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PREFACE

The subject-matter of this book is a historical summary
oif the development of mathematics, illustrated by the
lives and discoveries of those to whom the progress of the
science is mainly due. It may serve as an introduction
to more elaborate works on the subject, but primarily it
is intended to give a short and popular account of those
leading facts in the history of mathematics which many
who are unwilling, or have not the time, to study it
systematically may yet desire to know.

The first edition was substantially a transcript of
some lectures which | delivered in the year 1888 with
the object of giving a sketch of the history, previous to
the nineteenth century, that should be intelligible to any
one acquainted with the elements of mathematics. In
the second edition, issued in 1893, | rearranged parts
of it, and introduced a good deal of additional matter.
The third edition, issued in 1901, was revised, but not
materially altered; and the present edition is practically
a reprint of this, save for a few small corrections and
additions.
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The scheme of arrangement will be gathered from he
table of contents at the end of this preface. Shortly it
is as follows. The first chapter contains a brief stae-
ment of what is known concerning the mathematics of
the Egyptians and Phoenicians; this is introductory to
the history of mathematics under Greek influence. ‘'he
subsequent history is divided into three periods" fist,
that under Greek influence, chapters 1 to vit; s<ecad,
that of the middle ages and renaissance, chapters Tt to
x11t; and lastly that of modern times, chapters xiv to
XIX.

In discussing the mathematics of these period |
have confined myself to giving the leading events in he
history, and frequently have passed in silence over ten
or works whose influence was comparatively unimportnt.
Doubtless an exaggerated view of the discoveries of thse
mathematicians who are mentioned may be caused by
the non-allusion to minor writers who preceded nd
prepared the way for them, but in all historical sketoes
this is to some extent inevitable, and | have dome ny
best to guard against it by interpolating remarks on he
progress of the science at different times. Perhaps Iso
I should here state that generally 1 have not refered
to the results obtained by practical astronomers nd
physicists unless there was some mathematical imteest
in them. In quoting results | have commonly mde
use of modern notation; the reader must there)re
recollect that, while the matter is the same as tat
of any writer to whom allusion is made, his proo is



PREFACE vii

sometimes translated into a more convenient and familiar
language.

The greater part of my account is a compilation from
existing histories or memoirs, as indeed must be neces-
sarily the case where the works discussed are so numerous
and cover so much ground. When authorities disagree |
have generally stated only that view which seems to me
to be the most probable; but if the question be one of
importance, | believe that | have always indicated that
there is a difference of opinion about it.

I think that it is undesirable to overload a popular
account with a mass of detailed references or the
authority for every particular fact mentioned. For the
history previous to 1758, I need only refer, once for all,
to the closely printed pages of M. Cantor’'s monumental
Vorlesungen iiber die Geschichte der Mathematik (here-
after alluded to as Cantor), which may be regarded
as the standard treatise on the subject, but usually
I have given references to the other leading
authorities on which 1 have relied or with which
I am acquainted. My account for the period sub-
sequent to 1758 is generally based on the memoirs or
monographs referred to in the footnotes, but the main
facts to 1799 have been also enumerated in a supple-
mentary volume issued by Prof. Cantor last year. |
hope that my footnotes will supply the means of studying
in detail the history of mathematics at any specified
period should the reader desire to do so.

My thanks are due to various friends and corre-
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spondents who have called my attention to points in thhe
previous editions. | shall be grateful for notices cof
additions or corrections which may occur to any of may
readers.

W. W. ROUSE BALL.

Trinity College, Cambridge,
May 1908.

NOTE TO THE FIFTH EDITION

No material changes have been made in this edition.

W. W. R. B,

Trinity College, Cambridge,
December 1911.
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CHAPTER |I.
EGYPTIAN AND PHOENICIAN MATHEMATICS.

Ti'he history of mathematics cannot with certainty be traced
baack to any school or period before that of the lonian Greeks.
Trhe subsequent history may be divided into three periods, the
distinctions between which are tolerably well marked. The first
peeriod is that of the history of mathematics under Greek influ-
ennce, this is discussed in chapters 1 to vil; the second is that
off the mathematics of the middle ages and the renaissance,
thhis is discussed in chapters vni to xwn; the third is that of
moodern mathematics, and this is discussed in chapters xiv to
XIX.

Although the history of mathematics commences with that
off the lonian schools, there is no doubt that those Greeks who
first paid attention to the subject were largely indebted to
tlhe previous investigations of the Egyptians and Phoenicians.
O)ur knowledge of the mathematical attainments of those races
iss imperfect and partly conjectural, but, such as it is, it is here
bi>riefly summarised. The definite history begins with the next
clhapter.

On the subject of prehistoric mathematics, we may observe
itn the first place that, though all early races which have left
reecords behind them knew something of numeration and
rmechanics, and though the majority were also acquainted with
tlhe elements of land -surveying, yet the rules which they

5= b
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possessed were in general founded only on the results of observa-
tion and experiment, and were neither deduced from nor did
they form part of any science. The fact then that various
nations in the vicinity of Greece had reached a high state of
civilisation does not justify us in assuming that they had studied
mathematics.

The only races with whom the Greeks of Asia Minor
(amongst whom our history begins) were likely to have come
into frequent contact were those inhabiting the eastern littoral
of the Mediterranean; and Greek tradition uniformly assigned
the special development of geometry to the Egyptians, and
that of the science of numbers either to the Egyptians or to the
Phoenicians. | discuss these subjects separately.

First, as to the science of numbers. So far as the acquire-
ments of the Phoenicians on this subject are concerned it is
impossible to speak with certainty. The magnitude of the
commercial transactions of Tyre and Sidon necessitated a con-
siderable development of arithmetic, to which it is probable
the name of science might be properly applied. A Babylonian
table of the numerical value of the squares of a series of con-
secutive integers has been found, and this would seem to indicate
that properties of numbers were studied. According to Strabo
the Tyrians paid particular attention to the sciences of numbers,
navigation, and astronomy; they had, we know, considerable
commerce with their neighbours and kinsmen the Chaldaeans;
and Bbckh says that they regularly supplied the weights and
measures used in Babylon. Now the Chaldaeans had certainly
paid some attention to arithmetic and geometry, as is shown
by their astronomical calculations; and, whatever was the
extent of their attainments in arithmetic, it is almost certain
that the Phoenicians were equally proficient, while it is likely
that the knowledge of the latter, such as it was, was communi-
cated to the Greeks. On the whole it seems probable that the
early Greeks were largely indebted to the Phoenicians for their
knowledge of practical arithmetic or the art of calculation, and
perhaps also learnt from them a few properties of numbers. It
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nuay be worthy of note that Pythagoras was a Phoenician; and
according to Herodotus, but this is more doubtful, Thales was
also of that race.

I may mention that the almost universal use of the abacus
or swan-pan rendered it easy for the ancients to add and
subtract without any knowledge of theoretical arithmetic.
These instruments will be described later in chapter vy, it
will be sufficient here to say that they afford a concrete way
off representing a number in the decimal scale, and enable the
results of addition and subtraction to be obtained by a merely
mechanical process. This, coupled with a means of represent-
ing the result in writing, was all that was required for practical
purposes.

We are able to speak with more certainty on the arithmetic
of the Egyptians. About forty years ago a hieratic papyrus,!
forming part of the Rhind collection in the British Museum,
was deciphered, which has thrown considerable light on their
mathematical attainments. The manuscript was written by a
scribe named Almes at a date, according to Egyptologists,
considerably more than a thousand years before Christ, and it
is believed to be itself a copy, with emendations, of a treatise
more than a thousand years older. The work is called “direc-
tions for knowing all dark things,” and consists of a collection of
problems in arithmetic and geometry ; the answers are given, but
in general not the processes by which they are obtained. It appears
to be a summary of rules and questions familiar to the priests.

The first part deals with the reduction of fractions of the
form 2/(2% + 1) to a sum of fractions each of whose numerators
is unity: for example, Ahmes states that is the sum of
s N> %> and &1 and.~T is the sum of A, A9, ailld 13-
In all the examples n is less than 50. Probably he had no
rule for forming the component fractions, and the answers

1 See Ein mathematisches Handbuch der alten Aegypter, by A. Eisenlohr,
second edition, Leipzig, 1891 ; see also Cantor, chap, i; and A Short
History of Qreelc Mathematics, by J. Gow, Cambridge, 1884, arts. 12-14.
Besides these authorities the papyrus has been discussed in memoirs by

L. Rodet, A. Favaro, V. Bobynin, and E. Weyr.
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given represent the accumulated experiences of previous writers :
in one solitary case, however, he has indicated his method, for,
after having asserted that j is the sum of % and %, he adds that
therefore two-thirds of one-fifth is equal to the sum of a half of
a fifth and a sixth of a fifth, that is, to 1lo + n%.

That so much attention was paid to fractions is explained by
the fact that in early times their treatment was found difficult.
The Egyptians and Greeks simplified the problem by reducing
a fraction to the sum of several fractions, in each of which the
numerator was unity, the sole exception to this rule being the
fraction §. This remained the Greek practice until the sixth
century of our era. The Romans, on the other hand, generally
kept the denominator constant and equal to twelve, expressing
the fraction (approximately) as so many twelfths. The Baby-
lonians did the same in astronomy, except that they used sixty
as the constant denominator; and from them through the Greeks
the modern division of a degree into sixty equal parts is derived.
Thus in one way or the other the difficulty of having to consider
changes in both numerator and denominator was evaded. To-day
when using decimals we often keep a fixed denominator, thus
reverting to the Roman practice.

After considering fractions Ahmes proceeds to some examples
of the fundamental processes of arithmetic. In multiplication
he seems to have relied on repeated additions. Thus in one
numerical example, where he requires to multiply a certain
number, say a, by 13, he first multiplies by 2 and gets 2a, then
he doubles the results and gets 4ct, then he again doubles the
result and gets Sa, and lastly he adds together a, 4a, and 8a.
Probably division was also performed by repeated subtractions, but,
as he rarely explains the process by which he arrived at a result,
this is not certain. After these examples Ahmes goes on to the
solution of some simple numerical equations. For example, he
says ““heap, its seventh, its whole, it makes nineteen,” by which
he means that the object is to find a number such that the sum
of it and one-seventh of it shall be together equal to 19 ; and lie
gives as the answer 16 +1 + , which is correct.
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The arithmetical part of the papyrus indicates that he had
soime idea of algebraic symbols. The unknown quantity is
always represented by the symbol which means a heap ; addition
is sometimes represented by a pair of legs walking forwards,
sulbtraction by a pair of legs walking backwards or by a flight
of arrows; and equality by the sign

The latter part of the book contains various geometrical
problems to which | allude later. He concludes the work with
some arithmetico-algebraical questions, two of which deal with
arithmetical progressions and seem to indicate that he knew
how to sum such series.

Second, as to the science of geometry. Geometry is supposed
to have had its origin in land-surveying; but while it is difficult
to say when the study of numbers and calculation—some know-
ledge of which is essential in any civilised state—became a
science, it is comparatively easy to distinguish between the
abstract reasonings of geometry and the practical rules of the
land-surveyor.  Some methods of land-surveying must have
been practised from very early times, but the universal tradition
of antiquity asserted that the origin of geometry was to be
sought in Egypt. That it was not indigenous to Greece, and
that it arose from the necessity of surveying, is rendered the
more probable by the derivation of the word from yn, the earth,
and petpew, | measure. Now the Greek geometricians, as far as
we can judge by their extant works, always dealt with the
science as an abstract one: they sought for theorems which
should be absolutely true, and, at any rate in historical times,
would have argued that to measure quantities in terms of a
unit which might have been incommensurable with some of the
magnitudes considered would have made their results mere
approximations to the truth. The name does not therefore
refer to their practice. Tt is not, however, unlikely that it
indicates the use which was made of geometry among the
Egyptians from whom the Greeks learned it. This also agrees
with the Greek traditions, which in themselves appear probable;
for Herodotus states that the periodical inundations of the Nile
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(which swept away the landmarks in the valley of the river,
and by altering its course increased or decreased the taxable
value of the adjoining lands) rendered a tolerably accurate
system of surveying indispensable, and thus led to a systematic
study of the subject by the priests.

We have no reason to think that any special attention was
paid to geometry by the Phoenicians, or other neighbours of the
Egyptians. A small piece of evidence which tends to show that
the Jews had not paid much attention to it is to be found in
the mistake made in their sacred books,! where it is stated that
the circumference of a circle is three times its diameter: the
Babylonians 1 also reckoned that m- was equal to 3.

Assuming, then, that a knowledge of geometry was first
derived by the Greeks from Egypt, we must next discuss the
range and nature of Egyptian geometry.3 That some geo-
metrical results were known at a date anterior to Ahmes’s work
seems clear if we admit, as we have reason to do, that, centuries
before it was Avritten, the following method of obtaining a right
angle was used in laying out the ground-plan of certain build-
ings. The Egyptians were very particular about the exact
orientation of their temples; and they had therefore to obtain
with accuracy a north and south line, as also an east and west
line. By observing the points on the horizon where a star rose
and set, and taking a plane midway between them, they could
obtain a north and south line. To get an east and west line,
which had to be drawn at right angles to this, certain profes-
sional “rope-fasteners” were employed. These men used a
rope ABCD divided by knots or marks at B and C, so that the
lengths AB, BC, CD were in the ratio 3:4:5. The length BC
was placed along the north and south line, and pegs P and Q
inserted at the knots B and C. The piece BA (keeping it
stretched all the time) was then rotated round the peg P, and

1 1. Kings, chap, vii, verse 23, and Il. Chronicles, chap, iv, verse 2.

2 See J. Oppert, Journal Asiatique, August 1872, and October 1874.

3 See Eisenlohr; Cantor, chap, 1i; Gow, arts. 75, 76; and Die
Geometrie der alien Aegypter, by E. Weyr, Vienna, 1884.
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simiilarly the piece CD was rotated round the peg (> until the
emds A and D coincided; the point thus indicated was marked
byr a peg R. The result was to form a triangle PQR whose
sides RP, PQ, QR were in the ratio 3:4:5. The angle of the
trilangle at P would then be a right angle, and the line PR
would give an east and west line. A similar method is con-
stantly used at the present time by practical engineers for
measuring a right angle.  The property employed can be
deduced as a particular case of Euc. I, 48; and there is reason
to think that the Egyptians were acquainted with the results of
th.is proposition and of Euc. I, 47, for triangles whose sides are
in the ratio mentioned above. They must also, there is little
do>ubt, have known that the latter proposition was true for an
isosceles right-angled triangle, as this is obvious if a floor be
paved with tiles of that shape. But though these are interest-
ing facts in the history of the Egyptian arts we must not press
them too far as showing that geometry was then studied as a
science. Our real knowledge of the nature of Egyptian geo-
metry depends mainly on the Rhind papyrus.

Ahmes commences that part of his papyrus which deals with
geometry by giving some numerical instances of the contents of
barns.  Unluckily we do not know what was the usual shape
of an Egyptian barn, but where it is defined by three linear
measurements, say o, b, and c, the answer is always given as
if he had formed the expression axhbx (c+ c). He next
proceeds to find the areas of certain rectilineal figures; if the
text be correctly interpreted, some of these results are wrong.
He then goes on to find the area of a circular field of diameter
12—no unit of length being mentioned—and gives the result
as (d-7d), where d is the diameter of the circle: this is
equivalent to taking 3,1604 as the value of m, the actual value
being very approximately 3T416. Lastly, Ahmes gives some
problems on pyramids. These long proved incapable of inter-
pretation, but Cantor and Eisenlohr have shown that Ahmes
was attempting to find, by means of data obtained from the
measurement of the external dimensions of a building, the
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ratio of certain other dimensions which could not be directly
measured : his process is equivalent to determining the trigono-
metrical ratios of certain angles. The data and the results
given agree closely with the dimensions of some of the existing
pyramids. Perhaps all Ahmes’s geometrical results were intended
only as approximations correct enough for practical purposes.

It is noticeable that all the specimens of Egyptian geometry
which we possess deal only with particular numerical problems
and not with general theorems ; and even if a result be stated
as universally true, it was probably proved to be so only by a
wide induction. We shall see later that Greek geometry was
from its commencement deductive.  There are reasons for think-
ing that Egyptian geometry and arithmetic made little or no
progress subsequent to the date of Ahmes’s work; and though
for nearly two hundred years after the time of Thales Egypt
was recognised by the Greeks as an important school of mathe-
matics, it would seem that, almost from the foundation of the
lonian school, the Greeks outstripped their former teachers.

It may be added that Ahmes’s book gives us much that idea
of Egyptian mathematics which we should have gathered from
statements about it by various Greek and Latin authors, who
lived centuries later. Previous to its translation it was commonly
thought that these statements exaggerated the acquirements of
the Egyptians, and its discovery must increase the weight to be
attached to the testimony of these authorities.

We know nothing of the applied mathematics (if there were
any) of the Egyptians or Phoenicians. The astronomical attain-
ments of the Egyptians and Chaldaeans were no doubt consider-
able, though they were chiefly the results of observation : the
Phoenicians are said to have confined themselves to studying
what was required for navigation. Astronomy, however, lies
outside the range of this book.

I do not like to conclude the chapter without a brief mention
of the Chinese, since at one time it was asserted that they were
familiar with the sciences of arithmetic, geometry, mechanics,
optics, navigation, and astronomy nearly three thousand years
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ajgo, ancl a few writers were inclined to suspect (for no evidence
was forthcoming) that some knowledge of this learning had
filltered across Asia to the West. It is true that at a very early
p-eriod the Chinese were acquainted with several geometrical or
nather architectural implements, such as the rule, square, com-
passes, and level; with a few mechanical machines, such as the
wheel and axle ; that they knew of the characteristic property
0>f the magnetic needle ; and were aware that astronomical events
Ofccurred in cycles. But the careful investigations of L. A.
S>edillotl have shown that the Chinese made no serious attempt
t<o classify or extend the few rules of arithmetic or geometry
with which they were acquainted, or to explain the causes of
the phenomena which they observed.

The idea that the Chinese had made considerable progress
im theoretical mathematics seems to have been due to a mis-
apprehension of the Jesuit missionaries who went to China
im the sixteenth century. In the first place, they failed to
distinguish between the original science of the Chinese and
the views which they found prevalent on their arrival—the
latter being founded on the work and teaching of Arab or
Hindoo missionaries who had come to China in the course of
the thirteenth century or later, and while there introduced a
knowledge of spherical trigonometry. In the second place,
finding that one of the most important government depart-
ments was known as the Board of Mathematics, they supposed
that its function was to promote and superintend mathematical
studies in the empire. Its duties were really confined to the
annual preparation of an almanack, the dates and predictions
in which regulated many affairs both in public and domestic
life. All extant specimens of these almanacks are defective
and, in many respects, inaccurate.

The only geometrical theorem with which we can be certain
that the ancient Chinese were acquainted is that in certain cases

1 See Boncompagni’s Bulletino di bibliografia e di storia delle scienze

matematiche e fisiche for May, 1868, vol. i, pp. 161-166. On Chinese
mathematics, mostly of a later date, see Cantor, chap, xxxi.
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(namely, when the ratio of the sides is 3:4:5 or 1:1: 92)
the area of the square described on the hypotenuse of a right-
angled triangle is equal to the sum of the areas of the squares
described on the sides. It is barely possible that a few
geometrical theorems which can be demonstrated in the quasi-
experimental way of superposition were also known to them.
Their arithmetic was decimal in notation, but their knowledge
seems to have been confined to the art of calculation by means
of the swan-pan, and the power of expressing the results in
writing. Our acquaintance with the early attainments of the
Chinese, slight though it is, is more complete than in the case
of most of their contemporaries. It is thus specially instructive,
and serves to illustrate the fact that a nation may possess con-
siderable skill in the applied arts while they are ignorant of the
sciences on which those arts are founded.

From the foregoing summary it will be seen that our know-
ledge of the mathematical attainments of those who preceded
the Greeks is very limited; but we may reasonably infer that
from one source or another the early Greeks learned the use of
the abacus for practical calculations, symbols for recording the
results, and as much mathematics as is contained or implied in
the Rhind papyrus. It is probable that this sums up their
indebtedness to other races. In the next six chapters | shall
trace the development of mathematics under Greek influence.
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FIRST PERIOD.

fKatfjematicO unbet ©reck =nfhitnce.

This period begins with the teaching of Thales, circ. 600 b.c.,
and ends with, the capture of Alexandria by the Mohammedans
in or about 641 a.d. The characteristic feature of this period
is the development of Geometry.

It will be remembered that | commenced the last chapter by
saying that the history of mathematics might be divided into
three periods, namely, that of mathematics under Greek influence,
that of the mathematics of the middle ages and of the renaissance,
and lastly that of modern mathematics. The next four chapters
(chapters u, in, v and v) deal with the history of mathe-
matics under Greek influence : to these it will be convenient to
add one (chapter vi) on the Byzantine school, since through it
the results of Greek mathematics were transmitted to western
Europe ; and another (chapter vmt) on the systems of numeration
which were ultimately displaced by the system introduced by the
Arabs. | should add that many of the dates mentioned in these
chapters are not known with certainty, and must be regarded as
only approximately correct.
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CHAPTER Il

THE IONIAN AND PYTHAGOREAN SCHOOLS.1
ciRC. 600 b.c.-400 b.c.

With the foundation of the lonian and Pythagorean schools we
emerge from the region of antiquarian research and conjecture
into the light of history. The materials at our disposal for
estimating the knowledge of the philosophers of these schools
previous to about the year 430 b.c. are, however, very scanty
Not only have all but fragments of the different mathematical
treatises then written been lost, but we possess no copy of the
history of mathematics written about 325 b.c. by Eudemus (who
was a pupil of Aristotle). Luckily Proclus, who about 450 a.d.
wrote a commentary on the earlier part of Euclid’s Elements,
was familiar with Eudemus’s work, and freely utilised it in his
historical references. We have also a fragment of the General
View of Mathematics written by Geminus about 50 B.c., in which
the methods of proof used by the early Greek geometricians are
compared with those current at a later date. In addition to
these general statements we have biographies of a few of the

1 The history of these schools has been discussed by G. Loria in his Le Scienze
Esatte nell” Antica Grecia, Modena, 1893-1900 ; by Cantor, chaps, v-viii;
by G. J. Allman in his Greek Geometryfrom Thales to Euclid, Dublin, 1889;
by J. Gow, in his Greek Mathematics, Cambridge, 1884 ; by C. A. Bret-

schneider in his Die Geometrie und die Geometer vor Eukleides, Leipzig, 1870 ;

and partially by H. Hankel in his posthumous Geschichte der Mathematik,
Leipzig, 1874.
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leading mathematicians, and some scattered notes in various
writers in which allusions are made to the lives and works of
others. The original authorities are criticised and discussed at
length in the works mentioned in the footnote to the heading of
the chapter.

The lonian School.

Thales.l The founder of the earliest Greek school of mathe-
matics and philosophy was Thales, one of the seven sages of
Greece, who wias born about 640 b.c. at Miletus, and died in the
same town about 550 b.c. The materials for an account of his
life consist of little more than a few anecdotes which have been
handed down by tradition.

During the early part of his life Thales was engaged partly
in commerce and partly in public affairs; and to judge by two
stories that have been preserved, he was then as distinguished
for shrewdness in business and readiness in resource as he was
subsequently celebrated in science. It is said that once when
transporting some salt which was loaded on mules, one of the
animals slipping in a stream got its load wet and so caused
some of the salt to be dissolved, and finding its burden thus
lightened it rolled over at the next ford to which it came; to
break it of this trick Thales loaded it with rags and sponges
which, by absorbing the water, made the load heavier and soon
effectually cured it of its troublesome habit. At another time,
according to Aristotle, when there was a prospect of an
unusually abundant crop of olives Thales got possession of all
the olive-presses of the district; and, having thus ““cornered”
them, he was able to make his own terms for lending them out,
or buying the olives, and thus realized a large sum. These
tales may be apocryphal, but it is certain that he must have
had considerable reputation as a man of affairs and as a gool
engineer, since he was employed to construct an embankment so
as to divert the river Halys in such a way as to permit of the
construction of a ford.

1 See Loria, book I, chap, ii ; Cantor, chap, v ; Allman, chap. i.
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Probably it was as a merchant that Thales first went to
Egypt, but during his leisure there he studied astronomy and
g'eometry. He was middle-aged when he returned to Miletus ;
hte seems then to have abandoned business and public life,
a.nd to have devoted himself to the study of philosophy and
s<cience — subjects which in the lonian, Pythagorean, and
p>erhaps also the Athenian schools, were closely connected :
hiis views on philosophy do not here concern us. He continued
t<o live at Miletus till his death circ. 550 B.c.

We cannot form any exact idea as to how Thales presented
hds geometrical teaching. We infer, however, from Proclus that
itt consisted of a number of isolated propositions which were
mot arranged in a logical sequence, but that the proofs were
dleductive, so that the theorems were not a mere statement of
am induction from a large number of special instances, as
p>robably was the case with the Egyptian geometricians. The
dleductive character which he thus gave to the science is his
chief claim to distinction.

The following comprise the chief propositions that can now
with reasonable probability be attributed to him; they are
concerned with the geometry of angles and straight lines.

(i) The angles at the base of an isosceles triangle are equal
(Euc. 1, 5). Proclus seems to imply that this was proved by
taking another exactly equal isosceles triangle, turning it over,
and then superposing it on the first—a sort of experimental
demonstration.

(i) If two straight lines cut one another, the vertically
opposite angles are equal (Euc. 1, 15). Thales may have
regarded this as obvious, for Proclus adds that Euclid was the
first to give a strict proof of it.

(iii) A triangle is determined if its base and base angles be
given (¢. Euc. I, 26). Apparently this was applied to find the
distance of a ship at sea—the base being a tower, and the base
angles being obtained by observation.

(iv) The sides of equiangular triangles are proportionals
(Euc. wvi, 4, or perhaps rather Euc. vi, 2). This is said to
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have been used by Thales when in Egypt to find the height of
a pyramid. In a dialogue given by Plutarch, the speaker,
addressing Thales, says, “Placing your stick at the end of
the shadow of the pyramid, you made by the sun’s rays two
triangles, and so proved that the [height of the] pyramid was
to the [length of the] stick as the shadow of the pyramid to
the shadow of the stick.” It would seem that the theorem was
unknown to the Egyptians, and we are told that the King
Amasis, who was present, was astonished at this application of
abstract science.

(v) A circle is bisected by any diameter. This may have
been enunciated by Thales, but it must have been recognised as
an obvious fact from the earliest times.

(vi) The angle subtended by a diameter of a circle at any
point in the circumference is a right angle (Euc. ill, 31).
This appears to have been regarded as the most remarkable
of the geometrical achievements of Thales, and it is stated that
on inscribing a right-angled triangle in a circle he sacrificed an
ox to the immortal gods. It is supposed that he proved the
proposition by joining the centre of the circle to the apex of the
right angle, thus splitting the triangle into two isosceles
triangles, and then applied the proposition (i) above : if this be
the correct account of his proof, he must have been aware that
the sum of the angles of a right-angled triangle is equal to two
right angles.

It has been ingeniously suggested that the shape of the
tiles used in paving floors may have afforded an experimental
demonstration of the latter result, namely, that the sum of the
angles of a triangle is equal to two right angles. We know
from Eudemus that the first geometers proved the general
property separately for three species of triangles, and it is not
unlikely that they proved it thus. The area about a point can
be filled by the angles of six equilateral triangles or tiles, hence
the proposition is true for an equilateral triangle. Again, any
two equal right-angled triangles can be placed in juxtaposition so
as to form a rectangle, the sum of whose angles is four right
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amgles ; hence the proposition is true for a right-angled triangle;
anud it will be noticed that tiles of such a shape would give an
octular demonstration of this case. It would appear that this
prwof was given at first only in the case of isosceles right-angled
trilangles, but probably it was extended later so as to cover any
right-angled triangle. Lastly, any triangle can be split into the
suim of two right-angled triangles by drawing a perpendicular
from the biggest angle on the opposite side, and therefore again
tine proposition is true. The first of these proofs is evidently
in<cluded in the last, but there is nothing improbable in the
suggestion that the early Greek geometers continued to teach
th<e first proposition in the form above given.

Thales wrote on astronomy, and among his contemporaries
was more famous as an astronomer than as a geometrician. A
story runs that one night, when walking out, he was looking so
imtently at the stars that he tumbled into a ditch, on which an
old woman exclaimed, “How can you tell what is going on in
the sky when you can't see what is lying at your own feet?”
—an anecdote which was often quoted to illustrate the un-
practical character of philosophers.

Without going into astronomical details, it may be mentioned
that he taught that a year contained about 365 days, and not
(a,s is said to have been previously reckoned) twelve months of
thirty days each. It is said that his predecessors occasionally
intercalated a month to keep the seasons in their customary
places, and if so they must have realized that the year contains,
on the average, more than 360 days. There is some reason to
think that he believed the earth to be a disc-like body floating
on water. He predicted a solar eclipse which took place at or
about the time he foretold; the actual date was either May 28,
585 b.c., or September 30, 609 b.c. But though this prophecy
and its fulfilment gave extraordinary prestige to his teaching,
and secured him the name of one of the seven sages of Greece,
it is most likely that he only made use of one of the Egyptian
or Chaldaean registers which stated that solar eclipses recur
at intervals of about 18 years 11 days.

c
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Among the pupils of Thales were Anaximander, Anaximenes,
Mamercus, and Mandryatus. Of the three mentioned last we
know next to nothing. Anaximander was born in 611 b.c,
and died in 545 b.c., and succeeded Thales as head of the
school at Miletus. According to Suidas he wrote a treatise on
geometry in which, tradition says, he paid particular attention
to the properties of spheres, and dwelt at length on the philo-
sophical ideas involved in the conception of infinity in space and
time. He constructed terrestrial and celestial globes.

Anaximander is alleged to have introduced the use of the
style or gnomon into Greece. This, in principle, consisted only
of a stick stuck upright in a horizontal piece of ground. It
was originally used as a sun-dial, in which case it was placed
at the centre of three concentric circles, so that every two
hours the end of its shadow passed from one circle to another.
Such sun-dials have been found at Pompeii and Tusculum. It
is said that he employed these styles to determine his meridian
(presumably by marking the lines of shadow cast by the style
at sunrise and sunset on the same day, and taking the plane
bisecting the angle so formed); and thence, by observing the
time of year when the noon-altitude of the sun was greatest
and least, he got the solstices; thence, by taking half the sum
of the noon-altitudes of the sun at the two solstices, he found
the inclination of the equator to the horizon (which determined
the altitude of the place), and, by taking half their difference,
he found the inclination of the ecliptic to the equator. There
seems good reason to think that he did actually determine the
latitude of Sparta, but it is more doubtful whether he really
made the rest of these astronomical deductions.

We need not here concern ourselves further with the
successors of Thales. The school he established continued to
flourish till about 400 b.c., but, as time went on, its members
occupied themselves more and more with philosophy and less
with mathematics. We know very little of the mathematicians
comprised in it, but they would seem to have devoted most of
their attention to astronomy. They exercised but slight in-
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fluilence on the further advance of Greek mathematics, which
wras made almost entirely under the influence of the Pytha-
goreans, who not only immensely developed the science of
geL.omietry, but created a science of numbers. If Thales was the
first to direct general attention to geometry, it was Pythagoras,
says Proclus, quoting from Eudemus, who ““changed the study
of geometry into the form of a liberal education, for he ex-
amined its principles to the bottom and investigated its
theorems in an...intellectual manner’; and it is accordingly
t6' Pythagoras that we must now direct attention.

The. Pythagorean School.

Pythagoras.! Pythagoras, was born at Samos about 569 B.c.,
perhaps of Tyrian parents, and died in 500 B.c. He was thus a
contemporary of Thales. The details of his life are somewhat
doubtful, but the following account is, | think, substantially
correct. He studied first under Pherecydes of Syros, and then
under Anaximander; by the latter he was recommended to go
to Thebes, and there or at Memphis he spent some years.
After leaving Egypt he travelled in Asia Minor, and then
settled at Samos, where he gave lectures but without much
success. About 529 b.c. he migrated to Sicily with his mother,
and with a single disciple who seems to have been the sole fruit
of his labours at Samos. Thence he went to Tarentum, but
very shortly moved to Croton, a Dorian colony in the south of
Italy. Here the schools that he opened were crowded with
enthusiastic audiences; citizens of all ranks, especially those
of the upper classes, attended, and even the women broke a law
which forbade their going to public meetings and flocked to hear
him.  Amongst his most attentive auditors was Theano, the

1 See Loria, book 1, chap, iii ; Cantor, chaps, vi, vii; Allman, chap, ii;
Hankel, pp. 92-111 ; Hoefer, Histoire des matheniatiques, Paris, third edition,
1886, pp. 87-130 ; and various papers by S. P. Tannery. For an account of
Pythagoras’s life, embodying the Pythagorean traditions, see the biography
by lamblichus, of which there are two or three English translations. Those
who are interested in esoteric literature may like to see a modern attempt

to reproduce the Pythagorean teaching in Pythagoras, by E. Schure, Eng.
trans., London, 1906.
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young and beautiful daughter of his host Milo, whom, in spite
of the disparity of their ages, he married. She wrote a biography
of her husband, but unfortunately it is lost.

Pythagoras divided those who attended his lectures into
two classes, whom we may term probationers and Pythagoreans.
The majority were probationers, but it was only to the Pytha-
goreans that his chief discoveries were revealed. The latter
formed a brotherhood with all things in common, holding the
same philosophical and political beliefs, engaged in the same
pursuits, and bound by oath not to reveal the teaching or
secrets of the school; their food was simple ; their discipline
severe; and their mode of life arranged to encourage self-
command, temperance, purity, and obedience. This strict
discipline and secret organisation gave the society a temporary
supremacy in the state which brought on it the hatred of various
classes; and, finally, instigated by his political opponents, the
mob murdered Pythagoras and many of his followers,

Though the political influence of the Pythagoreans was thus
destroyed, they seem to have re-established themselves at once
as a philosophical and mathematical society, with Tarentum as
their headquarters, and they continued to flourish for more than
a hundred years.

Pythagoras himself did not publish any books ; the assump-
tion of his school was that all their knowledge was held in
common and veiled from the outside world, and, further, that the
glory of any fresh discovery must be referred back to their
founder. Thus Hippasus (circ. 470 B.c.) is said to have been
drowned for violating his oath by publicly boasting that he had
added the dodecahedron to the number of regular solids enume-
rated by Pythagoras. Gradually, as the society became mere
scattered, this custom was abandoned, and treatises containing
the substance of their teaching and doctrines wrere written.
The first book of the kind was composed, about 370 b.c., by
Philolaus, and we are told that Plato secured a copy of it. We
may say that during the early part of the fifth century befere
Christ the Pythagoreans were considerably in advance of their



chi. ] PYTHAGORAS 21

cointemporaries, but by the end of that time their more
prominent discoveries and doctrines had become known to the
outtside world, and the centre of intellectual activity was
transferred to Athens.

Though it is impossible to separate precisely the discoveries
of Pythagoras himself from those of his school of a later date,
we know from Proclus that it was Pythagoras who gave
geometry that rigorous character of deduction which it still
be;ars, and made it the foundation of a liberal education ; and
there is reason to believe that he was the first to arrange the
leading propositions of the subject in a logical order. It was
also, according to Aristoxenus, the glory of his school that they
raised arithmetic above the needs of merchants. It was their
boast that they sought knowledge and not wealth, or in the
language of one of their maxims, ““a figure and a step forwards,
not a figure to gain three oboli.”

Pythagoras was primarily a moral reformer and philosopher,
but his system of morality and philosophy was built on a
mathematical foundation. His mathematical researches were,
however, designed to lead up to a system of philosophy whose
exposition was the main object of his teaching. The Pythago-
reans began by dividing the mathematical subjects with which
they dealt into four divisions: numbers absolute or arithmetic,
numbers applied or music, magnitudes at rest or geometry, and
magnitudes in motion or astronomy. This “quadrivium” was
long considered as constituting the necessary and sufficient
course of study for a liberal education. Even in the case of
geometry and arithmetic (which are founded on inferences
unconsciously made and common to all men) the Pythagorean
presentation was involved with philosophy; and there is no
doubt that their teaching of the sciences of astronomy,
mechanics, and music (which can rest safely only on the
results of conscious observation and experiment) was inter-
mingled with metaphysics even more closely. It will be con-
venient to begin by describing their treatment of geometry and
arithmetic.
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First, as to their geometry. Pythagoras probably knew and
taught the substance of what is contained in the first two books
of Euclid about parallels, triangles, and parallelograms, and was
acquainted with a few other isolated theorems including some
elementary propositions on irrational magnitudes; but it is
suspected that many of his proofs were not rigorous, and in
particular that the converse of a theorem was sometimes assumed
without a proof. It is hardly necessary to say that we are un-
able to reproduce the whole body of Pythagorean teaching on
this subject, but we gather from the notes of Proclus on Euclid,
and from a few stray remarks in other writers, that it included
the following propositions, most of which are on the geometry
of areas.

(i) 1t commenced with a number of definitions, which prob-
ably were rather statements connecting mathematical ideas
with philosophy than explanations of the terms used. One
has been preserved in the definition of a point as unity having
position.

(ii) The sum of the angles of a triangle was shown to be
equal to two right angles (Euc. I, 32); and in the proof, which
has been preserved, the results of the propositions Euc. 1, 13 and
the first part of Euc. I, 29 are quoted. The demonstration is
substantially the same as that in Euclid, and it is most likely
that the proofs there given of the two propositions last mentioned
are also due to Pythagoras himself.

(iii) Pythagoras certainly proved the properties of right-
angled triangles which are given in Euc. I, 47 and |, 48. We
know that the proofs of these propositions which are found in
Euclid were of Euclid’s own invention; and a good deal of
curiosity has been excited to discover what was the demon-
stration which was originally offered by Pythagoras of the first
of these theorems. It has been conjectured that not improbab y
it mayshave been one of the two following.!

1 A collection of a hundred proofs of Euc. |, 47 was published in
the American "Mathematical Monthly Journal, vols. iii. iv. v. vi. 1895-
1899.
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(a) Any square ABCD can be split up, as in Euc. u, 4, into
two squares BK and DK and two equal rectangles vVIfand CK:
that is, it is equal to the square on FK, the square on EK, and

four times the triangle AEF. But, if points be taken, G on
BC, 11 on CD, and E on DA, so that BG, CH, and DE are
each equal to AF, it can be easily shown that EFGII is a
square, and that the triangles AEF, BFG, CGH, and DUE are
equal: thus the square ABCD is also equal to the square on
EF and four times the triangle AEF. Hence the square on EF
is equal to the sum of the squares on FK and EK.

