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Abstract

Scaling model for macroscopic viscosity analysis of polymer solutions.

by Airit Agasty

Processing of polymeric materials in different types of industries require precise con-
trol over the flow of polymer solutions/ melts. This kind of control is possible when
the material flow is properly characterized and investigated for internal structure-
property relationships. Such relationships for complex liquids like polymer solu-
tions contain internal length-scales (e.g., the radius of gyration or correlation length)
influencing their rheological properties. Because of this internal structure, the vis-
cosity of polymer solutions depend on the flow length-scale. Previous studies of
nanoprobe diffusion in different polymer systems defined the effective viscosity ex-
perienced by those probes as a function of the probe size, the concentration of the
system, the molecular weight of the polymers and the temperature of the surround-
ings. However, it was observed that when the probes had sizes extremely larger
than the coil radius of the polymer, the flow was governed by the macroscospic
viscosity instead of the nanoviscosity. The effective viscosity defined through the
studies on various complex liquids such as: colloidal solutions, protein solutions,
micellar solutions, cytoplasm of HeLa cells and E.coli, was still relevant to the study
of macroviscosity. In this work, our goal was to use the effective viscosity to derive
the macroscopic viscosity for different polymer systems that are commonly used:
polydimethylsiloxane (PDMS) in ethyl acetate, hydroxypropyl cellulose (HPC) in
water, polymethylmethacrylate (PMMA) in toluene, and polyacrylonitrile (PAN) in
dimethyl sulfoxide (DMSO). Our experiments involved measurements of viscosity
by rheometer for a wide range of polymer concentrations at different temperatures,
hydrodynamic radii by dynamic light scattering (DLS), and molecular weight dis-
tributions and polydispersity index by gel permeation chromatography (GPC). We
have extended the scaling model to cover concentrations from dilute to concentrated
in solution; obtained relations between the coil dimensions as a function of con-
centrations; explained its applicability for commercial or standard polymers with
diverse molecular weight distributions; clarified the reasons and means for the va-
lidity of this model regardless of the polydispersity of the polymer samples; and
provided a final consolidated information about all the different parameters in our
models. Rheology of polymer solutions suffers from the lack of a viscosity model
applicable across wide range of variable parameters. Our characterization method
provides the possibility to use a length-scale based polymer investigation technique
based primarily on easily affordable viscosity measurements. Crucially, this tech-
nique will be effective for a wide variety of applications, both at the nanoscale and
the macroscale.
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1

Chapter 1

Introduction

1.1 Polymer Fundamentals

For long times, the attention of scientists, and chemists, in particular, were engaged
towards an indefinable class of materials, referred to by Graham as ’colloids’ in
1861. They were different from crystalline organic materials with a varying range
of molecular weights. Chief amongst them were natural substances such as Gum-
Arabic which were common as early as the 9th century, and was soluble in water
but could not pass through a semi-permeable membrane. Another common exam-
ple of such materials was natural rubber, used in applications such as waterproofing
textiles. Yet, it was only at the start of the twentieth century that the idea of these
materials having large molecular weights due to a widespread internal network of
repeating units was advocated strongly by Staudinger. Over time, such materials
came to be known as polymers, derived from the Greek words ’polus’ (meaning
’many’ or ’much’) and ’meros’ (meaning ’part’).

Polymers have been researched in great depth over the last few decades, result-
ing in numerous applications for every sphere of life. Polymers consist of several
structural repeating units connected by a chemical bond, which are usually cova-
lent in nature. One of the most common examples of polymer in everyday use is
polyethylene, a linear chain structure commonly represented as:

− CH2CH2CH2 − or[−CH2CH2−]n (1.1)

where the repeating unit is [-CH2CH2-] and n represents the number of repeat-
ing units in the polymer chain. n is also known as the degree of polymerization
and represents the chain length of the polymer. Such polymers are usually synthe-
sized chemically through reactions of the smaller individual organic molecules, also
termed as monomers. For example, the monomer used for synthesis of polyethy-
lene as shown above in Eq1.1 is ethylene. In order to perform such synthesis of
polymers, the monomeric materials should have reactive functional groups, or have
unsaturated bonds (double or triple bonds) in their chemical structure. They ensure
the necessary reactionary pathways for the linkage between the repeating units.

Polymers can be classified under a wide number of categories:

• Molecular structures - Depending upon the orientation of the polymer chains,
they can be either linear, branched or network.

• Monomer type - Depending upon the type of repeating unit in the chains, poly-
mers can be classified as homopolymers, copolymers or graft copolymers.

• Polymerization mechanism - Depending upon the reaction mechanism for syn-
thesis of the polymers, they can be classified as addition polymers or conden-
sation polymers.
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2 Chapter 1. Introduction

• Polymerization technique - Based upon the technique used for their synthesis,
polymers can be divided under emulsion, solution, suspension, etc.

• Physical properties - Finally, depending upon the glass transition temperature,
Tg, of the polymers, their physical properties vary, and this allows to classify
them as:

Polymers

Fibres Plastics

Thermoplastics

Crystalline
Amorphous

Thermosets

Elastomers

Polymer characterization and differentiation through thorough analytical meth-
ods is therefore a necessity, since no other class of materials can rival them in terms
of property diversity, processing flexibilities and costs. In an impressive array of
applications, polymers showcase high quality of performance which is an essential
and extremely challenging feature for any material. The importance of polymers is
key to any material development and require detailed studies which are discussed
in the following sections.

