 
in 1827, and the “Hamiltonian equations” were given in 
1835; and I may further call attention to the dynamical 
investigations of J. E. E. Bour (1832-1866), of Liouville, and 
of J. L. F. Bertrand, all of Paris. The use of generalised co
ordinates, introduced by Lagrange, has now become the custo
mary means of attacking dynamical (as well as many physical) 
problems.

As usual text-books I may mention those on particle and 
rigid dynamics by E. J. Routh, Cambridge; Leęons sur 
V integration des equations differentielles de la mecanique by 
P. Painleve, Paris, 1895, LTntegration des equations de la 
mecanique by J. Graindorge, Brussels, 1889; and C. E. 
Appell’s Traite de mecanique rationnelle, Paris, 2 vols., 1892,

1 Mobius’s collected works were published at Leipzig in four volumes, 1885-87.
2 A collected edition of Green’s works was published at Cambridge in 

1871. Other papers of Green which deserve mention here are those in 1832 
and 1833 on the equilibrium of fluids, on attractions in space of n dimensions, 
and on the motion of a fluid agitated by the vibrations of a solid ellipsoid; 
and those in 1837 on the motion of waves in a canal, and on the reflexion and 
refraction of sound and light. In the last of these, the geometrical laws of 
sound and light are deduced by the principle of energy from the undulatory 
theory, the phenomenon of total reflexion is explained physically, and certain 
properties of the vibrating medium are deduced. Green also discussed the 
propagation of light in any crystalline medium.
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1896. Allusion to the treatise on Natural Philosophy by Sir 
William Thomson (later known as Lord Kelvin) of Glasgow, and 
P. G. Tait of Edinburgh, may be also here made.

On the mechanics of fluids, liquids, and gases, apart from 
the physical theories on which they rest, I propose to say 
nothing, except to refer to the memoirs of Green, Sir George 
Stokes, Lord Kelvin, and von Helmholtz. The fascinating but 
difficult theory of vortex rings is due to the two writers last 
mentioned. One problem in it has been also considered by 
J. J. Thomson, of Cambridge, but it is a subject which is as 
yet beyond our powers of analysis. The subject of sound 
may be treated in connection with hydrodynamics, but on 
this I would refer the reader who wishes for further infor
mation to the work first published at Cambridge in 1877 by 
Lord Rayleigh.

Theoretical Astronomy is included in, or at any rate closely 
connected with, theoretical dynamics. Among those who in this 
century have devoted themselves to the study of theoretical 
astronomy the name of Gauss is one of the most prominent; to 
his work I have already alluded.

Bessel.1 The best known of Gauss’s contemporaries was 
Friedrich Wilhelm Bessel, who was born at Minden on 
July 22, 1784, and died at Konigsberg on March 17, 1846. 
Bessel commenced his life as a clerk on board ship, but in 
1806 he became an assistant in the observatory at Lilienthal, 
and was thence in 1810 promoted to be director of the new 
Prussian Observatory at Konigsberg, where he continued to 
live during the remainder of his life. Bessel introduced into 
pure mathematics those functions which are now called by his 
name (this was in 1824, though their use is indicated in a 
memoir seven years earlier); but his most notable achievements 
■were the reduction (given in his Fundamenta Astronomiae, 

1 See pp. 35-53 of A. M. Clerke’s History of Astronomy, Edinburgh, 1887. 
JBesseΓs collected works and correspondence have been edited by R. Engelmann 
and published in four volumes at Leipzig, 1875-82.
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Konigsberg, 1818) of the Greenwich observations by Bradley 
of 3222 stars, and his determination of the annual parallax 
of 61 Cygni. Bradley’s observations have been recently reduced 
again by A. Au wers of Berlin.

Leverrier.1 Among the astronomical events of this century 
the discovery of the planet Neptune by Leverrier and Adams is 
one of the most striking. Urbain Jean Joseph Leverrier, the 
son of a petty Government employe in Normandy, was born at 
St. Lo on March 11, 1811, and died at Paris on September 23, 
1877. He was educated at the Polytechnic school, and in 1837 
was appointed as lecturer on astronomy there. His earliest 
researches in astronomy were communicated to the Academy in 
1839: in these he calculated, within much narrower limits 
than Laplace had done, the extent within which the inclinations 
and eccentricities of the planetary orbits vary. The independent 
discovery in 1846 by Leverrier and Adams of the planet 
Neptune by means of the disturbance it produced on the orbit 
of Uranus attracted general attention to physical astronomy, 
and strengthened the opinion as to the universality of gravity. 
In 1855 Leverrier succeeded Arago as director of the Paris 
observatory, and reorganised it in accordance with the require
ments of modern astronomy. Leverrier now set himself the 
task of discussing the theoretical investigations of the planetary 
motions and of revising all tables which involved them. He 
lived just long enough to sign the last proof-sheet of this 
work.

1 For further details of his life see Bertrand’s eloge in vol. xli of the 
Memoires de Vacadtmie; and for an account of his work see Adams’s 
address in vol. xxxvi of the Monthly Notices of the Royal Astronomical 
Society.

2 Adams’s collected papers, with a biography, were issued in two volumes, 
Cambridge, 1896, 1900.

Adams.1 2 The co-discoverer of Neptune was John Couch 
Adams, who was born in Cornwall on June 5, 1819, educated 
at St. John’s College, Cambridge, subsequently appointed 
Lowndean professor in the University, and director of the 
Observatory, and who died at Cambridge on January 21, 1892.
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There are three important problems which are specially 
associated with the name of Adams. The first of these is his 
discovery of the planet Neptune from the perturbations it 
produced on the orbit of Uranus : in point of time this was 
slightly earlier than Leverrier’s investigation.

The second is his memoir of 1855 on the secular accelera
tion of the moon’s mean motion. Laplace had calculated this 
on the hypothesis that it was caused by the eccentricity of 
the earth’s orbit, and had obtained a result which agreed sub
stantially with the value deduced from a comparison of the 
records of ancient and modern eclipses. Adams shewed that 
certain terms in an expression had been neglected, and that 
if they were taken into account the result was only about 
one-half that found by Laplace. The results agreed with 
those obtained later by Delaunay in France and Cayley in 
England, but their correctness has been questioned by Plana, 
Pontecoulant, and other continental astronomers. The point is 
not yet definitely settled.

The third investigation connected with the name of Adams, 
is his determination in 1867 of the orbit of the Leonids or 
shooting stars which were especially conspicuous in November, 
1866, and whose period is about thirty-three years. H. A. 
Newton (1830-1896) of Yale, had shewn that there were only 
five possible orbits. Adams calculated the disturbance which 
would be produced by the planets on the motion of the node 
of the orbit of a swarm of meteors in each of these cases, and 
found that this disturbance agreed with observation for one of 
the possible orbits, but for none of the others. Hence the orbit 
was known.

Other well-known astronomers of this century are G. A. A. 
Plana (1781-1864), whose work on the motion of the moon 
was published in 1832; Count P. G. D. Pontecoulant (1795- 
1871); C. E. Delaunay (1816-1872), whose work on the lunar 
theory indicates the best method yet suggested for the analytical 
investigations of the whole problem, and whose (incomplete) 
lunar tables are among the astronomical achievements of this 
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century; P. A. Hansen1 (1795-1874), head of the observatory 
at Gotha, who compiled the lunar tables published in London 
in 1857 which are still used in the preparation of the Nautical 
Almanack, and elaborated the methods employed for the 
determination of lunar and planetary perturbations ; F. F. 
Tisserand (1845-1896) of Paris, whose Mecanique celeste is now 
a standard authority on dynamical astronomy ; and Simon New
comb (1835-1909), superintendent of the American Ephemeris, 
who re-examined the Greenwich observations from the earliest 
times, applied the results to the lunar theory, and revised 
Hansen’s tables.

1 For an account of Hansen’s numerous memoirs see the Transactions 
of the Royal Society of London for 1876-77.

2 G. W. Hill’s collected works have been issued in four volumes, 
Washington, 1905.

3 On recent development of the lunar theory, see the Transactions of the 
British Association, vol. lxv, London, 1895, p. 614.

Among living mathematicians I may mention the following 
writers. G. JV. Hill,1 2 until recently on the staff of the American 
Ephemeris, who (in 1884) determined the inequalities of the 
moon’s motion due to the non-spherical figure of the earth— 
an investigation which completed Delaunay’s lunar theory.3 
Hill has also dealt with the secular motion of the moon’s 
perigee and the motion of a planet’s perigee under certain 
conditions; and has written on the analytical theory of the 
motion of Jupiter and Saturn, with a view to the preparation of 
tables of their positions at any given time. Sir G. H. Darwin of 
Cambridge, who has written on the effect of tides on viscous 
spheroids, the development of planetary systems by means of 
tidal friction, the mechanics of meteoric swarms, and the 
possibility of pear-shaped planetary figures, and H Poincare of 
Paris, who has discussed the difficult problem of three bodies, 
and the form assumed by a mass of fluid under its own attrac
tion, and is the author of an admirable treatise, the Mecanique 
celeste, three volumes. The treatise on the lunar theory by E. W. 
Brown, Cambridge, 1896 ; his memoir on Inequalities in the 
Motion of the Moon due to Planetary Action, Cambridge, 
1908; and a report (printed in the Report of the British
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Asociation, London, 1899, vol. lxix, pp. 121-159) by E. T. 
Writtaker on researches connected with the solution of the 
ρrωlem of three bodies, contain valuable accounts of recent 
prepress in the lunar and planetary theories.

Within the last half century the results of spectrum analysis 
ha,e been applied to determine the constitution of the heavenly 
bodes, and their directions of motions to and from the earth. 
Th∣ early history of spectrum analysis will be always associated 
witι the names of G. R. Kirchhoff (1824-1887) of Berlin, of 
A. T. Angstrom (1814-1874) of Upsala, and of George G. Stokes 
of Cambridge, but it pertains to optics rather than to astronomy. 
Hov unexpected was the application to astronomy is illustrated 
by be fact that A. Comte in 1842, when discussing the study 
of ιature, regretted the waste of time due to some astronomers 
payng attention to the fixed stars, since, he said, nothing 
coud possibly be learnt about them; and indeed a century ago 
it vould have seemed incredible that we could investigate the 
chenical constitution of worlds in distant space.

During the last few years the range of astronomy has 
beeι still further extended by the art of photography. To 
wh⅛t new results this may lead it is as yet impossible to say. 
In particular we have been thus enabled to trace the forms of 
gigιntic spiral nebulae which seem to be the early stages of vast 
sysiems now in process of development.

Γhe constitution of the universe, in which the solar system 
is bit an insignificant atom, has long attracted the attention of 
thoιghtful astronomers, and noticeably was studied by William 
Herschel. Recently J. C. Kapteyn of Groningen has been able 
to shew that all the stars whose proper motions can be detected 
bel<ng to one or other of two streams moving in different 
directions, one with a velocity about three times as great as the 
othtr. The solar system is in the slower stream. These results 
lιav⅞ been confirmed by A. S. Eddington of Greenwich, and 
F. V. Dyson of Edinburgh. It would appear likely that we 
are on the threshold of wide-reaching discoveries about the 
constitution of the visible universe.

2 κ
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Mathematical Physics. An account of the history ofc>f 
mathematics and allied sciences in the last century would b©e 
misleading if there were no reference to the application ofof 
mathematics to numerous problems in heat, elasticity, light.t, 
electricity, and other physical subjects. The history of mathe e- 
matical physics is, however, so extensive that I could not pretendd 
to do it justice, even were its consideration properly included iιin 
a history of mathematics. At any rate I consider it outside thae 
limits I have laid down for myself in this chapter. I abandoon 
its discussion with regret because the Cambridge school haas 
played a prominent part in its development, as witness (t<to 
mention only three or four of those concerned) the nametes 
of Sir George G. Stokes, professor from 1849 to 1903, Lor<rd 
Kelvin, J. Clerk Maxwell (1831-1879), professor from 18771 
to 1879, Lord Rayleigh, professor from 1879 to 18844, 
Sir J. J. Thomson, professor from 1884, and Sir Joseph Larmor>r, 
professor from 1903.

www.rcin.org.pl



499

INDEX.

Abacus, description of, 123-5 Albategni, 161
— ref. to, 3, 26, 57, 113, 127, 131, Alberi on Galileo, 247

138, 139, 183 Albuzjani, 161
Abd-al-gehl, 161-2 Alcuin, 13-45
Abel, 461-62 Alembert, d’; see D’Alembert
— ref. to, 392, 424, 425, 438, 447, Alexander the Great, 46, 51

452, 461, 463, 465, 469, 473 Alexandria, university of, 51, 92,
Abel’s theorem, 462, 481 96, 113, 115
Abelian functions, 396, 424, 452, Alexandrian library, 51, 83, 115

461, 462, 465, 465-7, 468, 478, — Schools, chapters ιv, v
480 — symbols for numbers, 126-7

Aberration (astronomical), 380 Alfarabius, ref. to, 166
Abu Djefar ; see Alkarismi Alfonso of Castile, 175
Abul-Wafa ; see Albuzjani Alfonso’s tables, 175
Academy, Plato’s, 42 Alfred the Great, ref. to, 133
— the French, 282, 315, 457-8 Algebra. Treated geometrically by
— the Berlin, 315, 356 Euclid and his School, 57-60,102.
Accademia dei Lincei, 315 Development of rhetorical and
Achilles and tortoise, paradox, 31 syncopated algebra in the fourth
Action, least, 398, 403, 408 century after Christ, 102-10.
— varying, 492 Discussed rhetorically by the
Adalbero of Rheims, 137 Hindoo and Arab mathemati-
Adam, C., 268 cians, chapter ιx; by the early
Adams, J. C., 494-5. ref. to, 494 Italian writers, chapter X; and
Addition, processes of, 188 Pacioli, 210. Introduction of
— symbols for, 5, 104, 105, 106, syncopated algebra by Bhaskara,

153, 172, 173, 194, 206-8, 211, 153, 154; Jordanus, 171-3;
214, 215, 216, 217, 228, 240 Regiomontanus, 202-5 ; Record,

Adelhard of Bath, 165 214; Stifel, 215-17; Cardan,
— ref. to, 177 223-5 ; Bombelli, 228 ; and Ste-
Adhśmar, R. d,, 445 vinus, 228. Introduction of sym-
Africanus, Julius, 114 bolic algebra by Vieta, 230-34 ;
Agrippa, Cornelius, ref. to, 119 Girard, 235 ; and Harriot, 238.
Ahmes, 3-8. ref. to, 73, 103 Developed by (amongst others)
Airy, G. B., 442 Descartes, 275-6 ; Wallis, 292-3 ;
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Newton, 331-2; and Euler, Anderson on Vieta, 231
396-8. Recent extensions of, Angle, sexagesimal division, 4, 243 
468-80 — trisection of, 34, 37, 85, 234,

Algebra, definitions of, 183 316
— earliest problems in, 102 Angstrom, 495
— earliest theorem in, 95-6 Angular coefficient, 312
— higher, 468-80 Anharmonic ratios ; see Geometry
— historical development, 102-3 (modern synthetic)
— histories of, 50, 292 Anthology, Palatine, 61, 102
— origin of term, 156 Antioch, Greek School at, 145
Algebra, symbols in, 239-43 Antipho, 38
Algebraic equations ; see Simple Apian on Jordanus, 171

equations, Quadratic equations, Apices, 125, 138
&c. Apogee, sun’s, 161

Algebrista, 170 Apollonius, 77-83
Algorism, 158, 166, 174, 178, 183, — ref. to, 52, 89, 112, 146, 158,

188, 219 161, 164, 171, 227, 230, 234,
Alhazen, 161-2. ref. to, 166 274, 293, 311, 316, 350, 380,
Alhossein, 160 483
Alkarismi, 155-8 Appell, P. E., 467, 468, 482
— ref. to, 167, 183, 224 Appell, C. E., 492
Alkarki, 159-60 Apse, motion of lunar, 374, 389
Alkayami, 159 Arabic numerals, 117, 128, 147,
Al-Khwarizmi; see Alkarismi 152, 155, 158, 166, 168, 169,
Allman, G. J., ref. to, 13, 14, 19, 184-7