(B) Let ABC be a right-angled triangle, A being the right
angle. Draw AD perpendicular to BC. The triangles ABC

and DBA are similar,

. BC: AB=AB : BD.
Similarly BC : AC=AC : DC.
Hence AB'i + ACi=BC(BD + DC)=BC
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This proof requires a knowledge of the results of Euc. [], 2,
vi, 4, and vi, 17, with all of which Pythagoras was acquainted.

(iv) Pythagoras is credited by some writers with the discovery
of the theorems Euc. |, 44, and |, 45, and with giving a solution
of the problem Euc. u, 14. It is said that on the discovery of
the necessary construction for the problem last mentioned he
sacrificed an ox, but as his school had all things in common the
liberality was less striking than it seems at first. The Pythagoreans
of a later date were aware of the extension given in Euc. vi, 25,
and Allman thinks that Pythagoras himself was acquainted with
it, but this must be regarded as doubtful. It will be noticed that
Euc. ii, 14 provides a geometrical solution of the equation x2 = ab.

(v) Pythagoras showed that the plane about a point could be
completely filled by equilateral triangles, by squares, or by regular
hexagons—results that must have been familiar wherever tiles of
these shapes were in common use.

(vi) The Pythagoreans were said to have attempted the quad-
rature of the circle: they stated that the circle was the most
perfect of all plane figures.

(vii) They knew that there were five regular solids inscrib-
able in a sphere, which was itself, they said, the most perfect
of all solids.

(viii) From their phraseology in the science of numbers and
from other occasional remarks, it would seem that they were
acquainted with the methods used in the second and fifth books
of Euclid, and knew something of irrational magnitudes. In
particular, there is reason to believe that Pythagoras proved
that the side and the diagonal of a square were incommensur-
able, and that it was this discovery which led the early Greeks
to banish the conceptions of number and measurement from
their geometry. A proof of this proposition which may be that
due to Pythagoras is given below.l

Next, as to their theory of numbers.2 In this Pythagoras2

1 See below, page 60.
2 See the appendix »Swr l'arithmetique pythagorienne to S. P. Tannery’s
La science hellene, Paris, 1887.
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was chiefly concerned with four different classes of problems
which dealt respectively with polygonal numbers, with ratio and
proportion, with the factors of numbers, and with numbers in
series; but many of his arithmetical inquiries, and in particular
the questions on polygonal numbers and proportion, were treated
by geometrical methods.

Pythagoras commenced his theory of arithmetic by dividing
all numbers into even or odd : the odd numbers being termed
gnomons. An odd number, such as 2n + 1, was regarded as the
difference of two square numbers (n+ 1)2 and n2; and the sum
of the gnomons from 1 to 2n+ 1 was stated to be a square
number, viz. (n+ 1)2, its square root was termed a side. Pro-
ducts of two numbers were called plane, and if a product had

no exact square root it was termed an oblong. A product of
three numbers was called a solid number, and, if the three
numbers were equal, a cube. All this has obvious reference to
geometry, and the opinion is confirmed by Aristotle’s remark
that when a gnomon is put round a square the figure remains
a square though it is increased in dimensions. Thus, in the
figure given above in which n is taken equal to 5, the
gnomon AKC (containing 11 small squares) when put round the
square AC (containing 52 small squares) makes a square HL
(containing 62 small squares). It is possible that several of
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the numerical theorems due to Greek writers were discovered
and proved by an analogous method : the abacus can be used
for many of these demonstrations.

The numbers (2n2+2n+ 1), (2n2+ 2n), and (2n+1) pos-
sessed special importance as representing the hypotenuse and
two sides of a right-angled triangle: Cantor thinks that
Pythagoras knew this fact before discovering the geometrical
proposition Euc. |, 47. A more general expression for such
numbers is (m2+n2), 2mn, and (m2-n2): it will be noticed
that the result obtained by Pythagoras can be deduced from
these expressions by assuming m=n+1; at a later time
Archytas and Plato gave rules which are equivalent to taking
n=1; Diophantus knew the general expressions.

After this preliminary discussion the Pythagoreans pro-
ceeded to the four special problems already alluded to.
Pythagoras was himself acquainted with triangular numbers;
polygonal numbers of a higher order were discussed by later
members of the school. A triangular number represents the
sum of a number of counters laid in rows on a plane; the
bottom row containing n, and each succeeding row one less:
it is therefore equal to the sum of the series

n+(n-1)+nN-2)+..+2+1,

that is, to %n(%-+l). Thus the triangular number corre-
sponding to 4 is 10. This is the explanation of the language
of Pythagoras in the well-known passage in Lucian where the
merchant asks Pythagoras what he can teach him. Pythagoras
replies “ 1 will teach you how to count.” Merchant, “ I know
that already.” Pythagoras, “ How do you countl” Merchant,
“One, two, three, four—" Pythagoras, “ Stop | what you take
to be four is ten, a perfect triangle, and our symbol.” As to
the work of the Pythagoreans on the factors of numbers we
know very little : they classified numbers by comparing them
with the sum of their integral subdivisors or factors, calling a
number excessive, perfect, or defective, according as it was
greater than, equal to, or less than the sum of these subdivisors.
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Thiese investigations led to no useful result. The third class of
problems which they considered dealt with numbers which
formed a proportion; presumably these were discussed with the
ai(d of geometry as is done in the fifth book of Euclid. Lastly,
the Pythagoreans were concerned with series of numbers in
arithmetical, geometrical, harmonical, and musical progressions.
Tlhe three progressions first mentioned are well known ; four
integers are said to be in musical progression when they are in
the ratio a : 2ab (a+6) : % (a +0) : b, for example, 6, 8, 9, and
12 are in musical progression.

Of the Pythagorean treatment of the applied subjects of the
quadrivium, and the philosophical theories founded on them,
w<e know very little. It would seem that Pythagoras was much
impressed by certain numerical relations which occur in nature.
It has been suggested that he was acquainted with some of the
simpler facts of crystallography. It is thought that he was
aware that the notes sounded by a vibrating string depend on
the length of the string, and in particular that lengths which
gave a note, its fifth and its octave were in the ratio 2:3:4,
fo>rming terms in a musical progression. It would seem, too,
that he believed that the distances of the astrological planets
from the earth were also in musical progression, and that the
heavenly bodies in their motion through space gave out
harmonious sounds: hence the phrase the harmony of the
spheres. These and similar conclusions seem to have suggested
to him that the explanation of the order and harmony of the
universe was to be found in the science of numbers, and that
numbers are to some extent the cause of form as well as
essential to its accurate measurement. He accordingly pro-
ceeded to attribute particular properties to particular numbers
and geometrical figures. For example, he taught that the cause
of colour was to be sought in properties of the number five,
that the explanation of fire was to be discovered in the nature
of the pyramid, and so on. | should not have alluded to this
were it not that the Pythagorean tradition strengthened, or
perhaps was chiefly responsible for the tendency of Greek
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writers to found the study of nature on philosophical con-
jectures and not on experimental observation—a tendency to
which the defects of Hellenic science must be largely attributed.

After the death of Pythagoras his teaching seems to have
been carried on by Epicharmus and Hippasus, and subse-
quently by Philolaus (specially distinguished as an astronomer),
Archippus, and Lysis. About a century after the murder of
Pythagoras we find Archytas recognised as the head of the
school.

Archytas.l Archytas, circ. 400 b.c., was one of the most
influential citizens of Tarentum, and was made governor of
the city no less than seven times. His influence among his
contemporaries was very great, and he used it with Dionysius
on one occasion to save the life of Plato. He was noted for the
attention he paid to the comfort and education of his slaves and
of children in the city. He was drowned in a shipwreck near
Tarentum, and his body washed on shore—a fit punishment, in
the eyes of the more rigid Pythagoreans, for his having departed
from the lines of study laid down by their founder. Several
of the leaders of the Athenian school were among his pupils
and friends, and it is believed that much of their work was due
to his inspiration.

The Pythagoreans at first made no attempt to apply their
knowledge to mechanics, but Archytas is said to have treated it
with the aid of geometry. He is alleged to have invented and
worked out the theory of the pulley, and is credited with the
construction of a flying bird and some other ingenious mechanical
toys. He introduced various mechanical devices for construct-
ing curves and solving problems. These were objected to by
Plato, who thought that they destroyed the value of geometry
as an intellectual exercise, and later Greek geometricians con-

1 See Allman, chap. iv. A catalogue of the works of Archytas is given
by Fabricius in his Bibliotheca Graeca, vol. i, p. 833 : most of the fragments
on philosophy were published by Thomas Gale in his Opuscula Mythologia,
Cambridge, 1670 ; and by Thomas Taylor as an Appendix to his translation

of lamblichus’s Life of Pythagoras London, 1818. See also the references
given by Cantor, vol. i, p. 203.
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fined themselves to the use of two species of instruments,
namely, rulers and compasses. Archytas was also interested in
astronomy; he taught that the earth was a sphere rotating
round its axis in twenty-four hours, and round which the
heavenly bodies moved.

Archytas was one of the first to give a solution of the
problem to duplicate a cube, that is, to find the side of a cube
whose volume is double that of a given cube. This was one of
the most famous problems of antiquity.l The construction
given by Archytas is equivalent to the following. On the
diameter OA of the base of a right circular cylinder describe a
semicircle whose plane is perpendicular to the base of the
cylinder. Let the plane containing this semicircle rotate round
the generator through 0, then the surface traced out by the
semicircle will cut the cylinder in a tortuous curve. This curve
will be cut by a right cone whose axis is OA and semivertical
angle is (say) 60° in a point P, such that the projection of OP
on the base of the cylinder will be to the radius of the cylinder
in the ratio of the side of the required cube to that of the given
cube. The proof given by Archytas is of course geometrical;?
it will be enough here to remark that in the course of it he
shews himself acquainted with the results of the propositions
Euc. in, 18, Euc. in, 35, and Euc. x1, 19. To shew analytically
that the construction is correct, take OA as the axis of X, and
the generator through O as axis of z, then, with the usual
notation in polar co-ordinates, and if a be the radius of
the cylinder, we have for the equation of the surface described
by the semicircle, r=2asin0j for that of the cylinder,
rsin 8 =2acos @ , and for that of the cone, sin 8cos ¢ = . These
three surfaces cut in a point such that sin3 6 =J, and, therefore,
if p be the projection of OP on the bhase of the cylinder, then
pi = (rsin 0)3=2a3. Hence the volume of the cube whose side is
p is twice that of a cube whose side is a. | mention the problem
and give the construction used by Archytas to illustrate how

1 See below, pp. 37, 41, 42.
2 It is printed by Allman, pp. 111-113.
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considerable was the knowledge of the Pythagorean school at
the time.

Theodoras. Another Pythagorean of about the same dite as
Archytas was Theodorus of Gyrene, who is said to have p,oved
geometrically that the numbers represented by ¥3, 96,
V7, V8, V10, V11, V12, V13, V14, V15, and V17 are in-
commensurable with unity. Theaetetus was one of his pupils.

Perhaps Timaeus of Locri and Bryso of Heraclea shorld be
mentioned as other distinguished Pythagoreans of this time. It
is believed that Bryso attempted to find the area of a cirde by
inscribing and circumscribing squares, and finally obtained
polygons between whose areas the area of the circle lay ; but it
is said that at some point he assumed that the area of the circle
wias the arithmetic mean between an inscribed and a crcum-
scribed polygon.

Other Greek Mathematical Schools in the Fifth Century 1.c.

It would be a mistake to suppose that Miletus and Tarentum
were the only places where, in the fifth century, Greeks were
engaged in laying a scientific foundation for the study of mathe-
matics. These towns represented the centres of chief act.vity,
but there were few cities or colonies of any importance vhere
lectures on philosophy and geometry were not given. Anong
these smaller schools I may mention those at Chios, Elea and
Thrace.

The best known philosopher of the School of Chios was
Oenopides, who was born about 500 b.c., and died about 430
B.c. He devoted himself chiefly to astronomy, but he had
studied geometry in Egypt, and is credited with the solutbn of
two problems, namely, to draw a straight line from a given
external point perpendicular to a given straight line (Euc. | 12),
and at a given point to construct an angle equal to a given ingle
(Euc. 1, 23).

Another important centre was at Elea in Italy. Thu was
founded in Sicily by Xenophanes. He was followed by
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Parmenides, Zeno, and Melissus. The members of the JEleatic
School were famous for the difficulties they raised in connection
with questions that required the use of infinite series, such, for
example, as the well-known paradox of Achilles and the tortoise,
enunciated by Zeno, one of their most prominent members.
Zeno was born in 495 b.c., and was executed at Elea in 435 b.c.
in consequence of some conspiracy against the state; he was a
pupil of Parmenides, with whom he visited Athens, circ. 455-
450 b.c.

Zeno argued that if Achilles ran ten times as fast as a
tortoise, yet if the tortoise had (say) 1000 yards start it could
never be overtaken: for, when Achilles had gone the 1000
yards, the tortoise would still be 100 yards in front of him; by
the time he had covered these 100 yards, it would still be 10
yards in front of him; and so on for ever: thus Achilles would
get nearer and nearer to the tortoise, but never overtake it. The
fallacy is usually explained by the argument that the time
required to overtake the tortoise, can be divided into an infinite
number of parts, as stated in the question, but these get smaller
and smaller in geometrical progression, and the sum of them all
is a finite time : after the lapse of that time Achilles would be
in front of the tortoise. Probably Zeno would have replied that
this argument rests on the assumption that space is infinitely
divisible, which is the question under discussion: he himself
asserted that magnitudes are not infinitely divisible.

These paradoxes made the Greeks look with suspicion on the
use of infinitesimals, and ultimately led to the invention of the
method of exhaustions.

The Atomistic School, having its headquarters in Thrace, was
another important centre.  This was founded by Leucippus,
who was a pupil of Zeno. He was succeeded by Democritus
and Epicurus. Its most famous mathematician was Democritus,
born at Abdera in 460 b.c., and said to have died in 370 b.c,
who, besides philosophical works, wrote on plane and solid
geometry, incommensurable lines, perspective, and numbers.
These works are all lost. From the Archimedean MS., discovered
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by Heiberg in 1906, it would seem that Democritus enunciated,
but without a proof, the proposition that the volume of a
pyramid is equal to one-third that of a prism of an equal base
and of equal height.

But though several distinguished individual philosophers may
be mentioned who, during the fifth century, lectured at different
cities, they mostly seem to have drawn their inspiration from
Tarentum, and towards the end of the century to have looked to
Athens as the intellectual capital of the Greek world - and it is
to the Athenian schools that we owe the next great advance in
mathematics.
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CHAPTER II1.

THE SCHOOLS OF ATHENS AND CYZICUS.1
ciRc. 420 b.c.-300 b.c.

It was towards the close of the fifth century before Christ that
Athens first became the chief centre of mathematical studies.
Several causes conspired to bring this about. During that
century she had become, partly by commerce, partly by appro-
priating for her own purposes the contributions of her allies, the
most wealthy city in Greece; and the genius of her statesmen
had made her the centre on which the politics of the peninsula
turned. Moreover, whatever states disputed her claim to poli-
tical supremacy her intellectual pre-eminence was admitted by
all.  There was no school of thought which had not at some
time in that century been represented at Athens by one or
more of its leading thinkers; and the ideas of the new science,
which was being so eagerly studied in Asia Minor and Graecia
Magna, had been brought before the Athenians on various
occasions.

1 The history of these schools is discussed at length in G. Loria’s Le
Scienze Esatte nell" Antica Grecia, Modena, 1893-1900 ; in G. J. Allman’s
Greek Geometryfrom Thales to Euclid, Dublin, 1889 ; and in J. Gow's Greek
Mathematics, Cambridge, 1884 ; it is also treated by Cantor, chaps, ix, X,
and xi; by Hankel, pp. 111-156; and by C. A. Bretschneider in his Die
Geometrie und die Geometer vor Eukleides, Leipzig, 1870 ; a critical account
of the original authorities is given by S. P. Tannery in his Geometrie Grecque,
Paris, 1887, and other papers.

D
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Anaxagoras. Amongst the most important of the philoso-
phers who resided at Athens and prepared the way for the
Athenian school | may mention Anaxagoras of Clazom,enae,
who was almost the last philosopher of the lonian school. He
was born in 500 b.c,, and died in 428 b.c. He seems to have
settled at Athens about 440 b.c, and there taught the results of
the lonian philosophy. Like all members of that school he was
much interested in astronomy. He asserted that the sun was
larger than the Peloponnesus : this opinion, together with some
attempts he had made to explain various physical phenomena
which had been previously supposed to be due to the direct
action of the gods, led to a prosecution for impiety, and he was
convicted. While in prison he is said to have written a treatise
on the quadrature of the circle.

The Sophists. The sophists can hardly be considered as
belonging to the Athenian school, any more than Anaxagoras
can ; but like him they immediately preceded and prepared the
way for it, so that it is desirable to devote a few words to them.
One condition for success in public life at Athens was the power
of speaking well, and as the wealth and power of the city in-
creased a considerable number of “ sophists ” settled there who
undertook amongst other things to teach the art of oratory.
Many of them also directed the general education of their pupils,
of which geometry usually formed a part. We are told that two
of those who are usually termed sophists made a special study
of geometry—these were Hippias of Elis and Antipho, and one
made a special study of astronomy—this was Meton, after whom
the metonic cycle is named.

Hippias. The first of these geometricians, Hippias of Elis
(circ. 420 b.c.), is described as an expert arithmetician, but he
is best known to us through his invention of a curve called the
quadratrix, by means of which an angle can be trisected, or
indeed divided in any given ratio. If the radius of a circle
rotate uniformly round the centre O from the position OA
through a right angle to OB, and in the same time a straight
line drawn perpendicular to OB move uniformly parallel to
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itself from the position OA to BC, the locus of their intersection
willi be the quadratrix.

Let OR and MQ be the position of these lines at any time;
and let them cut in P, a point on the curve. Then

angle AOP :angle AOB = OM: OB.
Similarly, if OR' be another position of the radius,

angle AOP :angle AOB = OM". OB.
.. angle AOP :angle AOP'=OM : OM;
. angle AOP: angle P'OP = OM" MM.

Hence, if the angle AOP be given, and it be required to divide
it in any given ratio, it is sufficient to divide OM in that ratio
at M, and draw the line MP"; then OP' will divide AOP in
the required ratio.

If OA be taken as the initial line, OP =r, the angle AOP = 6,
and OA =a, we have 0 :%r=rsin 8: 0, and the equation of the
curve is 1ir = 2ab cosec 6.

Hippias devised an instrument to construct the curve mechani-
cally ; but constructions which involved the use of any mathe-
matical instruments except a ruler and a pair of compasses were
objected to by Plato, and rejected by most geometricians of a
subsequent date.
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Antipho.  The second sophist whom | mentioned was
Antiplio (circ. 420 b.c). He is one of the very few writers
among the ancients who attempted to find the area of a circle
by considering it as the limit of an inscribed regular polygon
with an infinite number of sides. He began by inscribing an
equilateral triangle (or, according to some accounts, a square);
on each side he inscribed in the smaller segment an isosceles
triangle, and so on ad infinitum. This method of attacking the
quadrature problem is similar to that described above as used by
Bryso of Heraclea.

No doubt there were other cities in Greece besides Athens
where similar and equally meritorious work was being done,
though the record of it has now been lost; | have mentioned
here the investigations of these three writers, chiefly because they
were the immediate predecessors of those who created the
Athenian school.

The Schools of Athens and Cyzicus. The history of the
Athenian school begins with the teaching of Hippocrates about
420 B.c.; the school was established on a permanent basis by
the labours of Plato and Eudoxus; and, together with the
neighbouring school of Cyzicus, continued to extend on the lines
laid down by these three geometricians until the foundation
(about 300 b.c.) of the university at Alexandria drew thither
most of the talent of Greece.

Eudoxus, who was amongst the most distinguished of the
Athenian mathematicians, is also reckoned as the founder of the
school at Cyzicus. The connection between this school and that
of Athens was very close, and it is now impossible to disentangle
their histories. It is said that Hippocrates, Plato, and
Theaetetus belonged to the Athenian school; while Eudoxus,
Menaechmus, and Aristaeus belonged to that of Cyzicus. There
was always a constant intercourse between the two schools, the
earliest members of both had been under the influence either of
Archytas or of his pupil Theodoras of Cyrene, and there was no
difference in their treatment of the subject, so that they may be
conveniently treated together.
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Before discussing the work of the geometricians of these
schools in detail I may note that they were especially interested
in three problems :1 namely (i), the duplication of a cube, that
is, the determination of the side of a cube whose volume is
domble that of a given cube ; (ii) the trisection of an angle; and
(i) the squaring of a circle, that is, the determination of a
square whose area is equal to that of a given circle.

Now the first two of these problems (considered analytically)
require the solution of a cubic equation; and, since a con-
struction by means of circles (whose equations are of the form
X2 A-?2 + ax + fy/+ ¢ =0) and straight lines (whose equations are
of the form ax + By +y =0) cannot be equivalent to the solution
of a cubic equation, the problems are insoluble if in our con-
structions we restrict ourselves to the use of circles and straight
lines, that is, to Euclidean geometry. If the use of the conic
sections be permitted, both of these questions can be solved in
many ways. The third problem is equivalent to finding a
rectangle whose sides are equal respectively to the radius and to
the semiperimeter of the circle. These lines have been long
known to be incommensurable, but it is only recently that it has
been shewn by Lindemann that their ratio cannot be the root of
a rational algebraical equation. Hence this problem also is
insoluble by Euclidean geometry. The Athenians and Cyzicians
were thus destined to fail in all three problems, but the attempts
to solve them led to the discovery of many new theorems and
processes.

Besides attacking these problems the later Platonic school
collected all the geometrical theorems then known and arranged
them systematically. These collections comprised the bulk of
the propositions in Euclid’'s Elements, books I-ix, x1, and X,
together with some of the more elementary theorems in conic
sections.

Hippocrates. Hippocrates of Chios (who must be carefully

1 On these problems, solutions of them, and the authorities for their
history, see my Mathematical Recreations and Problems, London, fourth
edition, 1905, chap, viii.
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distinguished from his contemporary, Hippocrates of Cos, the
celebrated physician) was one of the greatest of the Greek
geometricians. He was born about 470 b.c. at Chios, and began
life as a merchant. The accounts differ as to whether he was
swindled by the Athenian custom -house officials who were
stationed at the Chersonese, or whether one of his vessels wias
captured by an Athenian pirate near Byzantium; but at any
rate somewhere about 430 b.c. he came to Athens to try to
recover his property in the law courts. A foreigner was not
likely to succeed in such a case, and the Athenians seem only to
have laughed at him for his simplicity, first in allowing himself
to be cheated, and then in hoping to recover his money. While
prosecuting his cause he attended the lectures of various
philosophers, and finally (in all probability to earn a livelihood)
opened a school of geometry himself. He seems to have been
well acquainted with the Pythagorean philosophy, though there
is no sufficient authority for the statement that he was ever
initiated as a Pythagorean.

He wrote the first elementary text-book of geometry, a text-
book on which probably Euclid’s Elements was founded; and
therefore he may be said to have sketched out the lines on
which geometry is still taught in English schools. It is supposed
that the use of letters in diagrams to describe a figure was made
by him or introduced about this time, as he employs expressions
such as “the point on which the letter A stands” and “ the line
on which AB is marked.” Cantor, however, thinks that the
Pythagoreans had previously been accustomed to represent the
five vertices of the pentagram-star by the letters vy 1 0 a;
and though this was a single instance, perhaps they may have
used the method generally. The Indian geometers never
employed letters to aid them in the description of their figures.
Hippocrates also denoted the square on a line by the word
divw/Ats, and thus gave the technical meaning to the word
potver which it still retains in algebra: there is reason to think
that this use of the word was derived from the Pythagoreans,
who are said to have enunciated the result of the pro-
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position Euc. 1, 47, in the form that “the total power of the
sides of a right-angled triangle is the same as that of the
hypotenuse.”

In this text-book Hippocrates introduced the method of
““reducing” one theorem to another, which being proved, the
thing proposed necessarily follows; of this method the reductio
ad absurdum is an illustration. No doubt the principle had
been used occasionally before, but he drew attention to it as
a legitimate mode of proof which was capable of numerous
applications. He elaborated the geometry of the circle : proving,
among other propositions, that similar segments of a circle
contain equal angles; that the angle subtended by the chord of
a circle is greater than, equal to, or less than a right angle as
the segment of the circle containing it is less than, equal to, or
greater than a semicircle (Euc. in, 31); and probably several
other of the propositions in the third book of Euclid. It is
most likely that he also established the propositions that [similar]
circles are to one another as the squares of their diameters
(Euc. xn, 2), and that similar segments are as the squares of
their chords. The proof given in Euclid of the first of these
theorems is believed to be due to Hippocrates.

The most celebrated discoveries of Hippocrates were, how-
ever, in connection with the quadrature of the circle and the
duplication of the cube, and owing to his influence these
problems played a prominent part in the history of the Athenian
school.

The following propositions will sufficiently illustrate the
method by which he attacked the quadrature problem.

(@) He commenced by finding the area of a lune contained
between a semicircle and a quadrantal arc standing on the same
chord. This he did as follows. Let ABC be an isosceles right-
angled triangle inscribed in the semicircle ABOC, whose centre
is 0. On V17j and AC as diameters describe semicircles as in
the figure. Then, since by Euc. 1, 47,

sg. on BC —sg. on AC +sg. on AB,
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therefore, by Euc. xui, 2,

Take away the common parts

.. area AVIAC, =sum of areas of lunes AECD and AFB7.

Hence the area of the lune AECD is equal to half that ol the

triangle ABC.
(/3) He next inscribed half a regular hexagon ABCD in a

semicircle whose centre was 0, and on OA, AB, BC, and CD as
diameters described semicircles of which those on OA and AB
are drawn in the figure. Then AD is double any of the .ines
OA, AB, BC, and CD,

www.rcin.org.pl
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.. sq. on AD =sum of sgs. on OA, AB, BC, and CD,
-.area O ABCD =sum of areas of JOson OA,AB, BC, and CD.
Take away the common parts

.. area trapezium ABCD = 3 lune AEBF + O on OA.

If therefore the area of this latter lune be known, so is that of
the semicircle described on OA as diameter. According to
Simplicius, Hippocrates assumed that the area of this lune was
the same as the area of the lune found in proposition (a); if
this be so, he was of course mistaken, as in this case he is deal-
ing with a lune contained between a semicircle and a sextantai
arc standing on the same chord; but it seems more probable
that Simplicius misunderstood Hippocrates.

Hippocrates also enunciated various other theorems connected
with lunes (which have been collected by Bretschneider and by
Allman) of which the theorem last given is a typical example.
I believe that they are the earliest instances in which areas
bounded by curves were determined by geometry.

The other problem to which Hippocrates turned his attention
was the duplication of a cube, that is, the determination of
the side of a cube whose volume is double that of a given
cube.

This problem was known in ancient times as the Delian
problem, in consequence of a legend that the Delians had con-
sulted Plato on the subject. In one form of the story, which
is related by Philoponus, it is asserted that the Athenians in
430 b.c, when suffering from the plague of eruptive typhoid
fever, consulted the oracle at Delos as to how they could stop
it. Apollo replied that they must double the size of his altar
which was in the form of a cube. To the unlearned suppliants
nothing seemed more easy, and a new altar was constructed
either having each of its edges double that of the old one (from
which it followed that the volume was increased eightfold) or
by placing a similar cubic altar next to the old one. Where-
upon, according to the legend, the indignant god made the
pestilence worse than before, and informed a fresh deputation
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that it was useless to trifle with him, as his new altar must
be a cube and have a volume exactly double that of his old
one. Suspecting a mystery the Athenians applied to Plato,
who referred them to the geometricians, and especially to
Euclid, who had made a special study of the problem. The
introduction of the names of Plato and Euclid is an obvious
anachronism. Eratosthenes gives a somewhat similar account
of its origin, but with king Minos as the propounder of the
problem.

Hippocrates reduced the problem of duplicating the cube to
that of finding two means between one straight line (a), and
another twice as long (2a). If these means be x and y, we
have a ,x=x-.y=y:2a, from which it follows that x3=2a3.
It is in this form that the problem is usually presented now.
Hippocrates did not succeed in finding a construction for these
means.

Plato. The next philosopher of the Athenian school who
requires mention here was Plato. He was born at Athens in
429 b.c,, and was, as is well known, a pupil for eight years of
Socrates; much of the teaching of the latter is inferred from
Plato’s dialogues. After the execution of his master in 399 B.c.
Plato left Athens, and being possessed of considerable wealth
he spent some years in travelling; it was during this time that
he studied mathematics. He visited Egypt with Eudoxus, and
Strabo says that in his time the apartments they occupied at
Heliopolis were still shewn. Thence Plato went to Cyrene,
where he studied under Theodoras. Next he moved to Italy,
where he became intimate with Archytas the then head of the
Pythagorean school, Eurytas of Metapontum, and Timaeus of
Locri. He returned to Athens about the year 380 b.c., and
formed a school of students in a suburban gymnasium called
the *“ Academy.” He died in 348 B.c.

Plato, like Pythagoras, was primarily a philosopher, and
perhaps his philosophy should be regarded as founded on the
Pythagorean rather than on the Socratic teaching. At any
rate it, like that of the Pythagoreans, was coloured with the

www.rcin.org.pl
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idea that the secret of the universe is to be found in number
and in form; hence, as Eudemus says, “he exhibited on every
occasion the remarkable connection between mathematics and
philosophy.” All the authorities agree that, unlike many later
philosophers, he made a study of geometry or some exact
science an indispensable preliminary to that of philosophy.
The inscription over the entrance to his school ran “Let none
ignorant of geometry enter my door,” and on one occasion an
applicant who knew no geometry is said to have been refused
admission as a student.

Plato’s position as one of the masters of the Athenian
mathematical school rests not so much on his individual dis-
coveries and writings as on the extraordinary influence he
exerted on his contemporaries and successors. Thus the objec-
tion that he expressed to the use in the construction of curves
of any instruments other than rulers and compasses was at once
accepted as a canon which must be observed in such problems.
It is probably due to Plato that subsequent geometricians
began the subject with a carefully compiled series of definitions,
postulates, and axioms. He also systematized the methods
which could be used in attacking mathematical questions, and
in particular directed attention to the value of analysis. The
analytical method of proof begins by assuming that the theorem
or problem is solved, and thence deducing some result if the
result be false, the theorem is not true or the problem is in-
capable of solution: if the result be true, and if the steps be
reversible, we get (by reversing them) a synthetic proof; but
if the steps be not reversible, no conclusion can be drawn.
Numerous illustrations of the method will be found in any
modern text-book on geometry. If the classification of the
methods of legitimate induction given by Mill in his work on
logic had been universally accepted and every new discovery in
science had been justified by a reference to the rules there laid
down, he'would, | imagine, have occupied a position in refer-
ence to modern science somewhat analogous to that which Plato
occupied in regard to the mathematics of his time.
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The following is the only extant theorem traditionally tttri-
buted to Plato. If CAB and DAB be two right-aigled
triangles, having one side, AB, common, their other sides AD
and BC, parallel, and their hypotenuses, AC and BI, at
right angles, then, if these hypotenuses cut in P, we have
PC:PB=PB:7LI = PA . PD. This theorem was use! in
duplicating the cube, for, if such triangles can be constricted
having PD = 2PC, the problem will be solved. It is easy
to make an instrument by which the triangles can be con-
structed.

Eudoxus.I Of Eudoxus, the third great mathematician of
the Athenian school and the founder of that at Cyzicus we
know very little. He was born in Cnidus in 408 B.. Like
Plato, he went to Tarentum and studied under Archytas the
then head of the Pythagoreans. Subsequently he travelled
with Plato to Egypt, and then settled at Cyzicus, where he
founded the school of that name. Finally he and his pipils
moved to Athens. There he seems to have taken some part in
public affairs, and to have practised medicine; but the hostility
of Plato and his own unpopularity as a foreigner made his
position uncomfortable, and he returned to Cyzicus or Cndus
shortly before his death. He died while on a journey to Ejypt
in 355 b.c.

His mathematical work seems to have been of a high oder
of excellence. He discovered most of what we now knov as
the fifth book of Euclid, and proved it in much the same form
as that in which it is there given.

He discovered some theorems on what was called °the
golden section.” The problem to
cut a line AB in the golden section,
that is, to divide it, say at Il, in
extreme and mean ratio (that is, so that AB .All— All .HD> is
solved in Euc. Il, 11, and probably was known to the Pytlia-

1 The works of Eudoxus were discussed in considerable detail by
H. Kiinssberg of Dinkelsbiihl in 1888 and 1890 ; see also the authorities
mentioned above in the footnote on p. 33.
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goreans at an early date. If we denote AB by |, AH by a, and
HB by 3§, the theorems that Eudoxus proved are equivalent
to the following algebraical identities. (i) (a+ 2)2=5(%2Z)2
(ii) Conversely, if (i) be true, and AH be taken equal to o,
then AB will be divided at H in a golden section, (iii)
O+ 0)2=5(02). (iv) 2+b2=302 (v) I+a:l=1:a, which
gives another golden section.  These propositions were subse-
quently put by Euclid as the first five propositions of his
thirteenth book, but they might have been equally well, placed
towards the end of the second book. All of them are obvious
algebraically, since I=a+b and a2 =hl.

Eudoxus further established the ““method of exhaustions’”;
which depends on the proposition that “if from the greater
of two unequal magnitudes there be taken more than its half,
and from the remainder more than its half, and so on, there
will at length remain a magnitude less than the least of the
proposed magnitudes.” This proposition was placed by Euclid
as the first proposition of the tenth book of his Elements, but
in most modern school editions it is printed at the beginning of
the twelfth book. By the aid of this theorem the ancient
geometers were able to avoid the use of infinitesimals. the
method is rigorous, but awkward of application. A good illus-
tration of its use is to be foui)d in the demonstration of Euc.
xit. 2, namely, that the square of the radius of one circle is to
the square of the radius of another circle as the area of the first
circle is to an area which is neither less nor greater than the
area of the second circle, and which therefore must be exactly
equal to it the proof given by Euclid is (as was usual) com-
pleted by a reductio ad absurdum. Eudoxus applied the
principle to shew that the volume of a pyramid or a cone is
one-third that of the prism or the cylinder on the same base and
of the same altitude (Euc. xu, 7 and 10). It is believed that
he proved that the volumes of two spheres were to one another
as the cubes of their radii; some writers attribute the proposi-
tim Euc. xu, 2 to him, and not to Hippocrates.

Eudoxus also considered certain curves other than the circle.
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There is no authority for the statement macle in some old looks
that these were conic sections, and recent investigations have
shewn that the assertion (which I repeated in the earlier editions
of this book) that they were plane sections of the anchor-rilg is
also improbable. It seems most likely that they were tortuous
curves; whatever they were, he applied them in explaining the
apparent motions of the planets as seen from the earth.

Eudoxus constructed an orrery, and wrote a treatise on
practical astronomy, in which he supposed a number of mcving
spheres to which the sun, moon, and stars were attached, and
which by their rotation produced the effects observed, It all
he required twenty-seven spheres. As observations became nore
accurate, subsequent astronomers who accepted the theorj had
continually to introduce fresh spheres to make the theory igree
with the facts. The work of Aratus on astronomy, which was
written about 300 B.c. and is still extant, is founded on thit of
Eudoxus.

Plato and Eudoxus were contemporaries. Among Pato’s
pupils were the mathematicians Leodamas, Neocle.des,
Amyclas, and to their school also belonged Leon, Theidius
(both of whom wrote text-books on plane geometry), Cyzictnus,
Thasus, Hermotimus, Philippus, and Theaetetus. Anong
the pupils of Eudoxus are reckoned Menaechmus, his brother
Dinostratus (who applied the quadratrix to the duplication and
trisection problems), and Aristaeus.

Menaechmus.  Of the above- mentioned mathemati<ians
Menaechmus requires special mention. He was born about
375 B.c, and died about 325 b.c. Probably he succeeded
Eudoxus as head of the school at Cyzicus, where he acqtired
great reputation as a teacher of geometry, and was for that
reason appointed one of the tutors of Alexander the Geat.
In answer to his pupil’s request to make his proofs shcrter,
Menaechmus made the well-known reply that though in the
country there are private and even royal roads, yet in geonetry
there is only one road for all.

Menaechmus was the first to discuss the conic sections, which
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were long called the Menaechmian triads. He divided them
into three classes, and investigated their properties, not by
taking different plane sections of a fixed cone, but by keeping
his plane fixed and cutting it by different cones. He shewed
that the section of a right cone by a plane perpendicular to
a generator is an ellipse, if the cone be acute-angled ; a parabola,
if it be right-angled; and a hyperbola, if it be obtuse-angled ;
and he gave a mechanical construction for curves of each class.
It seems almost certain that he was acquainted with the funda-
mental properties of these curves; but some writers think that
he failed to connect them with the sections of the cone which he
had discovered, and there is no doubt that he regarded the
latter not as plane loci but as curves drawn on the surface of a
cone.

He also shewed how these curves could be used in either of
the thvo following ways to give a solution of the problem
to duplicate a cube. In the first of these, he pointed out that
two parabolas having a common vertex, axes at right angles,
and such that the latus rectum of the one is double that of the
other will intersect in another point whose abscissa (or ordinate)
will give a solution; for (using analysis) if the equations of the
parabolas be yi—2ax and x2—ay, they intersect in a point
whose abscissa is given by x3=2a3. It is probable that this
method was suggested by the form in which Hippocrates had cast
the problem; namely, to find x and y so that a -.x=x-y=Yy : 2a,
whence we have x2 =ay and y2 — 2ax.

The second solution given by Menaechmus was as follows.
Describe a parabola of latus rectum I. Next describe a rect-
angular hyperbola, the length of whose real axis is 4Z, and
having for its asymptotes the tangent at the vertex of the para-
bola and the axis of the parabola. Then the ordinate and the
abscissa of the point of intersection of these curves are the
mtan proportionals between | and 21. This is at once obvious
by analysis. The curves are x2=1ly and xy=2I2 These
cut in a point determined by x3=2I3 and-y3=443  Hence
| :x=x:1y=y:21
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Aristaeus and Theaetetus. Of the other members of these
schools, Aristaeus and Theaetetus, whose works are entirely lost,
were mathematicians of repute. AVe know that Aristaeus wrote
on the five regular solids and on conic sections, and that Theae-
tetus developed the theory of incommensurable magnitudes.
The only theorem we can now definitely ascribe to the latter
is that given by Euclid in the ninth proposition of the tenth
book of the Elements, namely, that the squares on two commen-
surable right lines have one to the other a ratio which a square
number has to a square number (and conversely); but the
squares on two incommensurable right lines have one to the
other a ratio which cannot be expressed as that of a square
number to a square number (and conversely). This theorem
includes the results given by Theodoras.!