1.2 Rheology of polymers

The field of rheology ranges in material characteristics from perfectly viscous fluids
(Newtonian fluids) to perfectly elastic solids (Hookean solids). In a perfect world,
these two extremes are emphasized by two models - the Euclidean solid, which de-
picts infinite modulus, and the Pascalian fluid, which flows perfectly and has a zero
viscosity. Most real world materials straddle between these two unrealistic extremes
and are therefore termed as viscoelastic materials. This is because when complex
materials such as polymers are deformed, there are elements of both elastic and vis-
cous forces in such deformations. In 1929, Eisenschitz et al [1] introduced a trian-
gular coordinate system depicting the rheological boundaries. They proposed that
the total energy in rheological considerations consists of three components - the ki-
netic energy, the stored energy due to elastic nature, and the loss of energy due to
dissipative viscous forces. It was simply an easy way of describing the state existing
inside a body through its total energy. In this triangular representation, boundaries
of elasticity, viscosity and the corresponding relaxation forces represents the differ-
ent rheological properties which are crucial to the study of any polymeric materials.
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1.2. Rheology of polymers 3

1.2.1 Types of fluid flows

All fluid flows can be broadly categorized into two types:

• Newtonian fluids - The first person to ever discuss the property of resistance to
motion in fluids, thereafter known universally as viscosity, was Sir Isaac New-
ton. He spoke of layers of fluid ’slipping’ over each other and the resistance
that occurs between the layers due to lack of this slipping ability. This internal
friction of the fluid layers is proportional to the distance between the layers.
For a simplified system of two parallel plates representing the two layers of

FIGURE 1.1: Simple shear flow

fluid, separated by a distance h, the top plate is pulled in one direction by a
force F to maintain motion between the two plates, and is proportional to the
velocity difference between the plates u, the plate cross-sectional area A, and
inversely proportional to the distance h. From this proportionality arises the
parameter η known as the viscosity of the fluid and is commonly calculated
as:

η =
F/A
u/h

(1.2)

where the viscosity η has units of Pa.s. The ratio u
h is the derivative of the fluid

speed in the direction perpendicular to the plates, and is the rate of shear de-
formation or shear velocity. If the velocity does not change in a linear manner
as h increases, then the appropriate generalization is:

η =
τ
∂u
∂h

(1.3)

where τ=F/A is the shear stress, and ∂u
∂h is the local shear velocity or shear rate.

This expression is known as the Newton’s law of viscosity. This is a constitu-
tive equation: it is not a fundamental law of nature but an approximation, and
therefore it is valid for certain materials while it completely fails for others.
Materials that obey the Newton’s law are known as Newtonian fluids while
those that do not are known as non-Newtonian fluids.
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 P D M S 9 ,  8 . 0 0 g / m L  ,  2 8 3 K
 P D M S 2 8 ,  0 . 1 5 g / m L ,  2 8 8 K
 P D M S 6 3 ,  0 . 0 5 g / m L ,  2 9 3  K
 P D M S 1 3 9 ,  2 . 0 0 g / m L ,  2 9 8  K
 P D M S 2 8 ,  0 . 0 5 g / m L ,  3 0 3 K
 L i n e a r  F i t  o f  P D M S 9 ,  2 8 3 K
 L i n e a r  F i t  o f  P D M S 2 8 ,  2 8 8 K
 L i n e a r  F i t  o f  P D M S 6 3 ,  2 9 3 K
 L i n e a r  F i t  o f  P D M S 1 3 9 ,  2 9 8 K
 L i n e a r  F i t  o f  P D M S 2 8 ,  3 0 3 K

FIGURE 1.2: Checking the Newtonian nature of our studied PDMS-
ethyl acetate system. Results taken from the supplementary informa-

tion of our published results [2].

Common examples of fluids with Newtonian characteristics being used in ev-
eryday life include water (η = 0.89 mPa s at 25◦C), rice bran cooking oil (η = 40
mPa s at 38◦C) and honey or corn syrup (η = 2000-3000 mPa s at 22◦C).

• Non-Newtonian fluids - In any three-dimensional flow, the stress components
can be identified across all three planes xy, yz and zx when investigated across
a cartesian coordinate system. In Newtonian fluids, this shear stress is present
across only one plane, with all other components of stress being equal to 0. For
many polymeric systems in applications, this simple shear data relating the
shear stress to the shear rate does not start from 0, or is not a linear relationship,
or both. For this reason, the viscosity η is not a constant parameter due to
shearing forces. It also depends on the type of fluid being studied and its
kinematic history. Ideally, for such behaviour, these fluids can be further sub-
classified into different types, depending upon their nature. However non-
Newtonian fluids are not the subject of our study, and so is not discussed in
any great detail here.

Fig 1.2 shows that the polymer-solvent systems studied in this research exhib-
ited Newtonian nature in their flow characteristics across a varying range of shear
rates. The Newtonian nature of the other polymer systems studied are shown later
in Chapter 4. The following chapters will also deal with the development of a scaling
model based on these Newtonian viscosities.