24, 28, 29, 35, 41 — origin of, 184, 185
Almagest, the, 96-8 Arabs, Mathematics of, chapter ιx
— ref. to, 81, 86, 111, 146, 156, — introduced into China, 9

158, 160, 162, 164, 165, 166, 171, — introduced into Europe, chap. X
176, 177, 179, 180, 201, 227 Arago, 437-8

Al Mamun, Caliph, ref. to, 145, — ref. to, 91, 400, 433, 450, 494
156 Aratus, 46, 86

Almanacks, 178, 186-7 Arbogast, 401. ref. to, 400
Al Mansur, Caliph, ref. to, 146 Archimedean mirrors, 65
Alphonso of Castile, 168 — screw, 65
Alphonso’s tables, 169 Archimedes, 64-8
Al Raschid, Caliph, ref. to, 145 — ref. to, 52, 62, 79, 81, 82, 85,
Amasis of Egypt, ref. to, 16 86, 91, 101, 102, 112, 146, 158,
America, discovery of, 200 164, 171, 227, 244, 259, 288,
Ampere, 436. ref. to, 451 310, 311, 367, 387
Amthor, A., 72 Archippus, 28
Amyclas of Athens, 46 Archytas, 28-30
Analysis, Cambridge School, 438-43 —ref. to, 26, 36, 42, 44
— higher, 482 Area of triangle, 89-90
— in synthetic geometry, 43 J Areas, conservation of, 256
Analytical geometry, origin of, 264, Arendt, G., on Dirichlet, 454

272-5, 298; on development of, Argand, J. R., 471
see chapters xv-xιx Argyrus, 118

Anaxagoras of Clazomenae, 34 Aristaeus, 48
Anaximander, 18 — ref. to, 46, 57, 77, 78, 316
Anaximenes, 18 , Aristarchus, 62-4. ref. to, 86, 227
Anchor ring, 46, 86 ∣ Aristotle, 48-9
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Aritotle, ref. to, 13, 14, 25, 52, 150, 151, 160-61, 165. Modern
Γ>3, 145, 227 theory of, created by Copernicus,

Aritoxenus, 21 213; Galileo, 249, 250 ; and
Arihmetic. Primitive, chapter vn Kepler, 256-7. Physical astro-

Pe-Hellenic, 2-5. Pythagorean, nomy created by Newton, chap-
2fe-8. Practical Greek, 58, 101, ter xvι. Developed by (amongst
1 2,127,128. Theory of, treated others) Clairaut, 373-4; La-
g∙.ometricallybymostoftheGreek grange, 405, 406-7; Laplace,
nathematicians to the end of the 414-18 ; and in recent times by
fi-st Alexandrian School, 58 ; and Gauss and others, chapter xιx 
Henceforward treated empirically Asymptotes, theory of, 340
(Joethian arithmetic) by most of Athens, School of, chapter ill 
tie Greek and European mathe- — second School of, 111-13 
naticians to the end of the four- Athos, Mount, 118 
t<enth century after Christ, 95, Atomic theory in chemistry, 431
l!7-8, 182-3. Algoristic arith- Atomistic School, 31
netic invented by the Hindoos, Attalus, 77
1)2; adopted by the Arabs, 154, Attic symbols for numbers, 126-7 
li8 ; and used since the four- Attraction, theories of, 321-3, 330,
t∣enth century in Europe, 165, 333-5, 373, 387, 406, 413, 422,
li8, 184-7 ; development of 436, 439, 446, 453, 491, 492 
Eιropean arithmetic, 1300-1637, Australia, map of, 254 
ciapter xι Autolycus, 61

Arihmetic, higher; see, Numbers, Auwers, A., 494
tieory of Avery’s steam-engine, 91

Arihmetical machine, 282,354, 441
— problems, 61, 72, 73 Babbage, 441. ref. to, 439, 442
— progressions, 27, 69, 151 Babylonians, mathematics of, 5, 6
— triangle, 219, 231, 284-5 Bachelor of Arts, degree of, 142
,Apdμητικ⅛, signification of, 57 Bachet, 305-6
Aroιhold, S. H., 479 — ref. to, 221, 297, 298
Art), Bachelor of, 142 Bachmann, P., 460
— Waster of, 142-3 Bacon, Francis, 252. ref. to, 298
Aryι-Bhata, 147-8 Bacon, Roger, 174-7
— ιef. to, 150, 152, 154, 161 — ref. to, 165, 167, 169
Aryan invasion of India, 146 Baily, R. F., on Flamsteed, 338
Arzιchel, 165 Baize, R. L., 468
Assιmption, rule of false, 151, 170, Baker, H. F., 468

248, 209 — ref. to, 467, 475
Assιmptions, 489 Baldi on Arab mathematics, 155
Assιrance, life, 389 Ball, W. W. R., ref. to, 37, 118,141,
Astrology, 152, 179-80, 255 214, 223, 236, 238, 253, 288, 295
Ast'onomical Society, London, 441, 305, 306, 319, 336, 339, 440, 485

4’4 Barlaam, 117-18
Astronomy. Descriptive astronomy Barnes, E. W., 462 

oιtside range of work, vi. Early Barometer, invention of, 282-3, 308 
Greek theories of, 17, 18, 34, 46, Barral on Arago, 437
61, 62, 76, 83. Scientific astro- Barrow, 309-12
n)my founded by Hipparchus, — ref. to, 52, 92, 237, 241, 275,
85-7 ; and developed by Ptolemy 299, 321, 323, 324, 328, 341, 342, 
in the Almagest, 96-8. Studied 347, 362, 394 
by Hindoos and Arabs, 147, 148, Bastien on D’Alembert, 374
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Battaglini, G., 482 Bδcklι on Babylonian measures, 2
Beare, T. H., on graphics, 490 Bode’s law, 416, 448
Beaune, De, ref. to, 276 Boethian arithmetic ; see Arith-
Bede on finger symbolism, 113 metic
Beeckman, I., ref. to, 269-70 Boethius, 132-3
Beldomandi, 180 — ref. to, 95, 114, 135, 136, 138,
Beltrami, E., 485 142, 175, 182
Beman, W. W., 471 Boetius ; see Boethius
Benedictine monasteries, 131, 135 Bologna, university of, 139, 140, 
Ben Ezra, 166. ref. to, 168 180
Berkeley on the calculus, 386 Bolyai, J., 485, 486
Berlet on Riese, 215 Bombelli, 228, 313
Berlin Academy, 315, 356 — ref. to, 224, 226, 232, 242
Bernelinus, 139 Bonacci; see Leonardo of Pisa
Bernhardy on Eratosthenes, 83 Boncompagni, ref. to, 9, 155, 156,
Bernoulli, Daniel, 377-8 166, 167, 206
Bernoulli, Daniel, ref. to, 368, 393 Bonnet, P. O., 481
Bernoulli, James, 366-7 Book-keeping, 187, 209, 245
— ref. to, 243, 316, 365 Boole, G., 474. ref. to, 473, 474,
Bernoulli, James II., 369 482
Bernoulli, John, 367-8 Booth, J., 481
— ref. to, 224, 243, 350, 359, 363, Borchardt, 479. ref. to, 454, 462

365, 368, 369, 379, 391, 393, 394, Borel, E., 469, 479
396 Borrel, J., 226

Bernoulli, John II., 368 Boscovich, 100
Bernoulli, John III., 369 Bossut on Clairaut, 374
Bernoulli, Nicholas, 368 Bougainville, De, 370
— ref. to, 341, 367, 393 Bouguer, P., 242
Bernoulli’s numbers, 367 Bouquet, Briot and, 467
Bernoullis, the younger, 368-9 Bour, J. E. E., 492
Bertrand, 281, 374, 479, 482, 492, Boyle, 314, 315, 378

494 Brachistochrone, the, 350, 363,
Berulle, Cardinal, ref. to, 270 368, 370, 396
Bessel, 493-4 Brackets, introduction of, 235, 242
Bessel’s functions, 493 Bradley, 380. ref. to, 494
Beta function, 396, 424 Bradwardine, 177-8
Betti, E., 450, 479 Brahmagupta, 148-50
Bevis and Hutton on Simpson, 388 — ref. to, 147, 151, 152, 154, 155,
Bózout, 401 161, 188, 204, 312
Bhaskara, 150-54 Branker, 316
— ref. to, 147, 154, 162 Braunmiihl, A. von, 446
Bija Ganita, 150, 153-4 Braunmiihl, V. von, 391
Binomial equations, 405, 411, 452 Breitschwert on Kepler, 254
Binomial theorem, 217, 219, 327-8, Bretschneider, ref. to, 13, 33, 41, 57 

341, 397, 462 Brewer on Roger Bacon, 174
Biot, 437. ref. to, 352, 417 Brewster, D., ref. to, 319, 339
Biquadratic equation, 159, 223, Briggs, 236-7. ref. to, 196, 197, 

226, 233 198
Biquadratic reciprocity, 424 Brioschi, F., 465, 479
Biquadratic residues, 453 Briot and Bouquet, 467
Bjerknes on Abel, 461 British Association, 441
Bobynin on Ahmes, 3. ref. to, 391 Brocard, H., on Monge, 426
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Brom>unιcker, Lord, 312-13 Castelnuovo, G., 482
— reref.'. to, 149, 314 Castillon on Pappus’s problem,
Brow)wm, E. W., 496 100
Brunιnnιel on Gamma function, 396 Catacaustics, 317
Brysyso,, 30, 36 Cataldi, 236, 313
Bubιbnmv on Gerbert, 137 Catenary, 363-4, 366, 382
Budadam, 433 Cathedral Schools, the, 134-9
Buff(ffom on Archimedes, 65 Cauchy, 469-71
Bulili pjroblem, the, 72-3 — ref. to, 342, 410, 429, 467, 471,
Biirgrgi,. J., 196, 197 475, 479, 482
Burnrnejll on numerals, 184 Caustics are rectifiable, 317
Bunrneιt on Newton, 349 Cavalieri, 278-81
BurLrnsπde, W., 475, 479 — ref. to, 235, 237, 256, 268, 289,
Byzazamtine School, chapter vι 299, 344, 347

Cavendish, H., 429-30
Cayley, 475-6

Cajojorii, F., 391 —ref. to, 460, 465, 481, 482, 485,
Calc lcullating machine, 282, 354, 441 495
Calclcullation ; see Arithmetic Censo di censo, 211
Calclcullus, infinitesimal, 265, 342-7, Census, 203, 211, 217, 232

3(356-63, 366, 369-73, 380, 386, Centres of mass, 73, 74, 100, 101,
31395-6, 410 253, 278, 292, 299

Calclcudus of operations, 381, 401 Centrifugal force, 302
— < of? variations, 396, 402, 403, Ceres, the planet, 448 

4(464i, 482 Cesare, E., 479
Calelemdars, 17, 83, 178, 186-7, 205 Ceulen, van, 236
Cammbiridge, university of, 179, Chaldean mathematics, 2, 8 

4!439∙-43, 498 . Chambord, Comte de, ref. to, 470
Cammp>anus, 177. ref. to, 177, 179 Champoilion, ref. to, 431 
Ca∏tmp)bell, 332 Chancellor of a university, 140
Caιuntωr, G., 460, 474, 489 Chaj,din, Sir John, ref. to, 189
Can,ntθ)τ, M., ref. to, vii, 3, 6, 7, 9, Charles the Great, 134, 135

1 13, 14, 19, 26, 28, 33, 38, 50, 52, Charles I. of England, ref. to, 288
6 64, 88, 104, 113, 121, 131, 134, Charles II. of England, ref. to, 310
1 1441, 167, 171, 184, 199, 201, Charles V. of France, ref. to, 178
2 208, 215, 254, 313, 353, 356, Charles VI. of France, ref. to, 178
3 360), 368, 371, 387, 391 Charles, E., on Roger Bacon, 174

Cappett, Hugh, ref. to, 137 Chasles, M., ref. to, 60, 82, 254,
Cappillarity, 380, 381, 419, 435 257, 483, 484, 492
Canrcavi, 298 Chaucer, ref. to, 183
Canrdan, 221-5 Chinese, early mathematics, 8-10
-----rθ)f. to, 60, 2Γ2, 218, 225, 226, Chios, School of, 30

2 227 Christians (Eastern Church) op-
Caιaretl on Descartes, 269 posed to Greek science, 111, 112,
— -ref. to, 276 115
Caiarn<ot, Lazare, 428 Chuquet, 205-6. ref. to, 242
-----ref. to, 88, 392, 426, 483 Cicero, ref. to, 66
Caiarn<ot, Sadi, 433 Ciphers ; see Numerals
Ca)artes, Des; see Descartes Ciphers, discoveries of, 230, 288
Caartesian vortices, 277, 278, 323, Circle, quadrature of (or squaring

I 335, 337 the), 24, 29, 34, 37 ; also see π
Caiassiiodorus, 133. ref. to, 114 Circular harmonics, 422

www.rcin.org.pl



504 INDEX

Cissoid, 85 and Euler, 395 ; recent exten-
Clairaut. 373-4 sions of, 482
— ref. to, 341, 387, 389, 390, 392 Conicoids, 69, 70, 71, 395, 406
Clausius, R. J. E., 451 Conon of Alexandria, 64, 69
Clavius, 234 Conservation of energy, 378, 403,
Clebsch, R. F. A., 480, 481 428, 451
Clement, ref. to, 134 Constantine VII., the Emperor,
Clement IV. of Rome, ref. to, 134, 117

176 Constantinople, fall of, 120
Clerk Maxwell; see Maxwell Constitution of the universe, 497
Clerke, A. M., 415, 493 Conti, 358, 360
Clifford, W. K., 491 Continued fractions, 236, 313, 411,
Clocks, 248, 302, 303 419
Cocker’s arithmetic, 389 Continuity, principle of, 256, 331,
Coefficient, angular, 312 362, 429
Colebrooke, ref. to, 148, 150, 154 Contravariants, 477 
Colla, 218, 226 Conventual Schools, 134-9
Collins, J., 315-16 Convergency, 313, 342, 364, 370,
— ref. to, 323-4, 328, 342, 349, 386, 387, 394, 453, 469, 470, 479

354, 358 Co-ordinates, 272-3, 363
Collision of bodies, 292, 302, 314 — generalized, 404, 407, 451, 492
Colours, theory of, 321, 324, 325 Copernicus, 213 
Colson on Newton’s fluxions, 343, — ref. to, 88, 97, 201, 228, 250

344, 345, 346, 348 Cordova, School of, 140, 164, 165
Comets, 374 Cornelius Agrippa, ref. to, 119
Commandino, 227. ref. to, 62 Corpuscular theory of light, 326
Commensurables, Euclid on, 59 Cosa, 211
Commercium Epistolicum, 359 Cosecant, 243
Complex numbers, 224, 453, 472, Cosine, 161, 196, 197, 201, 239,

481 243
Complex variables, 224 Cos x, series for, 314
Comte, A., ref. to, 497 Cos-1®, series for, 314
Conchoid, 85 Cossic art, 211
Condorcet, 377. ref. to, 374 Cotangent, 89, 161, 196, 197, 243
Cone, sections of, 46 Cotangents, table of, 161
— surface of, 70, 150 Cotes, 382-3
— volume of, 44, 70, 150 — ref. to, 195, 348, 385, 394,
Congruences, 452, 456, 481 442
Conic Sections (Geometrical). Dis- ∣ Courier on Laplace, 421 

cussed by most of the Greek geo- ∣ Cousin on Descartes, 269 
metricians after Menaechmus, I Cramer, G., 371-2 
46 ; especially by Euclid, 60; and ∖ Crelle, ref. to, 483 
Apollonius, 77-80 ; interest in, Cremona, L., 426, 484, 490 
revived by writings of Kepler, ∣ Ctesibus, 88
256 ; and Desargues, 257 ; and Cuba, 211 
subsequently by Pascal, 284 ; and Cube, duplication of, 29, 37, 41-2, 
Maclaurin, 385. Treatment of, 44, 46-7, 81, 83-4, 85, 89, 234 
by modern synthetic geometry, — origin of problem, 41 
425-9, 482-5 Cubic curves, Newton on, 339-41