The contemporaries or successors of these mathematicians
wrote some fresh text-books on the elements of geometry and
the conic sections, introduced problems concerned with finding
loci, and systematized the knowledge already acquired, but they
originated no new methods of research.

Aristotle.  An account of the Athenian school would be
incomplete if there were no mention of Aristotle, who was born
at Stagira in Macedonia in 384 B.c. and died at Chaicis in
Euboea in 322 b.c. Aristotle, however, deeply interested
though he was in natural philosophy, was chiefly concerned
with mathematics and mathematical physics as supplying illus-
trations of correct reasoning. A small book containing a few
questions on mechanics which is sometimes attributed to him
is of doubtful authority; but, though in all probability it is
not his work, it is interesting, partly as shewing that the
principles of mechanics were beginning to excite attention, and
partly as containing the earliest known employment of letters
to indicate magnitudes.

The most instructive parts of the book are the dynamical
proof of the parallelogram of forces for the direction of the

resultant, and the statement, in effect, that if a be a force, 3 the
1 Swo ahmtQ y Qn
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mass to which it is applied, y the distance through which it is
moved, and 9§ the time of the motion, then a will move %j
through 2y in the time 0, or through y in the time %0: but the
author goes on to say that it does not follow that %a will move
B through %y in the time 9, because o may not be able to move
B at all; for 100 men may drag a ship 100 yards, but it does
not follow that one man can drag it one yard. The first part
of this statement is correct and is equivalent to the statement
that an impulse is proportional to the momentum produced, but
the second part is wrong.

The author also states the fact that what is gained in power
is lost in speed, and therefore that two weights which keep a
[weightless] lever in equilibrium are inversely proportional to
the arms of the lever; this, he says, is the explanation why it
is easier to extract teeth with a pair of pincers than with the
fingers. Among other questions raised, but not answered, are
why a projectile should ever stop, and why carriages with large
wheels are easier to move than those with small.

| ought to add that the book contains some gross blunders,
and as a whole is not as able or suggestive as might be inferred
from the above extracts. In fact, here as elsewhere, the Greeks
did not sufficiently realise that the fundamental facts on which
the mathematical treatment of mechanics must be based can
be established only by carefully devised observations and
experiments.
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CHAPTER IV.

THE FIRST ALEXANDRIAN SCHOOL.1
ciRC. 300 b.c.-30 b.c.

The earliest attempt to found a university, as we understand
the word, was made at Alexandria. Richly endowed, supplied
with lecture rooms, libraries, museums, laboratories, and
gardens, it became at once the intellectual metropolis of the
Greek race, and remained so for a thousand years. It was
particularly fortunate in producing within the first centur? of its
existence three of the greatest mathematicians of antiquity—
Euclid, Archimedes, and Apollonius. They laid down thi lines
on which mathematics subsequently developed, and treatel it as
a subject distinct from philosophy : hence the foundation of the
Alexandrian Schools is rightly taken as the commencemelt of a
new era. Thenceforward, until the destruction of the city by
the Arabs in 641 a.d., the history of mathematics centres

1 The history of the Alexandrian Schools is discussed by G. Lorit in his
Le Scienze Esatte nell' Antica Grecia, Modena, 1893-1900; by Cantor,
chaps, xii-xxiii; and by J. Gow in his History of Greek Math>matics,
Cambridge, 1884. The subject of Greek algebra is treated by E. H. F.
Nesselmann in his Die Algebra der Griechen, Berlin, 1842 ; see also L.
Matthiessen, Grundzuge der antiken und modernen Algebra der Itteralen
Gleichungen, Leipzig, 1878. The Greek treatment of the conic sectiots forms
the subject of Die Lehre von den Kegelschnitten in Altertum, by H. G.
Zeuthen, Copenhagen, 1886. The materials for the history of these schools
have been subjected to a searching criticism by S. P. Tannery, and most of
his papers are collected in his Geometrie Grecque, Paris, 1887.
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more or less round that of Alexandria; for this reason the
Alexandrian Schools are commonly taken to include all Greek
mathematicians of their time.

The city and university of Alexandria Avere created under the
following circumstances. Alexander the Great had ascended the
throne of Macedonia in 336 b.c. at the early age of twenty, and
by 332 b.c. he had conquered or subdued Greece, Asia Minor,
and Egypt. Following the plan he adopted whenever a com-
manding site had been left unoccupied, he founded a new city
on the Mediterranean near one mouth of the Nile; and he him-
self sketched out the ground-plan, and arranged for drafts of
Greeks, Egyptians, and Jews to be sent to occupy it. The city
was intended to be the most magnificent in the world, and, the
better to secure this, its erection was left in the hands of
Dinocrates, the architect of the temple of Diana at Ephesus.

After Alexander's death in 323 b.c. his empire was divided,
and Egypt fell to the lot of Ptolemy, who chose Alexandria
as the capital of his kingdom. A short period of confusion
followed, but as soon as Ptolemy was settled on the throne, say
about 306 b.c., he determined to attract, so far as he was able,
learned men of all sorts to his new city; and he at once began
the erection of the university buildings on a piece of ground
immediately adjoining his palace. The university was ready to
be opened somewhere about 300 b.c., and Ptolemy, who wished
to secure for its staff the most eminent philosophers of the time,
naturally turned to Athens to find them. The great library
which was the central feature of the scheme was placed under
Demetrius Phalereus, a distinguished Athenian, and so rapidly
did it grow that within forty years it (together with the
Egyptian annexe) possessed about 600,000 rolls. The mathe-
matical department was placed under Euclid, who was thus the
first, as he was one of the most famous, of the mathematicians
of the Alexandrian school.

It happens that contemporaneously with the foundation
of this school the information on which our history is based
becomes more ample and certain. Many of the works of the
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Alexandrian mathematicians are still extant; and w« have
besides an invaluable treatise by Pappus, described bebw, in
which their best-known treatises are collated, discussei, and
criticized. It curiously turns out that just as we begin to be
able to speak with confidence on the subject-matter whith was
taught, we find that our information as to the personality of
the teachers becomes vague; and we know very little of the
lives of the mathematicians mentioned in this and th; next
chapter, even the dates at which they lived being fre(uently
in doubt.

The third century before Christ.

Euclid.1—This century produced three of the geatest
mathematicians of antiquity, namely Euclid, Archimedis, and
Apollonius.  The earliest of these was Euclid. Of his ife we
know next to nothing, save that he was of Greek desceit, and
was born about 330 b.c.; he died about 275 b.c. It would
appear that he was well acquainted with the Platonic geanetry,
but he does not seem to have read Aristotle’s works; anc these
facts are supposed to strengthen the tradition that le was
educated at Athens. Whatever may have been his pevious
training and career, he proved a most successful teache- when
settled at Alexandria. He impressed his own individuality on
the teaching of the new university to such an extent lhat to
his successors and almost to his contemporaries the name
Euclid meant (as it does to us) the book or books he wrote,
and not the man himself. Some of the mediaeval writes went
so far as to deny his existence, and with the ingemity of

1 Besides Loria, book ii, chap, §; Cantor, chaps, xii, Xiii; and Gow, pp.
72-86, 195-221 ; see the articles Eucleides by A. De Morgan in Smith’s
Dictionary of Greek and Roman Biography, London, 1849; the a%icle on
Irrational Quantity by A. De Morgan in the Penny Cyclopaedia, .ondon,
1839 ; Litterargeschichtliche Studien uber Euklid, by J. L. Heiberg, Leipzig,
1882 ; and above all Euclid's Elements, translated with an introduction and
commentary by T. L. Heath, 3 volumes, Cambridge, 1908. Th) latest

complete edition of all Euclid’s works is that by J. L. Heiberg and H. Menge,
Leipzig, 1883-96.
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philologists they explained that the term was only a corruption
of vkAl a key, and d1s geometry.  The former word was presum-
ably derived from kAts. | can only explain the meaning
assigned to dis by the conjecture that as the Pythagoreans
said that the number two symbolized a line, possibly a school-
man may have thought that it could be taken as indicative of
geometry.

From the meagre notices of Euclid which have come down
to us we find that the saying that there is no royal road in
geometry was attributed to Euclid as well as to Menaechmus;
but it is an epigrammatic remark which has had many imitators.
According to tradition, Euclid was noticeable for his gentleness
and modesty. Of his teaching, an anecdote has been preserved.
Stobaeus, who is a somewhat doubtful authority, tells us that,
when a lad who had just begun geometry asked, “What do I
gain by learning all this stuff?” Euclid insisted that knowledge
was worth acquiring for its own sake, but made his slave give
the boy some coppers, “since,” said he, “he must make a profit
out of what he learns.”

Euclid was the author of several works, but his reputation
rests mainly on his Elements. This treatise contains a systematic
exposition of the leading propositions of elementary metrical
geometry (exclusive of conic sections) and of the theory of
numbers. It was at once adopted by the Greeks as the standard
text-book on the elements of pure mathematics, and it is probable
that it was written for that purpose and not as a philosophical
attempt to shew that the results of geometry and arithmetic are
necessary truths.

The modern textl is founded on an edition or commentary
prepared by Theon, the father of Hypatia (circ. 380 a.d.).
There is at the Vatican a copy (circ. 1000 A.t>.) of an older text,
and we have besides quotations from the work and references to
it by numerous writers of various dates. From these sources we

1 Most of the modern text-books in English are founded on Simeon’s
edition, issued in 1758. Robert Simson, who was born in 1687 and died in
1768, was professor of mathematics at the University of Glasgow, and left
several valuable works on ancient geometry.
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gather that the definitions, axioms, and postulates were re-
arranged and slightly altered by subsequent editors, but that
the propositions themselves are substantially as Euclid wrote
them.

As to the matter of the work. The geometrical part is to a
large extent a compilation from the works of previous writers.
Thus the substance of books | and w is probably due to
Pythagoras - that of book in to Hippocrates; that of book v to
Eudoxus; and the bulk of books iv, vi, x1, and xXn to the later
Pythagorean or Athenian schools. But this material was re-
arranged, obvious deductions were omitted (for instance, the
proposition that the perpendiculars from the angular points of a
triangle on the opposite sides meet in a point was cut out), and
in some cases new proofs substituted. The part concerned with
the theory of numbers would seem to have been taken from the
works of Eudoxus and Pythagoras, except that portion (book x)
which deals with irrational magnitudes. The latter may be
founded on the lost book of Theaetetus; but probably much
of it is original, for Proclus says that while Euclid arranged
the propositions of Eudoxus he completed many of those of
Theaetetus.

The form in which the propositions are presented, consisting
of enunciation, statement, construction, proof, and conclusion,
is due to Euclid: so also is the synthetical character of the
work, each proof being written out as a logically correct train of
reasoning but without any clue to the method by which it was
obtained.

The defects of Euclid’'s Elements as a text-book of geometry
have been often stated ; the most prominent are these, (i) The
definitions and axioms contain many assumptions which are not
obvious, and in particular the postulate or axiom about parallel
lines is not self-evident.! (ii) No explanation is given as to
the reason why the proofs take the form in which they are
presented, that is, the synthetical proof is given but not the

1 We know, from the researches of Lobatschewsky and Riemann, that it is
incapable of proof.
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analysis by which it was obtained, (iii) There is no attempt
made to generalize the results arrived at; for instance, the idea
of an angle is never extended so as to cover the case where it is
equal to or greater than two right angles: the second half of
the thirty-third proposition in the sixth book, as now printed,
appears to be an exception, but it is due to Theon and not to
Euclid.  (iv) The principle of superposition as a method of
proof might be used more frequently with advantage, (v) The
classification is imperfect. And (vi) the work is unnecessarily
long and verbose. Some of those objections do not apply to
certain of the recent school editions of the Elements.

On the other hand, the propositions in Euclid are arranged
so as to form a chain of geometrical reasoning, proceeding from
certain almost obvious assumptions by easy steps to results of
considerable complexity. The demonstrations are rigorous, often
elegant, and not too difficult for a beginner. Lastly, nearly all
the elementary metrical (as opposed to the graphical) properties
of space are investigated, while the fact that for two thousand
years it was the usual text-book on the subject raises a strong
presumption that it is not unsuitable for the purpose.

On the Continent rather more than a century ago, Euclid
was generally superseded by other text-books. In England
determined efforts have lately been made with the same purpose,
and numerous other works on elementary geometry have been
produced in the last decade. The change is too recent to enable
us to say definitely what its effect may be. But as far as | can
judge, boys who have learnt their geometry on the new system
know more facts, but have missed the mental and logical training
which was inseparable from a judicious study of Euclid's
treatise.

I do not think that all the objections above stated can fairly
be urged against Euclid himself. He published a collection of
problems, generally known as the Aebopiva or Data. This
contains 95 illustrations of the kind of deductions which
frequently have to be made in analysis; such as that, if one
of the data of the problem under consideration be that one
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angle of some triangle in the figure is constant, then it is
legitimate to conclude that the ratio of the area of the rectangle
under the sides containing the angle to the area of the triangle
is known [prop. 66]. Pappus says that the work was written
for those “who wish to acquire the power of solving problems.”
It is in fact a gradual series of exercises in geometrical analysis.
In short the Elements gave the principal results, and were
intended to serve as a training in the science of reasoning, while
the Data were intended to develop originality.

Euclid also wrote a work called []pi Aloip<cewv or De
Divisionibus, known to us only through an Arabic translation
which may be itself imperfect. This is a collection of 36
problems on the division of areas into parts which bear to one
another a given ratio. It is not unlikely that this was only
one of several such collections of examples—possibly including
the Fallacies and the Porisms—but even by itself it shews that
the value of exercises and riders was fully recognized by Euclid.

I may here add a suggestion made by De Morgan, whose
comments on Euclid’s writings were notably ingenious and
informing. From internal evidence he thought it likely that
the Elements were written towards the close of Euclid’s life, and
that their present form represents the first draft of the proposed
work, which, with the exception of the tenth book, Euclid did
not live to revise. This opinion is generally discredited, and
there is no extrinsic evidence to support it.

The geometrical parts of the Elements are so well known
that I need do no more than allude to them. Euclid admitted
only those constructions Avhich could be made by the use of a
ruler and compasses.l  He also excluded practical work and

1 The ruler must be of unlimited length and not graduated ; the compasses
also must be capable of being opened as wide as is desired. Lorenzo Mas-
cheroni (who was born at Castagneta on May 14, 1750, and died at Paris
on July 30, 1800) set himself the task to obtain by means of constructions
made only with a pair of compasses the same results as Euclid had given.
Mascheroni’s treatise on the geometry of the compass, which was published
at Pavia in 1795, is a curious tour de force: he was professor first at

Bergamo and afterwards at Pavia, and left numerous minor works. ~ Similar
limitations have been proposed by other writers.
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hypothetical constructions.  The first four books and book
vt deal with plane geometry; the theory of proportion (of
any magnitudes) is discussed in book v; and books xi1 and
Xu treat of solid geometry.  On the hypothesis that the
Elements are the first draft of Euclid’s proposed work, it is
possible that book xm is a sort of appendix containing some
additional propositions which would have been put ultimately
in one or other of the earlier books. Thus, as mentioned
above, the first five propositions which deal with a line cut
in golden section might be added to the second book. The
next seven propositions .are concerned with the relations be-
tween certain incommensurable lines in plane figures (such as
the radius of a circle and the sides of an inscribed regular
triangle, pentagon, hexagon, and decagon) which are treated by
the methods of the tenth book and as an illustration of them.
Constructions of the five regular solids are discussed in the last
six propositions, and it seems probable that Euclid and his
contemporaries attached great importance to this group of
problems. Bretschneider inclined to think that the thirteenth
book is a summary of part of the lost work of Aristaeus: but
the illustrations of the methods of the tenth book are due most
probably to Theaetetus.

Books vu, wvim, 1x, and x of the Elements are given up
to the theory of numbers. The mere art of calculation or
Aoylcrtik? was taught to boys when quite young, it was stig-
matized by Plato as childish, and never received much atten-
tion from Greek mathematicians; nor was it regarded as
forming part of a course of mathematics. We do not know
how it was taught, but the abacus certainly played a prominent
part in it. The scientific treatment of numbers was called
dpibp.nti.kn, which 1 have here generally translated as the
science of numbers. It had special reference to ratio, pro-
portion, and the theory of numbers. It is with this alone that
most of the extant Greek works deal.

In discussing Euclid’s arrangement of the subject, we must
therefore bear in mind that those who attended his lectures
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were already familiar with the art of calculation. The system
of numeration adopted by the Greeks is described later,l but
it was so clumsy that it rendered the scientific treatment of
numbers much more difficult than that of geometry; hence
Euclid commenced his mathematical course with plane geometry.
At the same time it must be observed that the results of the
second book, though geometrical in form, are capable of
expression in algebraical language, and the fact that numbers
could be represented by lines was probably insisted on at an
early stage, and illustrated by concrete examples. This
graphical method of using lines to represent numbers possesses
the obvious advantage of leading to proofs which are true for
all numbers, rational or irrational. It will be noticed that
among other propositions in the second book we get geometrical
proofs of the distributive and commutative laws, of rules for
multiplication, and finally geometrical solutions of the equations
a(a—a?)=x2, that is x2+ax - a2=0 (Euc. m, 11), and x2—al> =0
(Euc. u, 14): the solution of the first of these equations is
given in the form o2+ (“sa) - %a. The solutions of the
equations ax2 - bx+c¢—0 and ax2+bx—c=0 are given later in
Euc. vi, 28 and vi, 29 ; the cases when a=1 can be deduced
from the identities proved in Euc. Il, 5 and 6, but it is doubtful
if Euclid recognized this.

The results of the fifth book, in which the theory of propor-
tion is considered, apply to any magnitudes, and therefore are
true of numbers as well as of geometrical magnitudes. In the
opinion of many writers this is the most satisfactory way of
treating the theory of proportion on a scientific basis; and it
was used by Euclid as the foundation on which he built the
theory of numbers. The theory of proportion given in this
book is believed to be due to Eudoxus. The treatment of the
same subject in the seventh book is less elegant, and is supposed
to be a reproduction of the Pythagorean teaching. This double
discussion of proportion is, as far as it goes, in favour of the
conjecture that Euclid did not live to revise the work.

1 See below, chapter vii.
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In books vm, vm, and 1x Euclid discusses the theory of
rational numbers. He commences the seventh book with some
definitions founded on the Pythagorean notation. In proposi-
tions 1 to 3 he shews that if, in the usual process for finding
the greatest common measure of two numbers, the last divisor
be unity, the numbers must be prime; and he thence deduces
the rule for finding their g.c.m. Propositions 4 to 22 include
the theory of fractions, which he bases on the theory of pro-
portion; among other results he shews that ab =ba [prop. 16].
In propositions 23 to 34 he treats of prime numbers, giving
many of the theorems in modern text-books on algebra. In
propositions 35 to 41 he discusses the least common multiple of
numbers, and some miscellaneous problems.

The eighth book is chiefly devoted to numbers in continued
proportion, that is, in a geometrical progression; and the cases
where one or more is a product, square, or cube are specially
considered.

In the ninth book Euclid continues the discussion of geo-
metrical progressions, and in proposition 35 he enunciates the
rule for the summation of a series of n terms, though the proof
is given only for the case where n is equal to 4. He also
develops the theory of primes, shews that the number of primes
is infinite [prop. 20], and discusses the properties of odd and
even numbers. He concludes by shewing that a number of the
form 2n-1(2n-1), where 2n-1 is a prime, is a ““perfect”
number [prop. 36].

In the tenth book Euclid deals with certain irrational
magnitudes; and, since the Greeks possessed no symbolism for
surds, he was forced to adopt a geometrical representation.
Propositions 1 to 21 deal generally with incommensurable
magnitudes. The rest of the book, namely, propositions 22 to
117, is devoted to the discussion of every possible variety of
lines which can be represented by ¥{( yo+ x0), where a and b
denote commensurable lines. There are twenty-five species of
such lines, and that Euclid could detect and classify them all
is in the opinion of so competent an authority as Nesselmann
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the most striking illustration of his genius. No further advance
in the theory of incommensurable magnitudes was made until
the subject was taken up by Leonardo and Cardan after an
interval of more than a thousand years.

In the last proposition of the tenth book [prop. 117] the
side and diagonal of a square are proved to be incommensurable.
The proof is so short and easy that | may quote it.  If possible
let the side be to the diagonal in a commensurable ratio,
namely, that of two integers, a and b. Suppose this ratio
reduced to its lowest terms so that a and b have no common
divisor other than unity, that is, they are prime to one another.
Then (by Euc. 1, 47) b2=2a2, therefore b2 is an even number;
therefore b is an even number; hence, since a is prime to |, a
must be an odd number. Again, since it has been shewn that
b is an even number, b may be represented by 2n; therefore
(2n)2 = 202; therefore a2 =2n? ; therefore a2 is an even number;
therefore a is an even number. Thus the same number a mist
be both odd and even, which is absurd; therefore the side and
diagonal are incommensurable. Hankel believes that this proof
was due to Pythagoras, and this is not unlikely. This proposi-
tion is also proved in another way in Euc. x, 9, and for this
and other reasons it is now usually believed to be an interpola-
tion by some commentator on the Elements.

In addition to the Elements and the two collections of riders
above mentioned (which are extant) Euclid wrote the following
books on geometry : (i) an elementary treatise on conic sections
in four books; (ii) a book on surface loci, probably confmed
to curves on the cone and cylinder; (iii) a collection of geo-
metrical fallacies, which were to be used as exercises in the
detection of errors; and (iv) a treatise on porisms arranged in
three books. All of these are lost, but the work on porisms
was discussed at such length by Pappus, that some writers
have thought it possible to restore it. In particular, Chasles
in 1860 published what he considered to be substantially a re-
production of it. In this will be found the conceptions of cross
ratios and projection, and those ideas of modern geometry which
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were used so extensively by Chasles and other writers of the
nineteenth century. It should be realized, however, that the
statements of the classical writers concerning this book are
either very brief or have come to us only in a mutilated
form, and De Morgan frankly says that he found them un-
intelligible, an opinion in which most of those who read them
will, I think, concur.

Euclid published a book on optics, treated geometrically,
which contains 61 propositions founded on 12 assumptions. It
commences with the assumption that objects are seen by rays
emitted from the eye in straight lines, “for if light proceeded
from the object we should not, as we often do, fail to perceive a
needle on the floor.” A work called Catoptrica is also attributed
to him by some of the older writers; the text is corrupt and the
authorship doubtful; it consists of 31 propositions dealing with
reflexions in plane, convex, and concave mirrors. The geometry
of both books is Euclidean in form.

Euclid has been credited with an ingenious demonstration !
of the principle of the lever, but its authenticity is doubtful.
He also wrote the Phaenomena, a treatise on geometrical astro-
nomy. It contains references to the work of Autolycus? and to
some book on spherical geometry by an unknown writer. Pappus
asserts that Euclid also composed a book on the elements of
music : this may refer to the Sectio Canonis, which is by Euclid,
and deals with musical intervals.

To these works | may add the following little problem, which
occurs in the Palatine Anthology and is attributed by tradition
to Euclid. “A mule and a donkey were going to market laden
with wheat. The mule said, ‘ If you gave me one measure |
should carry twice as much as you, but if 1 gave you one we

1 It is given (from the Arabic) by F. Woepcke in the Journal Asiatique,
series 4, vol. xviii, October 1851, pp. 225-232.

2 Autolycus lived at Pitane in Aeolis and flourished about 330 b.C. His
two works on astronomy, containing 43 propositions, are said to be the oldest
extant Greek mathematical treatises. They exist in manuscript at Oxford.
They were edited, with a Latin translation, by F. Hultsch, Leipzig, 1885.
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should bear equal burdens. Tell me, learned geometrician,
what were their burdens.” It is impossible to say whether the
question is due to Euclid, but there is nothing improbable in
the suggestion.

It will be noticed that Euclid dealt only with magnitudes,
and did not concern himself with their numerical measures, but
it would seem from the works of Aristarchus and Archimedes
that this was not the case with all the Greek mathematicians
of that time. As one of the works of the former is extant it
will serve as another illustration of Greek mathematics of this
period.

Aristarchus.  Aristarchus of Samos, born in 310 b.c. and
died in 250 b.c., was an astronomer rather than a mathematician.
He asserted, at any rate as a working hypothesis, that the sun
was the centre of the universe, and that the earth revo.ved
round the sun. This view, in spite of the simple explanation
it afforded of various phenomena, was generally rejected by his
contemporaries. But his propositions! on the measurement of
the sizes and distances of the sun and moon were accurate in
principle, and his results were accepted by Archimedes in his
Waqzrys, mentioned below, as approximately correct. Taere
are 19 theorems, of which | select the seventh as a typical
illustration, because it shews the way in which the Greeks
evaded the difficulty of finding the numerical value of surds.

Avristarchus observed the angular distance between the noon
when dichotomized and the sun, and found it to be twenty-line
thirtieths of a right angle. It is actually about 89° 2I', but of
course his instruments were of the roughest description. He
then proceeded to shew that the distance of the sun is greiter
than eighteen and less than twenty times the distance of the
moon in the following manner.

Let S be the sun, E the earth, and J37the moon. Then when

1 I[epi pe~/iBowv Kai a.moot-nua.rwv 'HAt'ou kal yYeAn>ns, edited by E. Nzze,
Stralsund, 1856. Latiu translations were issued by F. Commandino in .572
and by J. Wallis in 1688 ; and a French translation was publishe¢ by
F. d’Urban in 1810 and 1823.
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the moon is dichotomized, that is, when the bright part which
we see is exactly a half-circle, the angle between MS and ME is

a right angle. With E as centre, and radii ES and EM describe
circles, as in the figure above. Draw EA perpendicular to ES.
Draw EE bisecting the angle AES, and EG bisecting the angle
AEF, as in the figure. Let EM (produced) cut AF in II.
The angle AEM is by hypothesis -Ysth of a right angle. Hence
we have
angle AEG : angle AEII
AG : AH [=tan AEG : tan AEII

Again

Compounding the ratios (a) and (/?), we have

But the triangles EMS and EAII are similar,
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I will leave the second half of the proposition to amuse any
reader who may care to prove it the analysis is straightforward.
In a somewhat similar way Aristarchus found the ratio of the
radii of the sun, earth, and moon.

We know very little of Conon and Dositheus, the immediate
successors of Euclid at Alexandria, or of their contemporaries
Zeuxippus and Nicoteles, who most likely also lectured there,
except that Archimedes, who was a student at Alexandria
probably shortly after Euclid’s death, had a high opinion of
their ability and corresponded with the three first mentioned.
Their work and reputation has been completely overshadowed
by that of Archimedes.

Archimedes.l  Archimedes, who probably was related to
the royal family at Syracuse, was born there in 287 b.c. and
died in 212 b.c. He went to the university of Alexandria
and attended the lectures of Conon, but, as soon as he had
finished his studies, returned to Sicily where he passed the
remainder of his life. He took no part in public affairs, but
his mechanical ingenuity was astonishing, and, on any diffictlties
which could be overcome by material means arising, his advice
was generally asked by the government.

Archimedes, like Plato, held that it was undesirable for a
philosopher to seek to apply the results of science to any prac-
tical use ; but, whatever might have been his view of what
ought to be the case, he did actually introduce a large number
of new inventions. The stories of the detection of the fraudu-
lent goldsmith and of the use of burning-glasses to destroy the
ships of the Roman blockading squadron will recur to most
readers. Perhaps it is not as well known that Hiero, who had
built a ship so large that he could not launch it off the dips,

1 Besides Loria, book ii, chap, iii; Cantor, chaps, xiv, xv; and Gow,
pp. 221-244 ; see Quaestiones Archimedeae, by J. L. Heiberg, Copenhagen,
1879 ; and Marie, vol. i, pp. 81-134. The latest and best edition cf the
extant works of Archimedes is that by J. L. Heiberg, in 3 vols., Lepzig,
1880-81. In 1906 a manuscript, previously unknown, was discovertd at
Constantinople, containing propositions on hydrostatics and on methods; see
Eine neue Schrift des Archimedes, by J. L. Heiberg and H. G, Zeir.hen,
Leipzig, 1907.

www.rcin.org.pl
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applied to Archimedes. The difficulty was overcome by means
of an apparatus of cogwheels worked by an endless screw, but
we are not told exactly how the machine was used. It is said
that it was on this occasion, in acknowledging the compliments
of Hiero, that Archimedes made the well-known remark that had
he but a fixed fulcrum he could move the earth.

Most mathematicians are aware that the Archimedean screw
wias another of his inventions. It consists of a tube, open at
both ends, and bent into the form of a spiral like a corkscrew.
If one end be immersed in water, and the axis of the instrument
(*se. the axis of the cylinder on the surface of which the tube
lies) be inclined to the vertical at a sufficiently big angle, and
the instrument turned round it, the water will flow along the
tube and out at the other end. In order that it may work, the
inclination of the axis of the instrument to the vertical must
be greater than the pitch of the screw. It was used in Egypt
to drain the fields after an inundation of the Nile, and was
also frequently applied to take water out of the hold of a
ship.

The story that Archimedes set fire to the Roman ships by
means of burning-glasses and concave mirrors is not mentioned
till some centuries after his death, and is generally rejected.
The mirror of Archimedes is said to have been made in the
form of a hexagon surrounded by rings of polygons ; and Buffon !
in 1747 contrived, by the use of a single composite mirror made
on this model, to set fire to wood at-a distance of 150 feet,
and to melt lead at a distance of 140 feet. This was in April
and as far north as Paris, so in a Sicilian summer the use
of several such mirrors might be a serious annoyance to a
blockading fleet, if the ships were sufficiently near. It is
perhaps worth mentioning that a similar device is said to have
been used in the defence of Constantinople in 514 a.d., and is
alluded to by writers who either were present at the siege or
obtained their information from those who were engaged in it.

1 See Memoires de l,academie royale des sciences for 1747, Paris, 1752,
pp. 82-101.

F
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But whatever be the truth as to this story, there is no doubt
that Archimedes devised the catapults which kept the Romans,
who were then besieging Syracuse, at bay for a considerable
time. These were constructed so that the range could be made
either short or long at pleasure, and so that they could be dis-
charged through a small loophole without exposing the artillery-
men to the fire of the enemy. So effective did they prove that
the siege was turned into a blockade, and three years ela,psed
before the town was taken.

Archimedes was killed during the sack of the city which
followed its capture, in spite of the orders, given by the consul
Marcellus who was in command of the Romans, that his house
and life should be spared. It is said that a soldier enterel his
study while he was regarding a geometrical diagram drawn in
sand on the floor, which was the usual way of drawing figures
in classical times. Archimedes told him to get off the diagram,
and not spoil it. The soldier, feeling insulted at having <rders
given to him and ignorant of who the old man was, killed him.
According to another and more probable account, the cupidity
of the troops was excited by seeing his instruments, constricted
of polished brass which they supposed to be made of gold.

The Romans erected a splendid tomb to Archimedes, on which
was engraved (in accordance with a wish he had expressec) the
figure of a sphere inscribed in a cylinder, in commemoration of
the proof he had given that the volume of a sphere was equal
to two-thirds that of the circumscribing right cylinder, and its
surface to four times the area of a great circle. Cicero! gives
a charming account of his efforts (which were successful) to
rediscover the tomb in 75 B.c.

It is difficult to explain in a concise form the works or dis-
coveries of Archimedes, partly because he wrote on near.y all
the mathematical subjects then known, and partly because his
writings are contained in a series of disconnected monographs.
Thus, while Euclid aimed at producing systematic treitises
which could be understood by all students who had attuned

1 See his Tusculanatum Disyutati<mum, v. 23.
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a certain level of education, Archimedes wrote a number of
brilliant essays addressed chiefly to the most educated mathe-
maticians of the day. The work for which he is perhaps now
best known is his treatment of the mechanics of solids and
fluids; but he and his contemporaries esteemed his geometrical
discoveries of the quadrature of a parabolic area and of a
spherical surface, and his rule for finding the volume of a sphere
as more remarkable; while at a somewhat later time his numerous
mechanical inventions excited most attention.

(i) On plane, geometry the extant works of Archimedes are
three in number, namely, (u) the Measure of the Circle, (0) the
Quadrature of the Parabola, and (c) one on Spirals.

(&) The Measure of the Circle contains three propositions.
In the first proposition Archimedes proves that the area is the
same as that of a right-angled triangle whose sides are equal
respectively to the radius a and the circumference of the circle,
i.e. the area is equal to o (2tra). In the second proposition
he shows that ma? : (20)2=I1 : 14 very nearly; and next, in
the third proposition, that 7r is less than 31 and greater than
3-1-9. These theorems are of course proved geometrically. To
demonstrate the two latter propositions, he inscribes in and
circumscribes about a circle regular polygons of ninety - six
sides, calculates their perimeters, and then assumes the circum-
ference of the circle to lie between them : this leads to the
result 6336 / 2017 < 7r< 14688/ 4673 , from which he deduces
the limits given above. It would seem from the proof that he
had some (at present unknown) method of extracting the square
roots of numbers approximately. The table which he formed
of the numerical values of the chords of a circle is essentially a
table of natural sines, and may have suggested the subsequent
work on these lines of Hipparchus and Ptolemy.

(6) The Qrcadrature of the Parabola contains twenty-four
propositions.  Archimedes begins this work, which was sent to
Dositheus, by establishing some properties of conics [props, I-5].
He then states correctly the area cut off from a parabola by any
chord, and gives a proof which rests on a preliminary mechanical
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experiment of the ratio of areas which balance when suspended
from the arms of a lever [props. 6-17]; and, lastly, he gives a
geometrical demonstration of this result [props. 18-24]. The
latter is, of course, based on the method of exhaustions, but for
brevity I will, in quoting it, use the method of limits.

Let the area of the parabola (see figure below) be bounded
by the chord PQ. Draw VJf the diameter to the chord
PQ, then (by a previous proposition), Vis more remote from

PQ than any other point in the arc PVQ. Let the aiea of
the triangle PFQ be denoted by A. In the segments bounded
by VP and VQ inscribe triangles in the same way as the triangle
P VQ was inscribed in the given segment. Each of these tri-
angles is (by a previous proposition of his) equal to and
their sum is therefore A. Similarly in the four segments left
inscribe triangles; their sum will be TKA. Proceeding it this
way the area of the given segment is shown to be equal to the
limit of

when n is indefinitely large.
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The problem is therefore reduced to finding the sum of a
geometrical series.  This he effects as follows. Let A, B, C,
..., .1, A'be a series of magnitudes such that each is one-fourth

of that which precedes it. Take magnitudes 9, ¢, ..., k equal
respectively to Then
Hence

but, by hypothesis,

Hence the sum of these magnitudes exceeds four times the third
of the largest of them by one-third of the smallest of them.

Returning now to the problem of the quadrature of the
parabola A stands for A, and ultimately K is indefinitely
small; therefore the area of the parabolic segment is four-thirds
that of the triangle PVQ, or two-thirds that of a rectangle
whose base is PQ and altitude the distance of V from PQ.

While discussing the question of quadratures it may be
added that in the fifth and sixth propositions of his work on
conoids and spheroids he determined the area of an ellipse.

(c) The work on Spirals contains twenty-eight propositions
on the properties of the curve now known as the spiral of
Archimedes. It was sent to Dositheus at Alexandria accom-
panied by a letter, from which it appears that Archimedes had
previously sent a note of his results to Conon, who had died
before he had been able to prove them. The spiral is defined by
saying that the vectorial angle and radius vector both increase
uniformly, hence its equation is r=cf. Archimedes finds most
of its properties, and determines the area inclosed between the
curve and two radii vectores. This he does (in effect) by
saying, in the language of the infinitesimal calculus, that an
element of area is >%r2d0 and <% (r+dr)2d®: to effect the
sum of the elementary areas he gives tAvo lemmas in which he
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sums (geometrically) the series a2+ (2a)2+ (3a)2 +...+ (naf
[prop. 10], and a+ 2a+ 3<i+ ... + na [prop. 11].

(<7) In addition to these he wrote a small treatise on
geometrical methods, and works on parallel lines, triangles, the
properties of right-angled triangles, data, the heptagon inscribed
in a circle, and systems of circles touching one another; possibly
he wrote others too.  These are all lost, but it is probable that
fragments of four of the propositions in the last-mentioned work
are preserved in a Latin translation from an Arabic manuscript
entitled Lemmas of Archimedes.

(ii) On geometry of three dimensions the extant works of
Archimedes are two in number, namely (a), the Sphere and
Cylinder, and (6) Conoids and Spheroids.

(@) The Sp>here and Cylinder contains sixty propositions
arranged in two books.  Archimedes sent this like so many
of his works to Dositheus at Alexandria; but he seems to
have played a practical joke on his friends there, for he pur-
posely misstated some of his results “to deceive those vain
geometricians who say they have found everything, but never
give their proofs, and sometimes claim that they have dis-
covered what is impossible.” He regarded this work as his
masterpiece. It is too long for me to give an analysis of its
contents, but I remark in passing that in it he finds expressions
for the surface and volume of a pyramid, of a cone, and of
a sphere, as well as of the figures produced by the revolution
of polygons inscribed in a circle about a diameter of the circle.
There are several other propositions on areas and volumes of
which perhaps the most striking is the tenth proposition of
the second book, namely, that *“ of all spherical segments whose
surfaces are equal the hemisphere has the greatest volume.”
In the second proposition of the second book he enunciates the
remarkable theorem that a line of length a can be divided
so that a-x :0=14a2: 9jj2 (where b is a given length), only
if b be less than a; that is to say, the cubic equation
X2 -ax- +%a25=0 can have a real and positive root only if
a be greater than 36. This proposition was required to com-
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plete his solution of the problem to divide a given sphere by
a plane so that the volumes of the segments should be in a given
ratio. One very simple cubic equation occurs in the Arithmetic
of Diophantus, but with that exception no such equation appears
again in the history of European mathematics for more than a
thousand years.

(d) The Conoids and Spheroids contains forty propositions
on quadrics of revolution (sent to Dositheus in Alexandria)
mostly concerned with an investigation of their volumes.

(c) Archimedes also wrote a treatise on certain semi-regular
polyhedrons, that is, solids contained by regular but dissimilar
polygons.  This is lost, but references to it are given by
Pappus.

(iii)On arithmetic Archimedes wrote two papers. One
(addressed to Zeuxippus) was on the principles of numeration;
this is now lost. The other (addressed to Gelon) was called
ylrappim<s (the sand-reckoner), and in this he meets an objection
which had been urged against his first paper.