1.2.2 Importance of viscosity studies

As already mentioned, viscosity is a measure of the resistance experienced by any
fluid due to its flow. The higher the internal friction of a fluid, the more resistance it
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1.3. Necessity of scaling models 5

provides to any deforming forces, and the higher is the viscosity of the given fluid.
The viscosity of different fluids is usually studied through the field of rheology, the
part of science that describes the flow of materials. Of course rheology is not only
about the study of viscosity, but also about the other crucial behaviour exhibited by
many complex liquids, namely their elasticity. This expression of the elastic nature
leads to the term ’soft matter’ being used for description of complex fluids such as
polymers.The method of identifying the type of behaviour seen from different types
of polymer flows, even simple linear flows, is by their rheological measurements.
However, the elastic nature is not a source of concern for us, as our studied viscosi-
ties were completely Newtonian.

Aside from such complex behaviour, the common viscosity measurements of dif-
ferent fluids suffers from a lack of understanding of the length-scale. For simple
fluids such as water, it is not a problem. But for fluids such as polymers, there also
exists one of the simplest and most important characteristic - an observable micro-
scopic time scale. The time scales of molecular motion in regular liquids like water
are in the order of 10-15 s, and are associated with molecular translation. Apart from
this microscopic time scale, polymeric liquids have another important scale that cor-
relates their larger internal or external motions in solution with another liquid. This
time scale ranges from microseconds to minutes. The ratio of these time scales be-
comes significant since many physically visible and processing time scales are of
similar order. The elastic nature of polymeric liquids is usually associated with large
scale microscopic motions. Even though our studies are not concerned about the
elastic nature of polymeric objects, it is still crucial to study the different scales exist-
ing within a wide variety of polymers. As a result, it is critical to obtain well-defined
scaling laws that describe polymers appropriately.

1.2.3 Generalized Newtonian fluid models for non-Newtonian fluids

A generalized Newtonian fluid (GNF) is an idealized fluid in which the shear stress
is a function of shear rate at a given time but not of deformation history. The con-
stitutive equation of this type of fluid is a generalized form of the Newtonian fluid,
despite the fact that it is non-Newtonian (i.e. non-linear) in nature. There are numer-
ous available GNF models describing the dependence of polymer viscosity on the
variations of shear rates, temperatures and pressures [3]. These include the Power
law model [4, 5], the Bird-Carreau-Yasuda model [6, 7], the Cross-WLF model [8],
the Bingham model and the Herschel-Bulkley model. They are very similar in their
description, and are useful for numerical simulations or any application involving
higher shear rates. However, as our results have shown that the viscosity studied
is not dependent on the shear rates, our study will not involve any of these GNF
models.

1.3 Necessity of scaling models

Our understanding of the behavior of long, coiled, flexible macromolecules is based
on important scaling concepts. With increase of the chain length or molecular weight
M to sufficiently larger quantities, there occurs enhancement of multiple internal
properties. This includes properties such as coil dimensions and relaxation times.
These changes occur regardless of the chemical composition of the different poly-
mers. Such enhanced internal properties affect the characteristics of a polymer, one
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6 Chapter 1. Introduction

of the most important one being their viscosity. Therefore study of viscosity for poly-
mer solutions usually require certain scaling laws. The reasons for the necessity of
having such scaling laws are:[9]:

• Individual coil statics - The first problem that arises in polymer physics is
due to the construction of linearly connected flexible individual polymer coils
from multiple monomer units. As well as being connected, the units will also
have interactions which are not specific to adjacent members of the sequence:
whether it be the excluded volume constraint that two monomers cannot be at
the same place, Van der Waals forces (longer ranged and canonically attractive)
between monomers in pure polymers, or in solution systems where there are
energies of solvation, monomer-monomer contacts differing in energy from
monomer-solvent ones, etc. Such a system of interaction is represented in Fig
1.3.

FIGURE 1.3: Individual polymer coils in solution.

• Coil swelling - Flory[10] addressed the problem of polymer chain conforma-
tions by considering the case of a polymer in a good solvent. The correspond-
ing model allowed to obtain the chain’s total free energy without the need to
count every possible chain conformation. An estimate of the chain’s optimum
end-to-end distance could be determined from the minimum free energy of the
chain. Flory’s theory also assumed that ideal chains have a Gaussian distribu-
tion of the end to end distance, which can be summarized as:

〈r2〉 1
2 = N

1
2 l (1.4)

where r is the end to end distance, N is the number of monomers, and l is the
contour length of the chain. The corresponding description of the free energy
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1.3. Necessity of scaling models 7

for a monomer of length b was:

∆E = kBT
r2

Nb
(1.5)

where kB is the Boltzmann contant, and T is the temperature in the absolute
scale. However, it was later observed that this approach needed to be changed
for swollen systems[11, 12]. Larger polymer coils are spread over larger vol-
umes, and thus they rarely occur as a dilute state in solution. When chains
have repulsive interactions, they no longer remain ideal. The chains have an
effective repulsion between the surrounding monomers that tend to swell the
polymer chain. The entropy loss that occurs due to such a deformation result-
ing from the swelling acts as a balance to the monomeric repulsions. Therefore,
studies of polymer solutions require detailed investigation to describe their
characteristics during flow. The Fig 1.4 shows the simple state of polymer coils
in the presence of a solvent, while the Fig 1.5 shows an example of an ideal
Gaussian chain.