Conics (Analytical). Invention of, Cubic equations, 70, 106, 158-9,
by Descartes, 272-6, and by Fer- 218, 219, 224-5, 229, 232-3
mat, 298 ; treated by Wallis, 289, Cubic reciprocity, 424, 455
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Culmann on graphics, 484, 490 De ΓHospital, 369-70. ref. to,
Curtze, M., ref. to, 171, 178 380
Curvature, lines of, 426 Delian problem ; see Cube
Curvature of surfaces, 453 De Malves, 371
Curve of quickest descent, 350, 363, De Meró, ref. to, 285

368, 370, 396 De Meziriac, 305-6
Curves, areas of; see Quadrature — ref. to, 221, 297, 298 
Curves, classification of, 274, 340, Democritus, 31

395 Demoivre, 383-4. ref. to, 382, 400
Curves of the third degree, 340-1 De Montmort, 370-1 
Curves, rectification of, 291-2, 313- De Morgan, A., 474-5

14, 316, 328, 341-2, 345 — ref. to, 52, 61, 96, 97, 98, 110,
Curves, tortuous, 373, 396, 481 182, 206, 208, 395, 474
Cusa, Cardinal de, 205 De Morgan, S. E., 474
Cycloid, 283-4, 287, 291, 302 Demptus for minus, 203-4, 211
Cyzicenus of Athens, 46 Denifle, P. H., ref. to, 139
Cyzicus, School of, chapter in De Rohan, ref. to, 229

Desargues, 257-8 
D’Alembert, 374-7 — ref. to, 255, 268, 269, 284, 317,
— ref. to, 288, 367, 382, 392, 397, 425

403, 407 Descartes, 268-78
Dalton, J., 431 —ref. to, 84, 229, 231, 238, 241,
Damascius, 112 242, 252, 257, 258, 259, 264, 268,
Damascus, Greek School at, 145 287, 289, 291, 293, 297, 298, 320,
Darboux, 402,432,477,479,481,482 321, 323, 331, 365, 367, 371
Darwin, G. H., 496 — rule of signs of, 276, 331, 371
Dasypodius on Theodosius, 92 Descartes, vortices of; see Cartesian
De Beaune, ref. to, 276 vortices
De Berulle, Cardinal, ref. to, 270 De Sluze, 316
De Boucquoy, ref. to, 270 —ref. to, 307, 311, 312
De Bougainville, 370 Desmaze on Ramus, 227
De Careil on Descartes, 269 Destouches, ref. to, 374
Decimal fractions, 197-8, 245 Determinants, 365, 401, 406, 419,
Decimal measures, 197, 245, 409 452, 455, 464, 471, 480
Decimal numeration, 71-2, 81, 147, Devanagari numerals, 184, 185

152, 155, 158, 166, 169-70, 184-7 Devonshire, Earl of, ref. to, 383 
Decimal point, 197-8 Didion and Dupin on Poncelet, 428
De Condorcet, 377 Difference between, sign for, 232
Dedekind, J. W. R., ref. to, 454, Differences, finite, 370, 381, 407,

460, 464, 472, 489 412, 419
Defective numbers, 26 — mixed, 419
De Fontenelle, ref. to, 366 Differential calculus ; see Calculus
Degree, length of, 83, 92, 161, 374, Differential coefficient, 343

437 Differential equations, 372, 375-7,
Degrees, angular, 4, 85 396, 401, 406, 425, 464, 473,
De Gua, 371 476, 478, 480, 482
De Kempten, ref. to, 122 Differential triangle, the, 311
De la Hire, 317. ref. to, 308 Differentials, 329, 410
De Laloubere, 309 Diffraction, 304, 317, 431, 436-7
Delambre, 86, 87, 96, 97-8, 233, Digby, 295

402 Dini, U., 479
Delaunay, 495. ref. to, 495, 496 Dinoerates, 51
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Dinostratus of Cyzicus, 46 ' Elastic string, tension of, 315
Diocles, 85-6. ref. to, 92 Elastica, 366
Dionysius of Tarentum, 28 Eleatic School, 30-31
Dionysodorus, 92 Electricity, 435, 449-51
Diophantus, 103-10 Elements of Euclid ; see Euclid
— ref. to, 26, 71, 84, 117, 146, 147, Elimination, theory of, 401, 405

150, 202, 226, 228, 294, 297, 298, Elizabeth of England, ref. to, 238
306, 412 Ellipse, area of, 69

Directrix in conics, 79, 100 — rectification of, 372
Dirichlet, Lejeune, 454-5 Elliptic functions, 396, 424, 452,,
— ref. to, 296, 432, 455, 459, 462, 456, 458, 461-7, 468, 471, 475-6,,

464 479
Distance of sun, 62 Elliptic geometry, 486, 487, 488
Disturbing forces, 335, 405, 495, Elliptic orbits of planets, 165, 256,, 

496 330, 333
Ditton, H., 380 Ellis, G., on Rumford, 430
Division, processes of, 191-4, 237 Ellis, R. L., on Fr. Bacon, 252
— symbols for, 153, 160, 241 Ely on Bernoulli’s numbers, 367
Dodecahedron, discovery of, 20 Emesa, Greek School at, 145 
Dodson on life assurance, 389 Emission theory of light, 326
Don Quixote, 170 Energy, conservation of, 378, 403,,
Dositheus, 64, 67, 69, 71 407-8, 428, 451
Double entry, book-keeping by, Enestrom, ref. to, 276

187, 209, 245 Engel, F., on Grassmann, 473
Double theta functions ; see Elliptic — ref. to, 446, 485

functions Engelmann on Bessel, 493
Dreydorff on Pascal, 281 Enneper, A., ref. to, 461
Dreyer on Tycho Brahe, 256 Envelopes, 302, 317, 363
Dui∏ier, 359 Epicharmus, 28
Dupin, ref. to, 428 Epicurus, 31
Duplication of cube ; see Cube Epicycles, 87, 97
Dupuis on Theon, 95 Epicycloids, 317, 371
D’Urban on Aristarchus, 62 Equality, symbols for, 5, 105, 195,
Diirer, 213. ref. to, 120 211, 214, 232, 241
Dynamics ; see Mechanics — origin of symbol, 214
Dyson, F. W., 497 =, meanings of, 214, 232, 241

Equations ; see Simple equations, 
e, symbol for 2-71828..., 394, 478 Quadratic equations, &c.
Eanbald, Archbishop, ref. to, 134 Equations, differential, 372, 375-7, 
Earth, density of, 430 396, 401, 406, 425, 464, 473, 476,
— dimensions of, 83, 92, 373, 437 478, 480, 482
Eccentric angle, 256 — indeterminate, 106, 107, 147,
Eclipse foretold by Thales, 17 149, 318, 405
Ecliptic, obliquity of, 83, 87 — integral, 483
Eddington, A. S., 497 — number of roots, 448, 469
Edessa, Greek School at, 145 — position of roots, 224, 317, 331-2∙
Edward VI. of England, ref. to, 214 371, 411, 433
Egbert, Archbishop, ref. to, 134 — roots of imaginary, 223
Egyptian mathematics, chap, ι — roots of negative, 223
Eisenlohr, ref. to, 3, 6, 7 — theory of, 234, 330-32, 394, 410,
Eisenstein, 455-6 468, 475, 477, 479
— ref. to. 456, 457, 459, 464 Equiangular spiral, 367, 490
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Erasstothenes, 83-4 Euc. x. ref. to, 48, 81
— r∙ef. to, 42, 85, 86, 92 — x, 1. ref. to, 45
Err∣ors, theory of, 383, 389, 405, — x, 9. ref. to, 48

418, 422, 439, 448 — x, 117. ref. to, 59
Ers<ch and Gruber on Descartes, — xι, 19. ref. to, 29

2(69 — xπ, 2. ref. to, 39, 45
Ess∣ex, ref. to, 287 — xιι, 7. ref. to, 45
Ethier, luminiferous, 304, 326, 451 — xn, 10. ref. to, 45
Euclid, 52-62 — xιιι, 1-5. ref. to, 45, 57
— ∏∙ef. to, 42, 66, 76, 77. 91, 101, — xπι, 6-12. ref. to, 57

146, 158, 161, 164, 171, 274, 310; — x∏ι, 13-18. ref. to, 57
stee also below — xιv. ref. to, 85

Euclid’s Elements, 53-60 —xv. ref. to, 112
— ιref. to, 111, 112, 114, 133, 146, Eudemus, 13, 16, 19, 43, 77, 78

1 58, 161, 164, 165, 166, 169, 171, Eudoxus, 44-6
175, 177, 178, 179, 180, 226, 227, — ref. to, 36, 42, 54, 58, 86
282, 310, 320, 321, 423, 485, 486, Euler, 393-400
4 87, 488 —ref. to, 100, 195, 224, 239, 242,

Euc. post. 12, Ptolemy’s proof of, 98 243, 276, 294, 295, 301, 313, 332,
Eu<c. I, 5. ref. to, 15, 175 339, 361, 368, 378, 387, 392, 402,
— n, 12. ref. to, 30 403, 407, 425, 426, 436, 459, 470
— ι, 13. ref. to, 22 Eurytas of Metapontum, 42
— u, 15. ref. to, 15 Eutocius, 112. ref. to, 78, 128
— ι, 23. ref. to, 30 Evection, 87
— 1, 26. ref. to, 15 Evolutes, 302
— I, 29. ref. to, 22 Excentrics, 87, 97
— ι, 32. ref. to, 16, 17, 22, Excessive numbers, 26

282 Exchequer, Court of, 183
— ι, 44. ref. to, 24 Exhaustions, method of, 45, 82,
—1, 45. ref. to, 24 278
— I, 47. ref. to, 7, 10, 22, Expansion of binomial, 327, 342,

23-4, 26, 39, 149 397
— I, 48. ref. to, 7, 22, 26 — of cos (∠⅛-δ), 227
— ιι, 2. ref. to, 24 — of cos x, 314
— ιι, 3. ref. to, 104 — of cos-1 x, 314
— II, 5. ref. to, 58 — of ex, 364
— ιι, 6. ref. to, 58 — of∕(α> + Λ), 381
— ιι, 8. ref. to, 104 — offix'), 386
— ιι, 11. ref. to, 44, 58 — of log (1 + a;), 308, 309, 364
— II, 14. ref. to, 24, 58 — of sin (^4±∕), 227
— hi, 18. ref. to, 29 — of sin x, 314, 327, 364
— in, 31. ref. to, 16, 39 — of sin~1 x, 314, 327
— Hi, 35. ref. to, 29 — of tan1 x, 314, 364
— v. ref. to, 44 — of vers x, 364
— Vi, 2. ref. to, 15 Expansion in series, 341-2, 364,
— Vi, 4. ref. to, 15, 24 370-1, 381, 386-7, 394, 453, 461,
— vi, 17. ref. to, 24 462, 469, 474
— vι, 25. ref. to, 24 Experiments, necessity of, 21, 76
— vι, 28. ref. to, 58, 102 176, 251, 252, 431
— vι, 29. ref. to, 58, 102 Exponential calculus, 368
— vι, d. ref. to, 88 Exponents, 154, 178, 228, 232-3,
— ιx, 36. ref. to, 397 238, 242, 245, 276, 289, 341, 394
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Faber Stapulensis on Jordanus, 171 Fourier, ref. to, 392, 421, 429, 435 
Fabricius on Archytas, 28 Fourier’s theorem, 432, 455
Facility, law of, 423 Fractions, continued, 236, 313, 411,
Fagnano, 372 419
Fahie, J. J., 247 — symbols for, 153, 160, 178, 241
False assumption, rule of, 151, 170, — treatment of, 3, 4, 73, 197, 198

208, 209 Francis I. of France, ref. to, 212
Faraday, ref. to, 438, 450 Frederick II. of Germany, 170-71
Faugere on Pascal, 281 — ref. to, 169
Favaro, A., ref. to, 3, 278, 313, Frederick the Great of Prussia, 

488 ref. to, 375, 393, 404, 408
Fermat, 293-301 Fredholm, J., 483
— ref. to, 81, 149, 217, 268, 275, French Academy, 282, 315, 457-8 

282, 283, 285, 292, 302, 311, Frenicle, 308-9. ref. to, 298 
312, 347, 351, 397, 403, 406, 412 Fresnel, 436-7. ref. to, 304, 438

Ferrari, 225-6. ref. to, 223, 233 Friedlein, G., ref. to, 81, 88, 104, 
Ferro, 218 112, 121, 133
Fibonacci ; see Leonardo of Pisa Frisch on Kepler, 254
Figurate numbers, 284 Frischauf on absolute geometry,
Finck, 243 485
Finger symbolism, 113, 118, 121, Frisi on Cavalieri, 278

125, 126 Frobenius, 467, 475, 479, 482
Finite differences, 381, 407, 412, Fuchs, 482

419, 474 Functions, notation for, 368
Fink, K., 445 — theory of, 465, 466, 467-8, 475
Fiore, 218, 222 Fuss, ref. to, 100, 393
Fire engine invented by Hero, 91
Five, things counted by,121-2,122-3 Galande, the, 312
Fizeau, ref. to, 438 Gale on Archytas, 28
Flamsteed, 338 Galen, ref. to, 145
— ref. to, 379 Galileo, 247-51
Florido, 218, 219, 222 — ref. to, 76, 214, 244, 255, 259,
Fluents, 321, 328, 337, 338, 343, 268, 269, 287, 316, 364

344-7, 380, 386 Galley system of division, 192-4
Fluxional calculus, 265, 343-8, 386 Galois, 475, 479
— controversy, 347, 348, 356-62 Gamma function, 396, 424, 453 
Fluxions, 321, 328, 337, 338, 343, Garth, ref. to, 188

344-8, 380, 386 Gassendi, ref. to, 201, 205
Focus of a conic, 79, 256 Gauss, 447-54
Fontana ; see Tartaglia — ref. to, 224, 342, 352, 392, 418,
Fontenelle, de, ref. to, 366 419, 423, 425, 438, 447, 454,
Force, component of, in a given 455, 456, 457, 458, 459, 461,

direction, 246-7 464, 465, 469, 471, 473, 485,
Forces, parallelogram of, 48, 246, 491, 492, 493

370 Geber ibn Aphla, 165
— triangle of, 213, 245, 370 Geiser on Steiner, 483
Forms in algebra, 478-80 Gelon of Syracuse, 71
— in theory of numbers, 452, 455- Geminus, ref. to, 13

60 Generalized co-ordinates, 404, 407,
Forsyth, A. R., 468, 477, 480, 482 451, 492
Foucault, ref. to, 438 Generating lines, 314
Fourier, 432-3 Geodesics, 368, 396, 422
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Geodesy, 254, 449 Gonzaga, Cardinal, ref. to, 225
Geometrical progressions, 27, 59, Gopel, A., 465

69, 72, 151 Gordan, P. A., 480
Geometry. Egyptian geometry, Gothals on Stevinus, 245

5-8. Classical synthetic geo- Goursat, E., on functions, 468
metry, discussed or used by Gow, ref. to, 3, 6, 13, 50, 52, 77
nearly all the mathematicians Graindorge, J., ref. to, 492
considered in the first period, Grammar, students in, 142
chapters ιι-v ; also by Newton Granada, School of, 164
and his School, chapters xvι, Graphical methods, 58, 336, 489-91
xvil. Arab and medieval geo- Grassmann, 473-4. ref. to, 451, 482
metry, founded on Greek works, Graves on Hamilton, 472 
chapters vιn, ιx, X. Geometry Gravesande, s’, on Huygens, 301 
of the renaissance; characterized Gravity, centres of, 73, 74, 100, 
by a free use of algebra and trigo- 101, 253, 278, 292, 299 
nometry, chapters xιι, xιn. Ana- —law of, 314, 321-3, 330, 332-5,
lytical geometry, 264, 272-4 ; 373-4
discussed or used by nearly all — symbol for, 368 
the mathematicians considered Gray on Newton’s writings, 319 
in the third period, chapters Greater than, symbol for, 238, 
xιv-xιx. Modern synthetic geo- 241-2 
metry, originated with Desargues, Greatest common measure, 59 
257-8 ; continued by Pascal, Greek science, 21-2, 49 
284 ; Maclaurin, 385 ; Monge, Green, 492, 493
Carnot, and Poncelet, 425-9 ; Greenhill, A. G., on elliptic func- 
recent development of, 483-5. tions, 467
Non-Euclidean geometry, origin- Greenwood on Hero, 88 
ated with Saccheri, Lobatschew- Gregory XIII. of Rome, 222 
sky, and John Bolyai, 486 Gregory, David, 379. ref. to, 316