The object of the first paper had been to suggest a con-
venient system by which numbers of any magnitude could
be represented; and it would seem that some philosophers at
Syracuse had doubted whether the system was practicable.
Archimedes says people talk of the sand on the Sicilian shore
as something beyond the power of calculation, but he can
estimate it; and, further, he will illustrate the power of his
method by finding a superior limit to the number of grains of
sand which would fill the whole universe, i.e. a sphere whose
centre is the earth, and radius the distance of the sun. He
begins by saying that in ordinary Greek nomenclature it was
only possible to express numbers from 1 up to 108 : these are
expressed in what he says he may call units of the first order.
If 10s be termed a unit of the second order, any number from
108 to 10Li can be expressed as so many units of the second
order plus so many units of the first order. If 1016 be a unit
of the third order any number up to 1024 can be then expressed,
and so on. Assuming that 10,000 grains of sand occupy a



72 THE FIRST ALEXANDRIAN SCHOOL [ch. iv

sphere whose radius is not less than Y%Yth of a finger-breadth,
and that the diameter of the universe is not greater than 101°
stadia, he finds that the number of grains of sand required to
fill the solar universe is less than 1051

Probably this system of numeration was suggested merely
as a scientific curiosity. The Greek system of numeration
with which we are acquainted had been only recently intro-
duced, most likely at Alexandria, and was sufficient for all the
purposes for which the Greeks then required numbers; and
Archimedes used that system in all his papers. On the other
hand, it has been conjectured that Archimedes and Apollonius
had some symbolism based on the decimal system for their
own investigations, and it is possible that it was the one here
sketched out. The units suggested by Archimedes form a
geometrical progression, having 10s for the radix. He inci-
dentally adds that it will be convenient to remember that the
product of the with and mth terms of a geometrical progression,
whose first term is unity, is equal to the (m+n)th term of the
series, that is, that rm x rn=rm-+n.

To these two arithmetical papers | may add the following
celebrated problem! which he sent to the Alexandrian mathe-
maticians. The sun had a herd of bulls and cows, all of
which were either white, grey, dun, or piebald : the number
of piebald bulls was less than the number of white bulls by
5/6ths of the number of grey bulls, it was less than the
number of grey bulls by 920ths of the number of dun bulls,
and it was less than the number of dun bulls by 1342nds
of the number of white bulls; the number of white cows was
7/T2ths of the number of grey cattle (bulls and cows), the
number of grey cows was 920ths of the number of dun
cattle, the number of dun cows was 1V30ths of the number of
piebald cattle, and the number of piebald cows was 1342nds
of the number of white cattle. The problem was to find the

1 See a memoir by B. Krumbiegel and A. Amthor, Zeitschriftfur Matlie-
matik, Abhandlungen zur (Jeschiclite der Mathematik, Leipzig, vol. xxv, 1880,
pp. 121-136, 153-171.
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composition of the herd. The problem is indeterminate, but
the solution in lowest integers is

white bulls, ....... 10,366,482; white cows, ....... 7,206,360;
grey bulls,........... 7,460,514; grey cows,............ 4,893,246;
dun bulls, ........... 7,358,060; dun cows, ............ 3,515,820;
piebald bulls,....... 4,149,387 ; piebald cows,....... 5,439,213.

In the classical solution, attributed to Archimedes, these num-
bers are multiplied by 80.

Nesselinann believes, from internal evidence, that the prob-
lem has been falsely attributed to Archimedes. It certainly
is unlike his extant work, but it was attributed to him among
the ancients, and is generally thought to be genuine, though
possibly it has come down to us in a modified form. It is
in verse, and a later copyist has added the additional con-
ditions that the sum of the white and grey bulls shall be a
square number, and the sum of the piebald and dun bulls a
triangular number.

It is perhaps worthy of note that in the enunciation the
fractions are represented as a sum of fractions whose numera-
tors are unity: thus Archimedes wrote 1/7 + 1/6 instead of
13/42, in the same way as Ahmes would have done.

(iv)On mechanics the extant works of Archimedes are
two in number, namely, (a) his Mechanics, and (c) his Hydro-
statics.

(a) The Mechanics is a work on statics with special refer-
ence to the equilibrium of plane laminas and to properties of
their centres of gravity; it consists of twenty-five propositions
in two books. In the first part of book 1, most of the ele-
mentary properties of the centre of gravity are proved [props.
1-8]; and in the remainder of book I, [props. 9-15] and in
book u the centres of gravity of a variety of plane areas, such
as parallelograms, triangles, trapeziums, and parabolic areas
are determined.

As an illustration of the influence of Archimedes on the
history of mathematics, | may mention that the science of
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statics rested on his theory of the lever until 158G, when
Stevinus published his treatise on statics.

His reasoning is sufficiently illustrated by an outline of his
proof for the case of two weights, P and Q, placed at their centres
of gravity, A and B, on a weightless bar AB. He wants to shew
that the centre of gravity of P and Q is at a point O on the bar
such that P.0A =Q.OB.

On the line /17? (produced if necessary) take points IL and 7,
so that IB=BK=AO0; and a point L so that LA—OB. It
follows that LI1 will be bisected at A, ILK at B, and LK at O;

also LH-ILK=AH .HB=OB: AO=P.Q. Hence, by a
previous proposition, we may consider that the effect of P is the
same as that of a heavy uniform bar 7V77 of weight P, and the
effect of Q is the same as that of a similar heavy uniform bar
777f of weight Q. Hence the effect of the weights is the same
as that of a heavy uniform bar LK. But the centre of gravity
of such a bar is at its middle point O.

(d) Archimedes also wrote a treatise on levers and perhaps,
on all the mechanical machines. The book is lost, but we
know from Pappus that it contained a discussion of how a
given weight could be moved with a given power. It was in
this work probably that Archimedes discussed the theory of
a certain compound pulley consisting of three or more simple
pulleys which he had invented, and which was used in some
public works in Syracuse. It is well known! that he boasted
that, if he had but a fixed fulcrum, he could move the whole
earth; and a commentator of later date says that he added
he would do it by using a compound pulley.

(c) His work onfloating bodies contains nineteen propositions
in two books, and was the first attempt to apply mathematical
reasoning to hydrostatics. The story of the manner in which

1 See above, p. 65.
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his attention was directed to the subject is told by Vitruvius.
Hiero, the king of Syracuse, had given some gold to a goldsmith
to make into a crown. The crown was delivered, made up, and
of the proper weight, but it was suspected that the workman
had appropriated some of the gold, replacing it by an equal
weight of silver. Archimedes was thereupon consulted. Shortly
afterwards, when in the public baths, he noticed that his body
was pressed upwrards by a force which increased the more com-
pletely he was immersed in the water. Recognising the value
of the observation, he rushed out, just as he was, and ran home
through the streets, shouting evpnka, euvpnka, “ I have found it, |
have found it.” There (to follow a later account) on making
accurate experiments he found that wihen equal wieights of gold
and silver were weighed in water they no longer appeared equal:
each seemed lighter than before by the weight of the water it
displaced, and as the silver was more bulky than the gold its
weight was more diminished. Hence, if on a balance he weighed
the crowin against an equal weight of gold and then immersed
the whole in water, the gold would outweigh the crown if any
silver had been used in its construction. Tradition says that
the goldsmith was found to be fraudulent.

Archimedes began the work by proving that the surface of
a fluid at rest is spherical, the centre of the sphere being at the
centre of the earth. He then proved that the pressure of the
fluid on a body, wholly or partially immersed, is equal to the
weight of the fluid displaced; and thence found the position
of equilibrium of a floating body, which he illustrated by
spherical segments and paraboloids of revolution floating on a
fluid. Some of the latter problems involve geometrical reason-
ing of considerable complexity.

The following is a fair, specimen of the questions considered.
A solid in the shape of a paraboloid of revolution of height h
and latus rectum 4a floats in water, with its vertex immersed
and its base wholly above the surface. If equilibrium be
possible when the axis is not vertical, then the density of the
body must be less than (A - 3a)ZA3 [book u, prop. 4]. When
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it is recollected that Archimedes was unacquainted with trigono-
metry or analytical geometry, the fact that he could discover
and prove a proposition such as that just quoted will serve as an
illustration of his powers of analysis.

It will be noticed that the mechanical investigations of
Archimedes were concerned with statics. It may be added lhat
though the Greeks attacked a few problems in dynamics, they
did it with but indifferent success: some of their remarks vere
acute, but they did not sufficiently realise that the fundamental
facts on which the theory must be based can be established cnly
by carefully devised observations and experiments. It was not
until the time of Galileo and Newton that this was done.

(v) We know, both from occasional references in his works
and from remarks by other writers, that Archimedes was largely
occupied in astronomical observations. He wrote a book, llepi
19> 1po7toa'as, on the construction of a celestial sphere, which is
lost; and he constructed a sphere of the stars, and an orrery.
These, after the capture of Syracuse, were taken by Marcelim to
Rome, and were preserved as curiosities for at least two or tlree
hundred years.

This mere catalogue of his works will show how wonde-ful
were his achievements; but no one who has not actually read
some of his writings can form a just appreciation of his extra-
ordinary ability. This will be still further increased if we
recollect that the only principles used by Archimedes, in
addition to those contained in Euclid’s Elements and Conic

sections, are that of all lines ike

ACE, ADB, ... connecting two

points A and B, the straight ine

is the shortest, and of the curved

lines, the inner one ADB is
shorter than the outer one ACB-, together with two similar
statements for space of three dimensions.

In the old and medieval world Archimedes was reckoled
as the first of mathematicians, but possibly the best tribute to
his fame is the fact that those writers who have spoken nost
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highly of his work and ability are those who have been them-
selves the most distinguished men of their own generation.

Apollonius.l The third great mathematician of this century
was Apollonius of Perga, who is chiefly celebrated for having
produced a systematic treatise on the conic sections which not
only included all that was previously known about them, but
immensely extended the knowledge of these curves. This work
was accepted at once as the standard text-book on the subject,
and completely superseded the previous treatises of Menaech-
mus, Aristaesus, and Euclid which until that time had been in
general use.

We know very little of Apollonius himself. He was born
about 260 b.c.,, and died about 200 B.c. He studied in Alex-
andria for many years, and probably lectured there; he is
represented by Pappus as “vain, jealous of the reputation of
others, and ready to seize every opportunity to depreciate them.”
It is curious that while we know next to nothing of his life, or
of that of his contemporary Eratosthenes, yet their nicknames,
which were respectively epsilon and beta, have come down to us.
Dr. Gow has ingeniously suggested that the lecture rooms at
Alexandria were numbered, and that they always used the rooms
numbered 5 and 2 respectively.

Apollonius spent some years at Pergamum in Pamphylia,
where a university had been recently established and endowed
in imitation of that at Alexandria. There he met Eudemus and
Attalus, to whom he subsequently sent each book of his conics
as it came out with an explanatory note. He returned to
Alexandria, and lived there till his death, which was nearly
contemporaneous with that of Archimedes.

In his great work on conic sections Apollonius so thoroughly
investigated the properties of these curves that he left but little

1 In addition to Zeuthen's work and the other authorities mentioned in
the footnote on p. 51, see Littetargeschichtliche Studien ilber Buklid, by
J. L. Heiberg, Leipzig, 1882. Editions of the extant works of Apollonius
were issued by J. L. Heiberg in two volumes, Leipzig, 1890, 1893 ; and by

E. Halley, Oxford, 1706 and 1710: an edition of the conics was published by
T. L. Heath, Cambridge, 1896.
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for his successors to add. But his proofs are long and involved,
and | think most readers will be content to accept a short
analysis of his work, and the assurance that his demonstrations
are valid. Dr. Zeuthen believes that many of the properties
enunciated were obtained in the first instance by the use of
co-ordinate geometry, and that the demonstrations were trans-
lated subsequently into geometrical form. If this be so. we
must suppose that the classical writers were familiar with some
branches of analytical geometry—Dr. Zeuthen says the use of
orthogonal and oblique co-ordinates, and of transformations
depending on abridged notation — that this knowledge was
confined to a limited school, and was finally lost. This is a
mere conjecture and is unsupported by any direct evidence, but
it has been accepted by some writers as affording an explanation
of the extent and arrangement of the work.

The treatise contained about four hundred propositions, and
was divided into eight books; we have the Greek text of the
first four of these, and we also possess copies of the comment-
aries by Pappus and Eutocius on the whole work. In the ninth
century an Arabic translation was made of the first seven hoiks,
which were the only ones then extant; we have two manuscripts
of this version.  The eighth book is lost.

In the letter to Eudemus which accompanied the first look
Apollonius says that he undertook the work at the requesi of.
Naucrates, a geometrician who had been staying with bin at
Alexandria, and, though he had given some of his friends a
rough draft of it, he had preferred to revise it carefully before
sending it to Pergamum. In the note which accompanied the
next book, he asks Eudemus to read it and communicate it to
others who can understand it, and in particular to Philoniies,
a certain geometrician whom the author had met at Ephesus

The first four books deal with the elements of the subject,
and of these the first three are founded on Euclid’s prevous
work (which was itself based on the earlier treatises by
Menaechmus and Aristaeus). Heracleides asserts that much
of the matter in these books was stolen from an unpublished
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work of Archimedes, but a critical examination by Heiberg
has shown that this is improbable.

Apollonius begins by defining a cone on a circular base.
He then investigates the different plane sections of it, and
shows that they are divisible into three kinds of curves which
he calls ellipses, parabolas, and hyperbolas. He proves the

proposition that, if A, A" be the vertices of a conic, and if P be
any point on it, and PM the perpendicular drawn from P on
AA', then (in the usual notation) the ratio MPi: AM. MA' is
constant in an ellipse or hyperbola, and the ratio MP2: AM
is constant in a parabola. These are the characteristic properties
on which almost all the rest of the work is based. He next
shows that, if A be the vertex, | the latus rectum, and if AM
and MP be the abscissa and ordinate of any point on a conic
(see above figure), then MP2 is less than, equal to, or greater
than 1. AM according as the conic is an ellipse, parabola, or
hyperbola; hence the names which he gave to the curves and
by which they are still known.

He had no idea of the directrix, and was not aware that
the parabola had a focus, but, with the exception of the pro-
positions which involve these, his first three books contain most
of the' propositions which are found in modern text - books.
In the fourth book Jie develops the theory of lines cut

www.rcin.org.pl
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harmonically, ancl treats of the points of intersection of
systems of conics. In the fifth book he commences with the
theory of maxima and minima; applies it to find the centre of
curvature at any point of a conic, and the evolute of the curve;
and discusses the number of normals which can be drawn from
a point to a conic. In the sixth book he treats of similar
conics. The seventh and eighth books were given up to a
discussion of conjugate diameters; the latter of these was
conjecturally restored by E. Halley in his edition of 1710.

The verbose explanations make the book repulsive to most
modern readers; but the arrangement and reasoning are
unexceptional, and it has been not unfitly described as the
crown of Greek geometry. It is the work on which the
reputation of Apollonius rests, and it earned for him the name
of ““the great geometrician.”

Besides this immense treatise he wrote numerous shorter
works; of course the books were written in Greek, but they
are usually referred to by their Latin titles : those about which
we now know anything are enumerated below. He was the
author of a work on the problem ““given two co-planar straight
lines Aa and Jib, drawn through fixed points A and Ji; to draw
a line Oab from a given point O outside them cutting them in
a and b, so that Aa shall be to Jib in a given ratio.” He reduced
the question to seventy-seven separate cases and gave an
appropriate solution, with the aid of conics, for each case; this
was published by E. Halley (translated from an Arabic copy) in
1706. He also wrote a treatise De Sectione Spatii (restored by
E. Halley in 1706) on the same problem under the condition
that the rectangle Aa. Jib was given. He wrote another entitled
De Sectione Determinate. (restored by R. Simson in 1749),
dealing with problems such as to find a point J* in a given
straight line AB, so that PA? shall be to PB in a given ratio.
He wrote another De Tactionibus (restored by Vieta in 1600)
on the construction of a circle which shall touch three given
circles.  Another work was his De Inclinationibus (restored by
M. Ghetaldi in 1607) on the problem to draw a line so that the
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intercept between two given lines, or the circumferences of two
given circles, shall be of a given length. He was also the
author of a treatise in three books on plane loci, De Locis
Planis (restored by Fermat in 1637, and by 1L Simson in
1746), and of another on the regular solids. And, lastly, he
wrote a treatise on unclassed incommensurables, being a com-
mentary on the tenth book of Euclid. It is believed that in
one or more of the lost books he used the method of conical
projections.

Besides these geometrical works he wrote on the methods of
arithmetical calculation. All that we know of this is derived
from some remarks of Pappus. Friedlein thinks that it was
merely a sort of ready - reckoner. It seems, however, more
probable that Apollonius here suggested a system of numera-
tion similar to that proposed by Archimedes, but proceeding
by tetrads instead of octads, and described a notation for it.
It will be noticed that our modern notation goes by hexads,
a million = 106, a billion = 1012, a trillion = 1018, etc. It is not
impossible that Apollonius also pointed out that a decimal
system of notation, involving only nine symbols, would facilitate
numerical multiplications.

Apollonius was interested in astronomy, and wrote a book
on the stations and regressions of the planets of which Ptolemy
made some use in writing the Almagest. He also wrote a
treatise on the use and theory of the screw in statics.

This is a long list, but I should suppose that most of these
works were short tracts on special points.

Like so many of his predecessors, he too gave a construction
for finding two mean proportionals between two given lines, and
thereby duplicating the cube. It was as follows. Let OA and
OB be the given lines. Construct a rectangle OADB, of
which they are adjacent sides. Bisect AB in C. Then, if
with C as centre we can describe a circle cutting OA produced
in o, and cutting OB produced in 5, so that aDb shall be a
straight line, the problem is effected. For it is easily shewn
that
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Similarly
Hence
That is,

But, by similar triangles,
BD :BL = Oa..Ob=Aa: AD.
Therefore Oa : Bl>=Bb:A<i=Aa: OB,

that is, Bb and Oa are the two mean proportionals between
OA and OB. It is impossible to construct the circle whose
centre is C by Euclidean geometry, but Apollonius gave a
mechanical way of describing it. This construction is quoted
by several Arabic writers.

In one of the most brilliant passages of his Apereu historique
Chasles remarks that, while Archimedes and Apollonius were
the most able geometricians of the old world, their works are
distinguished by a contrast which runs through the whole sub-
sequent history of geometry.  Archimedes, in attacking the
problem of the quadrature of curvilinear areas, established the
principles of the geometry which rests on measurements; this
naturally gave rise to the infinitesimal calculus, and in fact the
method of exhaustions as used by Archimedes does not differ
in principle from the method of limits as used by Newton.
Apollonius, on the other hand, in investigating the properties of
conic sections by means of transversals involving the ratio of
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rectilineal distances and of perspective, laid the foundations of
the geometry of form and position.

Eratosthenes.I Among the contemporaries of Archimedes
and Apollonius 1 may mention Eratosthenes. Born at Cyrene
in 275 b.c, he was educated at Alexandria—perhaps at the
same time as Archimedes, of whom he was a personal friend—
and Athens, and was at an early age entrusted with the care of
the university library at Alexandria, a post which probably he
occupied till his death. He was the Admirable Crichton of his
age, and distinguished for his athletic, literary, and scientific
attainments: he was also something of a poet. He lost his
sight by ophthalmia, then as now a curse of the valley of the
Nile, and, refusing to live when he was no longer able to read,
he committed suicide in 194 b.c.

In science he was chiefly interested in astronomy and geodesy,
and he constructed various astronomical instruments which were
used for some centuries at the university. He suggested the
calendar (now known as Julian), in which every fourth year
contains 366 days; and he determined the obliquity of the
ecliptic as 23° 51' 20". He measured the length of a degree on
the earth’s surface, making it to be about 79 miles, which is too
long by nearly 10 miles, and thence calculated the circumference
of the earth to be 252,000 stadia. If we take the Olympic
stadium of 2021 yards, this is equivalent to saying that the
radius is about 4600 miles, but there was also an Egyptian
stadium, and if he used this he estimated the radius as 3925
miles, which is very near the truth. The principle used in the
determination is correct.

Of Eratosthenes's work in mathematics we have two extant
illustrations : one in a description of an instrument to duplicate
a cube, and the other in a rule he gave for constructing a table
of prime numbers. The former is given in many books. The
latter, called the ““sieve of Eratosthenes,” was as follows: write

1 The works of Eratosthenes exist only in fragments. A collection of these
was published by G. Bernhardy at Berlin in 1822 : some additional fragments
were printed by E. Hillier, Leipzig, 1872.
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down all the numbers from 1 upwards; then every second
number from 2 is a multiple of 2 and may be cancelled; every
third number from 3 is a multiple of 3 and may be cancelled;
every fifth number from 5 is a multiple of 5 and may be
cancelled ; and so on. It has been estimated that it would
involve working for about 300 hours to thus find the primes in
the numbers from 1 to 1,000,000. The labour of determining
whether any particular number is a prime may be, however,
much shortened by observing that if a number can be ex-
pressed as the product of two factors, one must be less and the
other greater than the square root of the number, unless the
number is the square of a prime, in which case the two factors
are equal. Hence every composite number must be divisible by
a prime which is not greater than its square root.

The second century before Christ.

The third century before Christ, which opens with the career
of Euclid and closes with the death of Apollonius, is the most
brilliant era in the history of Greek mathematics. But the
great mathematicians of that century were geometricians, and
under their influence attention was directed almost solely to that
branch of mathematics. With the methods they used, and to
which their successors were by tradition confined, it was hardly
possible to make any further great advance: to fill up a few
details in a work that was completed in its essential parts was
all that could be effected. It was not till after the lapse of
nearly 1800 years that the genius of Descartes opened the way
to any further progress in geometry, and | therefore pass over
the numerous writers who followed Apollonius with but slight
mention. Indeed it may be said roughly that during the next
thousand years Pappus was the sole geometrician of great original
ability; and during this long period almost the only other pure
mathematicians of exceptional genius were Hipparchus and
Ptolemy, who laid the foundations of trigonometry, and Dio-
phantus, who laid those of algebra.
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Early in the second century, circ. 180 B.C., we find the names
of three mathematicians—Hypsicles, Nicomedes, and Diocles—
who in their own day were famous.

Hypsicles. The first of these was Hypsicles, who added a
fourteenth book to Euclid’s Elements in which the regular solids
were discussed. In another small work, entitled Risings, we
find for the first time in Greek mathematics a right angle
divided in the Babylonian manner into ninety degrees; possibly
Eratosthenes may have previously estimated angles by the
number of degrees they contain, but this is only a matter of
conjecture.

Nicomedes. The second was Nicomedes, who invented the
curve known as the conchoid or the shell-shaped curve. If from
a fixed point >§ a line be drawn cutting a given fixed straight
line in Q, and if P be taken on SQ so that the length QP is
constant (say d), then the locus of P is the conchoid. Its
equation may be put in the form r=asecf+d. It is easy
with its aid to trisect a given angle or to duplicate a cube; and
this no doubt was the cause of its invention.

Diocles. The third of these mathematicians was Diocles, the
inventor of the curve known as the cissoid or the ivy-shaped
curve, which, like the conchoid, was used to give a solution of
the duplication problem. He defined it thus: let AOA' and
ROB' be two fixed diameters of a circle at right angles to one
another. Draw two chords QQ, and RR' parallel to BOB' and
equidistant from it. Then the locus of the intersection of AR
and QQ, will be the cissoid. Its equation can be expressed in
the form y2(2a —a? =aA The curve may be used to duplicate
the cube. For, if OA and OE be the two lines between which
it is required to insert two geometrical means, and if, in the
figure constructed as above, AE cut the cissoid in P, and AP
cut OB in D, we have ODi=0OA2 OE. Thus OD is one
of the means required, and the other mean can be found at
once.

Diocles also solved (by the aid of conic sections) a problem
which bad been proposed by Archimedes, namely, to draw a
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plane which will divide a sphere into two parts whose volu nes
shall bear to one another a given ratio.

Perseus. Zenodorus. About a quarter of a century later,
say about 150 B.c., Perseus investigated the various plane sect ons
of the anchor-ring, and Zenodorus wrote a treatise on isojeri-
metrical figures. Part of the latter work has been preserved ;
one proposition which will serve to show the nature of the
problems discussed is that “ of segments of circles, having ecual
arcs, the semicircle is the greatest.”

Towards the close of this century we find two mathematicians
who, by turning their attention to new subjects, gave a fiesh
stimulus to the study of mathematics. These were Hipparchus
and Hero.

Hipparchus.! Hipparchus was the most eminent of Gnek
astronomers—his chief predecessors being Eudoxus, Aristarclus,
Archimedes, and Eratosthenes. Hipparchus is said to have b?n
born about 160 b.c. at Nicaea in Bithynia; it is probable that
he spent some years at Alexandria, but finally he took up his
abode at Rhodes where he made most of his observati<ns.
Delambre has obtained an ingenious confirmation of the tixdi-
tion which asserted that Hipparchus lived in the second centiry
before Christ. Hipparchus in one place says that the longitude
of a certain star n Canis observed by him was exactly 90°, rnd
it should be noted that he was an extremely careful observer.
Now in 1750 it was 116° 4' 10", and, as the first point of Ades
regredes at the rate of 50,2" a year, the observation was nude
about 120 B.c.

Except for a short commentary on a poem of Aratus dealing
with astronomy all his works are lost, but Ptolemy’s gnat
treatise, the Almagest, described below, was founded on the
observations and writings of Hipparchus, and from the nctes

1 See C. Manitius, Hipparchi in Arati et Eudoxiphaenomena Commentarii,
Leipzig, 1894, and J. B. J. Delambre, Histoire de ["astronomie ancienne, Psris,
1817, vol. i, pp. 106-189. S. P. Tannery in his Jlecherches sur [histoire de
Vastronomie ancienne, Paris, 1893, argues that the work of Hipparchus lias
been overrated, but | have adopted the view of the majority of writers on the
subject.
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there given we infer that the chief discoveries of Hipparchus
were as follows. He determined the duration of the year to
within six minutes of its true value. He calculated the inclina-
tion of the ecliptic and equator as 23° 51'; it was actually at
that time 230 46'. He estimated the annual precession of the
equinoxes as 59"; it is 50-2". He stated the lunar parallax as
57', which is nearly correct. He worked out the eccentricity of
the solar orbit as 1/24; it is very approximately 1/30. He
determined the perigee and mean motion of the sun and of the
moon, and he calculated the extent of the shifting of the plane
of the moon’s motion. Finally he obtained the synodic periods
of the five planets then known. | leave the details of his
observations and calculations to writers who deal specially with
astronomy such as Delambre; but it may be fairly said that
this work placed the subject for the first time on a scientific
basis.

To account for the lunar motion Hipparchus supposed the
moon to move with uniform velocity in a circle, the earth
occupying a position near (but not at) the centre of this circle.
This is equivalent to saying that the orbit is an epicycle of the
first order.  The longitude of the moon obtained on this
hypothesis is correct to the first order of small quantities for a
few revolutions.  To make it correct for any length of time
Hipparchus further supposed that the apse line moved forward
about 3° a month, thus giving a correction for eviction. He
explained the motion of the sun in a similar manner. This
theory accounted for all the facts which could be determined
with the instruments then in use, and in particular enabled him
to calculate the details of eclipses with considerable accuracy.

He commenced a series of planetary observations to enable
his successors to frame a theory to account for their motions ;
and with great perspicacity he predicted that to do this it
would be necessary to introduce epicycles of a higher order,
that is, to introduce three or more circles the centre of each
successive one moving uniformly along the circumference of the
preceding one.
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He also formed a list of 1080*of the fixed stars. It is said
that the sudden appearance in the heavens of a new and
brilliant star called his attention to the need of such a catalogue;
and the appearance of such a star during his lifetime is confirmed
by Chinese records.

No further advance in the theory of astronomy was made
until the time of Copernicus, though the principles laid down
by Hipparchus were extended and worked out in detail by
Ptolemy.

Investigations such as these naturally led to trigonometry,
and Hipparchus must be credited with the invention of that
subject. It is known that in plane trigonometry he constructed
a table of chords of arcs, which is practically the same as one of
natural sines; and that in spherical trigonometry he had some
method of solving triangles : but his works are lost, and we can
give no details. It is believed, however, that the elegant
theorem, printed as Euc. vi, d, and generally known as
Ptolemy’s Theorem, is due to Hipparchus and was copied from
him by Ptolemy. It contains implicitly the addition formulae
for sin(A £A) and cos(Vl £A); and Carnot showed how the
whole of elementary plane trigonometry could be deduced
from it.

| ought also to add that Hipparchus was the first to indicate
the position of a place on the earth by means of its latitude and
longitude.

Hero.l The second of these mathematicians was Jlero of
Alexandria, who placed engineering and land-surveying on a
scientific basis.  He was a pupil of Ctesibus, who invented

1See Recherches sur la vie et les ouvrages cl’Heron d'Alexandria by T. H.
Martin in vol. iv of Mrinoires présentés...d I'académie d’inscriptions, Paris,
1854 ; see also Loria, book iii, chap. v, pp. 107-128, and Cantor, chaps,
xviii, xix. On the work entitled Definitions, which is attributed to Hero,
see S. P. Tannery, chaps, xiii, xiv, and an article by G. Friedlein in
Boncoinpagni’s Bulletino di bibliografia, March 1871, vol. iv, pp. 93-126.
Editions of the extant works of Hero were published in Teubner’s series,
Leipzig, 1899, 1900, 1903. An English translation of the []i'supottka. was
published by B. Woodcroft and J. G. Greenwood, London, 1851 : drawings
of the apparatus are inserted.
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several ingenious machines, and is alluded to as if he were a
mathematician of note. It is not likely that Hero flourished
before 80 B.c., but the precise period at which he lived is
uncertain.

In pure mathematics Hero’s principal and most characteristic
work consists of (i) some elementary geometry, with applications
to the determination of the areas of fields of given shapes; (ii)
propositions on finding the volumes of certain solids, with
applications to theatres, baths, banquet-halls, and so on; (iii) a
rule to find the height of an inaccessible object; and (iv) tables
of weights and measures. He invented a solution of the
duplication problem which is practically the same as that which
Apollonius had already discovered. Some commentators think
that he knew how to solve a quadratic equation even when the
coefficients were not numerical; but this is doubtful. He
proved the formula that the area of a triangle is equal to
{s(s-a) (s -9d) (s-c)}l wheresis the semiperimeter, and a, b, c,
the lengths of the sides, and gave as an illustration a triangle
whose sides were in the ratio 13 :14:15. He seems to have
been acquainted with the trigonometry of Hipparchus, and the
values of cot2tvh are computed for various values of n, but he
nowhere quotes a formula or expressly uses the value of the
sine; it is probable that like the later Greeks he regarded
trigonometry as forming an introduction to, and being an
integral part of, astronomy.

The following is the manner in which he solved | the problem
to find the area of a triangle ABC the length of whose sides are
a, b, c. Let s be the semiperimeter of the triangle. Let the
inscribed circle touch the sides in D, E, F, and let O be its
centre. On BC produced take 7/ so that C1ll= AF, therefore
B[1=s. Draw OK at right angles to OB, and CK at right
angles to BC; let them meet in K. The area ABC or A is equal
to the sum of the areas OBC, OCA, OAB = Yar + Ybr + Yscr = sr,

1 In his Dioptra, Hultsch, part viii, pp. 235-237. It should be stated

that some critics think that this is an interpolation, and is not due to
Hero.
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that is, is equal to B1l. OD. He then shews that the angle
OAF—angle CBK-, hence the triangles CLIAT and CBK are
similar.

In applied mathematics Hero discussed the centre of gravity,
the five simple machines, and the problem of moving a givem
weight with a given power; and in one place he suggested a
way in which the power of a catapult could be tripled. H<c
also wrote on the theory of hydraulic machines. He described :a
theodolite and cyclometer, and pointed out various problem; im
surveying for which they would be useful. But the mostt
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interesting of his smaller works are his [y vzatukd and
Ar>to/iata, containing descriptions of about 100 small machines
and mechanical toys, many of which are ingenious. In the
former there is an account of a small stationary steam-engine
which is of the form now known as Avery’'s patent it was in
common use in Scotland at the beginning of this century, but is
not so economical as the form introduced by Watt. There is
also an account of a double forcing pump to be used as a fire-
engine. It is probable that in the hands of Hero these instru-
ments never got beyond models. It is only recently that
general attention has been directed to his discoveries, though
Arago had alluded to them in his eloge on Watt.

All this is very different from the classical geometry and
arithmetic of Euclid, or the mechanics of Archimedes. Hero
did nothing to extend a knowledge of abstract mathematics; he
learnt all that the text-books of the day could teach him, but he
was interested in science only on account of its practical appli-
cations, and so long as his results were true he cared nothing
for the logical accuracy of the process by which he arrived at
them. Thus, in finding the area of a triangle, he took the
square root of the product of four lines. The classical Greek
geometricians permitted the use of the square and the cube of
a line because these could be represented geometrically, but a
figure of four dimensions is inconceivable, and certainly they
would have rejected a proof which involved such a conception.

Thefirst century before Christ.

The successors of Hipparchus and Hero did not avail them-
selves of the opportunity thus opened of investigating new
subjects, but fell back on the well-worn subject of geometry.
Amongst the more eminent of these later geometricians were
Theodosius aii% Dionysodorus, both of whom flourished about
50 b.c.

Theodosius.  Theodosius was the author of a complete
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treatise on the geometry of the sphere, and of two works on
astronomy.!

Dionysodorus. Dionysodorus is known to us only by his
solution? of the problem to divide a hemisphere by a plane
parallel to its base into two parts, whose volumes shall be in a
given ratio.  Like the solution by Diodes of the similar problem
for a sphere above alluded to, it was effected by the aid of conic
sections. Pliny says that Dionysodorus determined the length
of the radius of the earth approximately as 42,000 stadia,
which, if we take the Olympic stadium of. 202 vyards, is a little
less than 5000 miles; we do not know how it was obtained.
This may be compared with the result given by Eratosthenes
and mentioned above.

End of the First Alexandrian School.

The administration of Egypt was definitely undertaken
by Rome in 30 B.c. The closing years of the dynasty of the
Ptolemies and the earlier years of the Roman occupation of
the country were marked by much disorder, civil and political.
The studies of the university were naturally interrupted, and
it is customary to take this time as the close of the first
Alexandrian school.

1 The work on the sphere was edited by I. Barrow, Cambridge, 1675,
and by E. Nizze, Berlin, 1852. The works on astronomy were published by
Dasypodius in 1572.

2 It is reproduced in H. Suter's Geschichte der mathematischen Wissen-
schaften, second edition, Zurich, 1873, p. 101.
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CHAPTER V.

THE SECOND ALEXANDRIAN SCHOOL.1
30 b.c.-641 a.d.

| concluded the last chapter by stating that the first school of
Alexandria may be said to have come to an end at about the
same time as the country lost its nominal independence. But,
although the schools at Alexandria suffered from the disturb-
ances which affected the whole Roman world in the transition,
in fact if not in name, from a republic to an empire, there was
no break of continuity; the teaching in the university was
never abandoned; and as soon as order was again established,
students began once more to flock to Alexandria. This time of
confusion was, however, contemporaneous with a change in the
prevalent views of philosophy which thenceforward were mostly
neo-platonic or neo-pythagorean, and it therefore fitly marks the
commencement of a new period. These mystical opinions
reacted on the mathematical school, and this may partially
account for the paucity of good work.

Though Greek influence was still predominant and the
Greek language always used, Alexandria now became the in-
tellectual centre for most of the Mediterranean nations which
were subject to Rome. It should be ad<led, however, that
the direct connection with it of many of the mathematicians

1 For authorities, see footnote above on p. 50. All dates given hereafter
are to be taken as anno domini unless the contrary is expressly stated.
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of this time is at least doubtful, but their knowledge was
ultimately obtained from the Alexandrian teachers, and they
are usually described as of the second Alexandrian school.
Such mathematics as were taught at Rome were derived from
Greek sources, and we may therefore conveniently consider
their extent in connection with this chapter.

The first century after Christ.

There is no doubt that throughout the first century after
Christ geometry continued to be that subject in science to
which most attention was devoted. But by this time it was
evident that the geometry of Archimedes and Apollonius was not
capable of much further extension ; and such geometrical treatises
as were produced consisted mostly of commentaries on the
writings of the great mathematicians of a preceding age. In
this century the only original works of any ability of which we
know anything were two by Serenus and one by Menelaus.

Serenus. Menelaus. Those by Serenus of Antissa or of
Antinoe, circ. 70, are on the plane sections of the cone and
cylinder,! in the course of which he lays down the fundamental
proposition of transversals. That by Menelaus of Alexandria,
circ. 98, is on spherical trigonometry, investigated in the
Euclidean method.23 The fundamental theorem on which the
subject is based is the relation between the six segments of the
sides of a spherical triangle, formed by the arc of a great circle
which cuts them [book in, prop. 1]. Menelaus also wrote on
the calculation of chords, that is, on plane trigonometry; this
is lost.

Nicomachus.  Towards the close of this century, circ.
100, a Jew, Nicomachus, of Gerasa, published an Arithmetic?
which (or rather the Latin translation of it) remained for a

| These have been edited by J. L. Heiberg, Leipzig, 1896 ; and by
E. Halley, Oxford, 1710.

2 This was translated by E. Halley, Oxford, 1758.

3 The work has been edited by R. Hoche, Leipzig, 1866.
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thousand years a standard authority on the subject. Geo-
metrical demonstrations are here abandoned, and the work is a
mere classification of the results then known, with numerical
illustrations: the evidence for the truth of the propositions
enunciated, for |1 cannot call them proofs, being in general an
induction from numerical instances. The object of the book
is the study of the properties of numbers, and particularly of
their ratios. Nicomachus commences with the usual distinc-
tions between even, odd, prime, and perfect numbers; he next
discusses fractions in a somewhat clumsy manner; he then
turns to polygonal and to solid numbers; and finally treats of
ratio, proportion, and the progressions.  Arithmetic of this kind
is usually termed Boethian, and the work of Boethius on it was
a recognised text-book in the middle ages.

The second century after Christ.

Theon.  Another text-book on arithmetic on much the
same lines as that of Nicomachus was produced by Theon of
Smyrna, circ. 130. It formed the first book of his work!l on
mathematics, written with the view of facilitating the study
of Plato’s writings.