FIGURE 1.4: Coil swelling in the presence of a good solvent.

• Entanglements due to solution concentrations - When the concentration of
polymer coils in a solution increase, they start to overlap and then intertwine
with each other. Looking at the entangled zone, it turns out that this regime
requires proper investigation in terms of a blob scaling picture. Physically,
the blob size ξ may be identified as a correlation length of the polymer den-
sity variations. This semi-dilute behaviour does not extend all the way to the
polymer melt because eventually ξ comes down to the scale of the screening
length. Screening cannot then further reduce coil dimensions and there exists a
concentrated regime where the chain conformations are fairly independent of
concentration. In the concentrated regimes, as the monomer concentration be-
comes larger, other higher order effects take over. The following Fig 1.6 shows
the internal characteristics of an entangled system. Such a system affects the
viscosity, and requires proper description.
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8 Chapter 1. Introduction

FIGURE 1.5: An ideal Gaussian chain of end-to-end distance r.

FIGURE 1.6: Entanglement network inside a polymer solution.

• Molecular-weight effects - Viscosity is also greatly affected by the change in the
molecular weight of the polymer studied. The greater the molecular weight
of the polymer chains, the greater is the resulting entanglements inside the
polymer solutions. Due to increased amount of entanglements, the motion
of the chains becomes more hindered accordingly, leading to corresponding
changes in the flow nature. This is represented by Fig 1.7. Thus a core problem
for polymer scaling is the molecular weight exponent of the viscosity, as well
as the difficulties of measuring high viscosities.

Based on the above considerations, a number of theoretical models have been de-
veloped over the years that predicts the viscosity of polymer solutions. Some of the
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1.4. Influence of polymer motion on the viscosity 9

FIGURE 1.7: Simplified view of molecular weight effect in polymer
solutions. As the number of monomers and hence the molecular
weight of the chains increase, the number of entanglements increase.
Consequently, it becomes harder for the chains to move under the

influence of the solvent.

more relevant models in relation to our work have been discussed in the following
sections.

1.4 Influence of polymer motion on the viscosity

Before studying the models that describe the flow characteristics of polymer solu-
tions, it is important to get an idea about how the polymer chain motion affects their
viscosity. Many theoretical models have been developed over the years for the de-
scription of polymer chain motion. Some of the common models on the motion of
polymer chains are described in this section.

1.4.1 Single chain models of Rouse and Zimm

Rouse defined a model describing the viscosity of polymer chains based on defining
single polymer chain dynamics. In his approach, he considered the macromolecules
as represented by linear chains of "beads" connected by Hookean "springs" [13].
In such cases, all local chemical details such as energy of interactions for different
monomers were completely avoided[14]. This allowed a simple polymer chain de-
scription using a small number of parameters. Such chains were basically treated
as ideal ones, and could be described either discretely or continuously. One such
discrete method involved dividing the contour length of the polymer chains L into
different segments N known as Kuhn segments [15], with each of a constant length
b, such that:

L = Nb (1.6)
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10 Chapter 1. Introduction

The representation is shown accurately in Fig 1.8. The solvent molecules surround-

FIGURE 1.8: Simplified representation of the Rouse model for poly-
mer chains.

ing such polymer chains in solution were studied through some effective interac-
tions, due to their collision with the polymer molecules. Such collisions resulted in
Brownian motion of the polymer molecules. By studying the random motion, the
viscosity of the polymer solution was determined. It was assumed that the differ-
ent separated parts of chain did not have any hydrodynamic interactions between
them. This allowed the studied flow to be assumed as a Stokes flow. As described
by George Stokes, such a flow involves an object moving through a fluid and ex-
periencing opposing forces to its direction of motion. In such a case, the viscous
forces are larger compared to inertial forces, and leads to very low fluid velocities.
By studying the velocity of the moving object, the viscous forces and the viscosity of
the fluid are obtained. The relationship between the viscous forces and viscosity is
F = 6πηrv, with F being the viscous forces, η the viscosity, v the flow velocity of the
object, and r the size of the object.

As per the Rouse description, the individual segments effectively acted as a local
spring with a spring constant defined though the Kuhn length. Accordingly, the
viscosity of the polymer solution was defined as [13, 16]:

[η] =
πN2b2rc

6
(1.7)

where [η] is the polymer chains’ intrinsic viscosity, c is the number of polymers per
unit volume, and r is the radius of each bead. As can be seen from the Fig 1.8, the
molecular weight of the polymer was directly related to the chain length and number
of segments N. The Rouse model was improved by Zimm [17], who included the
fact that the beads of the polymer chains affect the solvent’s velocity region. These
disturbances travel through the solvent and affect the movement of the other beads.
This results in the hydrodynamic interaction between the beads. As per Zimm’s
theory, the intrinsic viscosity at steady state could be described as [16, 17]:

[η] ∝ (Nb2)
3
2 (1.8)
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1.4. Influence of polymer motion on the viscosity 11

where m is the mass of the polymer in the solution. The chain length (and number
of segments N) provided the relationship between the viscosity and the molecular
weight of the polymer. However, as the length of the polymer chain (and thus the
number of beads in the chain) grew longer, the model became increasingly compli-
cated. This involved a large number of individual models for each individual chain.
As such, it was not feasible to describe the viscosity accurately.