Geometry, origin of, 5-6 Gregory, James, 313-14
— elliptic, 486, 487, 488 — ref. to, 325, 327, 364
— hyperbolic, 486, 487, 488 Gresham, Sir Thos., ref. to, 237
— line, 482 Grosseteste, Bishop, ref. to, 175
George I. of England, ref. to, 356 Groups, theories of, 475, 477
Gerard, 166. ref. to, 165, 168 Grube on Dirichlet, 454
Gerbert (Sylvester II.), 137-9 Gua, de, 371
Gerhardt, ref. to, 117, 353, 356, Guhrauer on Leibnitz, 353

357, 358, 445, 462 Guldinus, 252-3. ref. to, 256, 279
Germain, S., 296 Gunpowder, invention of, 176-7
Gesta Romanorum, 138 Gunter, E., 196, 243
Ghetaldi on Apollonius, 80 Giinther, S., 118, 131, 287, 313,
Gibson on origin of calculus, 356 391, 400, 445
Giesing on Leonardo, 167
Giordano on Pappus’s problem, 100 Hadamard, J. S., 468 
Girard, 234-5. ref. to, 239, 242,243 Hadley, ref. to, 325 
Glaisher, 334, 456, 458, 460, 467 Hagan, J. G., 393, 446 
Globes 137 Haldane, E. S., on Descartes, 268
Gnomon or style, 18 Halley, 379-80
Gnomons or odd numbers, 25 — ref∙ ⅛0> zΛ 80, 94, 314, 332, 333,
Gobar numerals, 138, 184, 185 367, 339, 374, 383, 402
Goldbach, 371, 395 Halma, M., ref. to, 96, 111
Golden section, the, 44, 45, 57 Halphen, G. H., 467, 481, 482
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Halsted, G. B., on hyper-geometry, Hesse, 481
485 Hettner on Borchardt, 479

Hamilton, Sir Wm., 472-3 Heuraet, van, 291, 292
— ref. to, 183, 408, 473, 474, 492 Hiero of Syracuse, 64, 65, 75
Hand used to denote five, 122, Hieroglyphics, Egyptian, 431

126 Hilbert, D., 478, 480, 483
Hankel, ref. to, 13, 19, 33, 60, Hill, G. W., 496

103, 113, 121, 144, 446, 474, 479, Hiller on Eratosthenes, 83
480 Hindoo mathematics, 146-55

Hanselmann, L., on Gauss, 447 Hipparchus, 86-8
Hansen, 496. ref. to, 496 — ref. to, 67, 84, 88, 89, 96, 98,
Harkness, J., on functions, 468 160, 161
Harmonic analysis, 413, 422, 491 Hippasus, 20, 28
Harmonic ratios; see Geometry Hippias, 34-5

(modern synthetic) Hippocrates of Chios, 37-42
Harmonic series, 27, 432 — ref. to, 36, 54
Haroun Al Raschid, ref. to, 145 Hippocrates of Cos, 36, 145 
Harriot, 273-8 Hire, De la, 317. ref. to, 308
— ref. to, 229, 241, 242, 276 Historical methods, 264
Hastie on Kant, 416 Hobson, E. W., 460, 468, 489
Haughton on MacCullagh, 481 Hoche on Nicomachus, 94
Hauksbee on capillarity, 419 Hochheim on Alkarki, 159
Heap for unknown number, 5, 105, Hodograph, 473

121-2 Hoecke, G. V., 195, 216
Heat, theory of, 432, 433, 435, 498 Hoefer, ref. to, 19
Heath, D. D., on Bacon, 252 Holgate on Reye, 484
Heath, T. L., 52, 103 Holmboe on Abel, 461
Hegel, ref. to, 448 Holy wood, 174. ref. to, 179
Heiberg, ref. to, 31, 52, 64, 77, 79, Homogeneity, Vieta on, 231, 

94, 96, 177 232
Helix, 309 Homology, 258
Helmholtz, von, ref. to, 450, 485, Honein ibn Ishak, 145

493 Hooke, 315
Henry IV. of France, ref. to, 229 —ref. to, 304, 329, 332, 349.
Henry of Wales, ref. to, 253 436
Henry C., ref. to, 101, 214, 239, Horsley on Newton, 319

293, 374 Hospital, Γ, 369-70. ref. to, 380
Henry, W. C., on Dalton, 431 Huber on Lambert, 400
Hensel, C., 468 Hudde, 308. ref. to, 307, 311
Hensel, K., 465 Hugens ; see Huygens
Heracleides, 78 Hultsch, ref. to, 61, 88, 89, 99
Herigonus, 242 Humboldt, 450, 483-4
Hermite, 478 Hutton, ref. to, 229, 388
— ref. to, 446, 465, 467, 468, 479 Huygens, 301-5, 313
Hermotimus of Athens, 46 — τβf∙ t°, 265, 266, 268, 292, 307,
Hero of Alexandria, 88-9 308, 309, 314, 319, 332, 354,
— ref. to, 102, 128, 150, 227 436
Hero of Constantinople, 117 Huyghens ; see Huygens
Herodotus, ref. to, 3, 5 Hydrodynamics. Developed by
Herschel, Sir John, 442 J Newton, 351-2 ; D Alembert,
_ ref. to, 439 i 375 ; Maclaurin, 387; Euler, 
‰TorcnVιαl Sir William 449 497 ∣ 398-9 ! cLΓ)(l L<λDlclCβ. 419
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Hydrostatics. Developed by Ar- Interpolation, method of, 290-1, 
chiιnedes, 74-5 ; by Stevinus, 327-8, 343, 381, 407, 412 
245-6 ; by Galileo, 248, 249 ; by Invariants, 475, 476, 477, 479, 480 
Pascal, 283 ; by Newton,∙ 352 ; Involutes, 302
and by Euler, 399 Involution ; see Geometry (modern

Hypatia, 111 ; ref. to, 112 synthetic)
Hyperbolic geometry, 486, 487, 488 Ionian School, the, 1, 14-19, 34 
Hyper! olic trigonometry, 400 Irrational numbers, 24-5, 30, 48,
Hyperboloid of one sheet, 314 59-60
Hyper-elliptic functions ; see El- Ishak ibn Honein, 145 

liptic functions Isidorus of Athens, 112
Hyper-geometric functions, 459 Isidorus of Seville, 133-4. ref. to, 
Hyper-geometric series, 453 142
Hyper-geometry, 485-9 Isochronous curve, 363, 366
Hypsicles, 85 Isoperimetrical problem, 86, 366-7,

367, 389, 402
Iamblichus, 110-11. ref. to, 19, Ivory, 439

28, 126
Imaginary numbers, 223-4, 228, Jacobi, 462-4

470, 471 — ref. to, 410, 424, 425, 438, 452,
Imaginary quantities, 470 453, 454, 455, 459, 461, 464, 465,
Incommensurables, 24, 30, 48, 59, 466, 475, 478, 482, 483, 492

60 Jacobians, 464
Indeterminate coefficients, 364, 365 James I. of England, ref. to, 253 
Indeterminate forms, 370 James II. of England, ref. to, 338
Indian mathematics, chapter ιx Jellett on MacCullagh, 481 
Indian numerals, 117, 128, 147, Jerome on finger symbolism, 114

152, 154-5, 158, 166, 168, 169, Jessop, C. M., 482
184-7 Jews, science of, 6, 166, 170

— origin of, 184-5 John of Palermo, 169
Indices, 153-4, 178, 228, 232-3, 238, John Hispalensis, 166-7. ref. to, 

242, 245, 276, 289, 341, 394 168
Indivisible College, 314-15 Joly, C. J., on quaternions, 473
Indivisibles, method of, 256, 278- Jones, Wm., 380, 394

81, 307 Jordan, C., 475, 477, 479, 482
Inductive arithmetic, 95, 127-8, Jordanus, 171-4

182-3 — ref. to, 167, 205, 208, 211, 216,
Inductive geometry, 7-8, 10 231, 240
Infinite series, difficulties in con- Julian calendar, 83, 205 

nection with, 31, 313, 342, 364, Justinian, the Emperor, 112 
370, ⅛86, 394, 453, 462, 469, 474

Infinite series, quadrature of curves Kastner, 448
in, 290, 313, 314, 327-8, 341-3 Kant, ref. to, 414, 416 

Infinitesimal calculus; see Calculus Kapteyn, J. C., 497 
Infinitesimals, use of, 256, 410 Kauffmann (or Mercator), 309, 328
Infinity, symbol for, 243 Keill, 356
Instruments, mathematical, 28, 35, Kelvin, Lord, 419, 450, 493, 498 

43 Kempten, de, 122
Integral calculus ; see Calculus Kepler, 254-7
Integral equations, 483 . —ref. to 183, 237, 250, 257, 258,
Interference, principle of, 304, 326, 268, 278, 279, 299, 321, 322, 332,

431, 436 χ I 347
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Kepler’s laws, 250, 256-7, 278, 322, Least action, 398, 403, 408
332 Least common multiple, 59

Kern on Arya-Bhata, 147 Least squares, 418, 422, 423, 439, 4481
Kerschensteiner on Gordan, 480 Lebesgue, 296, 468 
Kε<ττol, 114 Lebon, E., 482
Kinckhuysen, ref. to, 323, 342 Legendre, 421-5
Kinematics, 489 — ref. to, 296, 392, 408, 413, 418,,
Kirchhoff, 497 421, 425, 429, 434, 447, 452, 459,
Klein, F. C., 446, 447, 465, 467, 461, 463, 465, 469, 491

468, 475, 477, 478, 479, 480, 482, Legendre’s coefficients, 413, 422
485 Leibnitz, 353-65

Knoche on Proclus, 111 — ref. to, 241, 256, 275, 316, 327,
Kommerell, V., 391 329, 343, 345, 346, 347, 348, 349,
Kδnigsberger, L., 461, 462, 465, 350, 366, 367, 369, 370, 379

482 Leipzig, university of, 179, 180
Korteweg, 451 Lejeune Dirichlet; see Dirichlet
Kowalevski, S., 482 Lenses, construction of, 249, 277,
Kremer on Arab science, 144 303, 311, 325
Kronecker, L., 454, 460 Leo VI. of Constantinople, 117
Krumbiegel, B., 72 Leo X. of Rome, Stifel on, 215
Kiihn, 471 Leodamas of Athens, 46
Kummer, 458-9 Leon of Athens, 46
— ref. to, 296, 424, 453, 459, 472, Leonardo da Vinci, 212-13

479 — ref. to, 245
Kiinssberg on Eudoxus, 44 Leonardo of Pisa, 167-70

— ref. to, 60, 209, 210-11 
Lacour on elliptic functions, 467 Leonids (shooting stars), 495 
Lacroix, 442 Le Paige, 207, 316
Lagrange, 401-12 Leslie on arithmetic, 121, 185
—ref. to, 100, 266, 275, 295, 350, Less than, symbol for, 238, 241-2

352, 361, 368, 378, 387, 392, Letters in diagrams, 38
396-7, 418, 425, 429, 432, 434, — to indicate magnitudes, 48,
435, 436, 442, 447, 453, 454, 459, 153-4, 172, 216, 231, 232
491, 492 Leucippus, 31

Laguerre, E. N., 468 Leudesdorf on Cremona, 484
Lahire, 317. ref. to, 308 Lever, principle of, 61, 74
Laloubere, 309 Leverrier, 494. ref. to, 407
Lambert, 400-1. ref. to, 384 Levy on graphics, 49Q
Lame, 296, 478 Lexell on Pappus’s problem, 100
Lampe, ref. to, 446 L’Hospital, 369-70. ref. to, 380
Landen, 396, 410 Lhulier, 100
Laplace, 412-21 Libration of moon, 403, 436
— ref. to, 266, 339, 352, 361, 378, Libri, ref. to, 199, 208, 211

392, 411, 421, 422, 423, 425, 429, Lie, 477-8
434, 436, 439, 440, 442, 447, 454, — ref. to, 461, 479, 482
469, 472, 491, 494, 495 Life assurance, 389

Laplace’s coefficients, 413, 422 Light, physical theories of, 61,
Larmor, Sir J., 498 277, 303-4, 326, 399, 431, 436-7,
Latitude, introduction of, 18, 88 492
Lavoisier, 420 — velocity of, 277, 317, 438, 451
Law, faculty of, 142 Lilavati, the, 150-4
Lazzarini, V., 167 Limiting values, 370
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Limits, method of, 280, 281 ' Master, degree of, 142
Lindemann, 37, 478, 481 Mastlin, 255
Lines of curvature, 426 Mathematici Veteres, the, 114
Lintearia, 366 Mathews, G. B., on numbers, 460
Linus of Liege, 326 Matter, constitution of, 267
Lionville, 460, 467, 492 Matthiessen, 50
Lippershey, 249 Maupertuis, 398
Lobatschewsky, 54, 485 Maurice of Orange, ref. to, 245,
Lockyer, Sir Norman, 416 269
Logarithms, 195-7, 216, 235-7,279 Maurolycus, 226 
London Mathematical Society, 474 Maxima and minima, determina- 
Longitude, 88, 347-8, 380 tion of, 299, 304, 345, 362, 387,
Lorentz on Alcuin, 134 484
Loria, ref. to, 13, 14, 19, 33, 50, Maximilian I. of Germany, 202

88, 308, 391, 446, 482 Maxwell, J. C., 430, 450, 451, 498
Louis XIV. of France, ref. to, 302, Mayer, F. C., 394, 400

303, 354 Mayer, J. T., 399
Louis XVI. of France, ref. to, 408 Mechanics. Discussed by Archy- 
Lucas di Burgo ; see Pacioli tas, 28 ; Aristotle, 48 ; Arclii-
Lucian, ref. to, 26 medes, 73 ; and Pappus, 100-1.
Lunes, quadrature of, 39-41 Development of, by Stevinus and
Luther, ref. to, 215, 216 Galileo, 245-9 ; and by Huygens,
Lysis, 28 302-3. Treated dynamically by

Newton, 334 etseq. Subsequently 
MacCullagh, 481 extended by (among others)
Macdonald on Napier, 235 D’Alembert, Maclaurin, Euler,
Macfarlane, A., 473 Lagrange, Laplace, and Poisson,
Maclaurin, 384-8 chapters xvn, XVIII. Recent
— ref. to, 275, 332, 373, 374, 378, work on, 489-93

391, 406 Medicine, Greek practitioners, 145
MacMahon, P. A., 460, 480 Medieval universities, 139-43
Magic squares, 118-19, 308, 317 Melanchthon, ref. to, 201, 216 
Magnetism, 435-6, 438, 449-51, 481 Melissus, 31 
Mairan, 380 Menaechmian triads, 46-7
Malves, de, 371 Menaechmus, 46-7
Mamercus, 18 ι — ref. to, 36, 53, 77, 78
Mandryatus, 18 Menelaus, 94. ref. to, 380
Manitius on Hipparchus, 86 Menge on Euclid, 52
Mansion on the calculus, 356 Menou, General, ref. to, 432
Maps, 238, 253-4 Meray, H. C. R., on numbers, 460
Marcellus, 66, 76 Mercantile arithmetic, 155, 168-9,
Marie, ref. to, 64, 278, 446 182-94, 206, 209
Marinas of Athens, 112 Mercator, G., 253
Mariotte, 378 Mercator, N., 309, ref. to, 328
Markoff on Tchebycheff, 459 Mercator’s projection, 253
Marolois, 235 Mer⅛, de, ref. to, 285
Marre on Chuquet, 206 Merriman, M., 446
Martin, ref. to, 88, 121 Mersenne, 306-7
Mary of England, ref. to, 214 — ref. to, 269, 282, 398
Mascheroni, 56 Meteoric hypothesis, 415-16
Mass, centres of, 73, 74, 100-1, Meton, 34