Thymaridas. Another mathematician, reckoned by some
writers as of about the same date as Theon, was Thymaridas,
who is worthy of notice from the fact that he is the earliest
known writer who explicitly enunciates an algebraical theorem.
He states that, if the sum of any number of quantities be
given, and also the sum of every pair which contains one of
them, then this quantity is equal to one (n - 2)th part of the
difference between the sum of these pairs and the first given
sum. Thus, if

and if
then

1 The Greek text of those parts which are now extant, with a French
translation, was issued hy J. Dupuis, Paris, 1892.



96 THE SECOND ALEXANDRIAN SCHOOL [ch. v

He does not seem to have used a symbol to denote the unknown
quantity, but he always represents it by the same word, which
is an approximation to symbolism.

Ptolemy.l About the same time as these writers Ptolemy
of Alexandria, who died in 168, produced his great work on
astronomy, which will preserve his name as long as the history
of science endures. This treatise is usually known as the
Almagest. the name is derived from the Arabic title al mid-
schisti, which is said to be a corruption of /z yto-tv [p.ach//xaT(Kt}]
crwTaris.  The work is founded on the writings of Hipparchus,
and, though it did not sensibly advance the theory of the
subject, it presents the views of the older writer with a com-
pleteness and elegance which will always make it a standard
treatise. We gather from it that Ptolemy made observations
at Alexandria from the years 125 to 150; he, however, was
but an indifferent practical astronomer, and the observations
of Hipparchus are generally more accurate than those of his
expounder.

The work is divided into thirteen books. In the first book
Ptolemy discusses various preliminary matters; treats of trigo-
nometry, plane or spherical, gives a table of chords, that is,
of natural sines (which is substantially correct and is probably
taken from the lost work of Hipparchus); and explains the
obliquity of the ecliptic; in this book he uses degrees, minutes,
and seconds as measures of angles. The second book is devoted
chiefly to phenomena depending on the spherical form of the
earth: he remarks that the explanations would be much
simplified if the earth were supposed to rotate on its axis
once a day, but states that this hypothesis is inconsistent with
known facts. In the third book he explains the motion of the

1 See the article Ptolemaeus Claudius, by A. De Morgan in Smith’s
Dictionary of Greek and Roman Biography, London, 1849 ; S. P, Tannery,
Recherches sur Vhistoire de [astronomic ancienne, Paris, 1893 ; and
J. B. J. Delambre. Histoire de astronomie ancienne, Paris, 1817, vol. ii,
An edition of all the works of Ptolemy which are now extant was
published at Bale in 1551. The Almagest with various minor works
was edited by M. Halma, 12 vols. Paris, 1813-28, and a new edition,
in two volumes, by J. L. Heiberg, Leipzig, 1898, 1903, 1907.

www.rcin.org.pl
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sun round the earth by means of excentrics and epicycles: and
in the fourth and fifth books he treats the motion of the moon
in a similar way. The sixth book is devoted to the theory of
eclipses; and in it he gives 30 8' 30", that is 3il-%, as the
approximate value of 7r, which is equivalent to taking it equal
to 3T416. The seventh and eighth books contain a catalogue
(probably copied from Hipparchus) of 1028 fixed stars deter-
mined by indicating those, three or more, that appear to be in
a plane passing through the observer's eye : and in another
work Ptolemy added a list of annual sidereal phenomena. The
remaining books are given up to the theory of the planets.

This work is a splendid testimony to the ability of its
author. It became at once the standard authority on astro-
nomy, and remained so till Copernicus and Kepler shewed
that the sun and not the earth must be regarded as the centre
of the solar system.

The idea of excentrics and epicycles on which the theories
of Hipparchus and Ptolemy are based has been often ridiculed
in modern times. No doubt at a later time, when more accu-
rate observations had been made, the necessity of introducing
epicycle on epicycle in order to bring the theory into accord-
ance with the facts made it very complicated. But De Morgan
has acutely observed that in so far as the ancient astronomers
supposed that it was necessary to resolve every celestial motion
into a series of uniform circular motions they erred greatly,
but that, if the hypothesis be regarded as a convenient way
of expressing known facts, it is not only legitimate but
convenient. The theory suffices to describe either the angular
motion of the heavenly bodies or their change in distance. The
ancient astronomers were concerned only with the former ques-
tion, and it fairly met their needs; for the latter question it is
less convenient. In fact it was as good a theory as for their
purposes and with their instruments and knowledge it was
possible to frame, and corresponds to the expression of a given
function as a sum of sines or cosines, a method which is of
frequent use in modern analysis.

H
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In spite of the trouble taken by Delambre it is almost
impossible to separate the results due to Hipparchus fron
those due to Ptolemy. But Delambre and De Morgan agree
in thinking that the observations quoted, the fundamental
ideas, and the explanation of the apparent solar motion are due
to Hipparchus; while all the detailed explanations and calcula-
tions of the lunar and planetary motions are due to Ptolemy.

The Almagest shews that Ptolemy was a geometrician (f
the first rank, though it is with the application of geometry
to astronomy that he is chiefly concerned. He was also the
author of numerous other treatises. Amongst these is one on
pure geometry in which he proposed to cancel Euclid’s postulate
on parallel lines, and to prove it in the following manner. Let
the straight line EFGII meet the two straight lines AB and
CD so as to make the sum of the angles BFG and FGD equal
to two right angles. It is required to prove that AB and CD
are parallel.  If possible let them not be parallel, then they will
meet when produced say at M (or Ar). Butthe angle AFG is

the supplement of BFG, and is therefore equal to FGD:
similarly the angle FGC is equal to the angle BFG. Hence
the sum of the angles AFG and FGC is equal to two right
angles, and the lines BA and DC will therefore if produced
meet at N (or M). But two straight lines cannot enclose a
space, therefore AB and CD cannot meet when produced, that
is, they are parallel. Conversely, if AB and CD be parallel,
then AF and CG are not less parallel than FB and GD; and
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therefore whatever be the sum of the angles AFG and FGC
such also must be the sum of the angles FGD and BFG. But
the sum of the four angles is equal to four right angles, and
therefore the sum of the angles BFG and FGD must be equal
to two right angles.

Ptolemy wrote another wiOrk to shew that there could not
be more than three dimensions in space: he also discussed
orthographic and stereographic projections with special refer-
ence to the construction of sun-dials. He wrote on geography,
and stated that the length of one degree of latitude is 500
stadia. A book on sound is sometimes attributed to him, but
on doubtful authority.

The third century after Christ.

Pappus.  Ptolemy had shewn not only that geometry
could be applied to astronomy, but had indicated how new
methods of analysis like trigonometry might be thence de-
veloped. He found however no successors to take up the
work he had commenced so brilliantly, and we must look
forward 150 years before we find another geometrician of any
eminence.  That geometrician was Pappus who lived and
taught at Alexandria about the end of the third century. We
know that he had numerous pupils, and it is probable that he
temporarily revived an interest in the study of geometry.

Pappus wrote several books, but the only one which has
come down to us is his Zwaywy7,l a collection of mathe-
matical papers arranged in eight books of which the first and
part of the second have been lost. This collection was intended
to be a synopsis of Greek mathematics together with comments
and additional propositions by the editor. A careful com-
parison of various extant works with the account given of
them in this book shews that it is trustworthy, and we rely
largely on it for our knowledge of other works now lost. It
is not arranged chronologically, but all the treatises on the

1 It has been published by F. Hultsch, Berlin, 1876-8.
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same subject are grouped together, and it is most likely that
it gives roughly the order in which the classical authors were
read at Alexandria. Probably the first book, which is now
lost, was on arithmetic. The next four books deal with
geometry exclusive of conic sections ; the sixth with astronomy
including, as subsidiary subjects, optics and trigonometry; the
seventh with analysis, conics, and porisms; and the eighth with
mechanics.

The last two books contain a good deal of original work by
Pappus ; at the same time it should be remarked that in two or
three cases he has bheen detected in appropriating proofs from
earlier authors, and it is possible he may have done this in other
cases.

Subject to this suspicion we may say that Pappus’s best
work is in geometry. He discovered the directrix in the conic
sections, but he investigated only a few isolated properties :
the earliest comprehensive account was given by Newton and
Boscovich. ~ As an illustration of his power | may mention
that he solved [book vm, prop. 107] the problem to inscribe in
a given circle a triangle whose sides produced shall pass
through three collinear points.  This question was in the
eighteenth century generalised by Cramer by supposing the
three given points to be anywhere; and was considered a
difficult problem.l It was sent in 1742 as a challenge to
Castillon, and in 1776 he published a solution. Lagrange,
Euler, Lhulier, Fuss, and Lexell also gave solutions in 1780.
A few years later the problem was set to a Neapolitan lad
A. Giordano, who was only 16 but who had shewn marked
mathematical ability, and he extended it to the case of a
polygon of n sides which pass through n given points, and gave
a solution both simple and elegant. Poncelet extended it to
conics of any species and subject to other restrictions.

In mechanics Pappus shewed that the centre of mass of a
triangular lamina is the same as that of an inscribed triangular

1 For references to this problem see a note by H. Brocard in L'Inter-
mediaire des math&maticiens, Paris, 1904, vol. xi, pp. 219-220.
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lamina whose vertices divide each of the sides of the original
triangle in the same ratio. He also discovered the two
theorems on the surface and volume of a solid of revolution
which are still quoted in text-books under his name: these
are that the volume generated by the revolution of a curve
about an axis is equal to the product of the area of the curve
and the length of the path described by its centre of mass;
and the surface is equal to the product of the perimeter of
the curve and the length of the path described by its centre of
mass.

The problems above mentioned are but samples of many
brilliant but isolated theorems which were enunciated by
Pappus. His work as a whole and his comments shew that he
was a geometrician of power; but it was his misfortune to
live at a time when but little interest was taken in geometry,
and when the subject, as then treated, had been practically
exhausted.

Possibly a small tractl on multiplication and division of
sexagesimal fractions, which would seem to have been written
about this time, is due to Pappus.

The fourth century after Christ.

Throughout the second and third centuries, that is, from
the time of Nicomachus, interest in geometry had steadily
decreased, and more and more attention had been paid to the
theory of numbers, though the results were in no way com-
mensurate with the time devoted to the subject. It will
be remembered that Euclid used lines as symbols for any
magnitudes, and investigated a number of theorems about
numbers in a strictly scientific manner, but he confined him-
self to cases where a geometrical representation was possible.
There are indications in the works of Archimedes that he was
prepared to carry the subject much further: he introduced

1 It was edited by C. Henry, Halle, 1879, and is valuable as an illustration
of practical Greek arithmetic.
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numbers into his geometrical discussions and divided lines by
lines, but he was fully occupied by other researches and had
no time to devote to arithmetic. Hero abandoned the geo-
metrical representation of numbers, but he, Nicomachus, and
other later writers on arithmetic did not succeed in creating
any other symbolism for numbers in general, and thus when
they enunciated a theorem they were content to verify it by
a large number of numerical examples. They doubtless knew
how to solve a quadratic equation with numerical coefficients—
for, as pointed out above, geometrical solutions of the equa-
tions ax2 -bx+c¢=0 and ax'l1+bx-c=0 are given in Euc. vi,
28 and 29—nbut probably this represented their highest attain-
ment.

It would seem then that, in spite of the time given to their
study, arithmetic and algebra had not made any sensible
advance since the time of Archimedes. The problems of this
kind which excited most interest in the third century may be
illustrated from a collection of questions, printed in the
Palatine Anthology, which was made by Metrodomis at the
beginning of the next century, about 310. Some of them are
due to the editor, but some are of an anterior date, and they
fairly illustrate the way in which arithmetic was leading up
to algebraical methods. The following are typical examples.
““Four pipes discharge into a cistern: one fills it in one day;
another in two days; the third in three days; the fourth in
four days: if all run together how soon will they fill the
cistern?” ““Demochares has lived a fourth of his life as a
boy; a fifth as a youth; a third as a man; and has spent
thirteen years in his dotage : how old is he?” “ Make a crown
of gold, copper, tin, and iron weighing GO minae: gold and
copper shall be two-thirds of it; gold and tin three-fourths of
it, and gold and iron three-fifths of it find the weights of
the gold, copper, tin, and iron which are required.” The
last is a numerical illustration of Thymaridas's theorem quoted
above.

It is believed that these problems were solved by rhetorical
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algeyra, that is, by a process of algebraical reasoning expressed
in words and without the use of any symbols. This, according
to Nesselmann, is the first stage in the development of algebra,
and we find it used both by Ahmes and by the earliest Arabian,
Persian, and Italian algebraists: examples of its use in the
solution of a geometrical problem and in the rule for the solution
of a quadratic equation are given later.l On this view then a
rhetorical algebra had been gradually evolved by the Greeks,
or vas then in process of evolution. Its development was
however very imperfect. Hankel, who is no unfriendly critic,
says that the results attained as the net outcome of the work
of six centuries on the theory of numbers are, whether we
look at the form or the substance, unimportant or even childish,
and are not in any way the commencement of a science.

In the midst of this decaying interest in geometry and these
feelie attempts at algebraic arithmetic, a single algebraist of
maiked originality suddenly appeared who created what was
practically a new science. This was Diophantus who introduced
a system of abbreviations for those operations and quantities
which constantly recur, though in using them he observed all
:he rules of grammatical syntax. The resulting science is called
by Nesselmann syncopated algebra: it is a sort of shorthand.
Broadly speaking, it may be said that European algebra did
not advance beyond this stage until the close of the sixteenth
cemury.

Modern algebra has progressed one stage further and is
entirely symbolic; that is, it has a language of its own and a
system of notation which has no obvious connection with the
things represented, while the operations are performed according
to certain rules which are distinct from the laws of grammatical
construction.

Diophantus.2  All that we know of Diophantus is that

1 See below, pp. 203, 210.

2 A critical edition of the collected works of Diophantus was edited by
S. T. Tannery, 2 vols., Leipzig, 1893 ; see also Diophantos of Alexandria,
by ?. L. Heath, Cambridge, 1885 ; and Loria, book v, chap, v, pp. 95-158.
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he lived at Alexandria, and that most likely he was not a
Greek. Even the date of his career is uncertain; it cannot
reasonably be put before the middle of the third century, and
it seems probable that he was alive in the early years of the
fourth century, that is, shortly after the death of Pappus. He
was 84 when he died.

In the above sketch of the lines on which algebra has de-
veloped | credited Diophantus with the invention of syncopated
algebra. This is a point on which opinions differ, and some
writers believe that he only systematized the knowledge which
was familiar to his contemporaries. In support of this latter
opinion it may be stated that Cantor thinks that there are traces
of the use of algebraic symbolism in Pappus, and Freidlein
mentions a Greek papyrus in which the signs / and 9 are used
for addition and subtraction respectively; but no other direct
evidence for the non-originality of Diophantus has been produced,
and no ancient author gives any sanction to this opinion.

Diophantus wrote a short essay on polygonal numbers; a
treatise on algebra which has come down to us in a mutilated
condition; and a work on porisms which is lost.

The Polygonal Numbers contains ten propositions, and
was probably his earliest work. In this he reverts to the
classical system by which numbers are represented by lines, a
construction is (if necessary) made, and a strictly deductive
proof follows: it may be noticed that in it he quotes pro-
positions, such as Euc. m, 3, and [], 8, as referring to numbers
and not to magnitudes.

His chief work is his Arithmetic. This is really a treatise
on algebra; algebraic symbols are used, and the problems are
treated analytically. Diophantus tacitly assumes, as is done
in nearly all modern algebra, that the steps are reversible. He
applies this algebra to find solutions (though frequently only
particular ones) of several problems involving numbers. |
propose to consider successively the notation, the methods of
analysis employed, and the subject-matter of this work.

First, as to the notation. Diophantus always employed a
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symbol to represent the unknown quantity in his equations,
but as he had only one symbol he could not use more than
one unknown at a time.l The unknown quantity is called
d dpiBpo<s, and is represented by s" or ¢"o’. It is usually printed
as s. In the plural it is denoted by ss or ss0l. This symbol
may be a corruption of aP, or perhaps it may be the final
sigma of this word, or possibly it may stand for the word cwpos
a heap.2 The square of the unknown is called dwazig, and
denoted by i : the cube kufo<s, and denoted by ku; and so on
up to the sixth power.

The coefficients of the unknown quantity and its powers are
numbers, and a numerical coefficient is written immediately after
the quantity it multiplies : thus s,a =g, and ss°l 1 =ss 1a == 11x.
An absolute term is regarded as a certain number of units or
/z01,d6 ¢ which are represented by A° . thus /A°d= 1, AOta = 11.

There is no sign for addition beyond juxtaposition.  Sub-
traction is represented by 71, and this symbol affects all the
symbols that follow it. Equality is represented by 1. Thus

represents

Diophantus also introduced a somewhat similar notation
for fractions involving the unknown quantity, but into the
details of this I need not here enter.

It will be noticed that all these symbols are mere abbre-
viations for words, and Diophantus reasons out his proofs,
writing these abbreviations in the middle of his text. In
most manuscripts there is a marginal summary in which the
symbols alone are used and which is really symbolic algebra;
Lut probably this is the addition of some scribe of later times.

This introduction of a contraction or a symbol instead of a
void to represent an unknown quantity marks a greater advance
than anyone not acquainted with the subject would imagine,
and those who have never had the aid of some such abbreviated

1 See, however, below, page 108, example (iii), for an instance of how

le treated a problem involving two unknown quantities.
2 See above, page 5.
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symbolism find it almost impossible to understand complicated
algebraical processes. It is likely enough that it might have
been introduced earlier, but for the unlucky system of numera-
tion adopted by the Greeks by which they used all the letters
of the alphabet to denote particular numbers and thus made it
impossible to employ them to represent any number.

Next, as to the knowledge of algebraic methods shewn in
the book. Diophantus commences with some definitions which
include an explanation of his notation, and in giving the symbol
for minus he states that a subtraction multiplied by a
subtraction gives an addition; by this he means that the
product of -b and -d in the expansion of (a-39) (c-d) is
+bd, but in applying the rule he always takes care that the
numbers a, b, ¢, d are so chosen that a is greater than b and ¢
is greater than d.

The whole of the work itself, or at least as much as is now
extant, is devoted to solving problems which lead to equations.
It contains rules for solving a simple equation of the first
degree and a binomial quadratic. Probably the rule for solving
any quadratic equation was given in that part of the work which
is now lost, but where the equation is of the form ax2 + bx + c~0
he seems to have multiplied by a and then “completed the
square ” in much the same way as is now done: when the
roots are negative or irrational the equation is rejected as
“impossible,” and even when both roots are positive he never
gives more than one, always taking the positive value of the
square root. Diophantus solves one cubic equation, namely,
X3+ X-4x2 + i [book vi, prob. 19].

The greater part of the work is however given up to in-
determinate equations between two or three variables. When
the equation is between two variables, then, if it be of the first
degree, he assumes a suitable value for one variable and solves
the equation for the other. Most of his equations are of the
form y2=Ax2+Bx+C. Whenever A or C is equal to zero,
he is able to solve the equation completely. When this is not
the case, then, if A=0a2 he assumes y=ax+m; if C=c2 he



ch.v] DIOPHANTUS 107

assumes y —mx + ¢ ; and lastly, if the equation can be put in the
form y2 = (ax % 6)2 + c2, he assumes y =mx: where in each case
m has some particular numerical value suitable to the problem
under consideration. A few particular equations of a higher
order occur, but in these he generally alters the problem so as
to enable him to reduce the equation to one of the above
forms.

The simultaneous indeterminate equations involving three
variables, or ““double equations” as he calls them, which he
considers are of the forms y2 = Ax2 + Bx+ C and 722 =ax2 + bx + c.
If A and a both vanish, he solves the equations in one of two
ways. It will be enough to give one of his methods which is
as follows : he subtracts and thus gets an equation of the form
y2—22=mx+n; hence, if y+z=A, then y=rz = (mx + nyA; and
solving he finds y and z.  His treatment of ““double equations”
of a higher order lacks generality and depends on the particular
numerical conditions of the problem.

Lastly, as to the matter of the book. The problems he
attacks and the analysis he uses are so various that they cannot
be described concisely and | have therefore selected five typical
problems to illustrate his methods. What seems to strike his
critics most is the ingenuity with which he selects as his un-
known some quantity which leads to equations such as he can
solve, and the artifices by which he finds numerical solutions of
his equations.

I select the following as characteristic examples.

(i)Findfour numbers, the sum of every arrangement three
it a time being given; say 22, 24, 27, and 20 [book I,
prob. 17].

Let x be the sum of all four numbers; hence the numbers
ire >x—-22, x - 24, x- 27, and x - 20.

the numbers are 9, 7, 4, and 11.
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(ii) Divide a number, such as 13 which is the sum of two
squares 4 and 9, into two other squares [book T, prob. 10].

He says that since the given squares are 22 and 32 he will
take {x+2)2 and (mx — 3)2 as the required squares, and will
assume m = 2.

. the required squares are 324/25 and 1/25.

(iif) Find two squares such that the sum of the product
and either is a square [book u, prob. 29].

Let a2 and yA be the numbers. Then x2y2 +y2 and x2y2 + x2
are squares. The first will be a square if x2+ 1 be a square,
which he assumes may be taken equal to («—2),2 hence
x=3/4. He has now to make 9 (y2+ 1)/16 a square, to do this
he assumes that 9y2+ 9 = (3y - 4)2, hence y=7/24. Therefore
the squares required are 9/16 and 49/576.

It will be recollected that Diophantus had only one symbol
for an unknown quantity; and in this example he begins by
calling the unknowns x2 and 1, but as soon as he has found x
he then replaces the 1 by the symbol for the unknown quantity,
and finds it in its turn.

(iv) To find a [rational] right-angled triangle such that the
line bisecting an acute angle is rational [book vi, prob. 18],

His solution is as follows. Let ABC be the triangle of which
C is the right-angle. Let the bisector AD =5x, and

let DC =3x, hence AC=4x. Next let BC be a multiple of 3,
say 3, ... BD-3-3x, hence AB=4-4x (by Euc. vi, 3).
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Hence Multiplying
by 32 we get for the sides of the triangle 28, 96, and 100; and
for the bisector 35.

(v) A man buys x measures of wine, some at 8 drachmae
a measure, the rest at 5. lie pays far them a square number of
drachmae, such that, if 60 be added to it, the resulting number
is X2 Find the number he bought at each price book v,
prob. 33].

The price paid was hence and
From this it follows that x must be greater than 11 and less
than 12.

Again is to be a square; suppose it is equal to

then we have therefore

Diophantus therefore assumes that m is equal to 20, which
gives him x==11%; and makes the total cost, i.e. x2— 60, equal
to 72 drachmae.

He has next to divide this cost into two parts which shall
give the cost of the 8 drachmae measures and the 5 drachmae
measures respectively. Let these parts be y and z.

Then

Therefore

Therefore the number of 5 drachmae measures was 79/12, and
of 8 drachmae measures was 59/12.

From the enunciation of this problem it would seem that
the wine was of a poor quality, and Tannery ingeniously
suggested that the prices mentioned for such a wine are higher
than were usual until after the end of the second century. He
therefore rejected the view which was formerly held that
Diophantus lived in that century, but he did not seem to be
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aware that De Morgan had previously shewn that this opinion
was untenable. Tannery inclined to think that Diophantus
lived half a century earlier than I have supposed.

I mentioned that Diophantus wrote a third work entitled
Porisms. The book is lost, but we have the enunciations of
some of the propositions, and though we cannot tell whether
they were rigorously proved by Diophantus they confirm our
opinion of his ability and sagacity. It has been suggested that
some of the theorems which he assumes in his arithmetic were
proved in the porisms. Among the more striking of these
results are the statements that the difference of the cubes of two
numbers can be always expressed as the sum of the cubes of two
other numbers; that no number of the form 4n-1 can be
expressed as the sum of two squares; and that no number of the
form 8n - 1 (or possibly 24« + 7) can be expressed as the sum
of three squares : to these we may perhaps add the proposition
that any number can be expressed as a square or as the sum of
two or three or four squares.

The writings of Diophantus exercised no perceptible influence
on Greek mathematics; but his Arithmetic, when translated into
Arabic in the tenth century, influenced the Arabian school, and
so indirectly affected the progress of European mathematics. An
imperfect copy of the original work was discovered in 1462; it
was translated into Latin and published by Xylander in 1575;'
the translation excited general interest, and by that time the
European algebraists had, on the whole, advanced beyond the
point at which Diophantus had left off.

lamblichus. lamblichus, circ. 350, to whom we owe a
valuable work on the Pythagorean discoveries and doctrines,
seems also to have studied the properties of numbers. He
enunciated the theorem that if a number which is equal to the
sum of three integers of the form 3«, 3« - 1, 3« - 2 be taken,
and if the separate digits of this number be added, and if the
separate digits of the result be again added, and so on, then the
final result will be 6 : for instance, the sum of 54, 53, and 52 is
159, the sum of the separate digits of 159 is 15, the sum of the
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separate digits of 15 is 6. To any one confined to the usual
Greek numerical notation this must have been a difficult result
to prove : possibly it was reached empirically.

The names of two commentators will practically conclude the
long roll of Alexandrian mathematicians.

Theon. The first of these is Theon of Alexandria, who
flourished about 370. He was not a mathematician of special
note, but we are indebted to him for an edition of Euclid’s
Elements and a commentary on the Almagest; the lattel, ! gives
a great deal of miscellaneous information about the numerical
methods used by the Greeks.

Hypatia. The other was Hypatia the daughter of Theon.
She was more distinguished than her father, and was the last
Alexandrian mathematician of any general reputation : she wrote
a commentary on the Conics of Apollonius and possibly some
other works, but none of her writings are how extant. She was
murdered at the instigation of the Christians in 415.

The fate of Hypatia may serve to remind us that the Eastern
Christians, as soon as they became the dominant party in the
state, showed themselves bitterly hostile to all forms of learning.
That very singleness of purpose which had at first so materially
aided their progress developed into a one-sidedness which refused
to see any good outside their own body ; and all who did not
actively assist them were persecuted. The final establishment of
Christianity in the East marks the end of the Greek scientific
schools, though nominally they continued to exist for two
hundred years more.

The Athenian School (in thefifth century).1

The hostility of the Eastern church to Greek science is further
illustrated by the fall of the later Athenian school. This school

1 It was translated with comments by M. Halina and published at Paris
in 1821.

2 See Untersuchwngen uber die neu aufgefundenen Scholien des Proklus,
%y J. H. Knoche, Herford, 1865.
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occupies but a small space in our history. Ever since Plato’s
time a certain number of professional mathematicians had lived
at Athens; and about the year 420 this school again acquired
considerable reputation, largely in consequence of the numerous
students who after the murder of Hypatia migrated there
from Alexandria. Its most celebrated members were Proclus,
Damascius, and Eutocius.

Proclus. Proclus was born at Constantinople in February
412 and died at Athens on April 17, 485. He wrote a com-
mentary 1 on the first book of Euclid’s Elements, which contains
a great deal of valuable information on the history of Greek
mathematics : he is verbose and dull, but luckily he has pre-
served for us quotations from other and better authorities.
Proclus was succeeded as head of the school by Marinus, and
Marinus by Isidorus.

Damascius. Eutocius. Twio pupils of Isidorus, who in
their turn subsequently lectured at Athens, may be mentioned
in passing. One of these, Damascius of Damascus, circ. 490,
is commonly said to have added to Euclid's Elements a fifteenth
book on the inscription of one regular solid in another, but his
authorship of this has been questioned by somewriters. The other,
Eutocius, circ. 510, wrote commentaries on the first four books
of the Conics of Apollonius and on various works of Archimedes.

This later Athenian school was carried on under great
difficulties owing to the opposition of the Christians. Proclus,
for example, was repeatedly threatened with death because he
was ““a philosopher.” His remark, ““after all my body does
not matter, it is the spirit that | shall take with me when
I die,” which he made to some students who had offered to
defend him, has been often quoted. The Christians, after
several ineffectual attempts, at last got a decree from Justinian
in 529 that “ heathen learning ” should no longer be studied at
Athens. That date therefore marks the end of the Athenian school.

The church at Alexandria was less influential, and the city
was more remote from the centre of civil power. The schools

1 It has been edited by G. Friedlein, Leipzig, 1873.
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there were thus suffered to continue, though their existence was
of a precarious character. Under these conditions mathematics
continued to be read in Egypt for another hundred years, but
all interest in the study had gone.

Roman Mathematics.1

I ought not to conclude this part of the history without any
mention of Roman mathematics, for it was through Rome that
mathematics first passed into the curriculum of medieval Europe,
and in Rome all modern history has its origin. There is, how-
ever, very little to say on the subject. The chief study of the
place was in fact the art of government, whether by law, by
persuasion, or by those material means on which all government
ultimately rests. There were, no doubt, professors who could
teach the results of Greek science, but there was no demand for
a school of mathematics. Italians who wished to learn more
xhan the elements of the science went to Alexandria or to places
which drew their inspiration from Alexandria.

The subject as taught in the mathematical schools at Rome
Beems to have been confined in arithmetic to the art of calcula-
tion (no doubt by the aid of the abacus) and perhaps some of
the easier parts of the work of Nicomachus, and in geometry
to a few practical rules; though some of the arts founded on
1 knowledge of mathematics (especially that of surveying) were
carried to a high pitch of excellence. It would seem also that
special attention was paid to the representation of numbers by
signs. The manner of indicating numbers up to ten by the use
of fingers must have been in practice from quite early times, but
tbout the first century it had been developed by the Romans
into a finger-symbolism by which numbers up to 10,000 or
perhaps more could be represented : this would seem to have
been taught in the Roman schools. It is described by Bede,
ind therefore would seem to have been known as far west as

1 The subject is discussed by Cantor, chaps, xxv, xxvi, and xxvii; also

by Hankel, pp. 294-304.
1
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Britain ; Jerome also alludes to it; its use has still survived in
the Persian bazaars.

I am not acquainted with any Latin work on the principles
of mechanics, but there were numerous books on the practical
side of the subject which dealt elaborately with architectural
and engineering problems. We may judge what they were like
by the Mathematici Veteres, which is a collection of various
short treatises on catapults, engines of war, &c.: and by the
Keotot, written by Sextus Julius Africanus about the end of
the second century, part of which is included in the Mathematici
Veteres, which contains, amongst other things, rules for finding
the breadth of a river when the opposite bank is occupied by an
enemy, how to signal with a semaphore, &c.

In the sixth century Boethius published a geometry containing
a few propositions from Euclid and an arithmetic founded on
that of Nicomachus; and about the same time Cassiodorus
discussed the foundation of a liberal education which, after the
preliminary trivium of grammar, logic, and rhetoric, meant the
quadrivium of arithmetic, geometry, music, and astronomy.
These works were written at Rome in the closing years of
the Athenian and Alexandrian schools, and | therefore mention
them here, but as their only value lies in the fact that they
became recognized text-books in medieval education | postpone
their consideration to chapter v[Ju.

Theoretical mathematics was in fact an exotic study at Rome;
not only was the genius of the people essentially practical, but,
alike during the building of their empire, while it lasted, and under
the Goths, all the conditions were unfavourable to abstract science.

On the other hand, Alexandria was exceptionally well placed
to be a centre of science. From the foundation of the city to
its capture by the Mohammedans it was disturbed neither by
foreign nor by civil war, save only for a few years when the
rule of the Ptolemies gave way to that of Rome : it was wealthy,
and its rulers took a pride in endowing the university : and
lastly, just as in commerce it became the meeting-place of the
east and the west, so it had the good fortune to be the dwelling-

www.rcin.org.pl
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place alike of Greeks and of various Semitic people; the one
race shewed a peculiar aptitude for geometry, the other for
sciences which rest on measurement. Here too, however, as
time went on the conditions gradually became more unfavour-
able, the endless discussions on theological dogmas and the
increasing insecurity of the empire tending to divert men’s
thoughts into other channels.

End of the Second Alexandrian School.

The precarious existence and unfruitful history of the last
two centuries of the second Alexandrian School need no record.
In 632 Mohammed died, and within ten years his successors
had subdued Syria, Palestine, Mesopotamia, Persia, and Egypt.
The precise date on which Alexandria fell is doubtful, but the
most reliable Arab historians give December 10, 641— a date
which at any rate is correct within eighteen months.

With the fall of Alexandria the long history of Greek
mathematics came to a conclusion. It seems probable that
the greater part of the famous university library and museum
had been destroyed by the Christians a hundred or two
hundred years previously, and what remained was unvalued
and neglected. Some two or three years after the first capture
of Alexandria a serious revolt occurred in Egypt, which was
ultimately put down with great severity. | see no reason to
doubt the truth of the account that after the capture of the
city the Mohammedans destroyed such university buildings and
collections as were still left. It is said that, when the Arab
commander ordered the library to be burnt, the Greeks made
such energetic protests that he consented to refer the matter to
the caliph Omar. The caliph returned the answer, “As to the
books you have mentioned, if they contain what is agreeable
with the book of God, the book of God is sufficient without
them; and, if they contain what is contrary to the book of God,
there is no need for them; so give orders for their destruction.”
The account goes on to say that they were burnt in the public baths
of the city, and that it took six months to consume them all.



116

CHAPTER VI.

THE BYZANTINE SCHOOL.
641-1453.

It will be convenient to consider the Byzantine school in
connection with the history of Greek mathematics. Aftet the
capture of Alexandria by the Mohammedans the majority of the
philosophers, who previously had been teaching there, migrated
to Constantinople, which then became the centre of Greek learn-
ing in the East and remained so for 800 years. But though
the history of the Byzantine school stretches over so many
years—a period about as long as that from the Norman Con-
quest to the present day—it is utterly barren of any scientific
interest; and its chief merit is that it preserved for us the
works of the different Greek schools. The revelation of these
works to the West in the fifteenth century was one of the most
important sources of the stream of modern European thought,
and the history of the Byzantine school may be summed up by
saying that it played the part of a conduit-pipe in conveyilg to
us the results of an earlier and brighter age.

The time was one of constant war, and men’s minds during
the short intervals of peace were mainly occupied with Geo-
logical subtleties and pedantic scholarship. 1 should not have
mentioned any of the following writers had they lived in the
Alexandrian period, but in default of any others they may be
noticed as illustrating the character of the school. | ought dso,
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perhaps, to call the attention of the reader explicitly to the fact
that 1 am here departing from chronological order, and that the
mathematicians mentioned in this chapter were contemporaries
of those discussed in the chapters devoted to the mathematics
of the middle ages. The Byzantine school was so isolated that
I deem this the best arrangement of the subject.

Hero. One of the earliest members of the Byzantine school
was Hero of Constantinople, circ. 900, sometimes called the
younger to distinguish him from Hero of Alexandria. Hero
would seem to have written on geodesy and mechanics as applied
to engines of war.

During the tenth century two emperors, Leo VI. and Con-
stantine VII., shewed considerable interest in astronomy and
mathematics, but the stimulus thus given to the study of these
subjects was only temporary.

Psellus. In the eleventh century Michael Psellus, born in
1020, wrote a pamphlet!l on the quadrivium : it is now in the
National Library at Paris.

In the fourteenth century we find the names of three monks
who paid attention to mathematics.

Planudes. Barlaam. Argyrus. The first of the three
was Maximus Planudes.? He wrote a commentary on the
Srst two books of the Arithmetic of Diophantus; a work on
Hindoo arithmetic in which he used the Arabic numerals;
ind another on proportions which is now in the National
Library at Paris. The next was a Calabrian monk named
Barlaam, who was born in 1290 and died in 1348. He
was the author of a work, Logistic, on the Greek methods
)f calculation from which we derive a good deal of informa-
tion as to the way in which the Greeks treated numerical
fractions.3 Barlaam seems to have been a man of great

1 It was printed at Bale in 1536. Psellus also wrote a Compendium

lathematicum which was printed at Leyden in 1647.

2 His arithmetical commentary was published by Xylander, Bille, 1575 :
>is work on Hindoo arithmetic, edited by C. J. Gerhardt, was published at
Halle, 1865.

3 Barlaam’s Logistic, edited by Dasypodius, was published at Strassburg,
1572 ; another edition was issued at Paris in 1600.
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intelligence. He was sent as an ambassador to the Pope at
Avignon, and acquitted himself creditably of a difficult mission;
while there he taught Greek to Petrarch. He was famous at
Constantinople for the ridicule he threw on the preposterous
pretensions of the monks at Mount Athos who taught that those
who joined them could, by steadily regarding their bodies,
see a muystic light which was the essence of God. Barlaam
advised them to substitute the light of reason for that of their
bodies—a piece of advice which nearly cost him his life.
The last of these monks was Isaac Argyrus, who died in 1372.
He wrote three astronomical tracts, the manuscripts of which
are in the libraries at the Vatican, Leyden, and Vienna: one
on geodesy, the manuscript of which is at the Escurial: one
on geometry, the manuscript of which is in the National Library
at Paris : one on the arithmetic of Nicomachus, the manuscript
of which is in the National Library at Paris: and one on
trigonometry, the manuscript of which is in the Bodleian at
Oxford.

Rhabdas. In the fourteenth or perhaps the fifteenth century
Nicholas Rhabdas of Smyrna wrote two papers! on arithmetic
which are now in the National Library at Paris. He gave an
account of the finger-symbolism 2 which the Romans had intro-
duced into the East and was then current there.

Pachymeres. Early in the fifteenth century Pachymeres
wrote tracts on arithmetic, geometry, and four mechanical
machines.

Moschopulus. A few years later Emmanuel Moschopulus,
who died in Italy circ. 1460, wrote a treatise on magic squares.
A magic square3 consists of a number of integers arranged in
the form of a square so that the sum of the numbers in every
row, in every column, and in each diagonal is the same. If the

1 They have been edited by S. P. Tannery, Paris, 1886.

2 See above, page 113.

3 On the formation and history of magic squares, see my Mathematical
Recreations, London, fourth edition, 1905, chap. v. On the work of
Moschopulus, see S. Gunther's Geschichte der mathematischen Hrissen-
schaften, Leipzig, 1876, chap. iv.
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integers be the consecutive numbers from 1 to 12, the square is
said to be of the mth order, and in this case the sum of the
numbers in any row, column, or diagonal is equal to ¥sn(n2 + 1).
Thus the first 1G integers, arranged in either of the forms given
below, form a magic square of the fourth order, the sum of

the numbers in every row, every column, and each diagonal
being 34.