1.4.2 Reptation model of Doi and Edwards

Doi and Edwards[18, 19, 20] developed a theory for the diffusion of rigid rods in
a densely crowded environment. The assumptions made in this model were of the
same nature as that for flexible chain motion in the theory of reptation. When flex-
ible polymers acquire a coiled conformation, their behaviour in a network is domi-
nated by steric interactions. This prevents them from occupying the same space at
the same instant[14]. In such a network, the free movement of a single flexible poly-
mer chain is restricted, essentially confining the polymer chain to smaller spaces
between the other surrounding chains. The polymer is characterised by an effective
segment length known as the blob size, which was defined previously as the corre-
lation length ξ (Fig 1.6). This definition was obtained from the concept of entangled
systems in the de Gennes’ scaling theory[12]. The movement of the polymer chain
was assumed to be through an approximately confined tube-shaped region. The
dominant relaxation mechanism of this model was through changing of the tube,
observed when the polymer chain completely retracts from a part of the tube, as
shown in Fig 1.9. Reptation model therefore required that the concentration was

FIGURE 1.9: Reptation model: Decomposition of the tube resulting
from the reptative motion of the polymer chain. The parts of the

empty tube disappear.

large enough for neighboring polymer coils to overlap each other and form entan-
glements. As a result there is a lowest concentration c*, the overlap concentration,
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12 Chapter 1. Introduction

below which tube model/reptation models are inaccurate. Lower solution concen-
trations of c < c* are defined as the dilute regime, while concentrations c > c* consists
of the semidilute, entangled, and concentrated regimes.

In the thory of Doi-Edwards, all rods were assumed to have free rotations with-
out any interactions with the other rods. When the finite diameter of a stiff polymer
chain was taken into account, it resulted in a very dense system of elongated objects.
Such objects with diameter d and length L exhibited an excluded volume interaction
between them. This interaction resulted in the alignment of the objects. Doi [19] pos-
tulated that the finite length of the chain causes the length of the tube to fluctuate
over a range L. The molecular weight M of the polymer chain is therefore related
directly to the length L. The hydrodynamic volume here becomes that of the sphere
spanned by the rod-like molecule in its Brownian rotation, hence growing with M3.
This effect when fitted against the experimental data on viscosity η as a function of
M, gave a corrected form of the viscosity model as:

η ∝ η0(1 + f(M3.4)) (1.9)

by relating the relaxation times of the chains experimentally to the molecular weight.
In this model it was ensured that the radius of the effective constraining tube was
much smaller than the contour length. However, this model was valid for a limited
number of molecular weights. The effect of variations in tube length on the vis-
cosity was not correctly identified. Corrections were claimed by Rubinstein [21] for
the diffusion characteristics of the chains. He proposed a reptation model that was
"discretized." A one-dimensional lattice was used to model the tube, and segments
called as "reptons" were used to model the polymer. Each repton represented a link
in the chain and was free to hop between sites, but the chain remained connected at
all times. The length and molecular weight considerations were the same as that of
Doi and Edwards theory. The diffusion characteristics varied accordingly as:

D ∝ M−2[1 + f(M−1)] (1.10)

where D was the diffusion coefficient of the chains. This model was also signified by
a relaxation time due to the disentanglement of the flexible chains. The viscosity was
maintained of the same order as described by Eq 1.9. However, newer obstacles were
formed with additional processes changing the orientation of the tube. The biggest
drawback of this scaling model was that in a real system, especially in a polymer
solution, a completely rigid rod is impossible to be realized. Thus this model was
not as accurate for describing the viscosity characteristics of polymer solutions of
varying parameters.

1.4.3 Extended Kirkwood-Riseman model for viscosity

This model applies to time scales that are long enough to ignore polymer inertia.
The solvent is addressed as though it were a continuous fluid. Each polymer chain
is modeled after a string of beads that interacts with the solvent through a series of
point forces. The point forces allow the solvent to flow, resulting in hydrodynamic
forces on the other polymer beads. The underlying hydrodynamic interactions de-
pend on the interchain distances [22, 23, 24, 25, 26, 27]. Phillies et al [28, 29] made
some modifcations to the theory of hydrodynamic interactions of the Kirkwood-
Riseman model and made it applicable to predict the viscosity of the polymer so-
lutions. They proposed that polymer beads are often in close proximity to other
polymer beads in the same chain. Solvent molecules easily penetrate polymer coils

http://rcin.org.pl



1.5. Developed macroscopic viscosity scaling models 13

at concentrations below the overlap concentration, but interpenetration of polymer
chains do not occur as much. As a result, adding polymer molecules to a dilute so-
lution is more efficient at slowing the motion of free monomers than it is at slowing
the motion of polymer chain monomer units. At polymer concentrations above the
chain overlap concentration, the total polymer concentration is the same everywhere
in solution. A chain’s correlation length, on the other hand, ensures that the concen-
tration of other chains close to it is often smaller than the average concentration of
chains in solution. Consequently, interchain interactions have a smaller impact on
the mobility of a polymer bead than they do on the mobility of a free monomer in
solution. Using this modification, they predicted the viscosity model to be:

η

η0
= 1 + [η]c + k′[η]2c2 (1.11)

where k’ is the Huggins coefficient. The difficulty this model faced was that as con-
centrations increased, more and more terms were required to achieve accurate pre-
dictions. Simultaneously, the scale of the calculations needed to obtain additional
forms grew rapidly.