253, 278, 292, 299 Metrodorus, 102
2l
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M6ziriac, 305-6 Napier of Merchiston, 235-6
— ref. to, 221, 297, 298 —ref. to, 194,195, 196,197, 198, 347
Microscope, 249-50, 325 Napier, Mark, ref. to, 235
Mill’s Logic, ref. to, 43 Napier’s rods, 189-91
Milo of Tarentum, 20 Naples, university of, 141, 170
Minkowski, H., 408, 457 Napoleon I., 354, 409, 417-18, 420,
Minos, King, ref. to, 42 427, 428, 432
Minus ; sec Subtraction Napoleon III., 437, 470
— symbols for, 5, 104, 105, 106, Naucrates, 78

153, 194-5, 206-8, 211, 214, 215, Navier on Fourier, 433
216, 217, 240 Navigation, science of, 253, 254

— origin of symbol, 206-8 Nebular hypothesis, 415-16
Mitchell, J., 430 Negative sign, 5, 104, 105, 106,
Mittag-Leffler, 461, 466, 468 153, 194-5, 206-8, 211, 214, 215,
Mobius, 492. ref. to, 490 216, 217, 240
Mohammed, ref. to, 115 — geometrical interpretation, 235
Mohammed ibn Musa ; see Alka- Neil, 291

rismi Nelts, E., 391
Moivre, de, 383-4. ref. to, 382, 400 Neocleides of Athens, 46 
Molk on elliptic functions, 467 Neptune, the planet, 494, 494-5
Moments in theory of fluxions, 346 Nesselmann, ref. to, 50, 59, 103 
Monastic mathematics, 131-6 Netto, E., 475, 479
Monge, 426-8 Neumann, C., 419, 450, 451
— reff. to, 392, 470, 483 Neumann, F. E., 451
Montmort, de, 370-71 Newcomb, S., 496
Montucla, 221 Newton, H. A., of Yale, 495
— ref. to, 253, 308, 314, 366, 367 Newton, Isaac, chapter xvι (see 
Moon, secular acceleration of, 411- table of contents)

12,495 —ref. to, 76, 82, 100, 195, 231,
Moors, mathematics of, 164-9 233, 235, 237, 241, 243, 249, 256,
Morgan, A. de ; see De Morgan 259, 266, 274, 275, 293, 303, 304,
Morley, F., on functions, 468 305, 310, 314, 353, 356, 357, 358,
Morley on Cardan, 221 359, 360, 361, 362, 363, 364, 370,
Moschopulus, 118-20 371, 372, 373, 374, 375, 378, 379,
— ref. to, 317 380, 381, 383, 384, 385, 388, 389,
Motion, laws of, 249, 277 392, 394, 401, 403, 417, 419-20,
Mouton, 354 432, 472, 477
Muir, T., 446 Newton’s Principia, 333-8, 348
Miiller; see Regiomontanus — ref. to, 249, 266, 278, 293, 303,
Muller, F., 461 333, 364, 370, 374, 375, 379-80,
Mullinger, ref. to, 134, 139 382, 383, 389, 392, 403, 417, 419-
Multiple points, 341, 371 20, 472
Multiplication, processes of, 4, 105, Nicholas IV. of Rome, ref. to, 177

127-8, 128, 188-92 Nicholas, Paul, ref. to, 143
— symbols for, 241 Nicholas Rhabdas of Smyrna, 118
Murdoch, 341 Nicole, 371. ref. to, 341
Murr on Regiomontanus, 201, 205 Nicomachus, 94-5 
Music, in the quadrivium, 21, 114, — ref. to, 113, 114, 118, 133

131-6 Nicomedes, 85
Musical progression, 27 Nicoteles of Alexandria, 64
Mutawakkil, Caliph, ref. to, 145 Nieuwentyt, 362 
Mydorge, ref. to, 269, 282 Nines, casting out the, 160, 188
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Nizze, ref. to, 62, 92 Osculating circle, 363
Nonante for ninety, 122-3 Otlιo, 226
Non-Euclidean geometry, 485-9 Oughtred, 238-9
Nδther, M., 464, 467, 481 —ref. to, 196, 241, 242, 243, 320, 394
Number, simple complex, 472 Oxford, university of, 179, 180
Numbers, defective, 26 0zanam, 221
— excessive, 26
— figurate, 284 π, value of, 6, 7, 67, 97, 148, 149-
— irrational, 460 150, 151, 234, 236, 290-91, 313
— perfect, 26, 59, 306-7 —incommensurability of, 37, 313,
— polygonal, 26, 104 400, 423
— transcendent, 460 — introduction of symbol, 394-5
Numbers, theory of. Treatment — transcendental, 478

of, by Pythagoras, 24-7 ; by Pachymeres, 118
Euclid, 59-60 ; by Diophantus, Pacioli, 208-12
109-10 ; by Fermat, 294-8 ; by — ref. to, 187, 188, 194, 212, 215 
Euler, 397-8 ; by Lagrange, 403, 220, 240
406 ; by Legendre, 423-4 ; by Paciolus ; see Pacioli
Gauss and other mathematicians Padua, university of, 141, 180, 186 
of recent times, 448, 452-3, 455- Painleve, P., 446, 480, 492 
460, 468, 469, 471, 475, 476 Palatine Anthology, 61, 102

Numerals, symbols for, 121-8, 138, Pappus, 99-101
152, 155, 168, 169, 182-7 — ref. to, 52, 56, 60, 61, 74, 77, 78,

Numeration, systems of, 71-2, 81, 81, 84, 104, 252-3, 273-4, 279,
chapters vn, xι 350

Nutation, 380 Parabola, evolute of, 302
— quadrature of, 67-9, 280-81, 

Octante for eighty, 122 289-90, 299
Oenopides of Chios, 30 — rectification of, 291-2
Offa, ref. to, 134 Parallel lines, 98-9, 256, 423,
Oldenburg, 327, 354, 358 486-7
Olleris on Gerbert, 136, 139 Parallelogram of forces, 48-9, 246,
Omar, Caliph, ref. to, 115 370
Omega function, 458, 465 Parent, 371
Operations, calculus of, 216, 381, Paris, university of, 139, 140, 141, 

401 179, 180
Oppert, ref. to, 6 Parmenides, 31
Optics (geometrical). Discussed by Pascal, 281-8

(among others) Euclid, 61 ; Pap- — ref. to, 231, 257, 258, 268, 269, 
pus, 100; Alhazen, 162; Roger 300, 301, 305, 347, 351, 352, 
Bacon, 176 ; Snell, 254 ; Descar- 385, 386, 425
tes, 277 ; Barrow, 311 ; Newton, Pavia, university of, 141
324-5 ; Gauss, 451 ; and Sir Peacock, 441
William Hamilton, 472 — ref. to, 121, 168, 182, 430, 439,

— (physical), 61, 277, 303-5, 325-6, 442
399, 431, 436-7, 492 Peano, G., 474, 489

Orderic Vitalis, ref. to, 138 Pedals, 385, 484
Oresmus, 178. ref. to, 242 Peletier, 227
Orientation of Egyptian temples, 6 Pell, 316. ref. to, 241 
Orleans, university of, 141 Pemberton, ref. to, 323, 348
Orrery, 46, 76, 253 Pendulum, motion of, 248, 251,
Oscillation, centre of, 302, 381 301-2, 315, 434
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Pepin on Frenicle’s problem, 309 Poincare, 466, 468, 472, 482, 496 
Perfect numbers, 26, 59, 306-7, 397, Poincare, J. 11., 479

398 Poinsot, 435
Perier on Pascal, 281 Point, Pythagorean def. of, 22
Perseus, 86 Poisson, 433-6
Perspective, 245, 257, 258, 382 — ref. to, 392, 411, 429, 447, 450,
Pesloiian, L. de, 461 491
Peter the Hermit, ref. to, 137 Polar triangle, 235, 254
Petrarch, 118, 179 Polarization of light, 304, 437,
Petri on Cusa, 205 438
Pfaff, 425 Poles and polars; see Geometry
Phalereus, 51 (modern synthetic)
Pherecydes of Syros, 19 Polygonal numbers, 26, 104
Philip II. of Spain, ref. to, 230 Polygons, regular, 452
Philippus of Athens, 46 Polyhedrons, regular, 20, 24, 57,
Philolaus, 20, 28 85, 112
Philonides, 78 — semi-regular, 71
Philoponus, 41 Poncelet, 428-9
Philosophy, treatment of, 271-2 — ref. to, 100, 392, 426, 483, 490
Phoenician mathematics, 1-8 Pontecoulant, 495. ref. to, 495
Physics, mathematical, 266-7, 497- Porisms of Euclid, 60

498 ; also see headings of —of Diophantus, 110
subjects Port-Royal, society of, 283-4

Piazzi of Palermo, 448 Potential, the, 417-18, 413-14, 422,
Picard, C. E., 468 436, 454, 491, 492
Picard, E., 475, 478, 482 Poudra on Desargues, 257
Picard, J., 330 Power, origin of term, 38
Pihan on numerals, 184 Powers ; see Exponents
Piola on Cavalieri, 278 Prague, university of, 141, 179,
Pisa, university of, 180 180
Pitiscus, 233. ref. to, 227 Predari on Cavalieri, 278
Plana, 495. ref. to, 495 Pretender, the Young, ref. to, 384
Planetary motions, 46, 62, 81, 87, Prime and ultimate ratios, 410

97, 165, 213, 250, 256-7, 277-8, Primes, 59, 60, 306-7, 455 
364, 407, 414-17, 448, 449, 454, — distribution of, 423-4, 458-9
494-7 465, 476

— stability, 407, 414, 435-6 Pringsheim, 469, 479
Planets, astrological, 119 Printing, invention of, 199, 200
Planudes, 117. ref. to, 187 Probabili ies, theory of, 285-7, 300,
Platina, ref. to, 138 302, 367, 383, 384, 389, 401, 403,
Plato, 42-4 405, 418-19, 422, 439, 448, 474
—- ref. to, 20, 26, 28, 35, 57, 64 Proclus, 112
Pliny, ref. to, 92 — ref. to, 13, 15,19, 21, 54
Pliicker, 481, 482 Product, symbols for, 241
Plus ; see Addition Progressions, arithmetical, 27, 69
— symbols for, 5, 104, 105, 153, 151

173, 194, 206-8, 211, 214, 215, — geometrical, 27, 59, 69, 72, 151
217, 240 — musical, 27

— origin ofsymbol + , 206-8 Projectiles, 219, 249
Plutarch, ref. to, 16 Proportion, symbols for, 239, 241
Pockels on Pliicker, 481 — treatment by Euclid, 58
Poggendorff, J. C., 446 Psellus, 117. ref. to, 226
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Psaudo-spherical space, 488 Rahn, 241
Pt)lemies, dynasty of, 51, 92, 114 Rainbow, explanation of, 176, 277, 
Ptolemy, 96-9 311, 324, 325
— ref. to, 67, 81, 84, 86, 88, 146, Raleigh, Sir Walter, ref. to, 237

156, 158, 160, 161, 164, 165, 166, Ramus, 227-8
171, 176, 177, 179, 180, 201, 227; Rashdall, ref. to, 139
also see Almagest Ratdolt on Campanus, 177

Puiseux, V. A., 467 Ratio, symbols for, 239, 241
Pulley, theory of, 28, 74 Rational numbers, Euclid on, 59
Purbach, 205. ref. to, 201 Rayleigh, Lord, 493, 498
Puzzles, 31, 61-2, 220-1, 305 Recent mathematics, chapter xιx
Pyramid, surface of, 70, 150 Reciprocants, 477
— volume of, 45, 70, 150 Record, 214-15
Pythagoras, 19-28 — ref. to, 125, 185, 195, 241
— ref. to, 3, 60 Recreations, mathematical, 220-1,
Pythagorean School, the, 19-30. 305

ref. to, 42, 53, 110 Rectification of curves, 291-2, 313,
317, 328, 341, 342, 345

Quadratic equations, 58, 89, 102, Recurring series, 384, 403
106, 148-9, 157-8, 210 Reductio ad absurdum, 39

Quadratic reciprocity, 423, 448 Reduction in geometry, 39
Quadratic residues, 423-4, 459 Reformation, the, 200
Quadratrix, 34, 35, 46 Refraction, 176, 254, 276-7, 304,
Quadrature of circle ; see Circle, 311, 325, 338-9, 380, 451, 472, 

also see τr 492
— cone, 70, 150 —atmospheric, 162
Quadrature of curves, 256, 290, Regiomontanus, 201-5

299, 308, 327-8, 341-3 — ref. to, 161, 211, 212, 228, 243
— ellipse, 69 Reguła ignavi, 188-9
— lunes, 39-41 Reiff, R., 446
— parabolas, 67-9, 280-1, 289-90, Renaissance, the mathematics of,

299 chapters xiι, xιιι
— sphere, 67, 70 Res used for unknown quantity,
Quadrics, 71, 395, 406 157, 203, 211, 217
Quadrilateral, area of, 149 Residues, theory of, 423-4, 453,
Quadrivium, 21, 114, 117, 133, 455

133-4, 136, 142, 179, 180 Resistance, solid of least, 370
Quantics, 479 Reversion of series, 327, 329
Quartic equation, 159, 223, 226, Reye on modern geometry, 483, 

232, 233 484
Quaternions, 453, 471, 472, 473 Rhabdas, 118
Quetelet, ref. to, 245, 307 Rheticus, 226. ref. to, 236, 243
Quintic equation, 462, 469, 473, Rhetorical algebra, 102-3, 105, 148,

478 167, 172-3, 203, 210
Quipus; see Abacus Rhind papyrus, the, 3-8
Quotient; see Division — ref. to, 10, 103
— symbols for, 153, 160, 241 Rhonius, 316

Riccati, 372. ref. to, 378
Raabe on convergency, 479 Ricci, 248
Rabdologia, the, 191, 236 Richard, J., 486
Radical, symbols for, 154, 206, 215, Riemann, 464-5

242, 289 — ref. to, 54, 450, 451, 453, 459,

www.rcin.org.pl



518 INDEX

461, 465, 467, 468, 479, 482, 485, Saurin, 371
486, 488 Savile, Sir Hen., 237

Riese, 215 Scaliger, 234
Rigaud, ref. to, 238, 316 Scharpff on Cusa, 205
Ritter on Culπιann, 490 Schering, ref. to, 464
Roberval, 307. ref. to 275, 282, Schlegel, S. F. V., 474

287 Schneider on Roger Bacon, 174
Rodet, ref. to, 3, 147 Schoenflies on Plucker, 481
Rods, Napier’s, 189-91, 236 Schδner on Jordanus, 171
Roemer, 317 Schools of Charles, 134-9
Rohan, ref. to, 229 Schooten, van, 307
Rolle, 31∙7-18 — ref. to, 231, 233, 276, 321
Roman mathematics, 113-15 Schottky, F. H., 465
— symbols for numbers, 126 Schroeder, 147
Romanus of Louvain, 227 Schubert, H. C. H., 481, 482
— ref. to, 229-30 Schurδ, E., ref. to, 19
Rome, mathematics at, 113-15 Schwarz, H. A., 465, 467, 472, 482
Rome Congress, 446 Scores, things counted by, 122
Roots of equations, imaginary, 223- Scratch system of division, 192-4

24, 470 Screw, the Archimedean, 65
— negative, 223 Secant, 161, 235, 243, 389, 394
— number of, 448, 470 Section, the golden, 44, 45, 57
— origin of term, 157 Secular lunar acceleration, 495
— position of, 276, 317, 331-2, 372, Sedillot, ref. to, 9, 144, 161

411, 433 Segre, C., 482
— symmetrical functions of, 331, Septante for seventy, 122