In the mystical philosophy then current certain metaphysical
ideas were often associated with particular numbers, and thus it
was natural that such arrangements of numbers should attract
attention and be deemed to possess magical properties. The
theory of the formation of magic squares is elegant, and several
distinguished mathematicians have written on it, but, though
interesting, | need hardly say it is not useful. Moschopulus
seems to have been the earliest European writer who attempted
to deal with the mathematical theory, but his rules apply only
to odd squares. The astrologers of the fifteenth and sixteenth
centuries were much impressed by such arrangements. In
particular the famous Cornelius Agrippa (1486-1535) constructed
magic squares of the orders 3, 4, 5, 6, 7, 8, 9, which were asso-
ciated respectively with the seven astrological ““planets,” namely,
Saturn, Jupiter, Mars, the Sun, Venus, Mercury, and the Moon.
He taught that a square of one cell, in which unity was inserted,
represented the unity and eternity of God; while the fact that
a square of the second order could not be constructed illustrated
the imperfection of the four elements, air, earth, fire, and water;
and later writers added that it was symbolic of original sin. A
magic square engraved on a silver plate was often prescribed as
a charm against the plague, and one (namely, that in the first

www.rcin.org.pl



120 THE BYZANTINE SCHOOL [eh. vt

diagram on the last page) is drawn in the picture of melancholy
painted about the year 1500 by Albrecht Diirer. Such charms
are still worn in the East.

Constantinople wias captured by the Turks in 1453, and the
last semblance of a Greek school of mathematics then dis-
appeared. Numerous Greeks took refuge in ltaly. In the
West the memory of Greek science had vanished, and even the
names of all but a few Greek writers were unknown ; thus the
books brought by these refugees came as a revelation to Europe,
and, as we shall see later, gave a considerable stimulus to the
study of science.

www.rcin.org.pl
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CHAPTER VII.
SYSTEMS OF NUMERATION AND PRIMITIVE ARITHMETIC.L

I have in many places alluded to the Greek method of express-
ing numbers in writing, and | have thought it best to defer to
this chapter the whole of what | wanted to say on the various
systems of numerical notation which were displaced by the
system introduced by the Arabs.

First, as to symbolism and language. The plan of indicating
numbers by the digits of one or both hands is so natural that we
find it in universal use among early races, and the members of
all tribes nowv extant are able to indicate by signs numbers at
least as high as ten: it is stated that in some languages the
names for the first ten numbers are derived from the fingers used
to denote them. For larger numbers we soon, however, reach a
limit beyond which primitive man is unable to count, while as
far as language goes it is well known that many tribes have no
word for any number higher than ten, and some have no word
for any number beyond four, all higher numbers being expressed
by the words plenty or heap : in connection with this it is worth
remarking that (as stated above) the Egyptians used the symbol
for the word heap to denote an unknown quantity in algebra.

The number five is generally represented by the open hand,

1 The subject of this chapter has been discussed by Cantor and by Hankel.
See also the Philosophy ofArithmetic by John Leslie, second edition, Edinburgh,
1820. Besides these authorities the article on Arithmetic by George Peacock
in the Encyclopaedia Metropolitarna, Pure Sciences, London, 1845; E. B.
Tylor's Primitive Culture, London, 1873 ; Les signes numeraux et Tarith-

metigue chez les peuplcs de Tantiquite ..by T. H. Martin, Rome, 1864 ; and
Die Zahlzeichen..A>y G. Friedlein, Erlangen, 1869, should be consulted.
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and it is said that in almost all languages the words five and
hand are derived from the same root. It is possible that in
early times men did not readily count beyond five, and things if
more numerous were counted by multiples of it. It may be that
the Roman symbol X for ten represents two ““\V/”’s, placed apex
to apex, and, if so, this seems to point to a time when things were
counted by fives.L In connection with this it is worth noticing that
both in Java and among the Aztecs a week consisted of five days.

The members of nearly all races of which we have now any
knowledge seem, however, to have used the digits of both hands
to represent numbers. They could thus count up to and in-
cluding ten, and therefore were led to take ten as their radix of
notation. In the English language, for example, all the words
for numbers higher than ten are expressed on the decimal
system : those for 11 and 12, whieh at first sight seem to be
exceptions, being derived from Anglo-Saxon words for one and
ten and two and ten respectively.

Some tribes seem to have gone further, and by making use of
their toes were accustomed to count by multiples of twenty.
The Aztecs, for example, are said to have done so. It may be
noticed that we still count some things (for instance, sheep) by
scores, the word score signifying a notch or scratch made on the
completion of the twenty; while the French also talk of quatre-
vingts, as though at one time they counted things by multiples
of twenty. | am not, however, sure whether the latter argu-
ment is worth anything, for 1 have an impression that | have
seen the word octante in old French books; and there is no
question 2 that septante and nonante were at one time common
words for seventy and ninety, and indeed they are still retained
in some dialects.

The only tribes of whom | have read who did not count in
terms either of five or of some multiple of five are the Bolans
of West Africa who are said to have counted by multiples of

1 See also the Odyssey, iv, 413-415, in which apparently reference is made
to a similar custom.

2 See, for example, V. M. de Kempten's Practique...d ciffter, Antwerp,
1556.
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seven, and the Maories who are said to have counted by
multiples of eleven.

Up to ten it is comparatively easy to count, but primitive
people find great difficulty in counting higher numbers;
apparently at first this difficulty was only overcome by the
method (still in use in South Africa) of getting two men, one
to count the units up to ten on his fingers, and the other to
count the number of groups of ten so formed. To us it is
obvious that it is equally effectual to make a mark of some
kind on the completion of each group of ten, but it is alleged
that the members of many tribes never succeeded in counting
numbers higher than ten unless by the aid of two men.

Most races who shewed any aptitude for civilization pro-
ceeded further and invented a way of representing numbers by
means of pebbles or counters arranged in sets of ten; and this
in its turn developed into the abacus or swan-pan. This instru-
ment was in use among nations so widely separated as the
Etriscans, Greeks, Egyptians, Hindoos, Chinese, and Mexicans;
and was, it is believed, invented independently at several
different centres. It is still in common use in Russia, China,
and Japan.

In its simplest form (see Figure 1, on the next page) the abacus
consists of a wooden board with a number of grooves cut in it,
or cf a table covered with sand in which grooves are made with
she fingers. To represent a number, as many counters or pebbles
ire put on the first groove as there are units, as many on the
Yecend as there are tens, and so on.  When by its aid a number
of objects are counted, for each object a pebble is put on the
first groove; and, as soon as there are ten pebbles there, they
ire taken off and one pebble put on the second groove; and so
on. It was sometimes, as in the Aztec quipusi made with a
number of parallel wires or strings stuck in a piece of wood on
which beads could be threaded; and in that form is called a
swan-pan. In the number represented in each of the instru-
ments drawn on the next page there are seven thousands, three
hundreds, no tens, and five units, that is, the number is 7305.



124 SYSTEMS OF NUMERATION [ch. vt

Some races counted from left to right, others from right to left,
but this is a mere matter of convention.

The Roman abaci seem to have been rather more elaborate.
They contained two marginal grooves or wires, one with four
beads to facilitate the addition of fractions whose denominators

Figure 1.

Figure 2.

Figure 3.

were four, and one with twelve beads for fractions whose
denominators were twelve : but otherwise they do not differ in
principle from those described above. They were commonly
made to represent numbers up to 100,000,000. The Greek
abaci were similar to the Roman ones. The Greeks and Romans
used their abaci as boards on which they played a game some-
thing like backgammon.

In the Russian tschotii (Figure 2) the instrument is improved
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by having the wires set in a rectangular frame, and ten (or nine)
beads are permanently threaded on each of the wires, the wires
being considerably longer than is necessary to hold them. If
the frame be held horizontal, and all the beads be towards one
side, say the lower side of the frame, it is possible to represent
any number by pushing towards the other or upper side as
many beads on the first wire as there are units in the number,
as many beads on the second wire as there are tens in the
number, and so on. Calculations can be made somewhat more
rapidly if the five beads on each wire next to the upper side
be coloured differently to those next to the lower side, and they
can be still further facilitated if the first, second, ..., ninth
counters in each column be respectively marked with symbols
for the numbers 1, 2, ..., 9. Gerbertl is said to have intro-
duced the use of such marks, called apices, towards the close
cf the tenth century.

Figure 3 represents the form of swan-pan or saroban in
common use in China and Japan. There the development is
carried one step further, and five beads on each wire are replaced
ly a single bead of a different form or on a different division,
lut apices are not used. | am told that an expert Japanese can,
Ly the aid of a swan-pan, add numbers as rapidly as they can
Le read out to him. It will be noticed that the instrument
represented in Figure 3 is made so that two numbers can be
expressed at the same time on it.

The use of the abacus in addition and subtraction is evident.
It can be used also in multiplication and division ; rules for these
processes, illustrated by examples, are given in various old works
«n arithmetic.1

The abacus obviously presents a concrete way of representing
L number in the decimal system of notation, that is, by means
«f the local value of the digits. Unfortunately the method of
vriting numbers developed on different lines, and it was not

1 See below, page 138.

2 For example in R. Record’s Grounde of Arles, edition of 1610, London,
)p. 225-262.
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until about the thirteenth century of our era, when a symbol
zero used in conjunction with nine other symbols was introduced,
that a corresponding notation in writing was adopted in Europe.

Next, as to the means of representing numbers in writing.
In general we may say that in the earliest times a number
was (if represented by a sign and not a word) indicated by the
requisite number of strokes. Thus in an inscription from
Tralles in Caria of the date 398 B.c. the phrase seventh year is
represented by €teos . These strokes may have been
mere marks; or perhaps they originally represented fingers,
since in the Egyptian hieroglyphics the symbols for the
numbers 1, 2, 3, are one, two, and three fingers respectively,
though in the later hieratic writing these symbols had become
reduced to straight lines. Additional symbols for 10 and 100
were soon introduced: and the oldest extant Egyptian and
Phoenician writings repeat the symbol for unity as many times
(up to 9) as was necessary, and then repeat the symbol for ten
as many times (up to 9) as was necessary, and so on. No
specimens of Greek numeration of a similar kind are in existence,
but there is every reason to believe the testimony of laniblichus
who asserts that this was the method by which the Greeks first
expressed numbers in writing.

This way of representing numbers remained in current use
throughout Roman history; and for greater brevity they or
the Etruscans added separate signs for 5, 50, &. The Roman
symbols are generally merely the initial letters of the names of
the numbers ; thus ¢ stood for centum or 100, M for mille or
1000. The symbol v for 5 seems to have originally represented
an open palm with the thumb extended. The symbols L for 50
and D for 500 are said to represent the upper halves of the
symbols used in early times for c and M.  The subtractive forms
like iv for mi are probably of a later origin.

Similarly in Attica five was denoted by Il, the first letter of
Trevte, or sometimes by I; ten by A, the initial letter of 6eka; a
hundred by H for kotov; a thousand by X for xiAiot; while
50 was represented by a A written inside a 11; and so on.
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These Attic symbols continued to be used for inscriptions and
formal documents until a late date.

This, if a clumsy, is a perfectly intelligible system; but the
Greeks at some time in the third century before Christ abandoned
it for one which offers no special advantages in denoting a given
number, while it makes all the operations of arithmetic exceed-
ingly difficult.  In this, which is known from the place where it
was introduced as the Alexandrian system, the numbers from 1
to 9 are represented by the first nine letters of the alphabet;
the tens from 10 to 90 by the next nine letters; and the
hundreds from 100 to 900 by the next nine letters. To do this
the Greeks wanted 27 letters, and as their alphabet contained
only 24, they reinserted two letters (the digamma and koppa)
which had formerly been in it but had become obsolete, and
introduced at the end another symbol taken from the Phoenician
alphabet. Thus the ten letters o to 1 stood respectively for the
numbers from 1 to 10 ; the next eight letters for the multiples
of 10 from 20 to 90; and the last nine letters for 100, 200, etc.,
up to 900. Intermediate numbers like 11 were represented as
the sum of 10 and 1, that is, by the symbol 1o'. This afforded
a notation for all numbers up to 999; and by a system of
suffixes and indices it was extended so as to represent numbers
up to 100,000,000.

There is no doubt that at first the results were obtained by
the use of the abacus or some similar mechanical method, and
that the signs were only employed to record the result; the idea
of operating with the symbols themselves in order to obtain the
results is of a later growth, and is one with which the Greeks
never became familiar. The non-progressive character of Greek
arithmetic may be partly due to their unlucky adoption of the
Alexandrian system which caused them for most practical pur-
poses to rely on the abacus, and to supplement it by a table of
multiplications which was learnt by heart. The results of the
multiplication or division of numbers other than those in the
multiplication table might have been obtained by the use of the
abacus, but in fact they were generally got by repeated additions
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and subtractions. Thus, as late as 944, a certain mathema-
tician who in the course of his work wants to multiply 400 by
5 fiucls the result by addition. The same writer, when he wants
to divide 6152 by 15, tries all the multiples of 15 until he gets
to 6000, this gives him 400 and a remainder 152 ; he then
begins again with all the multiples of 15 until he gets to 150,
and this gives him 10 and a remainder 2. Hence the answer is
410 with a remainder 2.

A few mathematicians, however, such as Hero of Alexandria,
Theon, and Eutocius, multiplied and divided in what is essenti-
ally the same way as we do. Thus to multiply 18 by 13 they
proceeded as follows .—

13x 18 = (10 + 3)(10 + 8)
=10 (10+8)+3 (10 + 8)
=100+80+30+24
=234,

I suspect that the last step, in which they had to add four
numbers together, was obtained by the aid of the abacus.

These, however, were men of exceptional genius, and we must
recollect that for all ordinary purposes the art of calculation was
performed only by the use of the abacus and the multiplication
table, while the term arithmetic was confined to the theories of
ratio, proportion, and of numbers.

All the systems here described were more or less clumsy, and
they have been displaced among civilized races by the Arabic
system in which there are ten digits or symbols, namely, nine
for the first nine numbers and another for zero. In this system
an integral number is denoted by a succession of digits, each
digit representing the product of that digit and a power of ten,
and the number being equal to the sum of these products.
Thus, by means of the local value attached to nine symbols and
a symbol for zero, any number in the decimal scale of notation
can be expressed. The history of the development of the science
of arithmetic with this notation will be considered belBAv in
chapter xi.
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SECOND PERIOD.
j=tatYeemattrs of tljc <f=liilt)le JVijcs ani) Renaissance.

This period begins about the sixth century, and may be said
to end with the invention of analytical geometry and of the
infinitesimal calculus. The characteristic feature of this period
is the creation or development of modern arithmetic, algebra,
and trigonometry.

In this period | consider first, in chapter vi[], the rise of
learning in Western Europe, and the mathematics of the middle
ages. Next, in chapter 1x, | discuss the nature and history of
Hindoo and Arabian mathematics, and in chapter x their intro-
duction into Europe. Then, in chapter xi, | trace the subse-
quent progress of arithmetic to the year 1637. Next, in chapter
xit, | treat of the general history of mathematics during the
renaissance, from the invention of printing to the beginning of
the seventeenth century, say, from 1450 to 1637 ; this contains
an account of the commencement of the modern treatment of
arithmetic, algebra, and trigonometry. Lastly, in chapter
xut, | consider the revival of interest in mechanics, experi-
mental methods, and pure geometry which marks the last few
yen's of this period, and serves as a connecting link between the
mathematics of the renaissance and the mathematics of modern
times.
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CHAPTER VIII.

THE RISE OF LEARNING IN WESTERN EUROPE.1
circ. 600-1200.

Education in the sixth, seventh, and eighth centuries.

The first few centuries of this second period of our history are
singularly barren of interest; and indeed it would be strange if
we found science or mathematics studied by those who lived in
a condition of perpetual war. Broadly speaking we may say
that from the sixth to the eighth centuries the only places of
study in western Europe were the Benedictine monasteries.
We may find there some slight attempts at a study of literature ;
but the science usually taught was confined to the use of the
abacus, the method of keeping accounts, and a knowledge of
the rule by which the date of Easter could be determined. Nor
was this unreasonable, for the monk had renounced the world,
and there was no reason why he should learn more science than
was required for the services of the Church and his monastery.
The traditions of Greek and Alexandrian learning gradually
died away. Possibly in Rome and a few favoured places copies
of the works of the great Greek mathematicians were obtain-

1 The mathematics of this period has been discussed by Cantor, by
S. Giinther, Geschichte des mathematischen Unterrichtes im deutschen
Mittelaltet, Berlin, 1887 ; and by H. Weissenborn, Gerbert, Beitriige zur
Kenntniss der Mathematik des Mittelalters, Berlin, 1888 ; and 2I'w Geschichte
der Einfuhrung der jetzigcn Ziffers, Berlin, 1892.
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able, though with difficulty, but there were no students, the
books were unvalued, and in time became very scarce.

Three authors of the sixth century—Boethius, Cassiodorus,
and Isidorus—may be named whose writings serve as a con-
necting link between the mathematics of classical and of
medieval times. As their Avorks remained standard text-books
for some six or seven centuries it is necessary to mention them,
but it should be understood that this is the only reason for
doing so; they show no special mathematical ability. It will
be noticed that these authors were contemporaries of the later
Athenian and Alexandrian schools.

Boethius. Am'ctws Manlius Severinus Boethius, or as the
name is sometimes written Boetius, born at Rome about 475
and died in 526, belonged to a family which for the two pre-
ceding centuries had been esteemed one of the most illustrious
in Rome. It was formerly believed that he was educated at
Athens: this is somewhat doubtful, but at any rate he was
exceptionally well read in Greek literature and science.

Boethius would seem to have wished to devote his life to
literary pursuits; but recognizing “that the world would be
happy only when kings became philosophers or philosophers
kings,” he yielded to the pressure put on him and took an
active share in politics. He was celebrated for his extensive
charities, and, what in those days was very rare, the care that
he took to see that the recipients were worthy of them. He
was elected consul at an unusually early age, and took advantage
of his position to reform the coinage and to introduce the public
use of sun-dials, water-clocks, etc. He reached the height of
his prosperity in 522 when his two sons were inaugurated as
consuls.  His integrity and attempts to protect the provincials
from the plunder of the public officials brought on him the
hatred of the Court. He was sentenced to death while absent
from Rome, seized at Ticinum, and in the baptistery of the
church there tortured by drawing a cord round his head till
the eyes were forced out of the sockets, and finally beaten
to death with clubs on October 23, 526. Such at least is the
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account that lias come down to us. At a later time his merits
were recognized, and tombs and statues erected in his honour by
the state.

Boethius was the last Roman of note who studied the
language and literature of Greece, and his works afforded to
medieval Europe some glimpse of .the intellectual life of the
old world. His importance in the history of literature is thus
very great, but it arises merely from the accident of the time
at which he lived. After the introduction of Aristotle’s works
in the thirteenth century his fame died away, and he has now
sunk into an obscurity which is as great as was once his
reputation. He is best known by his Consolatio, which was
translated by Alfred the Great into Anglo-Saxon. For our
purpose it is sufficient to note that the teaching of early
medieval mathematics was mainly founded on his geometry
and arithmetic.

His Geometry 1 consists of the enunciations (only) of the first
book of Euclid, and of a few selected propositions in the third
and fourth books, but with numerous practical applications to
finding areas, etc. He adds an appendix with proofs of the
first three propositions to shew that the enunciations may be
relied on. His Arithmetic is founded on that of Nlcomachus.

Cassiodorus. A few years later another Roman, Magnus
Aurelius Cassiodorus, who was born about 490 and died in
566, published two works, De Institutione Divinarum Litte-
rarum and De Artibus ac Disciplines, in which not only the
preliminary trivium of grammar, logic, and rhetoric were dis-
cussed, but also the scientific quadrivium of arithmetic, geometry,
music, and astronomy. These weere considered standard works
during the middle ages; the former was printed at Venice
in 1598.

Isidorus. Isidorus, bishop of Seville, born in 570 and
died in 636, was the author of an encyclopaedic work in
twenty volumes called Origines, of which the third volume is

1 His works on geometry and arithmetic were edited by G. Friedlein,
Leipzig, 1867.
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given up to the quadrivium. It was published at Leipzig in
1833.

The Cathedral and Conventual Schools.!

When, in the latter half of the eighth century, Charles the
Great had established his empire, he determined to promote
learning so far as he was able. He began by commanding
that schools should be opened in connection with every
cathedral and monastery in his kingdom; an order which was
approved and materially assisted by the popes. It is interesting
to us to know that this was done at the instance and under the
direction of two Englishmen, Alcuin and Clement, who had
attached themselves to his court.

Alcuin.l  Of these the more prominent was Alcuin, who
was born in Yorkshire in 735 and died at Tours in 804. He
was educated at York under archbishop Egbert, his “ beloved
master,” whom he succeeded as director of the school there.
Subsequently he became abbot of Canterbury, and was sent to
Rome by Offa to procure the pallium for archbishop Eanbald.
On his journey back he met Charles at Parma; the emperor
took a great liking to him, and finally induced him to take up
his residence at the imperial court, and there teach rhetoric,
logic, mathematics, and divinity. Alcuin remained for many
years one of the most intimate and influential friends of Charles
and was constantly employed as a confidential ambassador;
as such he spent the years 791 and 792 in England, and while
there reorganized the studies at his old school at York. In 801
he begged permission to retire from the court so as to be able
to spend the last years of his life in quiet with difficulty he
obtained leave, and went to the abbey of St. Martin at Tours,
of which he had been made head in 796. He established a

1 See The Schools of Charles the Great and the Restoration of Education
in the Ninth Century by J. B. Mullinger, London, 1877.

2 See the life of Alcuin by F. Lorentz, Halle, 1829, translated by J. M.
Slee, London, 1837 ; Alcuin und sein Jahrhundert by K. Werner, Paderborn,
1876 ; and Cantor, vol. i, pp. 712-721.
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school in connection with the abbey which became very
celebrated, and he remained and taught there till his death on
May 19, 804.

Most of the extant writings of Alcuin deal with theology
or history, but they include a collection of arithmetical pro-
positions suitable for the instruction of the young. The
majority of the propositions are easy problems, either determi-
nate or indeterminate, and are, 1 presume, founded on works
with which he had become acquainted when at Rome. The
following is one of the most difficult, and will give an idea of
the character of the work. If one hundred bushels of corn be
distributed among one hundred people in such a manner that
each man receives three bushels, each woman two, and each
child half a bushel: how many men, women, and children
were therel The general solution is (20 - 3%) men, 5n women,
and (80 - 2n) children, where n may have any of the values
1, 2, 3, 4 5, 6. Alcuin only states the solution for which
% = 3; that is, he gives as the answer 11 men, 15 women, and
74 children.

This collection however was the work of a man of excep-
tional genius, and probably we shall be correct in saying that
mathematics, if taught at all in a school, was generally con-
fined to the geometry of Boethius, the use of the abacus and
multiplication table, and possibly the arithmetic of Boethius;
while except in one of these schools or in a Benedictine cloister
it was hardly possible to get either instruction or opportunities
for study. It was of course natural that the works used should
come from Roman sources, for Britain and all the countries
included in the empire of Charles had at one time formed part
of the western half of the Roman empire, and their inhabitants
continued for a long time to regard Rome as the centre of
civilization, while the higher clergy kept up a tolerably constant
intercourse with Rome.

After the death of Charles many of his schools confined
themselves to teaching Latin, music, and theology, some
knowledge of which was essential to the worldly success of
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the higher clergy. Hardly any science or mathematics was
taught, but the continued existence of the schools gave an
opportunity to any teacher whose learning or zeal exceeded
the narrow limits fixed by tradition; and though there were
but few who availed themselves of the opportunity, yet the
number of those desiring instruction was so large that it
would seem as if any one who could teach was sure to attract
a considerable audience.

A few schools, where the teachers were of repute, became
large and acquired a certain degree of permanence, but even in
them the teaching was still usually confined to the trivium
and quadrivium.  The former comprised the three arts of
grammar, logic, and rhetoric, but practically meant the art
of reading and writing Latin; nominally the latter included
arithmetic and geometry with their applications, especially to
music and astronomy, but in fact it rarely meant more than
arithmetic sufficient to enable one to keep accounts, music for
the church services, geometry for the purpose of land-surveying,
and astronomy sufficient to enable one to calculate the feasts
and fasts of the church. The seven liberal arts are enumerated
in the line, Lingua, tropus, ratio; numerus, tonus, angulus,
astra. Any student who got beyond the trivium was looked
on as a man of great erudition, Qui tria, qui septem, qui totum
scil>ile novit, as a verse of the eleventh century runs. The
special questions which then and long afterwards attracted
the best thinkers were logic and certain portions of transcen-
dental theology and philosophy.

We may sum the matter up by saying that during the
ninth and tenth centuries the mathematics taught was still
usually confined to that comprised in the two works of
Boethius together with the practical use of the abacus and the
multiplication table, though during the latter part of the time
a wider range of reading was undoubtedly accessible.

Gerbert! In the tenth century a man appeared who

1 Weissenborn, in the works already mentioned, treats Gerbert very fnlly ;
see also La Vie et les (Euvres de Gerbert, by A. Olieris, Clermont, 1867 ; Ger-

www.rcin.org.pl



ch. viii] GERBERT 137

would in any age have been remarkable and who gave a great
stimulus to learning. This was Gerbert, an Aquitanian by
birth, who died in 1003 at about the age of fifty. His abilities
attracted attention to him even when a boy, and procured his
removal from the abbey school at Aurillac to the Spanish
march where he received a good education. He was in Rome
in 971, where his proficiency in music and astronomy excited
considerable interest. but his interests were not confined to
these subjects, and he had already mastered all the branches of
the trivium and quadrivium, as then taught, except logic; and
to learn this he moved to Rheims, which Archbishop Adalbero
had made the most famous school in Europe. Here he was at
once invited to teach, and so great was his fame that to him
Hugh Capet entrusted the education of his son Robert who
was afterwards king of France.

Gerbert was especially famous for his construction of abaci
and of terrestrial and celestial globes; he was accustomed to
use the latter to illustrate his lectures. These globes excited
great admiration; and he utilized this by offering to exchange
them for copies of classical Latin works, which seem already
to have become very scarce; the better to effect this lie ap-
pointed agents in the chief towns of Europe. To his efforts it
is believed we owe the preservation of several Latin works.
In 982 he received the abbey of Bobbio, and the rest of his life
was taken up with political affairs; he became Archbishop of
Rheiins in 991, and of Ravenna in 998; in 999 he was elected
Pope, when he took the title of Sylvester II. ; as head of the
Church, he at once commenced an appeal to Christendom to arm
and defend the Holy Land, thus forestalling Peter the Hermit by
a century, but he died on May 12, 1003, before he had time to
elaborate his plans. His library is, | believe, preserved in the
Vatican.

So remarkable a personality left a deep impress on his

bert von Aurillac, by K. Werner, second edition, Vienna, 1881 ; and Gerberti
...Opera mathematica, edited by N. Bubnov, Berlin, 1899.
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generation, and all sorts of fables soon began to collect around
his memory. It seems certain that he made a clock which
was long preserved at Magdeburg, and an organ worked by
steam which was still at Rheims two centuries after his death.
All this only tended to confirm the suspicions of his contem-
poraries that he had sold himself to the devil; and the details
of his interviews with that gentleman, the powers he purchased,
and his effort to escape from his bargain when he was dying,
may be read in the pages of William of Malmesbury, Orderic
Vitalis, and Platina. To these anecdotes the first named
writer adds the story of the statue inscribed with the words
““strike here,” which having amused our ancestors in the Gesta
Romanotum has been recently told again in the Earthly
Paradise.

Extensive though his influence was, it must not be supposed
that Gerbert's writings shew any great originality. His mathe-
matical works comprise a treatise on arithmetic entitled De
Numerorum Divisione, and one on geometry. An improvement
in the abacus, attributed by some writers to Boethius, but which
is more likely due to Gerbert, is the introduction in every
column of beads marked by different characters, called apices,
for each of the numbers from 1 to 9, instead of nine exactly
similar counters or beads. These apices lead to a representation
of numbers essentially the same as the Arabic numerals. There
was however no symbol for zero; the step from this concrete
system of denoting numbers by a decimal system on an abacus
to the system of denoting them by similar symbols in writing
seems to us to be a small one, but it would appear that Gerbert
did not make it. He found at Mantua a copy of the geometry
of Boethius, and introduced it into the medieval schools.
Gerbert's own work on geometry is of unequal ability; it includes
a few applications to land-surveying and the determination of
the heights of inaccessible objects, but much of it seems to be
copied from some Pythagorean text-book. In the course of it
he however solves one problem Avhich was of remarkable
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difficulty for that time. The question is to find the sides of a
right-angled triangle whose hypotenuse and area are given.
He says, in effect, that if these latter be denoted respectively
by ¢ and A2, then the lengths of the two sides will be

Bernelinus. One of Gerbert's pupils, Bernelinus, published
a work on the abacus! which is, there is very little doubt, a
reproduction of the teaching of Gerbert. It is valuable as
indicating that the Arabic system of writing numbers was still
unknown in Europe.

The Early Medieval Universities.2

At the end of the eleventh century or the beginning of the
twelfth a revival of learning took place at several of these
cathedral or monastic schools; and in some cases, at the same
time, teachers who were not members of the school settled in
its vicinity and, with the sanction of the authorities, gave
lectures which were in fact always on theology, logic, or civil
law. As the students at these centres grew in numbers, it
became desirable to act together whenever any interest common
to all was concerned. The association thus formed was a sort
of guild or trades union, or in the language of the time a uni-
versitas magistrorum et scholarium. This was the first stage
in the development of the earliest medieval universities. In
some cases, as at Paris, the governing body of the university
was formed by the teachers alone, in others, as at Bologna, by
both teachers and students; but in all cases precise rules for
the conduct of business and the regulation of the internal
economy of the guild were formulated at an early stage in its
history. ~ The municipalities and numerous societies which

1 It is reprinted in Olleris’s edition of Gerbert’s works, pp. 311-326.

2 See the Universities of Europe in the Middle Ages by H. Rashdall,
Oxford, 1895 ; Die Universitdten des MittelaUers bis 1400 by P. Il. Denifle,

1885 ; and vol. i of the University of Cambridge by J. B. Mullinger,
Cambridge, 1873.

www.rcin.org.pl



140 THE RISE OF LEARNING IN EUROPE [ch. viii

existed in Italy supplied plenty of models for the construction
of such rules, but it is possible that some of the regulations
were derived from those in force in the Mohammedan schools
at Cordova.

We are, almost inevitably, unable to fix the exact date of
the commencement of these voluntary associations, but they
existed at Paris, Bologna, Salerno, Oxford, and Cambridge
before the end of the twelfth century : these may be considered
the earliest universities in Europe. The instruction given at
Salerno and Bologna was mainly technical—at Salerno in medi-
cine, and at Bologna in law—and their claim to recognition as
universities, as long as they were merely technical schools, has
been disputed.

Although the organization of these early universities was
independent of the neighbouring church and monastic schools
they seem in general to have been, at any rate originally, asso-
ciated with such schools, and perhaps indebted to them for the
use of rooms, etc. The universities or guilds (self-governing
and formed by teachers and students), and the adjacent schools
(under the direct control of church or monastic authorities), con-
tinued to exist side by side, but in course of time the latter
diminished in importance, and often ended by becoming subject
to the rule of the university authorities. Nearly all the medieval
universities grew up under the protection of a bishop (or abbot),
and were in some matters subject to his authority or to that of
his chancellor, from the latter of whom the head of the univer-
sity subsequently took his title.  The universities, however,
were not ecclesiastical organizations, and, though the bulk of
their members were ordained, their direct connection with the
Church arose chiefly from the fact that clerks were then the
only class of the community who were left free by the state to
pursue intellectual studies.

A universitas magistrorunt et scholatium, if successful in
attracting students and acquiring permanency, always sought
special legal privileges, such as the right to fix the price of
provisions and the power to try legal actions in which its
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members were concerned. These privileges generally led to a
recognition of its power to grant degrees which conferred a right
of teaching anywhere within the kingdom. The university was
frequently incorporated at or about the same time. Paris
received its charter in 1200, and probably was the earliest
university in Europe thus officially recognized. Legal privileges
were conferred on Oxford in 1214, and on Cambridge in 1231 :
the development of Oxford and Cambridge followed closely the
precedent of Paris on which their organization was modelled.
In the course of the thirteenth century universities were founded
at (among other places) Naples, Orleans, Padua, and Prague;
and in the course of the fourteenth century at Pavia and Vienna.
The title of university was generally accredited to any teaching
body as soon as it was recognized as a studium generale.

The most famous medieval universities aspired to a still
wider recognition, and the final step in their evolution was an
acknowledgment by the pope or emperor of their degrees as a
title to teach throughout Christendom—such universities were
closely related one with the other. Paris was thus recognized
in 1283, Oxford in 1296, and Cambridge in 1318.

The standard of education in mathematics has been largely
fixed by the universities, and most of the mathematicians of
subsequent times have been closely connected with one or more
of them; and therefore |1 may be pardoned for adding a few
words on the general course of studiesl in a university in
medieval times.

The students entered when quite young, sometimes not being
more than eleven or twelve years old when first coming into
residence. It is misleading to describe them as undergraduates,
for their age, their studies, the discipline to which they were
subjected, and their position in the university shew that they
should be regarded as schoolboys. The first four years of their
residence were supposed to be spent in the study of the trivium,

1 For fuller details as to their organization of studies, their system of
instruction, and their constitution, see my History of the Study of Mathe-
matics at Cambridge, Cambridge, 1889.
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that is, Latin grammar, logic, and rhetoric. In quite early
times, a considerable number of the students did not progress
beyond the study of Latin grammar—they formed an inferior
faculty and were eligible only for the degree of master of
grammar or master of rhetoric—but the more advanced students
(and in later times all students) spent these years in the study
of the trivium.

The title of bachelor of arts was conferred at the end of this
course, and signified that the student was no longer a schoolboy
and therefore in pupilage. The average age of a commencing
bachelor may be taken as having been about seventeen or
eighteen. Thus at Cambridge in the presentation for a degree
the technical term still used for an undergraduate is juvenis,
while that for a bachelor is vir. A bachelor could not take
pupils, could teach only under special restrictions, and probably
occupied a position closely analogous to that of an undergraduate
nowadays. Some few bachelors proceeded to the study of civil
or canon law, but it was assumed in theory that they next
studied the quadrivium, the course for which took three years,
and which included about as much science as was to be found
in the pages of Boethius and Isidores.

The degree of master of arts was given at the end of this
course. In the twelfth and thirteenth centuries it was merely
a license to teach : no one sought it who did not intend to use
it for that purpose and to reside in the university, and only
those who had a natural aptitude for such work were likely to
enter a profession so ill-paid as that of a teacher. The degree
was obtainable by any student who had gone through the recog-
nized course of study, and shewn that he was of good moral
character. Outsiders were also admitted, but not as a matter
of course. | may here add that towards the end of the fourteenth
century students began to find that a degree had a pecuniary
value, and most universities subsequently conferred it only on
condition that the new master should reside and teach for at
least a year. Somewhat later the universities took a further
step and began to refuse degrees to those who were not intel-
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lectually qualified. This power was assumed on the precedent
of a case which arose in Paris in 1426, when the university
declined to confer a degree on a student—a Slavonian, one
Paul Nicholas—who had performed the necessary exercises in
a very indifferent manner : he took legal proceedings to compel
the university to grant the degree, but their right to withhold
it was established. Nicholas accordingly has the distinction
of being the first student who under modern conditions was
“plucked.”

Athough science and mathematics were recognised as the
standard subjects of study for a bachelor, it is probable that,
until the renaissance, the majority of the students devoted most
of their time to logic, philosophy, and theology. The subtleties
of scholastic philosophy were dreary and barren, but it is only
just to say that they provided a severe intellectual training.

We have now arrived at a time when the results of Arab
and Greek science became known in Europe. The history of
Greek mathematics has been already discussed; I must now
temporarily leave the subject of medieval mathematics, and
trace the development of the Arabian schools to the same date;
and | must then explain how the schoolmen became acquainted
with the Arab and Greek text-books, and how their introduction
affected the progress of European mathematics.
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CHAPTER IX.

THE MATHEMATICS OF THE ARABS.I

The story of Arab mathematics is known to us in its general
outlines, but we are as yet unable to speak with certainty on
many of its details. It is, however, quite clear that while part
of the early knowledge of the Arabs was derived from Greek
sources, part was obtained from Hindoo works; and that it was
on those foundations that Arab science was built. 1 will begin
by considering in turn the extent of mathematical knowledge
derived from these sources.

Extent of Mathematics obtainedfrom Greek Sources.

According to their traditions, in themselves very probable,
the scientific knowledge of the Arabs was at first derived from
the Greek doctors who attended the caliphs at Bagdad. It is

1 The subject is discussed at length by Cantor, chaps, Xxxxii-xxxv ; by
Hankel, pp. 172-293 ; by A. von Kremer in Kulturgeschichte des Orientes
unter den Chalifen, Vienna, 1877 ; and by H. Suterin his “ Die Mathematiker
und Astronomen der Araber und ihre Werke,” Zeitschrift fur Mathematik
und Physik, Abhandlungen zur Geschichte der Mathematik, Leipzig, vol. xlv,
1900. See also Materiaux pour servir d I'histoire comparee des sciences
inathematiques cliez les Grecs et les Orientaux, by L. A. Sedillot, Paris,
1845-9 ; and the following articles by Fr. Woepcke, Sur [I'introduction
de Varithmitique Indienne en Occident, Rome, 1859 ; Sur Thistoire des
sciences mathematiques chez les Orientaux, Paris, 1860 ; and Memoire sur la
propagation des chiffres Indiens, Paris, 1863.

www.rcin.org.pl



ch.1x] THE MATHEMATICS OF THE ARABS 145

said that when the Arab conquerors settled in towns they
became subject to diseases which had been unknown to them
in their life in the desert. The study of medicine was then
confined mainly to Greeks and Jews, and many of these,
encouraged by the caliphs, settled at Bagdad, Damascus, and
other cities; their knowledge of all branches of learning was
far more extensive and accurate than that of the Arabs, and
the teaching of the young, as has often happened in similar
cases, fell into their hands. The introduction of European
science was rendered the more easy as various small Greek
schools existed in the countries subject to the Arabs: there
had for many years been one at Edessa among the Nestorian
Christians, and there were others at Antioch, Emesa, and
even at Damascus, which had preserved the traditions and some
of the results of Greek learning.

The Arabs soon remarked that the Greeks rested their
medical science on the works of Hippocrates, Aristotle, and
Galen; and these books were translated into Arabic by order
of the caliph Haroun Al Raschid about the year 800. The
translation excited so much interest that his successor Al
Mamun (813-833) sent a commission to Constantinople to
obtain copies of as many scientific works as was possible, while
an embassy for a similar purpose was also sent to India. At
the same time a large staff of Syrian clerks was engaged, whose
duty it was to translate the works so obtained into Arabic and
Syriac. To disarm fanaticism these clerks were at first termed
the caliph’s doctors, but in 1851 they were formed into a college,
and their most celebrated member, Honein ibn Ishak, was made
its first president by the caliph Mutawakkil (847-861). Honein
and his son Ishak ibn Honein revised the translations before
they were finally issued. Neither of them knew much mathe-
matics, and several blunders were made in the works issued on
that subject, but another member of the college, Tabit ibn
Korra, shortly published fresh editions which thereafter became
the standard texts.