1.5 Developed macroscopic viscosity scaling models

Polymer solutions have a wide variety of macroscopic viscosity scaling models,
which can be found through literature studies. Huggins[30] suggested the first ex-
ample of such a scaling model, developed for the specific viscosity of very dilute
polymer solutions. Huggins’ relationship may be summarized as follows:

ηmacro = η0
(
1 + k′[η]c

)
(1.12)

with k′ being an empirically determined polymer-solvent constant and c being the
concentration of polymer solutions. The intrinsic viscosity, [η], is an indicator of
the viscosity’s concentration dependency. This model was developed by calculating
viscosity at extremely low dilutions, and it was also backed up by others [31, 32, 33,
34, 35, 36] such as Baker:

η

η0
= (1 + [η]c)0.5k’ (1.13)

Fikentscher and Mark:
η

η0
=

[η]c
1− k′c

(1.14)

and de Jong, Kruyt and Lens:

η

η0
= [η]c exp(k′c) (1.15)

All these different viscosity models were essentially of the same form as the one
above by Huggins. The empirical constants k’ had different values for each model,
but of the same order. These models also contained some empirical constants specific
to each model, but the form of each model were similar. Some other such models
were proposed by Arrhenius [37]:

ln
η

η0
=

k′c
2

(1.16)
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14 Chapter 1. Introduction

Hess and Philippoff [38]:
η

η0
=

(
1 +

7k′c
16

)8

(1.17)

and Bredee and de Booys [39]:

η

η0
=

(
1 +

5k′c
12

)6

(1.18)

again, with empirical constants k’ having different values but of similar orders for
each model. More importantly, these studies looked at how the viscosity of polymer
solutions varies with their concentrations only in the dilute regime.

In polymer solutions of varying concentrations, crowding plays a massive effect
on the resultant flow properties. If polymer coils are assumed to be spherical in size,
the resultant solutions can be analogous to rigid spherical particles in an emulsion.
Taking explicit notice of the interactions between neighboring spherical particles,
a number of theories were developed to describe the viscosity of systems. These
theories applied functional relationships for the dependence of the viscosity of rigid
sphere suspensions to the volume fraction φ. The parameter φ is defined as the
ratio of the volume of polymer used to prepare the solution to the total sum of the
volumes of polymer and the solvent in the solution. Some of the proposed models
were by Eilers [40]:

η

η0
=

(
1 + 0.5[η]φ
1− φ/φm

)2

(1.19)

Mooney [41]:

ln
(

η

η0

)
=

[η]φ

1− φ/φm
(1.20)

and Krieger-Dougherty [42]:

η

η0
= (1− φ

φm
)−[η]φm (1.21)

where φm is the maximum packing volume of the system (the maximum volume
of polymer that could be dissolved into a given volume of solvent), and [η] is the
intrinsic viscosity of the solution, related to the particle shape factor. As can be
seen from these Eqs 1.19-1.21, the models described were accurate at defining the
viscosity for a wide range of concentrations as well as the composition of the system.
But they lacked in defining the effects of varying polymer molecular weight and
chain sizes, internal dimensions of the polymer matrix, and crucially unsuitable for
any length-scale dependence description.

Lyons and Tobolsky [43] had also proposed an empirical equation that has been
shown to describe the viscosity of low molecular weight polymer solutions over the
entire concentration range, i.e., from infinite dilution to bulk polymer. The Lyons
model [44] was:

η

η0
= c[η] exp

k′[η]c
1− bc

(1.22)

where k’ is the Huggins’ constant and b is some empirical parameter related to the
concentration c. This model was amongst the first to describe the viscosity as an
exponential function of the concentration. However, it also lacked in application
to polymers of higher molecular weights. Another model of similar exponential
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1.5. Developed macroscopic viscosity scaling models 15

dependence was that developed by Martin [32]:

η

η0
= 1 + c[η] exp(kMc[η]) (1.23)

where kM was the Martin constant, an empirical paramter of the same order as the
Huggins constant. It was also limited in applicability for solutions of low concentra-
tions.