401, 470 Serenus, 94. ref. to, 380
Roots, square, cube, &c., 154, 206, Series; see Expansion

215, 242, 289-90 — reversion of, 327, 329
Rope-fasteners, Egyptian, 6 Serret, 402, 475, 479, 480
Rosen on Alkarismi, 156 Servant, M. G., 469
Rosenhain, J. G., 465 Seville, School of, 164
Routh on mechanics, 492 Sexagesimal angles, 4, 243
Royal Institution of London, 430 Sexagesimal fractions, 97, 169
Royal Society of London, 314-15 Sextant, invention of, 325
Rudolff, 215. ref. to, 217 Sextic Equation, 479
Rudolph II. of Germany, ref. to, Sforza, ref. to, 208

255 s’Gravesande on Huygens, 301
Ruffini, 462 Shakespeare, ref. to, 183
Rumford, Count, 430 Signs, rule of, 105-6
Russell, B. A. W., 489 Simple equations, 106

Simplicius, ref. to, 41
Saccheri, 485 Simpson, Thomas, 388-90
Saint-Mesme ; see L’Hospital — ref. to, 391, 394
Saint-Vincent, 307-8 Simson, Robert, 53. ref. to, 80,
— ref. to, 301, 309 81
Sairotti on graphics, 490 Sin x, series for, 314, 327, 364
Salerno, university of, 140 Sin~⅛, series for, 314, 327
Salmon, 480, 482 Sine, 88, 94, 96, 147-8, 150, 161,
Sanderson’s Logic, 320 201, 235, 239, 243, 389, 394
Sardou on Cardan, 221 Sines, table of, 67
Saunderson of Cambridge, 330 Sixtus IV. of Rome, ref. to, 202
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Slee on Alcuin, 134 Stevinus, 244-7
Slide-rule, 196 —1'θf∙ t°, 74, 19/, 228, 232, 242,
Sloman on calculus, 356, 358 382
Slusius ; see Sluze, de Stewart, Matthew, 388
Sluze, de, 316 Stifel, 215-17
— ref. to, 307, 311, 312 — ref. to, 194, 207, 226, 227, 228,
Smith, D. E., 446 231, 232, 276
Smith, Henry, 456-8 Stiffelius ; see Stifel
— ref. to, 459, 465, 481 Stirling, 341, 386
Smith, H. J. S., 459 Stobaeus, ref. to, 53
Smith, R. A., on Dalton, 431 Stokes, G. G., 479, 493, 497, 498
Snell, 254. ref. to, 24⅞, 277 Stolz, O., 459, 460
Socrates, ref. to, 42 Strabo, ref. to, 2, 42
Solar system, 497 String, vibrating, theory of, 376-7,
Solid of least resistance, 370 378, 381-2, 403
Solids ; see Polyhedrons Studium generale, 141
Sonin on Tchebycheff, 459 Sturm, ref. to, 433, 482
Sophists, the, 34 Style or gnomon, 18
Sound, velocity of, 403, 411, 419- Subtangent, 299, 308, 311, 316

20 — constant, 329, 362
Spanish mathematics, 164-9 Subtraction, processes of, 188
Spedding on Francis Bacon, 252 — symbols for, 5, 104, 105, 153,
Speidell on logarithms, 197 194-5, 206-8, 211, 214, 215, 216,
Sphere, surface and volume of, 66 240
Spheres, volumes of, 45 Suidas, ref. to, 18
Spherical excess, 235 Sun, distance and radius of, 34, 62
Spherical harmonics, 413, 422 Sun-dials, 18
Spherical space, 488-9 Supplemental triangle, 235, 254
Spherical trigonometry, 161, 279 Surds, symbols for, 154, 206, 215, 
Spheroids, Archimedes on, 69, 70 242, 289
Spinoza and Leibnitz, 355 Suter on Dionysodorus, 92, 144
Spiral of Archimedes, 69 Swan-pan ; see Abacus
Spiral, the equiangular, 367, 490 Sylow and Lie on Abel, 461 
Sponius on Cardan, 221 Sylvester, 476-7
Square root, symbols for, 154, 206, — ref. to, 332, 397, 459, 482

215, 242, 289 Sylvester II., 136-9
Squares, table of, 2 Symbolic algebra, 103
Squaring the circle ; see Circle Symbolic and mathematical logic,
Stackel, P., 446, 485 474
Stahl, H. B. L., 464, 467, 468 Symbols, algebraical, 239-43
Staigmiiller, ref. to, 208, 213 — trigonometrical, 243
Stapulensis on Jordanus, 171 Symmetrical functions of roots of
Stars, lists of, 88, 97, 254, 493-4 an equation, 331, 401, 470
Statics ; see Mechanics Syncopated algebra, 103, 104
Staudt, von, 484. ref. to, 426, Synthetic geometry ; see Geometry 

483
Steam-engine, Hero’s, 91 Tabit ibn Korra, 158-9. ref. to, 145
Stefan, 451 Tait, 473, 493
Steichen on Stevinus, 245 Tangent (geometrical), 274-5, 307,
Steiner, 483-4 311-12
— ref. to, 426, 464, 483, 484 Tangent (trigonometrical), 161,235,
Steinschneider on Arzachel, 165 243, 389, 394
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Tan~1z, series for, 314, 364 Timaeus of Locri, 30, 42
Tanner, P., 268 Tisserand, 417, 496
Tannery, J., on elliptic functions, Titius of Wittemberg, 416

467 Todhunter, ref. to, 422, 446
Tannery, S. P., ref. to, 19, 24, 33, Tonstall, 185

50, 86, 88, 96, 109, 110, 118, Torricelli, 308
293, 485 — ref. to, 251, 282, 291, 316

Tartaglia, 217-21 Tortuous curves, 373, 395-6, 481
— ref. to, 188, 192-3, 209, 222-3, Toschi, 372

224, 226, 231, 240 Trajectories, 350, 368
Tartalea ; see Tartaglia Transversals, 94
Tautochronous curve, 302 Trembley, 401
Taylor (Brook), 380-2 Treutlein, ref. to, 171, 182, 206
— ref. to, 378, 403 Triangle, area of, 89, 91
Taylor, C., on conics, 257 — arithmetical, 219, 231, 284-5
Taylor, Is., on numerals, 184, 185 Triangle of forces, 213, 245, 246, 
Taylor, T., on Pythagoras, 28 370
Taylor’s theorem, 381, 386, 410, Triangular numbers, 26

471 Trigonometrical functions, 88, 94,
Tchebycheff, 459 96, 147, 148, 150, 161-2, 201-2,
Telescopes, 249, 301, 303, 305, 313, 234-5, 239, 243, 368, 389, 394, 462

325 Trigonometrical symbols, origin of,
Ten as radix ; see Decimal 243, 389, 394
Tension of elastic string, 315 Trigonometry. Ideas of, in Rhind
Terquem on Ben Ezra, 166 papyrus, 7-8. Created by Hip-
Terrier on graphics, 490 parchus, 88 ; and by Ptolemy,
Thales, 14-17 ; ref. to, 3 96. Considered a part of as-
Thasus of Athens, 46 tronomy, and treated as such by
Theaetetus, 48 ; ref. to, 46, 54, 57 the Greeks and Arabs, 161.
Theano, ref. to, 19 Hindoo works on, 147-8, 150,
Theodoras of Cyrene, 30. ref. to, 154. Treated by most of the

36, 42, 48 mathematicians of the renais-
Theodosius, 91-2. ref. to, 311 sance, chapters xπ, xιπ. De-
Theon of Alexandria, 111 velopment of, by John Bernoulli,
— ref. to, 55, 128 368 ; Demoivre, 383 - 4 ; Euler,
Theon of Smyrna, 95 394 ; and Lambert, 400
Thermodynamics, 433 Trigonometry, addition formulae,
Thermometer, invention of, 249 88, 227, 462
Theta functions, 452, 458, 461, Trigonometry, higher ; sec Elliptic

463, 465 functions
Theudius of Athens, 46 Trisection of angle, 34, 37, 85, 234,
Thibaut, G., 147 316
Thompson, T. P., 486 Trivium, the, 114, 133, 136, 141-2
Thomson, Sir Benjamin, 430 Tschirnhausen, 317. ref. to, 357-8
Thomson, Sir J. J., 451, 493, 498 Tschotii; see Abacus
Thomson, Sir William ; see Kelvin Tycho Brahe, 195, 255, 256 
Three bodies, problem of, 399, 405, Tylor, E. B., ref. to, 121

464, 496, 496-7
Thurston on Carnot, 433 Ubaldi, 382
Thymaridas, 95-6 ; ref. to, 102 Ujein, 150
Tidal friction, 416, 496 Undulatory theory (optics), 303-4,
Tides, theory of, 250, 378, 387, 417 399, 431, 436
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Universe, constitution of the, 497 Vortices, Cartesian, 277, 323, 335, 
Universities, medieval, 139-41 337
— curriculum at, 141-3, 177-81 Waddington on Ramus, 227
Universities of renaissance, 200 Wanner 206
Unknown quantity, word or symbol Wallis 288-93

for, 5, 105, 121, 153-4, 157, 203, _ ref∕ to, 62, 149j 23gj 242> 268,
211, 216, 217, 228, 231, 232, 281, 295, 299, 3θ2, 309, 313,

ττ2'6 1, . . i . ™ 314, 316, 319, 321, 324, 327,
Urban, cl, on Aristarchus, 62 ∣ 337 33g 342 347

1 r x 4πn Wallner, C. R., 391
Valson, ref. to 436, 469 Waiterhausen, S. von, 447
Van Ceulen, 236 Wappler on Rudolff, 215
Vandermonde, 397, 419 Watches, invention of, 303, 315
Van Heuraet, 291, 292 Watt ref to 91
Vanishing points 382 Wave theo ’ ( optics)) 303.4, 399
Van Schooten, 307 431 43β
-ref. to, 231, 233, 276, 321 Weber H 464 467
Variations, calculus ot, 396, 402, Weber’ W ’ E 449 450 451

403, 435, 464, 467, 482 Weierstras’s 466Varignon 370. ref. to, 246 _ l ‰ 462 468 472
Velaria, 366 47g 482 4g^
Venturi on Leonardo da Vinci, 212 Weissenboλι, ref t l31 136 
Veronese, G., 482 Werner, fef t 134 137
Vers x, series for, 364 Wessel 471
Verulam, Lord, 252. ref. to, 298 ∣ ∙m ’ f . ∏ fi
Vibrating string, 376-7, 378, 381-2, whewell w’ 442 
v403 ∙ ∙t f 141 i7q Whiston,’ 33Ó: ref. to, 323, 347
JT%Zy ’ ’ Whitehead, A. N., 485, 489
Vieta 2zy-34 Whittaker, E. T., 496
— ref. to, 80, 195, 21/, 226, 228, ,x7., ’ , c . ιn. o.λ

229, 236, 238, 240, 242, 307, 321 ’ 2°6' t°, 1π9‰ 24°
Viga Ganita, 150-1, 153-4 ^ι kιnson on Bhaskara, 150
Vince, ref. to, 346 ^ι ham of Malmesbury ref. to, 138
Vinci, Leonardo da, 212-13 Williamson on Euclid, 52
__ ref 4θ 245 ’ Wilson on Cavendish, 429 
Vinculum, introduction of, 242 Wilson’s ⅛e°o^, 4°6
Virtual work, 378, 403, 406-7, 428 Wmgate, w .c .cq
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Year, duration of, 17, 83, 87 Zenodorus, 86
Young, Thos., 430-31 Zensus, 203, 211, 217, 232
— ref. to, 304, 422, 429, 436 Zero, symbol for, 184-5
Young, Sir Wm., on Taylor, 380 Zeta function, 467

Zeuthen, 50, 64, 77, 78, 481 
Zeuxippus, 64

Zangmeister, ref. to, 208 Ziegler on Regiomontanus, 201
Zeno, 31 Zonal harmonics, 422
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A SHORT ACCOUNT OF THEHISTORY OF MATHEMATICS
By W. W. ROUSE BALL.

Fourth Edition, 1908.

Pp. xxiv. + 522. Price 10s. net.

MACMILLAN AND CO., Ltd., LONDON AND NEW YORK.

This book gives an account of the lives and discoveries of 
those mathematicians to whom the development of the subject 
is mainly due. The use of technicalities has been avoided, 
and the work is intelligible to any one acquainted with the 
elements of mathematics.

The author commences with an account of the origin and 
progress of Greek mathematics, from which the Alexandrian, 
the Indian, and the Arab schools may be said to have arisen. 
Next the mathematics of medieval Europe and the Renaissance 
are described. The latter part of the book is devoted to the 
history of modern mathematics (beginning with the invention 
of analytical geometry and the infinitesimal calculus), the 
account of which is brought down to the present time.

SATURDAY REVIEW.—“This excellent summary of the history of mathe
matics supplies a want which has long been felt in this country. The extremely difficult 
question, how far such a work should be technical, has been solved with great tact. 
. . . The work contains many valuable hints, and is thoroughly readable. The 
biographies, which include those of most of the men who played important parts in the 
development of culture, are full and general enough to interest the ordinary reader as 
well as the specialist. Its value to the latter is much increased by the numerous 
references to authorities, a good table of contents, and a full and accurate index.”

ATHENAEUM.—“Mr. Ball’s book should meet with a hearty welcome, for though 
we possess other histories of special branches of mathematics, this is the first serious 
attempt that has been made in the English language to give a systematic account of 
the origin and development of the science as a whole. It is written too in an attractive
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style. Technicalities are not too numerous or obtrusive, and the work is interspersed 
with biographical sketches and anecdotes likely to interest the general reader. Thus 
the tyro and the advanced mathematician alike may read it with pleasure and profit.”

ACADEMY.—“A wealth of authorities, often far from accordant with each other, 
renders a work such as this extremely formidable ; and students of mathematics have 
reason to be grateful for the vast amount of information which has been condensed 
into this short account. . . . In a survey of so wide extent it is, of course, impossible to 
give anything but a bare sketch of the various lines of research, and this circumstance 
tends to render a narrative scrappy. It says much for Mr. Ball’s descriptive skill that 
his history reads more like a continuous story than a series of merely consecutive 
summaries.”

OBSERVATORY.—“ We can heartily recommend to our mathematical readers, and 
to others also, Mr. Ball’s History of Mathematics. The history of what might be 
supposed a dry subject is told in the pleasantest and most readable style, and at the 
same time there is evidence of the most careful research.”

NATURE.—“All the salient points lof mathematical history are given, and many 
of the results of recent antiquarian research ; but it must not be imagined that the book 
is at all dry. On the contrary the biographical sketches frequently contain amusing 
anecdotes, and many of the theorems mentioned are very clearly explained so as to bring 
them within the grasp of those who are only acquainted with elementary mathematics.”

BIBLIOTHECA MATHEMATICA.—“Le style de M. Ball est clair et el⅛ant, de 
nombreux aperęus rendent facile de suivre le fil de son exposition, et de frequentes 
citations permettent a celui qui le desire d’approfondir les recherches que Γauteur n’a 
pu qu’effleurer. . . . Cet ouvrage pourra devenir tres utile comme manuel d’histoire 
des mathematiques pour les ćtudiants, et il ne sera pas deplace dans les bibliotheques 
des savants.”

MANCHESTER GUARDIAN.—“The author modestly describes his work as a 
compilation, but it is thoroughly well digested, a due proportion is observed between 
the various parts, and when occasion demands he does not hesitate to give an independ
ent judgment on a disputed point. His verdicts in such instances appear to us to be 

• generally sound and reasonable. . . . To many readers who have not the courage or the 
opportunity to tackle the ponderous volumes of Montucla or the (mostly) ponderous 
treatises of German writers on special periods, it may be somewhat of a surprise to find 
what a wealth of human interest attaches to the history of so “dry” a subject as 
mathematics. We are brought into contact with many remarkable men, some of whom 
have played a great part in other fields, as the names of Gerbert, Wren, Leibnitz, 
Descartes, Pascal, D’Alembert, Carnot, among others may testify, and with at least 
one thorough blackguard (Cardan); and Mr. Ball’s pages abound with quaint and 
amusing touches characteristic of the authors under consideration, or of the times in 
which they lived.”