In this way before the end of the ninth century the Arabs
L
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obtained translations of the works of Euclid, Archimedes,
Apollonius, Ptolemy, and others; and in some cases these
editions are the only copies of the books now extant. It is
curious, as indicating how completely Diophantus had dropped
out of notice, that as far as we know the Arabs got no manu-
script of his great work till 150 years later, by which time they
were already acquainted with the idea of algebraic notation and
processes.

Extent of Mathematics obtained from Hindoo Sources.

The Arabs had considerable commerce with India, and a
knowledge of one or both of the two great original Hindoo
works on algebra had been thus obtained in the caliphate of
Al Mansur (754-775), though it was not until fifty or sixty
years later that they attracted much attention.  The algebra
and arithmetic of the Arabs were largely founded on these
treatises, and | therefore devote this section to the consideration
of Hindoo mathematics.

The Hindoos, like the Chinese, have pretended that they
are the most ancient people on the face of the earth, and
that to them all sciences owe their creation. But it would
appear from all recent investigations that these pretensions
have no foundation; and in fact no science or useful art
(except a rather fantastic architecture and sculpture) can be
traced back to the inhabitants of the Indian peninsula prior
to the Aryan invasion. This invasion seems to have taken
place at some time in the latter half of the fifth century or
in the sixth century, when a tribe of the Aryans entered India
by the north-west frontier, and established themselves as
rulers over a large part of the country. Their descendants,
wherever they have kept their blood pure, may still be recog-
nised by their superiority over the races they originally con-
quered ; but as is the case with the modern Europeans, they
found the climate trying and gradually degenerated.  For
the first two or three centuries they, however, retained their
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intellectual vigour, and produced one or two writers of great
ability.

Arya-Bhata. The earliest of these, of whom we have definite
information, is Arya-Bhata,l who was born at Patna in the year
476. He is frequently quoted by Brahmagupta, and in the
opinion of many commentators he created algebraic analysis,
though it has been suggested that he may have seen Diophantus’s
Arithmetic. The chief work of Arya-Bhata with which we are
acquainted is his Aryabhathiya, which consists of mnemonic
verses embodying the enunciations of various rules and proposi-
tions. There are no proofs, and the language is so obscure and
concise that it long defied all efforts to translate it.

The book is divided into four parts: of these three are
devoted to astronomy and the elements of spherical trigono-
metry ; the remaining part contains the enunciations of thirty-
three rules in arithmetic, algebra, and plane trigonometry. It
is probable that Arya-Bhata regarded himself as an astronomer,
and studied mathematics only so far as it was useful to him in
his astronomy.

In algebra Arya-Bhata gives the sum of the first, second, and
third powers of the first n natural numbers ; the general solution
of a quadratic equation; and the solution in integers of certain
indeterminate equations of the first degree. His solutions of
numerical equations have been supposed to imply that he was
acquainted with the decimal system of enumeration.

In trigonometry he gives a table of natural sines of the
angles in the first quadrant, proceeding by multiples of 3j°,
defining a sine as the semichord of double the angle. Assuming
that for the angle 3 o the sine is equal to the circular measure,
he takes for its value 225, i.e. the number of minutes in the

1 The subject of prehistoric Indian mathematics has been discussed by G.
Thibaut, Von Schroeder, and H. Vogt. A Sanskrit text of the Aryabhathiya,
edited by H. Kern, was published at Leyden in 1874 ; there is also an
article on it by the same editor in the Journal of the Asiatic Society, London,
1863, vol. xx, pp. 371-387 ; a French translation by L. Rodet of that part
which deals with algebra and trigonometry is given in the Journal Asiatique,
1879, Paris, series 7, vol. xiii, pp. 393-434.
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angle. He then enunciates a rule which is nearly unintelligible,
but probably is the equivalent of the statement

sin (m+ 1) a—sin na=sin na —sin (n— 1) a — sin na cosec a,

where a stands for 3 0; and working with this formula he
constructs a table of sines, and finally finds the value of sin 90°
to be 3438. This result is correct if we take 3*1416 as the
value of m, and it is interesting to note that this is the number
which in another place he gives for m. The correct trigono-
metrical formula is

sin(n+1)a-sinna=sinna—sin(n-1)a-4sinnasin2 a.

Arya-Bhata, therefore, took 4 sin2 o as equal to cosec a, that is,
he supposed that 2sina=1+sin2a: using the approximate
values of sina and sin 2a given in his table, this reduces to
2(225) =1+ 449, and hence to that degree of approximation his
formula is correct. A considerable proportion of the geometrical
propositions which he gives is wrong.

Brahmagupta. The next Hindoo writer of note is Brahma-
gupta, who is said to have been born in 598, and probably was
alive about 660. He wrote a work in verse entitled Brahma-
Sphuta-Siddhanta, that is, the Siddhanta, or system of Brahma
in astronomy. In this, two chapters are devoted to arithmetic,
algebra, and geometry.!

The arithmetic is entirely rhetorical. Most of the problems
are worked out by the rule of three, and a large proportion of
them are on the subject of interest.

In his algebra, which is also rhetorical, he works out the
fundamental propositions connected with an arithmetical pro-
gression, and solves a quadratic equation (but gives only the
positive value to the radical). As an illustration of the prob-
lems given | may quote the following, which was reproduced in
slightly different forms by various subsequent writers, but |
replace the numbers by letters. ““Two apes lived at the top of

| These two chapters (chaps, xii and xviii) were translated by H. T. Cole-
brooke, and published at Loudon in 1817.
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a cliff of height It, whose base was distant mil from a neighbour-
ing village. One descended the cliff and walked to the village,
the other flew up a height x and then flew in a straight line to
the village. The distance traversed by each was the same.
Find x', Brahmagupta gave the correct answer, namely
x—mlv(m+ 2). In the question as enunciated originally
h =100, m=2.

Brahmagupta finds solutions in integers of several indeter-
minate equations of the first degree, using the same method as
that now practised. He states one indeterminate equation of
the second degree, namely, nx2 + 1 =y2, and gives as its solution
x=2t (2 - n) and y = (t2+ n) (t2—n). To obtain this general
form lie proved that, if one solution either of that or of certain
allied equations could be guessed, the general solution could be
written down ; but he did not explain how one solution could be
obtained. Curiously enough this equation was sent by Fermat
as a challenge to Wallis and Lord Brouncker in the seventeenth
century, and the latter found the same solutions as Brahmagupta
had previously done. Brahmagupta also stated that the equation
y2=nx2— 1 could not be satisfied by integral values of x and y
unless n could be expressed as the sum of the squares of two
integers. It is perhaps worth noticing that the early algebraists,
whether Greeks, Hindoos, Arabs, or ltalians, drew no distinc-
tion between the problems which led to determinate and those
which led to indeterminate equations. It was only after the
introduction of syncopated algebra that attempts were made to
give general solutions of equations, and the difficulty of giving
such solutions of indeterminate equations other than those of
the first degree has led to their practical exclusion from elementary
algebra.

In geometry Brahmagupta proved the Pythagorean property
of a right-angled triangle (Euc. I, 47). He gave expressions for
the area of a triangle and of a quadrilateral inscribable in a
circle in terms of their sides; and shewed that the area of a
circle was equal to that of a rectangle whose sides were the
radius and semiperimeter. He was less successful in his
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attempt to rectify a circle, and his result is equivalent to
taking 10 for the value of m. He also determined the
surface and volume of a pyramid and cone; problems over
which Arya-Bhata had blundered badly. The next part of
his geometry is almost unintelligible, but it seems to be an
attempt to find expressions for several magnitudes connected
with a quadrilateral inscribed in a circle in terms of its sides:
much of this is wrong.

It must not be supposed that in the original work all the
propositions which deal with any one subject are collected
together, and it is only for convenience that | have tried to
arrange them in that way. It is impossible to say whether the
whole of Brahmagupta’s results given above are original. He
knew of Arya-Bhata's work, for he reproduces the table of sines
there given; it is likely also that some progress in mathematics
had been made by Arya-Bhata’'s immediate successors, and that
Brahmagupta was acquainted with their works ; but there seems
no reason to doubt that the bulk of Brahmagupta’s algebra and
arithmetic is original, although perhaps influenced by Dio-
phantus’s writings : the origin of the geometry is more doubt-
ful, probably some of it is derived from Hero’s works.

Bhaskara. To make this account of Hindoo mathematics
complete I may depart from the chronological arrangement and
say that the only remaining Indian mathematician of exceptional
eminence of whose works we know anything was Bhaskara, who
was born in 1114. He is said to have been the lineal successor
of Brahmagupta as head of an astronomical observatory at Ujein.
He wrote an astronomy, of which four chapters have been trans-
lated. Of these one termed Lilavati is on arithmetic; a second
termed Bija Ganita is on algebra; the third and fourth are on
astronomy and the sphere;! some of the other chapters also
involve mathematics. This work was, | believe, known to the

1 See the article Viga Ganita in the Penny Cyclopaedia, London, 1843 ;
and the translations of the Lilavati and the Bija Ganita issued by H. T. Cole-
brooke, London, 1817. The chapters on astronomy and the sphere were
edited by L. Wilkinson, Calcutta, 1842.
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Arabs almost as soon as it was written, and influenced their
subsequent writings, though they failed to utilize or extend
most of the discoveries contained in it. The results thus became
indirectly known in the West before the end of the twelfth
century, but the text itself was not introduced into Europe till
within recent times.

The treatise is in verse, but there are explanatory notes in
prose. It is not clear whether it is original or whether it is
merely an exposition of the results then known in India; but in
any case it is most probable that Bhaskara was acquainted with
the Arab works which had been written in the tenth and eleventh
centuries, and with the results of Greek mathematics as trans-
mitted through Arabian sources. The algebra is syncopated and
almost symbolic, which marks a great advance over that of
Brahmagupta and of the Arabs. The geometry is also superior
to that of Brahmagupta, but apparently this is due to the
knowledge of various Greek works obtained through the Arabs.

The first book or Lilavati commences with a salutation to
the god of wisdom. The general arrangement of the work may
be gathered from the following table of contents. Systems of
weights and measures. Next decimal numeration, briefly de-
scribed.  Then the eight operations of arithmetic, namely,
addition, subtraction, multiplication, division, square, cube,
square-root, and cube-root. Reduction of fractions to a common
denominator, fractions of fractions, mixed numbers, and the
eight rules applied to fractions. The “rules of cipher,” namely,
ax0=a, 02=0, ¥O=0, a=0=o. The solution of some
simple equations which are treated as questions of arithmetic.
The rule of false assumption. Simultaneous equations of the
first degree with applications.  Solution of a few quadratic
equations. Rule of three and compound rule of three, with
various cases. Interest, discount, and partnership. Time of
filling a cistern by several fountains. Barter. Arithmetical
progressions, and sums of squares and cubes. Geometrical
progressions.  Problems on triangles and quadrilaterals. Ap-
proximate value of 7r. Some trigonometrical formulae. Contents
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of solids. Indeterminate equations of the first degree. Lastly,
the book ends with a few questions on combinations.

This is the earliest known work which contains a systematic
exposition of the decimal system of numeration. It is possible
that Arya-Bhata was acquainted with it, and it is most likely
that Brahmagupta was so, but in Bhaskara’'s arithmetic we meet
with the Arabic or Indian numerals and a sign for zero as part
of a well-recognised notation. It is impossible at present to
definitely trace these numerals farther back than the eighth
century, but there is no reason to doubt the assertion that they
were in use at the beginning of the seventh century. Their
origin is a difficult and disputed question. 1 mention below!l
the view which on the whole seems most probable, and perhaps is
now generally accepted, and | reproduce there some of the forms
used in early times.

To sum the matter up briefly, it may be said that the
Lilavati gives the rules now current for addition, subtraction,
multiplication, and division, as well as for the more common pro-
cesses in arithmetic; while the greater part of the work is taken
up with the discussion of the rule of three, which is divided
into direct and inverse, simple and compound, and is used to
solve numerous questions chiefly on interest and exchange—the
numerical questions being expressed in the decimal system of
notation with which we are familiar.

Bhaskara was celebrated as an astrologer no less than as a
mathematician. He learnt by this art that the event of his
daughter Lilavati marrying would be fatal to himself. He
therefore declined to allow her to leave his presence, but by
way of consolation he not only called the first book of his work
by her name, but propounded many of his problems in the form
of questions addressed to her. For example, “ Lovely and dear
Lilavati, whose eyes are like a fawn’s, tell me what are the
numbers resulting from 135 multiplied by 12. If thou be
skilled in multiplication, whether by whole or by parts, whether
by division or by separation of digits, tell me, auspicious damsel,

1 See below, page 184.
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what is the quotient of the product when divided by the same
multiplier.”

I may add here that the problems in the Indian works give
a great deal of interesting information about the social and
economic condition of the country in which they were written.
Thus Bhaskara discusses some questions on the price of slaves,
and incidentally remarks that a female slave was generally
supposed to be most valuable when 16 years old, and subse-
quently to decrease in value in inverse proportion to the age ;
for instance, if when 16 years old she were worth 32 nishkas,
her value when 20 would be represented by (16 x 32)-+ 20
nishkas. It would appear that, as a rough average, a female
slave of 16 was worth about 8 oxen which had worked for two
years. The interest charged for money in India varied from 3j
to 5 per cent per month. Amongst other data thus given will
be found the prices of provisions and labour.

The chapter termed Bija Ganita commences with a sentence
so ingeniously framed that it can be read as the enunciation of a
religious, or a philosophical, or a mathematical truth. Bhaskara
after alluding to his Lilavati, or arithmetic, states that he intends
in this book to proceed to the general operations of analysis.
The idea of the notation is as follows. Abbreviations and
initials are used for symbols; subtraction is indicated by a dot
placed above the coefficient of the quantity to be subtracted;
addition by juxtaposition merely; but no symbols are used for
multiplication, equality, or inequality, these being written at
length. A product is denoted by the first syllable of the word
subjoined to the factors, between which a dot is sometimes
placed. In a quotient or fraction the divisor is written under
the dividend without a line of separation. The two sides of an
equation are written one under the other, confusion being pre-
vented by the recital in words of all the steps which accompany
the operation  Various symbols for the unknown quantity are
used, but most of them are the initials of names of colours, and
the word colour is often used as synonymous with unknown
quantity; its Sanskrit equivalent also signifies a letter, and
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letters are sometimes used either from the alphabet or from the
initial syllables of subjects of the problem. In one or two cases
symbols are used for the given as well as for the unknown
quantities. The initials of the words square and solid denote
the second and third powers, and the initial syllable of square
root marks a surd. Polynomials are arranged in powers, the
absolute quantity being always placed last and distinguished by
an initial syllable denoting known quantity. Most of the
equations have numerical coefficients, and the coefficient is
always written after the unknown quantity. Positive or
negative terms are indiscriminately allowed to come first; and
every power is repeated on both sides of an equation, with a
zero for the coefficient when the term is absent. After explain-
ing his notation, Bhaskara goes on to give the rules for addition,
subtraction, multiplication, division, squaring, and extracting
the square root of algebraical expressions; he then gives the
rules of cipher as in the Lilavati; solves a few equations ; and
lastly concludes with some operations on surds. Many of the
problems are given in a poetical setting with allusions to fair
damsels and gallant warriors.

Fragments of other chapters, involving algebra, trigonometry,
and geometrical applications, have been translated by Cole-
brooke. Amongst the trigonometrical formulae is one which is
equivalent to the equation d (sin 0) =cos 6 d6.

| have departed from the chronological order in treating here
of Bhaskara, but I thought it better to mention him at the same
time as | was discussing his compatriots. It must be remem-
bered, however, that he flourished subsequently to all the Arab
mathematicians considered in the next section. The works with
which the Arabs first became acquainted were those of Arya.
Bhata and Brahmagupta, and perhaps of their successors Sridhara
and Padmanabha; it is doubtful if they ever made much use of
the great treatise of Bhaskara.

It is probable that the attention of the Arabs was called to
the works of the first two of these writers by the fact that the
Arabs adopted the Indian system of arithmetic, and were thus
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led to look at the mathematical text-books of the Hindoos.
The Arabs had always had considerable commerce with India,
and with the establishment of their empire the amount of trade
naturally increased; at that time, about the year 700, they
found the Hindoo merchants beginning to use the system of
numeration with which we are familiar, and adopted it at once.
This immediate acceptance of it was made the easier, as they
had no works of science or literature in which another system
was used, and it is doubtful whether they then possessed any
but the most primitive system of notation for expressing
numbers. The Arabs, like the Hindoos, seem also to have
made little or no use of the abacus, and therefore must have
found Greek and Roman methods of calculation extremely
laborious. The earliest definite date assigned for the use in
Arabia of the decimal system of numeration is 773. In that
year some Indian astronomical tables were brought to Bagdad,
and it is almost certain that in these Indian numerals (including
a zero) were employed.

The Development of Mathematics in Arabial

In the preceding sections of this chapter | have indicated
the two sources from which the Arabs derived their knowledge
of mathematics, and have sketched out roughly the amount of
knowledge obtained from each. We may sum the matter up
by saying that before the end of the eighth century the Arabs
were in possession of a good numerical notation and of
Biahmagupta’s work on arithmetic and algebra; while before
th; end of the ninth century they were acquainted with the
misterpieces of Greek mathematics in geometry, mechanics,
and astronomy. | have now to explain what use they made of
th se materials.

Alkarismi. The first and in some respects the most illus-

1 A work by B. Baldi on the lives of several of the Arab mathematicians
wa; printed in Boncompagni’s BuUetino di bibliografia, 1872, vol. v, pp. 427-
531
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trious of the Arabian mathematicians was Mohammed ibn Musa
Abu Djefar Al-Khwarizmi. There is no common agreement as
to which of these names is the one by which he is to be known :
the last of them refers to the place where he was born, or in
connection with which he was best known, and | am told that
it is the one by which he would have been usually known
among his contemporaries. | shall therefore refer to him by
that name; and shall also generally adopt the corresponding
titles to designate the other Arabian mathematicians. Until
recently, this was almost always written in the corrupt form
Alkarismi, and, though this way of spelling it is incorrect, it
has been sanctioned by so many writers that | shall make use
of it.

We know nothing of Alkarismi’s life except that he was a
native of Khorassan and librarian of the caliph Al Mamun; and
that he accompanied a mission to Afghanistan, and possibly
came back through India. On his return, about 830, he wrote
an algebra,l which is founded on that of Brahmagupta, but in
which some of the proofs rest on the Greek method of repre-
senting numbers by lines. He also wrote a treatise on arith-
metic: an anonymous tract termed Algoritmi De Numero
Indorum, which is in the university library at Cambridge, is
believed to be a Latin translation of this treatise.2? Besides
these two works he compiled some astronomical tables, with
explanatory remarks; these included results taken from both
Ptolemy and Brahmagupta.

The algebra of Alkarismi holds a most important place in the
history of mathematics, for we may say that the subsequent
Arab and the early medieval works on algebra were founded on
it, and also that through it the Arabic or Indian system of
decimal numeration was introduced into the West. The work
is termed Al-gebr we' | mukabala: al-gebr, from which the word
algebra is derived, means the restoration, and refers to the fact

1 It was published by F. Rosen, with an English translation, London,

1831.
2 It was published by B. Bonconipagni, Rome, 1857.
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that any tlie same magnitude may be added to or subtracted
from both sides of an equation ; al mukabala means the process
of simplification, and is generally used in connection with the
combination of like terms into a single term. The unknown
quantity is termed either “the thing” or “the root” (that is,
of a plant), and from the latter phrase our use of the word root
as applied to the solution of an equation is derived. The
square of the unknown is called *the power.” All the known
quantities are numbers.

The work is divided into five parts. In the first Alkarismi
gives rules for the solution of quadratic equations, divided
into five classes of the forms ax2—bx, ax2=c¢, ax2+bx=c,
ax2 + c==bx, and ax2 = bx + ¢, where a, b, ¢ are positive numbers,
and in all the applications a=I. He considers only real and
positive roots, but he recognises the existence of two roots,
which as far as we know was never done by the Greeks. It is
somewhat curious that when both roots are positive he generally
takes only that root which is derived from the negative value of
the radical.

He next gives geometrical proofs of these rules in a
manner analogous to that of Euclid u, 4. For example, to
solve the equation X2+ 10a- =39, or any equation of the form
x2+px =¢, he gives two methods of which one is as follows.
Let AB represent the value of x, and construct on it the
square ABCD (see figure below). Produce DA to Il and

DC to /' so that AlII=CF=¥% (or [j»); and complete the
figure as drawn below. Then the areas AC, 11B, and BE
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represent the magnitudes x2, 5x, and 5x. Thus the left-hand
side of the equation is represented by the sum of the areas AC,
HB, and BF, that is, by the gnomon HCG. To both sides of
the equation add the square KG, the area of which is 25 (or
4>2), and we shall get a new square whose area is by hypothesis
equal to 39 + 25, that is, to 64 (or 5+ jo2) and whose side
therefore is 8.  The side of this square DH, which is equal to
8, will exceed AH, which is equal to 5, by the value of the
unknown required, which, therefore, is 3.

In the third part of the book Alkarismi considers the
product of (x+a) and (x*6). In the fourth part he states
the rules for addition and subtraction of expressions which
involve the unknown, its square, or its square root; gives rules
for the calculation of square roots; and concludes with the
theorems that a Jb= Ja'lb and Ja Jb= Jab. In the fifth
and last part he gives some problems, such, for example, as to
find two numbers whose sum is 10 and the difference of whose
squares is 40.

In all these early works there is no clear distinction between
arithmetic and algebra, and we find the account and explana-
tion of arithmetical processes mixed up with -algebra and
treated as part of it. It was from this book then that
the Italians first obtained not only the ideas of algebra, but
also of an arithmetic founded on the decimal system.
This arithmetic was long known as algorism, or the art of
Alkarismi, which served to distinguish it from the arithmetic
of Boethius; this name remained in use till the eighteenth
century.

Tabit ibn Korra. The work commenced by Alkarismi
was carried on by Tabit ibn Korra, born at Harran in 836, and
died in 901, who was one of the most brilliant and accom-
plished scholars produced by the Arabs. As | have already
stated, he issued translations of the chief works of Euclid,
Apollonius, Archimedes, and Ptolemy. He also wrote several
original works, all of which are lost with the exception of a
fragment on algebra, consisting of one chapter on cubic equa-
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tions, which are solved by the aid of geometry in somewhat
the same way as that given later.1

Algebra continued to develop very rapidly, but it remained
entirely rhetorical.  The problems with which the Arabs were
chiefly concerned were solution of equations, problems leading
to equations, or properties of numbers. The two most prominent
algebraists of a later date were Alkayami and Alkarki, both
of whom flourished at the beginning of the eleventh century.

Alkayami. The first of these, Omar Alkayami, is notice-
able for his geometrical treatment of cubic equations by which
he obtained a root as the abscissa of a point of intersection
of a conic and a circle2 The equations he considers are of
the following forms, Avhere a and c¢ stand for positive integers.

whose root he says is the abscissa of a point

of intersection of
whose root he says is the abscissa of a point of intersection

of and whose
root he says is the abscissa of a point of intersection of
and He gives one biquadratic,

namely, the root of which is deter-
mined by the point of intersection of and
It is sometimes said that he stated that it was

impossible to solve the equation in positive integers,

or in other words that the sum of two cubes can never be a
cube; though whether he gave an accurate proof, or whether,
as is more likely, the proposition (if enunciated at all) was the
result of a wide induction, it is now impossible to say; but
the fact that such a theorem is attributed to him will serve to
illustrate the extraordinary progress the Arabs had made in
algebra.

Alkarki. The other mathematician of this time (circ. 1000)
whom | mentioned was AlkarkiA He gave expressions for the

1 See below, page 224.

2 His treatise on algebra was published by Fr. Woepeke, Paris, 1851.

3 His algebra was published by Fr. Woepeke, 1853, and his arithmetic was
translated into German by Ad. Hochheim, Halle, 1878.
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sums of the first, second, and third powers of the first n natural
numbers ; solved various equations, including some of the forms

; and discussed surds, shewing, for example,
that

Even where the methods of Arab algebra are quite general
the applications are confined in all cases to numerical problems,
and the algebra is so arithmetical that it is difficult to treat the
subjects apart. From their books on arithmetic and from the
observations scattered through various works on algebra, we may
say that the methods used by the Arabs for the four funda-
mental processes were analogous to, though more cumbrous
than, those now in use; but the problems to which the subject
was applied were similar to those given in modern books, and
were solved by similar methods, such as rule of three, «<ft.
Some minor improvements in notation were introduced, such,
for instance, as the introduction of a line to separate the nume-
rator from the denominator of a fraction; and hence a line
between two symbols came to be used as a symbol of division.!
Alhossein (980-1037) used a rule for testing the correctness of
the results of addition and multiplication by “ casting out the
nines.” Various forms of this rule have been given, but they
all depend on the proposition that, if each number in the ques-
tion be replaced by the remainder when it is divided by 9, and
if these remainders be added or multiplied as directed in the
question, then this result when divided by 9 will leave the same
remainder as the answer whose correctness it is desired to test
when divided by 9 : if these remainders differ, there is an error.
The selection of 9 as a divisor was due to the fact that the
remainder when a number is divided by 9 can be obtained by
adding the digits of the number and dividing the sum
by 9.

I am not concerned with the views of Arab writers on
astronomy or the value of their observations, but I may remark
in passing that they accepted the theory as laid down by Hippar-
chus and Ptolemy, and did not materially alter or advance it.

1 See below, page 241.
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I may, however, add that Al Mamun caused the length of a
degree of latitude to be measured, and he, as well as the two
mathematicians to be next named, determined the obliquity of
the ecliptic.

Albategni. Albuzjani. Like the Greeks, the Arabs rarely,
if ever, employed trigonometry except in connection with
astronomy; but in effect they used the trigonometrical ratios
which are now current, and worked out the plane trigonometry
of a single angle. They are also acquainted with the elements
of spherical trigonometry. Albategni, born at Batan in Meso-
potamia, in 877, and died at Bagdad in 929, was among the
earliest of the many distinguished Arabian astronomers. He
wrote the Science of the Stars,! which is worthy of note from
its containing a mention of the motion of the sun’s apogee.
In this work angles are determined by “the semi-chord of twice
the angle,” that is, by the sine of the angle (taking the radius
vector as unity). It is doubtful whether he was acquainted
with the previous introduction of sines by Arya-Bhata and
Brahmagupta ; Hipparchus and Ptolemy, it will be remembered,
had used the chord.  Albategni was also acquainted wiith
the fundamental formula in spherical trigonometry, giving
the side of a triangle in terms of the other sides and the
angle included by them. Shortly after the death of Albategni,
Albuzjani, who is also known as Abul-Wafa, born in 940,
and died in 998, introduced -certain trigonometrical func-
tions, and constructed tables of tangents and cotan-
gents. He was celebrated as a geometrician as well as an
astronomer.

Alhazen. Abd-al-gehl. The Arabs were at first content to
take the works of Euclid and Apollonius for their text-books
in geometry without attempting to comment on them, but
Alhazen, born at Bassora in 987 and died at Cairo in 1038,
issued in 1036 a collection 2 of problems something like the Data
of Euclid. Besides commentaries on the definitions of Euclid

1 It was edited by Regiomontanus, Nuremberg, 1537.
2 It was translated by L. A. Sedillot, and published at Paris in 1836.

M
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and on the Almagest, Alhazen also wrote a work on optics,! which
includes the earliest scientific account of atmospheric refraction.
It also contains some ingenious geometry, amongst other things,
a geometrical solution of the problem to find at what point of a
concave mirror a ray from a given point must be incident so

to be reflected to another given point. Another geometrician
of a slightly later date was Al>d-al-gehl (circ. 1100), who wrote on
conic sections, and was also the author of three small geometri-
cal tracts.

It was shortly after the last of the mathematicians mentioned
above that Bhaskara, the third great Hindoo mathematician,
flourished; there is every reason to believe that he was
familiar with the works of the Arab school as described
above, and also that his writings were at once known in
Arabia.

The Arab schools continued to flourish until the fifteenth
century. But they produced no other mathematician of any
exceptional genius, nor was there any great advance on the
methods indicated above, and it is unnecessary for me to
crowd my pages with the names of a number of writers
who did not materially affect the progress of the science in
Europe.

From this rapid sketch it will be seen that the work of the
Arabs (including therein writers who wrote in Arabia and
lived under Eastern Mohammedan rule) in arithmetic, algebra,
and trigonometry was of a high order of excellence. They
appreciated geometry and the applications of geometry to
astronomy, but they did not extend the bounds of the science.
It may be also added that they made no special progress in
statics, or optics, or hydrostatics; though there is abundant
evidence that they had a thorough knowledge of practical
hydraulics.

The general impression left is that the Arabs were quick
to appreciate the work of others—notably of the Greek masters
and of the Hindoo mathematicians—but, like the ancient

1 It was published at Bale in 1572.
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Chinese and Egyptians, they did not systematically develop
a subject to any considerable extent. Their schools may be
taken to have lasted in all for about 650 years, and if the
work produced be compared with that of Greek or modern
European writers it is, as a whole, second-rate both in quantity
and quality.
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CHAPTER X

THE INTRODUCTION OF ARAB WORKS INTO EUROPE.
ciRC. 1150-1450.

In the last chapter but one | discussed the development of
European mathematics to a date which corresponds roughly
with the end of the “dark ages’’; and in the last chapter
I traced the history of the mathematics of the Indians and
Arabs to the same date. The mathematics of the two or
three centuries that follow and are treated in this chapter are
characterised by the introduction of the Arab mathematical
text-books and of Greek books derived from Arab sources, and
the assimilation of the new ideas thus presented.

It was, however, from Spain, and not from Arabia, that
a knowledge of eastern mathematics first came into western
Europe. The Moors had established their rule in Spain in 747,
and by the tenth or eleventh century had attained a high
degree of civilisation. Though their political relations with the
caliphs at Bagdad were somewhat unfriendly, they gave a
ready welcome to the works of the great Arab mathematicians.
In this way the Arab translations of the writings of Euclid,
Archimedes, Apollonius, Ptolemy, and perhaps of other Greek
authors, together with the works of the Arabian algebraists,
were read and commented on at the three great Moorish schools of
Granada, Cordova, and Seville. It seems probable that these
works indicate the full extent of Moorish learning, but, as
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alll knowledge was jealously guarded from Christians, it is
inmpossible to speak with certainty either on this point or
oen that of the time when the Arab books were first introduced
irnto Spain.

The eleventh century. The earliest Moorish writer of
dlistinction of whom 1 find mention is Geber ibn Aphla, who
was born at Seville and died towards the latter part of the
elleventh century at Cordova. He wrote on astronomy and
tirigonometry, and was acquainted with the theorem that the
siines of the angles of a spherical triangle are proportional to the
siines of the opposite sides.!

Arzachel.2 Another Arab of about the same date was
A rzachel, who was living at Toledo in 1080. He suggested
tlhat the planets moved in ellipses, but his contemporaries with
scientific intolerance declined to argue about a statement which
was contrary to Ptolemy’s conclusions in the Almagest.

The twelfth century. During the course of the twelfth
ctentury copies of the books used in Spain were obtained in
western Christendom.  The first step towards procuring a
knowledge of Arab and Moorish science was taken by an
English monk, Adelhard of Bath,3 who, under the disguise of
a Mohammedan student, attended some lectures at Cordova
about 1120 and obtained a copy of Euclid’s Elements. This
copy, translated into Latin, was the foundation of all the
editions known in Europe till 1533, when the Greek text
was recovered. How rapidly a knowledge of the work spread
we may judge when we recollect that before the end of the
thirteenth century Roger Bacon was familiar with it, while
before the close of the fourteenth century the first five books
formed part of the regular curriculum at many universities.
The enunciations of Euclid seem to have been known before

1 Geber’'s works were translated into Latin by Gerard, and published at
Nuremberg in 1533.

2 See a memoir by M. Steinschneider in Boncompagni’s Bulletino di
Bibliografia, 1887, vol xx.

3 On the influence of Adelhard and Ben Ezra, see the “ Abhandlungen
zur Geschichte der Mathematik ” in the Zeitschrift fur Mathematik, vol. xxv,
1880.
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Adelhard’s time, and possibly as early as the year 1000, thnuigh
copies were rare. Adelhard also issued a text-book on the uise
of the abacus.

Ben Ezra.l During the same century other translations of
the Arab text-books or commentaries on them were obtained.
Amongst those who were most influential in introducing
Moorish learning into Europe | may mention Abraham B'en
Ezra. Ben Ezra was born at Toledo in 1097, and died at
Rome in 1167. He was one of the most distinguished Jewish
rabbis who had settled in Spain, where it must be recollected
that they were tolerated and even protected by the Moors
on account of their medical skill. Besides some astronomical
tables and an astrology, Ben Ezra wrote an arithmetic;2 in
this he explains the Arab system of numeration with nine
symbols and a zero, gives the fundamental processes of
arithmetic, and explains the rule of three.

Gerard.3  Another European who was induced by the
reputation of the Arab schools to go to Toledo was Gerard,
who was born at Cremona in 1114 and died in 1187. He
translated the Arab edition of the Almagest, the works of
Alhazen, and the works of Alfarabius, whose name is other-
wise unknown to us: it is believed that the Arabic numerals
were used in this translation, made in 1136, of Ptolemy’s work.
Gerard also wrote a short treatise on algorism which exists in
manuscript in the Bodleian Library at Oxford. He was
acquainted with one of the Arab editions of Euclid’'s Elements,
which he translated into Latin.

John Hispalensis. Among the contemporaries of Gerard
was John 1lispalensis of Seville, originally a rabbi, but converted
to Christianity and baptized under the name given above. He
made translations of several Arab and Moorish works, and also
wrote an algorism which contains the earliest examples of the

1 See footnote 3 on p. 165.

2 An analysis of it was published by 0. Terquent in Liouville’s Journal
for 1841.

3 See Boncompagni’s Della vita e delle opere di Gherardo Cremonese,
Rome, 1851.
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extraction of the square roots of numbers by the aid of the
decimal notation.

The thirteenth century. During the thirteenth century
there was a revival of learning throughout Europe, but the new
learning was, | believe, confined to a very limited class. The
early years of this century are memorable for the development
of several universities, and for the appearance of three remark-
able mathematicians—Leonardo of Pisa, Jordanus, and Roger
Bacon, the Franciscan monk of Oxford. Henceforward it is
to Europeans that we have to look for the development of
mathematics, but until the invention of printing the knowledge
was confined to a very limited class.

Leonardo.l Leonardo Fibonacci (i.e. filius Bonaccii) gener-
ally known as Leonardo of Pisa, was born at Pisa about 1175.
His father Bonacci was a merchant, and was sent by his fellow-
townsmen to control the custom-house at Bugia in Barbary;
there Leonardo was educated, and he thus became acquainted
with the Arabic or decimal system of numeration, as also with
Alkarismi's work on Algebra, which was described in the last
chapter. It would seem that Leonardo was entrusted with some
duties, in connection with the custom-house, which required him
to travel. He returned to Italy about 1200, and in 1202
published a work called Algebra et almucluibala (the title being
taken from Alkarismi’s work), but generally known as the Liber
Abaci. He there explains the Arabic system of numeration, and
remarks on its great advantages over the Roman system. He
then gives an account of algebra, and points out the convenience
of using geometry to get rigid demonstrations of algebraical
formulae.  He shews how to solve simple equations, solves a few
quadratic equations, and states some methods for the solution of
indeterminate equations; these rules are illustrated by problems
on numbers. The algebra is rhetorical, but in one case letters

1 See the Leben und Schriften Leonardos da Pisa, by J. Giesing, Ddbeln,
1886 ; Cantor, chaps, xli, xlii; and an article by V. Lazzarini in the
Bollettino di Bibliografia e Storia, Rome, 1904, vol. vii. ~ Most of Leonardo’s
writings were edited and published by B. Boncompagni, Rome, vol. i, 1857,
and vol. ii, 1862.
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are employed as algebraical symbols. This work bad a wide
circulation, and for at least two centuries remained a standard
authority from which numerous writers drew their inspiration.

The Liber Abaci is especially interesting in the history of
arithmetic, since practically it introduced the use of the Arabic
numerals into Christian Europe. The language of Leonardo
implies that they were previously unknown to his countrymen ;
he says that having had to spend some years in Barbary he there
learnt the Arabic system, which he found much more convenient
than that used in Europe; he therefore published it “in order
that the Latinl race might no longer be deficient in that
knowledge.” Now Leonardo had read very widely, and had
travelled in Greece, Sicily, and Italy; there is therefore every
presumption that the system was not then commonly employed
in Europe.

Though Leonardo introduced the use of Arabic numerals
into commercial affairs, it is probable that a knowledge of them
as current in the East was previously not uncommon among
travellers and merchants, for the intercourse between Christians
and Mohammedans was sufficiently close for each to learn
something of the language and common practices of the other. We
can also hardly suppose that the Italian merchants were ignorant
of the method of keeping accounts used by some of their best
customers ; and we must recollect, too, that there were numerous
Christians who had escaped or been ransomed after serving the
Mohammedans as slaves. It was, however, Leonardo win
brought the Arabic system into general use, and by the middh
of the thirteenth century a large proportion of the Italian
merchants employed it by the side of the old system.

The majority of mathematicians must have already known
of the system from the works of Ben Ezra, Gerard, and John
Hispalensis. But shortly after the appearance of Leonardo’s
book Alfonso of Castile (in 1252) published some astronomical

| Dean Peacock says that the earliest known application of the wort
Italians to describe the inhabitants of Italy occurs about the middle of th
thirteenth century ; by the end of that century it was in common use.
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tables, founded on observations made in Arabia, which were
computed by Arabs, and which, it is generally believed, were
expressed in Arabic notation. Alfonso’s tables had a wide
circulation among men of science, and probably were largely
instrumental in bringing these numerals into universal use
among mathematicians. By the end of the thirteenth century
it was generally assumed that all scientific men would be
acquainted with the system: thus Roger Bacon writing in that
century recommends algorism (that is, the arithmetic founded
on the Arab notation) as a necessary study for theologians who
ought, he says, “to abound in the power of numbering.” We
may then consider that by the year 1300, or at the latest 1350,
these numerals were familiar both to mathematicians and to
Italian merchants.