Of course, viscosity of polymers in solution does not depend only on the con-
centration. A lot of models tried to shed light on the dependence of viscosity on the
molecular weight of the polymers [45], starting with Dreval et al [46]. In their rela-
tionships, they made assumptions for flexible polymers related to the intrinsic vis-
cosity and concentrations (in the dilute solution ranges), where their function was of
an exponential nature. Their model was later applied to the rigid, inflexible polymer
chains, in particular poly(p-benzamide) (PBA)[47, 48]. They defined the viscosity η
for a large number of flexible polymers in solution as:

ln
(

η

η0

)
= KMαcβ (1.24)

About the same time, Mark-Houwink[49, 50] formed a relationship that was similar
to this one. The obtained dependency of viscosity to the molecular weight was:

[η] = KMa′ (1.25)

where K was another empirical constant, similar to the empirical parameter devel-
oped by Huggins and a′ is known as the Mark-Houwink parameter. The constants
α, β and a′ were related as a′=α/β. The difference was that in their definitions, they
used intrinsic viscosity rather than specific viscosity. Further research by Barry [51],
Korolev et al [52] and Warrick et al [53] established empirical viscosity scaling mod-
els that relate the dependence of viscosity on polymer molecular weight

Weissberg, Simha, and Rothman [54] used the dimensionless plots of [η/η0]/c[η]
versus c[η] to represent their viscosity-concentration data and noted molecular weight
and solvent dependences in polystyrene solutions. Simha and Zakin [55], using sim-
ilar variables, attempted to correct for the solvent dependence by considering the
effect of concentration on the osmotic compression of expanded polymer coils in so-
lution. Utracki and Simha [56, 57, 58] superimposed viscosity-concentration curves
for different molecular weights by plotting [η/η0]/c[η] versus c/M-a1, where a1 was
of the same order as the Mark-Houwink exponent, and M was the molecular weight.
Thereafter, Chou and Zakin [59, 60] showed that for good solvents, data for a num-
ber of linear flexible polymers above molecular weight 15,000 fitted a single curve
[η/η0]/c[η] versus k’[η]c, where k’ was the Huggins constant. However, all these
models failed to describe relationships for broad distribution of molecular weights,
effects of the the polymer coil sizes, and internal structure dependence of the viscos-
ity.

Takahashi et al [61, 62, 63] also studied extensively the zero-shear viscosity data
of different linear and branched polymers in good, poor, and θ solvents covering
wide ranges of polymer concentration and molecular weight. They provided sepa-
rate relationships for the scaling of polymer viscosity in the dilute and semi-dilute
regions. The relationship for dilute solutions was of the same form as that of Hug-
gins’ (Eq 1.12) or Martin (Eq 1.23). However, for the semi-dilute solutions, they
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proposed that:
η

η0
∝
( c

c∗

)
4.4−3ν
3ν−1 (1.26)

which gave:
η − η0

η0
∝ M3.4c

3.4
3ν−1 (1.27)

They observed that the viscosity of polymers with various molecular weight dis-
tributions in good solvents could be expressed by the same scaling function as de-
scribed above. However, such an observation was only for a narrow range of molec-
ular weights where they could fit and use this model. Moreover, it was observed that
for lower molecular weights, the experimental results did not conform to the theo-
retical model. Finally, their model also lacked in providing the dependence of the
viscosity on the coil size changes and the activation energy required for the motion.

Through the study of concentrated protein solutions, Lefebvre designed a scaling
model for large concentration ranges that also considered the effects of entanglement
on the viscosity. This model was a combination of the Simha-Utracki visocity model
[57] with the Graessley[64] expression for the polymer coil expansion at a given con-
centration in the semi-dilute region. Thus Lefebvre managed to design his model
with regards to different regimes of polymer concentration, and described the two
cross-over points c* and c** in them. The defined viscosity model was:

ln
(

η

η0

)
= 2a′[η]c∗

( c
c∗
) 1

2a′ − (2a′ − 1)[η]c∗ (1.28)

While the model was good in describing the concepts of entanglement and cross-
over points, it did not consider the hydrodynamic scaling required for polymer
chains. This model also did not provide information about the activation energy
barriers of the flow process.

Scaling concepts were created by de Gennes [12, 65] using Huggins and Flory’s
[66] models, as previously mentioned. The principles of entanglements in poly-
mer solutions, as well as their mathematical meanings, were obtained through these
developments. In these models, the parameter ξ, which represents the correlation
length, was created to depict the changes in the gradual entanglement of polymer
chains in solutions. The dimensions of polymer chains due to their orientation in
the solution, as well as polymer-solvent characteristics, were established. The use of
the generalized Zimm models [67, 68] yielded the establishment of the power law
equations relating the polymer coil dimensions to the molecular weight M of the
polymers as:

Rg ∼ Mν (1.29)

The value of ν is determined from the mean-field theory and is indicative of the
repulsive excluded-volume interactions. As shown by Flory [10] in the mean field
model, ν is 0.6 for polymers in good solvents.

Yamakawa et al [69, 70, 71, 72] have also studied the excluded-volume effects on
the viscosity of dilute polymer solutions. It allowed them to determine the viscosity-
radius expansion factor dependence. Initially, they evaluated the intrinsic viscosity
of polymer solution using a helical wormlike touched-bead model without excluded
volume. It was found that the slope of the plot of intrinsic viscosity against molec-
ular weight reduced as the helical nature became stronger. Their predicted model
was:

log[η] = log(M[η]/φL)− log(λ2ML)− 2.542 (1.30)
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with: 
logM = ZagL+ log(MLI A) (1.31) 

where M was the molecular weight, L the contour length of the polymer coil, A the 
static stiffness parameter, and ML the shift factor of the molecular weight due to the 
contour length. To address the inconsistencies of experimental findings from the 
predicted model, they described the viscosity model using a radius expansion factor 
as: 

(1.32) 

where [1J ]e was the intrinsic viscosity of the polymer in a e solvent at the e tem
perature, and a:3 was the radius expansion factor, related to the excluded volume 
expansion coefficient. However, it was again observed that experimental results de
viated from the theoretical model when applied to expansions for different internal 
size parameters. 