GLASGOW HERALD.—“There can be no doubt that the author has done his work 
in a very excellent way. . . . There is no one interested in almost any part of mathe
matical science who will not welcome such an exposition as the present, at once popu
larly written and exact, embracing the entire subject. . . . Mr. Ball’s work is destined 
to become a standard one on the subject."

OXFORD MAGAZINE.—“A most interesting book, not only for those who are 
mathematicians, but for the much larger circle of those who care to trace the course of 
general scientific progress. It is written in such a way that those who have only an 
elementary acquaintance with the subject can find on almost every page something of 
general interest.”

BULLETIN DES SCIENCES MATHEMATIQUES.-“ La lecture en est singular* 
ment attachante et instructive.”
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A PRIMER OF THEHISTORY OF MATHEMATICS
By W. W. ROUSE BALL.

Third Edition, 1906.

Pp. iv. + 148. Price 2s. net.

MACMILLAN AND CO., Ltd., LONDON AND NEW YORK.

The book contains a sketch in popular language of the history 
of mathematics ; it includes some notice of the lives and 
surroundings of those to whom the development of the 
subject is mainly due as well as of their discoveries.

ACADEMY.—“This Primer is written in the agreeable style with which the author 
has made us acquainted in his previous essays ; and we are sure that all readers of it 
will be ready to say that Mr. Ball has succeeded in the hope he has formed, that ‘it 
may not be uninteresting, even to those who are unacquainted with the leading facts. 
It is just the book to give an intelligent young student, and should allure him on to 
the perusal of Mr. Ball’s ‘ Short Account.’ The present work is not a mere rechauffe of 
that, though naturally most of what is here given will be found in equivalent form in 
the larger work. . . . The choice of material appears to us to be such as should lend 
interest to the study of mathematics and increase its educational value, which has been 
the author’s aim. The book goes well into the pocket, and is excellently printed.”

MANCHESTER GUARDIAN.—“We have here anew instance of Mr. Rouse Ball’s 
skill in giving in a small space an intelligible account of a large subject. In 137 pages 
we have a sketch of the progress of mathematics from the earliest records up to the 
middle of this century, and yet it is interesting to read and by no means a mere 
catalogue.”

SATURDA Y REVIEW.—“ It is not often that a reviewer of mathematical works can 
confess that he has read one of them through from cover to cover without abatement 
of interest or fatigue. But that is true of Mr. Rouse Ball’s wonderful entertaining 
little History of Mathematics which we heartily recommend to even the quite rudi
mentary mathematician. The capable mathematical master will not fail to find a dozen 
interesting facts therein to season his teaching. ”

MATHEMATICAL GAZETTE.—“ A fascinating little volume, which should be in 
the hands of all who do not possess the more elaborate History of Mathematics by the 
same author.’
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CAMBRIDGE REVIEW.—“This excellent sketch should be in the hands of every 
student, whether he is studying mathematics or not. In most cases there is an un
fortunate lack of knowledge upon this subject, and we welcome anything that will help 
to supply the deficiency. The primer is written in a concise, lucid, and easy manner, 
and gives the reader a general idea of the progress of mathematics that is both interest
ing and instructive. ”

EDUCATIONAL TIMES.—“Mr. Ball has not been deterred by the existence and 
success of his larger History of Mathematics from publishing a simple compendium 
in about a quarter of the space. . . . Of course, what he now gives is a bare outline of 
the subject, but it is ample for all except the most advanced proficients. There is no 
question that, as the author says, a knowledge of the history of a science lends interest 
to its study, and often increases its educational value. We can imagine no better 
cathartic for any mathematical student who has made some way with the calculus than 
a careful perusal of this little book. ”

EDUCATIONAL REVIEW.—“ The author has done good service to mathematicians 
by engaging in work in this special field. . . . The Primer gives, in,a brief compass, the 
history of the advance of this branch of science when under Greek∣influence, during the 
Middle Ages, and at the Renaissance, and then goes on to deal with the introduction of 
modern analysis and its recent developments. It refers to the life and work of the 
leaders of mathematical thought, adds a new and enlarged value to well-known problems 
by treating of their inception and history, and lights up with a warm and personal 
interest a science which some of its detractors have dared to call dull and cold.”

JOURNAL OF EDUCATION.—“It is not too much to say that this little work 
should be in the possession of every mathematical teacher. . . . The Primer gives in a 
small compass the leading events in the development of mathematics. . .. At the same 
time it is no dry chronicle of facts and theorems. The biographical sketches of the 
great workers, if short, are pithy, and often amusing. Well-known propositions will 
attain a new interest for the pupil as he traces their history long before the time of 
Euclid.”

ENGLISH MECHANIC.—“This is a work which all who apprehend the value of 
‘ mathematics ’ should read and study ..., and those who wish to learn how to think 
will find advantage in reading it.”

GLASGOW HERALD.—“ The subject, so far as our own language is concerned,is almost 
Mr. Ball’s own, and those who have no leisure to read his former work will find in this 
Primer a highly readable and instructive chapter in the history of education. The 
condensation has been skilfully done, the reader’s interest being sustained by the intro
duction of a good deal of far from tedious detail.”

LITERARY WORLD.—“ Mr. W. W. Rouse Ball is well known as the author of a very 
clever history of mathematics, besides useful works on kindred subjects. His latest 
production is A Primer of the History of Mathematics, a book of one hundred and forty 
pages, giving in non-technical language a full, concise, and readable narrative of the 
development of the science from the days of the Ionian Greeks until the present time. 
Anyone with a leaning towards algebraic or geometrical studies will be intensely 
interested in this account of progress from primitive usages, step by step, to our present 
elaborate systems. The lives of men who by their research and discovery helped along 
the good work are described briefly, but graphically. . . . The Primer should become 
a standard text-book.”

SCHOOL GUARDIAN.—“This is a capital little sketch of a subject on which 
Mr. Ball is an acknowledged authority, and of which too little is generally known. 
Mr. Ball, moreover, writes easily and well, and has the art of saying what he has to say 
in an interesting style.”
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MATHEMATICALRECREATIONS AND ESSAYS
By W. W. ROUSE BALL.

Fourth Edition, 1905.

Fifth Edition, 1911. Pp. xvi.+ 492. Price 8s. 6d. net.

MACMILLAN AND CO., Ltd., LONDON AND NEW YORK.

This work is divided into two parts : the first is on mathe
matical recreations and puzzles, the second includes some 
miscellaneous essays and an account of some problems of 
historical interest. In both parts questions which involve 
advanced mathematics are excluded.

The mathematical recreations include numerous elementary 
questions and paradoxes, as well as problems, such as the 
proposition that to colour a map not more than four colours 
are necessary, the explanation of the effect of a cut on a tennis 
ball, the fifteen puzzle, the eight queens problem, the fifteen 
school-girls, the construction of magic squares, the theory and 
history of mazes, and the knight’s path on a chess-board.

The second part commences with sketches of the history 
of the Mathematical Tripos at Cambridge, of the three famous 
classical problems in geometry (namely, the duplication of the 
cube, the trisection of an angle, and the quadrature of the 
circle) and of Mersenne’s Numbers. These are followed by 
essays on Astrology and Ciphers. The last three chapters 
are devoted to an account of certain hypotheses as to the nature 
of Space and Mass, and the means of measuring Time.

ACADEMY.—“Mr. Ball has attained a position in the front rank of writers on 
subjects connected with the history of mathematics, and this brochure will add 
another to his successes in this field. In it he has collected a mass of information 
bearing upon matters of more general interest, written in a style which is eminently 
readable, and at the same time exact. He has done his work so thoroughly that he has
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left few ears for other gleaners. The nature of the work is completely indicated to the 
mathematical student by its title. Does he want to revive his acquaintance with the 
Problimes Plat sans et Delectables of Bachet, or the Recreations Mathematiques et Physiques 
of Ozanam ? Let him take Mr. Ball for his companion, and he will have the cream of 
these works put before him with a wealth of illustration quite delightful. Or, coming 
to more recent times, he will have full and accurate discussion of ‘ the fifteen puzzle,’ 
‘ Chinese rings,’ * the fifteen school-girls problem,’ et id genus omne. Sufficient space is 
devoted to accounts of magic squares and unicursal problems (such as mazes, the 
knight’s path, and geometrical trees). These, and many other problems of equal interest, 
come under the head of ‘Recreations.’ The problems and speculations include an 
account of the Three Classical Problems ; there is also a brief sketch of Astrology ; and 
interesting outlines of the present state of our knowledge of hyper-space and of the 
constitution of matter. This enumeration badly indicates the matter handled, but it 
sufficiently states what the reader may expect to find. Moreover, for the use of readers 
who may wish to pursue the several heads further, Mr. Ball gives detailed references to 
the sources from whence he has derived his information. These Mathematical Recreations 
we can commend as suited for mathematicians and equally for others who wish to 
while away an occasional hour.”

NATURE.—“ The idea of writing some such account as that before us must have been 
present to Mr. Ball’s mind when he was collecting the material which he has so skilfully 
worked up into his History of Mathematics. We think this because . . . many bits of 
ore which w,ould not suit the earlier work find a fitting niche in this. Howsoever the 
case may be, we are sure that non-mathematical, as well as mathematical, readers will 
derive amusement, and we venture to think, profit withal, from a perusal of it. The 
author has gone very exhaustively over the ground, and has left us little opportunity 
of adding to or correcting what he has thus reproduced from his notebooks. The 
work before us is divided into two parts : mathematical recreations and mathematical 
problems and speculations. All these matters are treated lucidly, and with sufficient 
detail for the ordinary reader, and for others there is ample store of references. . . . 
Our analysis shows how great an extent of ground is covered, and the account is fully 
pervaded by the attractive charm Mr. Ball knows so well how to infuse into what many 
persons would look upon as a dry subject.”

CAMBRIDGE REVIEW.—“A fit sequel to its author’s valuable and interesting 
works on the history of mathematics. There is a fascination about this volume which 
results from a happy combination of puzzle and paradox. There is both milk for babes 
and strong meat for grown men. . . . A great deal of the information is hardly accessible 
in any English books ; and Mr. Ball would deserve the gratitude of mathematicians 
for having merely collected the facts. But he has presented them with such lucidity 
and vivacity of style that there is not a dull page in the book; and he has added 
minute and full bibliographical references which greatly enhance the value of his work."

TIMES.—“Mathematicians with a turn for the paradoxes and puzzles connected 
with number, space, and time, in which their science abounds, will delight in 
Mathematical Recreations and Problems of Past and Present Times."

NATIONAL OBSERVER.—" Mathematicians have their recreations; and Mr. Ball 
sets forth the humours of mathematics in a book of deepest interest to the clerical 
reader, and of no little attractiveness to the layman. The notes attest an enormous 
amount of research.”

OBSERVATORY.—“Mr. Ball, to whom we are already indebted for two excellent 
Histories of Mathematics, has just produced a book which will be thoroughly 
appreciated by those who enjoy the setting of the wits to work. . . . He has collected 
a vast amount of information about mathematical quips, tricks, cranks, and puzzles— 
old and new ; and it will be strange if even the most learned do not find something 
fresh in the assortment.”
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MANCHESTER GUARDIAN.—“Mr. Rouse Ball has the true gift of story-telling, 
and he writes so pleasantly that though we enjoy the fulness of his knowledge we are 
tempted to forget the considerable amount of labour involved in the preparation of 
his book. He gives us the history and the mathematics of many problems . . . and 
where the limits of his work prevent him from dealing fully with the points raised, 
like a true worker he gives us ample references to original memoirs. . . . The book 
is warmly to be recommended, and should find a place on the shelves of every one 
interested in mathematics and on those of every public library.”

ENGLISH MECHANIC AND WORLD OF SCIENCE.—“A work which will interest 
all who delight in mathematics and mental exercises generally. The student will often 
take it up, as it contains many problems which puzzle even clever people.”

ATHENAEUM.—“ This is a book which the general reader should find as interesting 
as the mathematician. At all events, an intelligent enjoyment of its contents pre
supposes no more knowledge of mathematics than is nowadays possessed by almost 
everybody.”

MECHANICAL WORLD.—“ An exceedingly interesting work which, while appeal
ing more directly to those who are somewhat mathematically inclined, it is at the 
same time calculated to interest the general reader. . . . Mr. Ball writes in a highly 
interesting manner on a fascinating subject, the result being a work which is in every 
respect excellent.”

JOURNAL DE SCIENCIAS MATHEMATICAS, COIMBRA.—" E um livro muito 
interessante, consagrado a recreios mathematicos, alguns dos quaes sao muito hellos, 
e a problemas interessantes da mesma sciencia, que nao exige para ser lido grandes 
conhecimentos mathematicos e que tern em grao elevado a~qualidade de instruir, 
deleitando ao mesmo tempo.”

BULLETIN OF THE NEW YORK MATHEMATICAL SOCIETY.—'“The work is a 
very judicious and suggestive compilation, not meant mainly for mathematicians, yet 
made doubly valuable to them by copious references. The style in the main is so 
compact and clear that what is central in a long argument or process is admirably 
presented in a few words. One great merit of this, or any other really good book on 
such a subject, is its suggestiveness ; and in running through its' pages, one is pretty 
sure to think of additional problems on the same general lines.”

SCHOOL GUARDIAN.—“ A book which deserves to be widely known by those who 
are fond of solving puzzles . . . and will be found to contain an admirable classified 
collection of ingenious questions capable of mathematical analysis. As the author is 
himself a skilful mathematician, and is careful to add an analysis of most of the pro
positions, it may easily be believed that there is food for study as well as amusement 
in his pages. . . . Is in every way worthy of praise."

OXFORD MAGAZINE.—“Once more the author of a Short History of Mathematics 
and a History of the Study of Mathematics at Cambridge gives evidence of the width of his 
reading and of his skill in compilation. From the elementary arithmetical puzzles 
which were known in the sixteenth and seventeenth centuries to those modern ones 
the mathematical discussion of which has taxed the energies of the ablest investigator, 
very few questions have been left unrepresented. The sources of the author’s informa
tion are indicated with great fulness. . . . The book is a welcome addition to English 
mathematical literature.”
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A HISTORY OF THE STUDY OF
XMATHEMATICS AT CAMBRIDGE

By W. W. ROUSE BALL.

PP. xvi. + 264. Price 6s.

THE UNIVERSITY PRESS, CAMBRIDGE.

This work contains an account of the development of the 
study of mathematics in the University of Cambridge from 
the twelfth century to the middle of the nineteenth century, 
and a description of the means by which proficiency in that 
study was tested at various times.

The first part of the book is devoted to a brief account 
of the more eminent of the Cambridge mathematicians, the 
subject matter of their works, and their methods of exposition. 
The second part treats of the manner in which mathematics 
was taught, and of the exercises and examinations required 
of students in past times. A sketch is given of the origin 
and history of the Mathematical Tripos; this includes the 
substance of the earlier parts of the author’s work on that 
subject, Cambridge, 1880. To explain the relation of 
mathematics to other departments of study an outline of 
the general history of the university and the organisation 
of education therein is added.

MANCHESTER GUARDIAN.—“ The present volume is very pleasant reading, and 
though much of it necessarily appeals only to mathematicians, there are parts— 
e.g. the chapters on Newton, on the growth of the tripos, and on the history of the 
university—which are full of interest for a general reader. . . . The book is well 
written, the style is crisp and clear, and there is a humorous appreciation of some of 
the curious old regulations which have been superseded by time and change of custom. 
Though it seems light, it must represent an extensive study and investigation on the 
part of the author, the essential results of which are skilfully given. We can most 
thoroughly commend Mr. Ball’s volume to all readers who are interested in mathe
matics or in the growth and the position of the Cambridge school of mathematicians.”
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BULLETIN DES SCIENCES MATH0MATIQUES.-“ Voici un livre dont la lecture 
inspire tout d’abord le regret que des travaux analogues n’aient pas ete faits pour toutes 
les Ecoles cćlebres, et avec autant de soin et de darte. . . , Toutes les parties du 
livre nous ont vivement interesse.”