So great was Leonardo’s reputation that the Emperor
Frederick 11. stopped at Pisa in 1225 in order to hold a sort
of mathematical tournament to test Leonardo’s skill, of Avhich
he had heard such marvellous accounts. The competitors were
informed beforehand of the questions to be asked, some or all
of which were composed by John of Palermo, who was one of
Frederick’s suite. This is the first time that we meet with an
instance of those challenges to solve particular problems which
were so common in the sixteenth and seventeenth centuries.
The first question propounded was to find a number of which
the square, when either increased or decreased by 5, would
remain a square. Leonardo gave an answer, which is correct,
namely 41/12. The next question was to find by the methods
used in the tenth book of Euclid a line whose length x
should satisfy the equation xz+2x2+ 10a; = 20. Leonardo
showed by geometry that the problem was impossible, but he
gave an approximate value of the root of this equation, namely,
1,22' 7" 42™ 33" 4v 40v;, which is equal to 1-3688081075...,
ind is correct to nine places of decimals.l Another question
was as follows. Three men, A, B, C, possess a sum of money u,
flieir shares being in the ratio 3:2:1. A takes away X, keeps

1 See Fr. Woepcke in Liouville's Journal for 1854, p. 401.
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half of it, and deposits the remainder with D; B takes away 7,
keeps two-thirds of it, and deposits the remainder with Z>; C
takes away all that is left, namely z, keeps five-sixths of it, and
deposits the remainder with D. This deposit with D is found
to belong to A, B, and C in equal proportions. Find u, r, 7,
and z. Leonardo showed that the problem was indeterminate,
and gave as one solution u—47, ic=33,y=13,z= 1. The other
competitors failed to solve any of these questions.

The chief work of Leonardo is the Liber Abaci alluded to
above. This work contains a proof of the well-known result

(02 + 62) (c2 + d2) — (ac + bd)2 + (be - ad)2 = (ad + be)2 + (bd — ac)2

He also wrote a geometry, termed Practica Geometriae, which
was issued in 1220 This is a good compilation, and some
trigonometry is introduced;, among other propositions and
examples he finds the area of a triangle in terms of its sides.
Subsequently he published a Liber Quadratorum dealing with
problems similar to the first of the questions propounded at the
tournament.l He also issued a tract dealing with determinate
algebraical problems: these are all solved by the rule of false
assumption in the manner explained above.

Frederick 1l. The Emperor Frederick Il., who was born
in 1194, succeeded to the throne in 1210, and died in 1250,
was not only interested in science, but did as much as any
other single man of the thirteenth century to disseminate a
knowledge of the works of the Arab mathematicians in western
Europe. The university of Naples remains as a monument
of his munificence. | have already mentioned that the presence
of the Jews had been tolerated in Spain on account of their
medical skill and scientific knowledge, and as a matter of fact
the titles of physician and algebraist? were for a long time
nearly synonymous; thus the Jewish physicians were admirably

1 Fr. Woepcke in Liouville’s Journal for 1855, p. 54, has given an analysis
of Leonardo’s method of treating problems on square numbers.

2 For instance the reader may recollect that in Don Quixote (part ii,

ch. 15), when Samson Carasco is thrown by the knight from his horse and
has his ribs broken, an algebrista is summoned to bind up his wounds.
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fitted both to get copies of the Arab works and to translate
them. Frederick Il. made use of this fact to engage a staff of
learned Jews to translate the Arab works which he obtained,
though there is no doubt that he gave his patronage to them
the more readily because it was singularly offensive to the pope,
with whom he was then engaged in a quarrel. At any rate, by
the end of the thirteenth century copies of the works of Euclid,
Archimedes, Apollonius, Ptolemy, and of several Arab authors
were obtainable from this source, and by the end of the next
century were not uncommon. From this time, then, we may
say that the development of science in Europe was independent
of the aid of the Arabian schools.

Jordanus.l Among Leonardo’s contemporaries -was a German
mathematician, whose works were until the last few years almost
unknown. This was Jordanus Nemorarius, sometimes called
Jordanus de Saxonia or Teutonicus. Of the details of his life
we know but little, save that he was elected general of the
Dominican order in 1222. The works enumerated in the foot-
note 2 hereto are attributed to him, and if we assume that these
works have not been added to or improved by subsequent
annotators, we must esteem him one of the most eminent mathe-
maticians of the middle ages.

His knowledge of geometry is illustrated by his De Triangulis
and De 1soperimetris. The most important of these is the
De Triangulis, which is divided into four books. The first
book, besides a few definitions, contains thirteen propositions on
triangles which are based on Euclid’s Elements. The second

1 See Cantor, chaps, xliii, xliv, where references to the authorities on
Jordanus are collected.

2 Prof. Curtze, who has made a special study of the subject, considers that
the following works are due to Jordanus. ““Geometria vel de Triangulis,”
published by M. Curtze in 1887 in vol. vi of the Mitteilungen des Copernicus-
Vereins zu Thorn ; De Isoperimettis ; Arithmetica Demonstrata, published
by Faber Stapulensis at Paris in 1496, second edition, 1514 ; Algorithmus
Demonstratus, published by J. Schiiner at Nuremberg in 1534 ; De Numeris
Datis, published by P. Treutlein in 1879 and edited in 1891 with comments
by M. Curtze in vol. xxxvi of the Zeitschrift fur Mathematik und Physik;

De Ponderibus, published by P. Apian at Nuremberg in 1533, and reissued
at Venice in 1565 ; and, lastly, two or three tracts on Ptolemaic astronomy.
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book contains nineteen propositions, mainly on the ratios of
straight, lines and the comparison of the areas of triangles; for
example, one problem is to find a point inside a triangle so that
the lines joining it to the angular points may divide the triangle
into three equal parts. The third book contains twelve proposi-
tions mainly concerning arcs and chords of circles. The fourth
book contains twenty-eight propositions, partly on regular
polygons and partly on miscellaneous questions such as the
duplication and trisection problems.

The Algorithmus Dentonstratus contains practical rules for
the four fundamental processes, and Arabic numerals are
generally (but not always) used. It is divided into ten books
dealing with properties of numbers, primes, perfect numbers,
polygonal numbers, ratios, powers, and the progressions. It
would seem from it that Jordanus knew the general expres-
sion for the square of any algebraic multinomial.

The De Numeris Datis consists of four books containing
solutions of one hundred and fifteen problems. Some of these
lead to simple or quadratic equations involving more than one
unknown quantity. He shews a knowledge of proportion ; but
many of the demonstrations of his general propositions are only
numerical illustrations of them.

In several of the propositions of the Algorithmus and De
Numeris Datis letters are employed to denote both known and
unknown quantities, and they are used in the demonstrations of
the rules of arithmetic as well as of algebra. As an example
of this I quote the following proposition,! the object of which is
to determine two quantities whose sum and product are known.

Dato numero per duo diuiso si, quod ex duetu unius in alterum pro-
ducitur, datumfuerit, et utrumque eorum datum esse necesse est.

Sit numerus datus abc diuisus in ab et ¢, atque ex ab in ¢ fiat d datus,
itemque ex abc in se fiat e. Sumatur itaque quadruplunt d, qui fit/, quo
dempto de e remnaneat g, et ipse erit quadratuni differentiae ab ad c.
Extrahatur ergo radix ex g, et sit h, eritque h differentia ab ad c, cuuique
sic h datum, erit et ¢ et ab datum.

1 From the De Numeris Datis, book i, prop. 3.
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Huius operatio facile constabit hoc modo. Verbi gratia sit x diuisus
in numeros duos, atque ex ductu unius eorum in alium fiat xxt ; cuius
quadruplum et ipsum est Lxxxini, tollatur de quadrato x, hoc est c, et
remanent XVI, cuius radix extrahatur, quae erit quatuor, et ipse est
differentia.  Ipsa tollatur de x et reliquum, quod est vi, dimidietur,
eritque medietas m, et ipse est minor portio et maior vii.

It will be noticed that Jordanus, like Diophantus and the
Hindoos, denotes addition by juxtaposition. Expressed in
modern notation his argument is as follows. Let the numbers
be a+b (which I will denote by y) and ¢. Then y+c is
given; hence (y+c)2 is known; denote it by e. Again yc is
given; denote it by d; hence 4yc, which is equal to id, is
known; denote it by f. Then (y-c)? is equal to e—/ which
is known; denote it by g. Therefore y -c= Jg, which is
known ; denote it by h. Hence y+c and y-c are known,
and therefore y and ¢ can be at once found. It is curious
that he should have taken a sum like a+bh for one of his
unknowns. In his numerical illustration he takes the sum to
be 10 and the product 21.

Save for one instance in Leonardo’s writings, the above
works are the earliest instances known in European mathematics
of syncopated algebra in which letters are used for algebraical
symbols. It is probable that the Algorithmus was not generally
known until it was printed in 1534, and it is doubtful how far
the works of Jordanus exercised any considerable influence on
the development of algebra. In fact it constantly happens in
the history of mathematics that improvements in notation or
method are made long before they are generally adopted or
their advantages realized. = Thus the same thing may be dis-
covered over and over again, and it is not until the general
standard of knowledge requires some such improvement, or it is
enforced by some one whose zeal or attainments compel atten-
tion, that it is adopted and becomes part of the science.
Jordanus in using letters or symbols to represent any quantities
which occur in analysis was far in advance of his contemporaries.
A similar notation was tentatively introduced by other and
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later mathematicians, but it was not until it had been thus
independently discovered several times that it came into general
use.

It is not necessary to describe in detail the mechanics, optics,
or astronomy of Jordanus. The treatment of mechanics
throughout the middle ages was generally unintelligent.

No mathematicians of the same ability as Leonardo and
Jordanus appear in the history of the subject for over two
hundred years.  Their individual achievements must not be
taken to imply the standard of knowledge then current, but
their works were accessible to students in the following two
centuries, though there were not many who seem to have
derived much benefit therefrom, or who attempted to extend the
bounds of arithmetic and algebra as there expounded.

During the thirteenth century the most famous centres of
learning in western Europe were Paris and Oxford, and | must
now refer to the more eminent members of those schools.

Holywood.l I will begin by mentioning John de Holywood,
whose name is often written in the latinized form of Sacrobosco.
Holywood was born in Yorkshire and educated at Oxford; but
after taking his master’s degree he moved to Paris, and taught
there till his death in 1244 or 1246. His lectures on algorism
and algebra are the earliest of which I can find mention. His
work on arithmetic was for many years a standard authority; it
contains rules, but no proofs; it was printed at Paris in 1496.
He also wrote a treatise on the sphere, which was made public
in 1256 : this had a wide and long-continued circulation, and
indicates how rapidly a knowledge of mathematics was spreading.
Besides these, two pamphlets by him, entitled respectively De
Compute Ecclesiastico and De Astrolabio, are still extant.

Roger Bacon.2 Another contemporary of Leonardo and

1 See Cantor, chap. xlv.

2 See Roger Bacon, sa vie, ses ouvrages . . . by E. Charles, Paris, 1861 ;
Y%nd the memoir by J. S. Brewer, prefixed to the Opera Inedita, Rolls Series,
London, 1859 : a somewhat depreciatory criticism of the former of these

works is given in Roger Bacon, eine Monographic, by L. Schneider, Augsburg,
1873.
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Jo>rdanus was Roger Bacon, who for physical science did work
sonnewhat analogous to what they did for arithmetic and
al gebra. Roger Bacon was born near llchester in 1214, and
dited at Oxford on June 11, 1294. He was the son of royalists,
m<ost of whose property had been confiscated at the end of the
ciwil wars: at an early age he was entered as a student at
O xford, and is said to have taken orders in 1233. In 1234
lie; removed to Paris, then the intellectual capital of western
Ewrope, where he lived for some years devoting himself especi-
ally to languages and physics; and there he spent on books
and experiments all that remained of his family property and
hits savings. He returned to Oxford soon after 1240, and there
fo>r the following ten or twelve years he laboured incessantly,
being chiefly occupied in teaching science. His lecture room
w:as crowded, but everything that he earned was spent in buying
manuscripts and instruments. He tells us that altogether at
Paris and Oxford he spent over £2000 in this way—a sum
which represents at least £20,000 nowadays.

Bacon strove hard to replace logic in the university curri-
culum by mathematical and linguistic studies, but the influences
of the age were too strong for him. His glowing eulogy on
*“ divine mathematics ” which should form the foundation of a
liberal education, and which “alone can purge the intellect
and fit the student for the acquirement of all knowledge,” fell
on deaf ears. We can judge how small was the amount of
geometry which was implied in the quadrivium, when he tells us
that in geometry few students at Oxford read beyond Euc. 1, 5;
though we might perhaps have inferred as much from the
character of the work of Boethius.

At last worn out, neglected, and ruined, Bacon was per-
suaded by his friend Grosseteste, the great Bishop of Lincoln,
to renounce the world and take the Franciscan vows. The
society to which he now found himself confined was singularly
uncongenial to him, and he beguiled the time by writing on
scientific questions and perhaps lecturing. The superior of the
order heard of this, and in 1257 forbade him to lecture or
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publish anything under penalty of the most severe punishmemts,
and at the same time directed him to take up his residence' at
Paris, where he could be more closely watched.

Clement IV., when in England, had heard of Bacon’s abilities,
and in 1266 when he became Pope he invited Bacon to write.
The Franciscan order reluctantly permitted him to do so, lbut
they refused him any assistance. With difficulty Bacon obtained
sufficient money to get paper and the loan of books, and in the
short space of fifteen months he produced in 1267 his Opus
Majus with two supplements which summarized what was then
known in physical science, and laid down the principles on which
it, as well as philosophy and literature, should be studied. He
stated as the fundamental principle that the study of natural
science must rest solely on experiment, and in the fourth part
he explained in detail how astronomy and physical sciences rest
ultimately on mathematics, and progress only when their funda-
mental principles are expressed in a mathematical form. Mathe-
matics, he says, should be regarded as the alphabet of all
philosophy.

The results that he arrived at in this and his other works
are nearly in accordance with modern ideas, but were too far
in advance of that age to be capable of appreciation or perhaps
even of comprehension, and it was left for later generations to
rediscover his works, and give him that credit which he never
experienced in his lifetime. In astronomy he laid down the
principles for a reform of the calendar, explained the pheno-
mena of shooting stars, and stated that the Ptolemaic system
was unscientific in so far as it rested on the assumption that
circular motion was the natural motion of a planet, while the
complexity of the explanations required made it improbable
that the theory was true. In optics he enunciated the laws of
reflexion and in a general way of refraction of light, and used
them to give a rough explanation of the rainbow and of magnify-
ing glasses. Most of his experiments in chemistry were directed
to the transmutation of metals, and led to no useful results. He
gave the composition of gunpowder, but there is no doubt that it
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Iwas not his own invention, though it is the earliest European
imention of it. On the other hand, some of his statements
lappear to be guesses which are more or less ingenious, while
some of them are certainly erroneous.

In the years immediately following the publication of his
Opus Majus he wrote numerous works which developed in
detail the principles there laid down. Most of these have now
been published, but I do not know of the existence of any
complete edition. They deal only with applied mathematics
and physics.

Clement took no notice of the great work for which he had
asked, except to obtain leave for Bacon to return to England.
On the death of Clement, the general of the Franciscan order
was elected Pope and took the title of Nicholas IV. Bacon's
investigations had never been approved of by his superiors,
and he was now ordered to return to Paris, where we are told
he was immediately accused of magic; he was condemned in
1280 to imprisonment for life, but was released about a year
before his death.

Campanus. The only other mathematician of this century
whom | need mention is Giovanni Campano, or in the latinized
form Campanus, a canon of Paris. A copy of Adelhardrs trans-
lation of Euclid’s Elements fell into the hands of Campanus, who
added a commentary thereon in which he discussed the properties
of a regular re-entrant pentagon.I He also, besides some minor
works, wrote the Theory of the Planets, which was a free
translation of the Almagest.

The fourteenth century. The history of the fourteenth
century, like that of the one preceding it, is mostly concerned
with the assimilation of Arab mathematical text-books and of
Greek books derived from Arab sources.

Bradwardine.l A mathematician of this time, who was

1 This edition of Euclid was printed by Ratdolt at Venice in 1482, and
was formerly believed to be due to Campanus. On this work see J. L.
Heiberg in the Zeitschrift fur Mathematik, vol. xxxv, 1890.

2 See Cantor, vol. ii, p. 102 et seq.
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perhaps sufficiently influential to justify a mention here, %
Thomas Bradwardine, Archbishop of Canterbury. Bradwardine
was born at Chichester about 1290. He was educated ait
Merton College, Oxford, and subsequently lectured in thatt
university. From 1335 to the time of his death he was chiefly
occupied with the politics of the church and state; he took at
prominent part in the invasion of France, the capture of Calais,
and the victory of Cressy. He died at Lambeth in 1349. His
mathematical works, which were probably written when he was
at Oxford, are the Tractatus de Proportionibus, printed at Paris
in 1495 ; the Arithmetica Speculativa, printed at Paris in 1502 ;
the Geometria Speculativa, printed at Paris in 1511 ; and the
De Quadratura Circuli, printed at Paris in 1495. They prob-
ably give a fair idea of the nature of the mathematics then read
at an English university.

Oresmus.l  Nicholas Oresmus was another writer of the
fourteenth century. He was born at Caen in 1323, became the
confidential adviser of Charles V., by whom he was made tutor
to Charles VI. and subsequently was appointed bishop of
Lisieux, at which city he died on July 11, 1382. He wrote the
Algorismus Proportionum, in which the idea of fractional indices
is introduced. He also issued a treatise dealing with questions
of coinage and commercial exchange; from the mathematical
point of view it is noticeable for the use of vulgar fractions and
the introduction of symbols for them.

By the middle of this century Euclidean geometry (as
expounded by Campanus) and algorism were fairly familiar to
all professed mathematicians, and the Ptolemaic astronomy was
also generally known. About this time the almanacks began to
add to the explanation of the Arabic symbols the rules of
addition, subtraction, multiplication, and division, “de algorismo.”
The more important calendars and other treatises also inserted
a statement of the rules of proportion, illustrated by various
practical questions.

1 See Die mathematischen Schriften des Nicole Oresme, by M. Curtze,
Thoru, 1870.
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In the latter half of this century there was a general revolt
of the universities against the intellectual tyranny of the school-
men.  This was largely due to Petrarch, who in his own genera-
tion was celebrated as a humanist rather than as a poet, and
who exerted all his power to destroy scholasticism and encourage
scholarship.  The result of these influences on the study of
mathematics may be seen in the changes then introduced in
the study of the quadrivium. The stimulus came from the
university of Paris, where a statute to that effect was passed
in 1366, and a year or two later similar regulations were
made at other universities; unfortunately no text-books are
mentioned.  We can, however, form a reasonable estimate of
the range of mathematical reading required, by looking at
the statutes of the universities of Prague, of Vienna, and of
Leipzig.

By the statutes of Prague, dated 1384, candidates for the
bachelor’s degree were required to have read Holywood'’s treatise
on the sphere, and candidates for the master's degree to be
acquainted with the first six books of Euclid, optics, hydrostatics,
the theory of the lever, and astronomy. Lectures were actually
delivered on arithmetic, the art of reckoning with the fingers,
and the algorism of integers; on almanacks, which probably
meant elementary astrology; and on the Almagest, that is, on
Ptolemaic astronomy.  There is, however, some reason for
thinking that mathematics received far more attention here than
was then usual at other universities.

At Vienna, in 1389, a candidate for a master's degree was
required to have read five books of Euclid, common perspective,
proportional parts, the measurement of superficies, and the
Theory of the Planets. The book last named is the treatise by
Campanus which was founded on that by Ptolemy. This was a
fairly respectable mathematical standard, but I would remind
the reader that there was no such thing as “plucking” in a
medieval university. The student had to keep an act or give
a lecture on certain subjects, but whether he did it well or
badly he got his degree, and it is probable that it was only the
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few students whose interests were mathematical who really
mastered the subjects mentioned above.

The fifteenth century. A few facts gleaned from the history
of the fifteenth century tend to shew that the regulations about
the study of the quadrivium were not seriously enforced. The
lecture lists for the years 1437 and 1438 of the university of
Leipzig (founded in 1409, the statutes of which are almost
identical with those of Prague as quoted above) are extant, and
shew that the only lectures given there on mathematics in those
years were confined to astrology. The records of Bologna,
Padua, and Pisa seem to imply that there also astrology was
the only scientific subject taught in the fifteenth century, and
even as late as 1598 the professor of mathematics at Pisa was
required to lecture on the Quadripartitum, an astrological work
purporting (probably falsely) to have been written by Ptolemy.
The only mathematical subjects mentioned in the registers of
the university of Oxford as read there between the years 1449
and 1463 were Ptolemy’s astronomy, or some commentary on it,
and the first two books of Euclid. Whether most students got
as far as this is doubtful. It would seem, from an edition of
Euclid’s Elements published at Paris in 1536, that after 1452
candidates for the master’s degree at that university had to take
an oath that they had attended lectures on the first six books of
that work.

Beldomandi. The only writer of this time that | need
mention here is Prodocimo Beldomandi of Padua, born about
1380, who wrote an algoristic arithmetic, published in 1410,
which contains the summation of a geometrical series; and
some geometrical works.!

By the middle of the fifteenth century printing had been
introduced, and the facilities it gave for disseminating knowledge
were so great as to revolutionize the progress of science. We
have now arrived at a time when the results of Arab and Greek
science were known in Europe ; and this perhaps, then, is as

1 For further details see Boncompagni’'s I3ulletino di bibliografia,
vole, xii, xviii.
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good a date as can be fixed for the close of this period, and the
commencement of that of the renaissance. The mathematical
history of the renaissance begins with the career of Regiomon-
tanus ; but before proceeding with the general history it will be
convenient to collect together the chief facts connected with the
development of arithmetic during the middle ages and the
renaissance. To this the next chapter is devoted.
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CHAPTER XI.

THE DEVELOPMENT OF ARITHMETIC.1
ciRC. 1300-1637.

We have seen in the last chapter that by the end of the
thirteenth century the Arabic arithmetic had been fairly intro-
duced into Europe and was practised by the side of the older
arithmetic which was founded on the work of Boethius. It will
be convenient to depart from the chronological arrangement and
briefly to sum up the subsequent history of arithmetic, but 1
hope, by references in the next chapter to the inventions and
improvements in arithmetic here described, that | shall be able
to keep the order of events and discoveries clear.

The older arithmetic consisted of two parts: practical arith-
metic or the art of calculation which was taught by means of
the abacus and possibly the multiplication table; and theoretical
arithmetic, by which was meant the ratios and properties of
numbers taught according to Boethius —a knowledge of the
latter being confined to professed mathematicians. The theo-
retical part of this system continued to be taught till the middle
of the fifteenth century, and the practical part of it was used by

1 See the article on Arithmetic by G. Peacock in the Encyclopaedia
Metropolitana, vol. i, London, 1845 ; Arithmetical Books by A. De Morgan,
London, 1847 ; and an article by P. Treutlein of Karlsruhe, in the Zeitschrift
fur Mathematik, 1877, vol. xxii, supplement, pp. 1-100.
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the smaller tradesmen in England,! Germany, and France till
the beginning of the seventeenth century.

The new Arabian arithmetic was called algorism or the art of
Alkarismi, to distinguish it from the old or Boethian arithmetic.
The text-books on algorism commenced with the Arabic system
of notation, and began by giving rules for addition, subtraction,
multiplication, and division; the principles of proportion were
then applied to various practical problems, and the books usually
concluded with general rules for many of the common problems of
commerce. Algorism was in fact a mercantile arithmetic, though
at first it also included all that was then known as algebra.

Thus algebra has its origin in arithmetic; and to most people
the term universal arithmetic, by which it was sometimes desig-
nated, conveys a more accurate impression of its objects and
methods than the more elaborate definitions of modern mathe-
maticians—certainly better than the definition of Sir William
Hamilton as the science of pure time, or that of De Morgan as
the calculus of succession. No doubt logically there is a marked
distinction between arithmetic and algebra, for the former is the
theory of discrete magnitude, while the latter is that of continu-
ous magnitude; but a scientific distinction such as this is of
comparatively recent origin, and the idea of continuity was not
introduced into mathematics before the time of Kepler.

Of course the fundamental rules of this algorism were not at
first strictly proved—that is the work of advanced thought—
but until the middle of the seventeenth century there was some
discussion of the principles involved; since then very few arith-
meticians have attempted to justify or prove the processes used,
or to do more than enunciate rules and illustrate their use by
numerical examples.

1 See, for instance, Chaucer, The MiUer's Tale, v, 22-25; Shakespeare,
The Winter's Tale, Act iv, Sc. 2; Othello, Act I, Sc. 1. There are similar
references in French and German literature ; notably by Montaigne and
Moliere. | believe that the Exchequer division of the High Court of Justice
derives its name from the table before which the judges and officers of the
court originally sat: this was covered with black cloth divided into squares
or chequers by white lines, and apparently was used as an abacus.
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I have alluded frequently to the Arabic system of numerical
notation. | may therefore conveniently begin by a few notes on
the history of the symbols now current.

Their origin is obscure and has been much disputed.l On
the whole it seems probable that the symbols for the numbers 4,
5, G, 7, and 9 (and possibly 8 too) are derived from the initial
letters of the corresponding words in the Indo-Bactrian alphabet
in use in the north of India perhaps 150 years before Christ;
that the symbols for the numbers 2 and 3 are derived respectively
from two and three parallel penstrokes written cursively; and
similarly that the symbol for the number ! represents a single
penstroke. Numerals of this type were in use in India before
the end of the second century of our era. The origin of the
symbol for zero is unknown; it is not impossible that it was
originally a dot inserted to indicate a blank space, or it may
represent a closed hand, but these are mere conjectures; there
is reason to believe that it was introduced in India towards the
close of the fifth century of our era, but the earliest writing now
extant in which it occurs is assigned to the eighth century.

The numerals used in India in the eighth century and for a
long time afterwards are termed Devanagari numerals, and their
forms are shewn in the first line of the table given on the next
page. These forms were slightly modified by the eastern Arabs,
and the resulting symbols were again slightly modified by the
western Arabs or Moors. It is perhaps probable that at first
the Spanish Arabs discarded the use of the symbol for zero, and
only reinserted it when they found how inconvenient the omission
proved. The symbols ultimately adopted by the Arabs are
termed Gobar numerals, and an idea of the forms most commonly
used may be gathered from those printed in the second line of
the table given on next page. From Spain or Barbary the Gobar
numerals passed into western Europe. The further evolution of

1 See A. L’Esprit, Histoire des c,hiffres, Paris, 1893 ; A. P. Pihan, Signes
de numeration, Paris, 1860 ; Er. Woepcke, La propagation des chiffres
Indiens, Paris, 1863 ; A. C. Burnell, South Indian Palaeography, Mangalore,
1874 ; 1s. Taylor, The Alphabet, London, 1883 ; and Cantor.
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the forms of the symbols to those with which we are familiar is
indicated below by facsimiles! of the numerals used at different
times. All the sets of numerals here represented are written
from left to right and inthe order 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Devanagari (Indian) nu-
merals, tire. 950.

Gobar Arabic numerals,
tire. 1100 (?).

From a missal, tire. 1385,
of German origin.

European(probablyltalian)
numerals, tire. 1400.

From the Mirrour of the
World, printed by Cax-
ton in 1480.

From a Scotch calendar
for 1482, probably of
French origin.

'rom 1500 onwards the symbols employed are practically the
same as those now in use.?

The further evolution in the East of the Gobar numerals
proceeded almost independently of European influence. There
tre minute differences in the forms used by various writers, and
in some cases alternative forms ; without, however, entering into
these details we may say that the numerals they commonly

employed finally took the form shewn above, but the symbol

1 The first, second, and fourth examples are taken from Is. Taylor’s

Iphabet, London, 1883, vol. ii, p. 266 ; the others are taken from Leslie’s
Philosophy of Arithmetic, 2nd ed., Edinburgh, 1820, pp. 114, 115.

2 See, for example, Tonstall's Z>c Arte Supputandi, London, 1522 ; or
lecord’s Grounde of Artes, London, 1540, and Whetstone of Witte, London,
1557.
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there given for 4 is at the present time generally written
cursively.

Leaving now the history of the symbols I proceed to discuss
their introduction into general use and the development of
algoristic arithmetic. 1 have already explained how men of
science, and particularly astronomers, had become acquainted
with the Arabic system by the middle of the thirteenth century.
The trade of Europe during the thirteenth and fourteenth
centuries was mostly in Italian hands, and the obvious ad-
vantages of the algoristic system led to its general adoption
in Italy for mercantile purposes. This change was not effected,
however, without considerable opposition; thus, an edict was
issued at Florence in 1299 forbidding bankers to use Arabic
numerals, and in 1348 the authorities of the university of Padua
directed that a list should be kept of books for sale with the
prices marked “ non per cifras sed per literas claras.”

The rapid spread of the use of Arabic numerals and arithmetic
through the rest of Europe seems to have been as largely due to
the makers of almanacks and calendars as to merchants and
men of science. These calendars had a wide circulation in
medieval times. Some of them were composed with special
reference to ecclesiastical purposes, and contained the dates of
the different festivals and fasts of the church for a period of
some seven or eight years in advance, as well as notes on church
ritual. Nearly every monastery and church of any pretensions
possessed one of these. Others were written specially for the
use of astrologers and physicians, and some of them contained
notes on various scientific subjects, especially medicine and astro-
nomy. Such almanacks were not then uncommon, but, since it
was only rarely that they found their way into any corporate
library, specimens are now rather scarce. It was the fashion to
use the Arabic symbols in ecclesiastical works; while their
occurrence in all astronomical tables and their Oriental origin
(which savoured of magic) secured their use in calendars intended
for scientific purposes. Thus the symbols were generally em-
ployed in both kinds of almanacks, and there are but few specimens
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of calendars issued after the year 1300 in which an explanation
of the Arabic numerals is not included. Towards the middle of
the fourteenth century the rules of arithmetic de algorismo were
also sometimes added, and by the year 1400 we may consider
that the Arabic symbols were generally known throughout
Europe, and were used in most scientific and astronomical
works.

Outside Italy most merchants continued, however, to keep
their accounts in Roman numerals till about 1550, and
monasteries and colleges till about 1650 ; though in both
cases it is probable that in and after the fifteenth century the
processes of arithmetic were performed in the algoristic manner.
Arabic numerals are used in the pagination of some books issued
at Venice in 1471 and 1482. No instance of a date or number
being written in Arabic numerals is known to occur in any
English parish register or the court rolls of any English
manor before the sixteenth century; but in the rent-roll of
the St Andrews Chapter, Scotland, the Arabic numerals
were used in 1490. The Arabic numerals were used in
Constantinople by Planudes ! in the fourteenth century.

The history of modern mercantile arithmetic in Europe
begins then with its use by Italian merchants, and it is
especially to the Florentine traders and writers that we owe
its early development and improvement. It was they who
invented the system of book-keeping by double entry. In this
system every transaction is entered on the credit side in one
ledger, and on the debtor side in another; thus, if cloth be sold
to A, A’s account is debited with the price, and the stock-book,
containing the transactions in cloth, is credited with the amount
sold. It was they, too, who arranged- the problems to which
arithmetic could be applied in different classes, such as rule of
three, interest, profit and loss, <ftc. They also reduced the
fundamental operations of arithmetic “to seven, in reverence,”
says Pacioli, ““of the seven gifts of the Holy Spirit: namely,
numeration, addition, subtraction, multiplication, division,

1 See above, p. 117.
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raising to powers, and extraction of roots.” Brahmagupta
had enumerated twenty processes, besides eight subsidiary ones,
and had stated that “a distinct and several knowledge of these ”
was “essential to all who wished to be calculators”’; and,
whatever may be thought of Pacioli's reason for the alteration,
the consequent simplification of the elementary processes was
satisfactory. It may be added that arithmetical schools were
founded in various parts of Germany, especially in and after the
fourteenth century, and did much towards familiarizing traders
in northern and western Europe with commercial algoristic
arithmetic.

The operations of algoristic arithmetic were at first very
cumbersome.  The chief improvements subsequently introduced
into the early Italian algorism were (i) the simplification of the
four fundamental processes; (ii) the introduction of signs for
addition, subtraction, equality, and (though not so important)
for multiplication and division; (iii) the invention of
logarithms; and (iv) the use of decimals. I will consider
these in succession.

(i) In addition and subtraction the Arabs usually worked
from left to right. The modern plan of working from right to
left is said to have been introduced by an Englishman named
Garth, of whose life I can find no account. The old plan con-
tinued in partial use till about 1600; even now it would be
more convenient in approximations where it is necessary to keep
only a certain number of places of decimals.

The Indians and Arabs had several systems of multiplication.
These were all somewhat laborious, and were made the more so
as multiplication tables, if not unknown, were at any rate used
but rarely. The operation was regarded as one of considerable
difficulty, and the test of the accuracy of the result by “ casting
out the nines ” was invented as a check on the correctness of the
work.  Various other systems of multiplication were subse-
quently employed in Italy, of which several examples are
given by Pacioli and Tartaglia; and the use of the multipli-
cation table—at least as far as 5 x 5—became common. From
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this limited table the resulting product of the multiplication of
all numbers up to 10 x 10 can be deduced by what was termed
the reguta ignavi. This is a statement of the identity
G+a)(5+6)=(5—0a) (5-6)+ 10(a+6). The rule was usually
enunciated in the following form. Let the number five be
represented by the open hand ; the number six by the hand with
one finger closed; the number seven by the hand with two
fingers closed; the number eight by the hand with three fingers
closed; and the number nine by the hand with four fingers
closed. To multiply one number by another let the multiplier be
represented by one hand, and the number multiplied by the
other, according to the above convention. Then the required
answer is the product of the number of fingers (counting the
thumb as a finger) open in the one hand by the number of
fingers open in the other together with ten times the total
number of fingers closed. The system of multiplication now
in use seems to have been first introduced at Florence.

The difficulty which all but professed mathematicians
experienced in the multiplication of large numbers led to the
invention of several mechanical ways of effecting the process.
Of these the most celebrated is that of Napier's rods invented in
1617. In principle it is the same as a method which had been
long in use both in India and Persia, and which has been
described in the diaries of several travellers, and notably in
the Travels of Sir John Chardin in Persia, London, 1686.
o use the method a number of rectangular slips of bone, wood,
netal, or cardboard are prepared, and each of them divided by
cross lines into nine little squares, a slip being generally about
three inches long and a third of an inch across. In the top
IYsquare one of the digits is engraved, and the results of multiplying
it by 2, 3, 4,5, 6, 7, 8 and 9 are respectively entered in the
tight lower squares; where the result is a number of two digits,
lhe ten-digit is written above and to the left of the unit-digit
ind separated from it by a diagonal line. The slips are usually
arranged in a box. Figure 1 on the next page represents nine
such slips side by side; figure 2 shews the seventh slip, which
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is supposed to be taken out of the box and put by itself.
Suppose we wish to multiply 2985 by 317. The process as

Figure 1. Figure 2. Figure 3.

effected by the use of these slips is as follows. The slips headed
2,9, 8, and 5 are taken out of the box and put side by side as
shewn in figure 3 above. The result of multiplying 2985 by 7
may be written thus

Now! if the reader will look at the seventh line in figure 3,
he will see that the upper and lower rows of figures are respec-
tively 1G53 and 4365 ; moreover, these are arranged by the
diagonals so that roughly the 4 is under the 6, the 3 under the
5, and the 6 under the 3 ; thus

16 5 3
4 3 6

The addition of these two numbers gives the required result.

5



ch.xi] MULTIPLICATION L91

Hence the result of multiplying by 7, 1, and 3 can be succes-
sively determined in this way, and the required answer (namely,
the product of 2985 and 317) is then obtained by addition.

The whole process was written as follows :—

The modification introduced by Napier in his Rabdologia,
published in 1617, consisted merely in replacing each slip by a
prism with square ends, which he called “ a rod,” each lateral
face being divided and marked in the same way as one of the
slips above described. These rods not only economized space,
but were easier to handle, and were arranged in such a way as
to facilitate the operations required.

If multiplication was considered difficult, division was at first
regarded as a feat which could be performed only by skilled
mathematicians.  The method commonly employed by the
Arabs and Persians for the division of one number by another
will be sufficiently illustrated by a concrete instance. Suppose
we require to divide 17978 by 472. A sheet of paper is divided
into as many vertical columns as there are figures in the number
to be divided. The number to be divided is written at the top
and the divisor at the bottom; the first digit of each number
being placed at the left-hand side of the paper. Then, taking
the left-hand column, 4 will go into 1 no times, hence the first
figure in the dividend is 0, which is written under the last figure
of the divisor. This is represented in figure 1 on the next page.
Next (see figure 2) rewrite the 472 immediately above its
former position, but shifted one place to the right, and cancel
the old figures. Then 4 will go into 17 four times; but, as
on trial it is found that 4 is too big for the first digit of the
dividend, 3 is selected; 3 is therefore written below the last
digit of the divisor and next to the digit of the dividend last
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found. The process of multiplying the divisor by 3 and sub-
tracting from the number to be divided is indicated in figure
2, and shews that the remainder is 3818. A similar process is

Figure 1. Figure 2. Figure 3.

then repeated, that is, 472 is divided into 3818, shewing that
the quotient is 38 and the remainder 42. This is represented in
figure 3, which shews the whole operation.

The method described above never found much favour in
Italy. The present system was in use there as early as the
beginning of the fourteenth century, but the method generally
employed Avas that known as the galley or scratch system. The
following example from Tartaglia, in which it is required to
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‘divide 1330 by 84, will serve to illustrate this method : the
Aarithmetic given by Tartaglia is shewn above, where numbers in
thin type are supposed to be scratched out in the course of the
work.

The process is as follows. First write the 84 beneath the
1330, as indicated below, then 84 will go into 133 once, hence
the first figure in the quotient is 1. Now 1 x 8 =8, which sub-
tracted from 13 leaves 5. Write this above the 13, and cancel
the 13 and the 8, and we have as the result of the first step

Next, 1x4 =4, which subtracted from 53 leaves 49. Insert
the 49, and cancel the 53 and the 4, and we have as the next
step

which shews a remainder 490.
We have now to divide 490 by 84. Hence the next figure
in the quotient will be 5, and re-writing the divisor we have

Then 5 x 8 =40, and this subtracted from 49 leaves 9. Insert
the 9, and cancel the 49 and the 8, and we have the following
result
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Next 5 x 4 = 20, and this subtracted from 90 leaves 70. Insert
the 70, and cancel the 90 and the 4, and the final result, shewing
a remainder 70, is

The three extra zeros inserted in Tartaglia’s work are unneces-
sary, but they do not affect the result, as it is evident that a
figure in the dividend may be shifted one or more places up in
the same vertical column if it be convenient to do so.

The medieval writers were acquainted with the method now
in use, but considered the