EDUCATIONAL TIMES.—“A book of pleasant and useful reading for both 
historians and mathematicians. Mr. Ball’s previous researches into this kind of 
history have already established his reputation, and the book is worthy of the reputa
tion of its author. It is more than a detailed account of the rise and progress of 
mathematics, for it involves a very exact history of the University of Cambridge from 
its foundation.”

DAILY NEWS.—“ Mr. Ball is far from confining his narrative to the particular 
science of which he is himself an acknowledged master, and his account of the study 
of mathematics becomes a series of biographical portraits of eminent professors, and 
a record not only of the intellectual life of the elite, but of the manners, habits, and 
discussions of the great body of Cambridge men from the sixteenth century to our 
own. . . . He has shown how the University has justified its liberal reputation, 
and how amply prepared it was for the larger freedom which it now enjoys.”

ST. JAMES’S GAZETTE.—“Mr. Ball has not only given us a detailed account of 
the rise and progress of the science with which the name of Cambridge is generally 
associated, but has also written a brief but reliable and interesting history of the 
university itself from its foundation down to recent times. . . . The book is pleasant 
reading alike for the mathematician and the student of history.”

GLASGOW HERALD.—“A very handy and valuable book, containing, as it does, a 
vast deal of interesting information which could not without inconceivable trouble 
be found elsewhere. . . . It is very far from forming merely a mathematical bio
graphical dictionary, the growth of mathematical science being skilfully traced in 
connection with the successive names. There are probably very few people who will 
be able thoroughly to appreciate the author’s laborious researches in all sorts of 
memoirs and transactions of learned societies in order to unearth the material which 
he has so agreeably condensed. . . . Along with this there is much new matter 
which, while of great interest to mathematicians, and more especially to men brought 
up at Cambridge, will be found to throw a good deal of new and important light on 
the history of education in general.”

LITERARY WORLD.—“ Exceedingly interesting to all who care for mathematics. 
. . . After giving an account of the chief Cambridge mathematicians and their works 
in chronological order, Mr. Rouse Ball goes on to deal with the history of tuition and 
examinations in the university . . . and recounts the steps by which the word 
‘ tripos ’ changed its meaning ‘ from a thing of wood to a man, from a man to a speech, 
from a speech to two sets of verses, from verses to a sheet of coarse foolscap paper, 
from a paper to a list of names, and from a list of names to a system of examination.’ 
Never did word undergo so many alterations.”

SCOTS OBSERVER.—“ In giving an account of the development of the study of 
mathematics in the University of Cambridge, and the means by which mathematical 
proficiency was tested in successive generations, Mr. Ball has taken the novel plan of 
devoting the first half of his book to . . . the more eminent Cambridge mathe
maticians, and of reserving to the second part an account of how at various times the 
subject was taught, and how the result of its study was tested. . . . Very interesting 
information is given about the work of the students during the different periods, with 
specimens of problem-papers as far back as 1802. The book is very enjoyable, and 
gives a capital and accurate digest of many excellent authorities which are not within 
the reach of the ordinary reader.
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AN ESSAY ON

THE GENESIS, CONTENTS, AND HISTORY OFNEWTON’S “PRINCIPIA”
By W. W. ROUSE BALL.

Pp. x. + 175. Price 6s. net.

MACMILLAN AND CO., Ltd., LONDON AND NEW YORK.

This work contains an account of the successive discoveries 
of Newton on gravitation, the methods he used, and the 
history of his researches.

It commences with a review of the extant authorities 
dealing with the subject. In the next two chapters the 
investigations made in 1666 and 1679 are discussed, some 
of the documents dealing therewith being here printed for 
the first time. The fourth chapter is devoted to the 
investigations made in 1684: these are illustrated by 
Newton’s professorial lectures (of which the original manu
script is extant) of that autumn, and are summed up in the 
almost unknown memoir of February 1685, which is here 
reproduced from Newton’s holograph copy. In the two 
following chapters the details of the preparation from 1685 
to 1687 of the Principia are described, and an analysis of the 
work is given. The seventh chapter comprises an account of 
the researches of Newton on gravitation subsequent to the 
publication of the first edition of the Principia, and a sketch 
of the history of that work.

In the last chapter, the extant letters of 1678-1679 be
tween Hooke and Newton, and of those of 1686-1687 between 
Halley and Newton, are reprinted, and there are also notes 
on the extant correspondence concerning the production of 
the second and third editions of the Principia.
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NATURE.—“'For the essay which we have before us, Mr. Ball should receive the 
thanks of all those to whom the name of Newton recalls the memory of a great man. 
The Principia, besides being a lasting monument of Newton’s life, is also to-day the 
classic of our mathematical writings, and will be so for some time to come. . . . The 
value of the present work is also enhanced by the fact that, besides containing a few 
as yet unpublished letters, there are collected in its pages quotations from all docu
ments, thus forming a complete summary of everything that is known on the subject. 
. . . The author is so well known a writer on anything connected with the history of 
mathematics, that we need make no mention of the thoroughness of the essay, while 
it would be superfluous for us to add that from beginning to end it is pleasantly 
written and delightful to read. Those well acquainted with the Principia will 
find much that will interest them, while those not so fully enlightened will learn 
much by reading through the account of the origin and history of Newton’s greatest 
work.”

ATHENAEUM.—“ An Essay on Newton's Principia will suggest to many something 
solely mathematical, and therefore wholly uninteresting. No inference could be 
more erroneous. The book certainly deals largely in scientific technicalities which 
will interest experts only; but it also contains much historical information which 
might attract many who, from laziness or inability, would be very willing to take all 
its mathematics for granted. Mr. Ball carefully examines the evidence bearing on 
the development of Newton’s great discovery, and supplies the reader with abundant 
quotations from contemporary authorities. Not the least interesting portion of the 
book is the appendix, or rather appendices, containing copies of the original docu
ments (mostly letters) to which Mr. Ball refers in his historical criticisms. Several 
of these bear upon the irritating and unfounded claims of Hooke."

BIBLIOTHECA MATHEMATICA.—“ Lasavante monographie de M. Ball est redigee 
avec beaucoup de soin, et a plusieurs egards elle pent servir de modele pour des ecrits 
de la meme nature.”

SCOTSMAN.—“ Newton’s Principia has world-wide fame as a classic of mathematical 
science. But those who know thoroughly the contents and the history of the book 
are a select company. It was at one time the purpose of Mr. Ball to prepare a new 
critical edition of the work, accompanied by a prefatory history and notes, and by an 
analytical commentary. Mathematicians will regret to hear that there ,is no pros
pect in the immediate future of seeing this important book carried to completion by 
so competent a hand. They will at the same time welcome Mr. Ball’s Essay on the 
Principia for the elucidations which it gives of the process by which Newton’s great 
work originated and took form, and also as an earnest of the completed plan.”

GLASGOW HERALD.—“ In this essay Mr. Ball presents us with an account highly 
interesting to mathematicians and natural philosophers of the origin and history of 
that remarkable product of a great genius PhUosophiae Naturalis Principia Mothe- 
matica, ‘ The Mathematical Principles of Natural Philosophy,’ better known by the 
short term Principia. . . . Mr. Ball’s essay is one of extreme interest to students of 
physical science, and it is sure to be widely read and greatly appreciated.”

SCOTTISH LEADER.—“To his well-known and scholarly treatises on the History 
of Mathematics Mr. W. W. Rouse Ball has added An Essay on Newton’s Principia. 
Newton’s Principia, as Mr. Ball justly observes, is the classic of English mathematical 
writings ; and this sound, luminous, and laborious essay ought to be the classical
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account of the Principia. The essay is the outcome of a critical edition of Newton’s 
great work, which Mr. Ball tells us that he once contemplated. It is much to be hoped 
that he will carry out his intention, for no English mathematician is likely to do 
the work better or in a more reverent spirit. . ..-. It is unnecessary to say that Mr. 
Ball has a complete knowledge of his subject. He writes with an ease and clearness 
that are rare.”

BULLETIN DES SCIENCES MATH&MATIQUES.—“ La volume de M. Rouse Ball 
renferme tout ce que Ton peut desirer savoir sur l’histoire des Principes; c’est 
d’ailleurs l’oeuvre d’un esprit clair, judicieux, et methodique.”

ACADEMY.—“ Mr. Ball has put into small space a very great deal of interesting 
matter, and his book ought to meet with a wide circulation among lovers of Newton 
and the Principia."

MANCHESTER GUARDIAN.—“ Admirers of Mr. W. W. Rouse Ball’s Short Account 
of the History of Mathematics will be glad to receive a detailed study of the history of 
the Principia from the same hand. This book, like its predecessors, gives a very 
lucid account of its subject. We find in it an account of Newton’s investigations in 
his earlier years, which are to some extent collected in the tract de Motu (the germ of 
the Principia), the text of which Mr. Rouse Ball gives us in full. In a later chapter 
there is a full analysis of the Principia itself, and after that an account of the 
preparation of the second and third editions. Probably the part of the book which 
will be found most interesting by the general reader is the account of the correspond
ence of Newton with Hooke, and with Halley, about the contents or the publication 
of the Principia. This correspondence is given in full, so far as it is recoverable. 
Hooke does not appear to advantage in it. He accuses Newton of stealing his ideas. 
His vain and envious disposition made his own merits appear great in his eyes, and 
be-dwarfed the work of others, so that he seems to have believed that Newton’s great 
performance was a mere expanding and editing of the ideas of Mr. Hooke—ideas 
which were meritorious, but after all mere guesses at truth. This, at all events, is 
the most charitable view we' can take of his conduct. Halley, on the contrary, 
appears as a man to whom we ought to feel most grateful. It almost seems as 
though Newton’s physical insight and extraordinary mathematical powers might 
have been largely wasted, as was Pascal’s rare genius, if it had not been for Halley’s 
single-hearted and self-forgetful efforts to get from his friend’s genius all he could 
for the enlightenment of men. It was probably at his suggestion that the writing of 
the Principia was undertaken. When the work was presented to the Royal Society, 
they undertook its publication, but, being without the necessary funds, the expense 
fell upon Halley. When Newton, stung by Hooke’s accusations, wished to withdraw 
a part of the work, Halley’s tact was required to avert the catastrophe. All the 
drudgery, worry, and expense fell to his share, and was accepted with the most 
generous good nature. It will be seen that both the technical student and the 
general reader will find much to interest him in Mr. Rouse Ball’s book.”

MATHESIS.—“ Une histoire tres bien faite de la gen⅛se du livre immortel de Newton. 
. . . Le livre de M. Ball est une monographie precieuse sur un point important de 
l’histoire des math⅛matiques. Il contribuera ⅛, accroitre, si c’est possible, la gloire 
de Newton, ,en rev⅛lant ⅛, beaucoup de lecteurs, avoc- quelle merveilleuse rapiditć 
Γillustre geomćtre anglais a 61eve ⅛ la science ce monument immortel, les 
Principia."
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THE HISTORY OFTRINITY COLLEGE, CAMBRIDGE
By W. W. ROUSE BALL.Pp. xiv.+ 183. Price 2s. 6d. net.

MACMILLAN AND CO., Ltd., LONDON AND NEW YORK.

This booklet gives a popular account of the History of Trinity 
College, Cambridge. It was written mainly for the use of the 
author’s pupils, and contains such information and goβsip about 
the College and life there in past times as he believed would be 
interesting to most undergraduates and members of the House.

GLASGOW HERALD.—“This . . . little volume seems to us to do more for its 
subject than many of the more formal volumes . . . treating of the separate colleges 
of the English universities. ... In nine short, extremely readable, and truly inform
ing chapters it gives the reader a very vivid account at once of the origin and develop
ment of the University of Cambridge, of the rise and gradual supremacy of the 
colleges, . . . and the subsequent fortunes of the premier college of Cambridge. The 
subject is treated . . . under four great periods—namely, that during the Middle Ages, 
that during the Renaissance, that under the Elizabethan statutes, and that during the 
last half-century. No one who begins Mr. Ball’s book will lay it down till he has 
read it from beginning to end. ”

OXFORD MAGAZINE.—“ It is a sign of the times, and a very satisfactory one, 
when . . . a tutor . . . takes the trouble to make the history of his college known to 
his pupils. Considering the lack of good books about the Universities, we may thank 
Mr. Ball that he has been good enough to print for a larger circle. Though he 
modestly calls his book only ‘Notes,’ yet it is eminently readable, and there is plenty 
of information, as well as abundance of good stories, in its pages.,

GUARDIAN.—“ Mr. Ball has put not only the pupils for whom he compiled these 
notes, but the large world of Trinity men, under a great obligation by this com
pendious but lucid and interesting history of the society to whose service he is 
devoted. The value of his contribution to our knowledge is increased by the extreme 
simplicity with which he tells his story, and the very suggestive details which, 
without much comment, he has selected, with admirable discernment, out of the 
wealth of materials at his disposal. His initial account of the development of the 
University is brief but extremely clear, presenting us with facts rather than theories, 
but establishing, with much distinctness, the essential difference between the hostels, 
out of which the more modern colleges grew, and that monastic life which poorer 
students were often tempted to join.’’

SCOTSMAN.—“An interesting and valuable book. ... It is described by its 
author as ‘ little more than an orderly transcript ’ of what, as a Fellow and Tutor of 
the College, he has been accustomed to tell his pupils. But while it does not pretend 
either to the form or to the exhaustiveness of a set history, it is scholarly enough to 
rank as an authority, and far more interesting and readable than most academic 
histories are. It gives an instructive sketch of the development of the University
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and of the particular history of Trinity, noting its rise and policy in the earlier 
centuries of its existence, until, under the misrule of Bentley, it came into a state of 
disorder which nearly resulted in its dissolution. The subsequent rise of the College 
and its position in what Mr. Ball calls the Victorian renaissance, are drawn in lines no 
less suggestive; and the book, as a whole, cannot fail to be welcome to every one who 
is closely interested in the progress of the College.”

MANCHESTER GUARDIAN.—“ Mr. Ball has succeeded very well in giving in this 
little volume just what an intelligent undergraduate ought and probably often does 
desire to know about the buildings and the history of his College. . . . The debt of 
the ‘ royal and religious foundation ’ to Henry VIII. is explained with fulness, and 
there is much interesting matter as to the manner of life and the expenses of students 
in the sixteenth century. ”TRINITY COLLEGE, CAMBRIDGE

By W. W. BOUSE BALL.Pp. xiv. + 10 7. Price 2s. net.
J. M. DENT AND CO. LONDON. i

I ∙.≡t-

This booklet contains a somewhat more popular sketch of <he 
history, external and internal, of the College, with notes on some of 
its famous past members. It is intended to supply such information 
as all those in any way interested in the matter would desire to 
have. It is illustrated by Mr. Edmund H. New.

<EJ
GUARDIAN.—“Mr. Rouse Ball is a sound antiquary and an accomplished writer. 

He is also in close touch with the actual life of the great home of learning through 
which he guides us in his skilful pages. His topographical descriptions are clear apd 
concise, his historical sketches, both of the external and the internal life of the 
College, are interesting and lively, while the occasional light which he throws upon 
the habits and ways of collegians, ancient as well as modern, is extremely valuable."

WORLD.—“ The skill with which the . . . subjects have been treated will be 
recognised and appreciated by all readers. Not less adequate are the author’s 
description of the College buildings, his account of Trinity life, customs and traditions, 
and his references to the many eminent men who have added lustre to the gr⅛at 
College in successive generations.”

OXFORD MAGAZINE.—“ A charming book . . . which tells just what every 
Trinity man should wish to know about his College, its buildings and its famous sons.”

BOOKSELLER.—“ In his account of the College, Mr. Rouse Ball is equally at home 
in dealing with the history, the architecture, the collegiate life, and the personal 
associations which gather so closely around the College. His anecdotes and tales are 
chosen with judgment, and told with a vivacity and humour which add materially to 
the delightfulness of the book.”

SPECTATOR.—“ This book is pleasant, it is anecdotical, it is practical, furnishing 
just the details that one wants, with the relief of the agreeable and entertaining.”
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