The de Gennes scaling and related models [73, 74] were also able to detect changes 
in the dimensions as the concentration of the solutions increased, owing to excluded
volume effects at higher concentrations. While the concept of different concentration 
zones such as dilute, semi-dilute, and concentrated was observed, most experimen
tal findings supporting the theory were restricted to semi-dilute polymer solutions. 
Later polymer scaling theories that included all three concentration regions, such as 
Sato et al's 'fuzzy-cylinder' method [75, 76], were able to provide good relationships 
between zero-shear polymer viscosity and concentration and molecular weight vari
ations. However, this model was based on the Stokes-Sutherland-Einstein (SSE) vis
cosity relationship for particle diffusion. The same SSE equation (discussed later in 
Section 1.6) can fail by orders of magnitudes in many cases when applied to mea
surement of nanoviscosities, and so is not capable of providing a length-scale de
pendent description by itself. 

More recently, Monkos [77] has studied the dependence of viscosity on the tem
perature using modified Arrhenius models. While studying aqueous solutions of 
bovine serum albumin, he predicted the viscosity-temperature dependence to be of 
the form: 

1J = exp (-B + DT + :T) (1.33) 

where B and D were certain constant parameters, E was the activation energy for 
viscous flows, and R was the gas constant for a temperature T. This was a capa-
ble model for describing the dependence of viscosity on the activation energy and 
temperature. However, it required separate use of the Mooney (Eq 1.20) and Lefeb-
vre models (Eq 1.28) to characterize the concentration dependence and the different 
cross-over points for the concentration regimes. It was not an universal model by 
any means. 

Many scaling models have been implemented over the years, with the under
lying theory being guided by some of the models described above. Concentra
tion limits impose restrictions on some (usually applied in dilute or semi-dilute 
zones). When effects of dimensional changes versus concentration, temperature, ac
tivation energies for polymer-solvent systems, or the distribution pattern of molecu
lar weights are taken into account, others are constrained in their applicability. Type 
of polymer and solvent also plays a part in such models, and often the practical ap
plication of such theory are limited. More importantly, such models cannot traverse 
different length-scales of the viscosity of complex systems, and therefore cannot be 
considered as universal. ~l~i< 

A different approach was undertaken when studying the motion of nanoprobes ~~:;P J~~ 
(. 3i3UOIEKA .~ 
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18 Chapter 1. Introduction

by Phillies [28, 29, 78, 79, 80, 81, 82, 83]. In such studies, extensive work was per-
fomed to identify the nanoviscosity due to hydrodynamic effects.The analysis of op-
tical probe diffusion in polymer solutions was used to accomplish this. Quasielastic
light scattering was used to determine probe motion. The probe diffusion coefficient
Dp was found to follow the stretched exponential:

Dp

Dp0
= exp(−αcν Mκrp

δ) (1.34)

where rp was the radius of the diffusing probes, Dp0 was the self-diffusion coefficient
of the the solution, α was a constant and the exponents κ and δ were theoretical con-
stants of the order of unity. Phillies observed that such a model was incapable of cor-
rectly predicting the diffusion coefficient when the probe size and molecular weights
increased. It was later discovered that the measurements of Dp0 at elevated concen-
trations at the time uniformly fit stretched exponentials in c, but not the power laws
predicted by some scaling models. However, this formed the basis for future exten-
sive studies of viscosity at the nanoscale, in search for a combined length-scale based
scaling model.

1.6 Nanoscale viscosity studies

Complex fluids are materials with a hierarchical structure that can be seen at dif-
ferent length scales. As a result, the properties of these heterogeneous materials
are dependent on the length scale at which we probe them: length-scale-dependent
dynamics have been observed in a variety of biological and physical systems, for
example. Nanoparticle diffusion coefficients in an agarose gel are highly dependent
on their size, approaching zero for sizes bigger than the typical pore diameter in the
polymer network. A small probe diffusing near the glass transition temperature in
supercooled liquids experiences viscosity three orders of magnitude lower than the
macroscopic viscosity of the same liquid. Since macromolecules and lipids make
up up to 40% of the volume of cells, the liquid that composes their interior has a
high macroviscosity. Small proteins, on the other hand, diffuse freely in various cell
compartments, including the nucleus, cytoplasm, endoplasmic reticulum, and mito-
chondria, at the molecular level. All of these findings suggest that at the molecular
and macroscales, the crowded environment of cells exhibits a variety of rheological
behaviors.

Capillary electrophoresis, sedimentation, and light scattering experiments (with
a limited number of nanoprobes and low polymer concentrations in solutions) have
been used to investigate the rheological nature of nanoscale objects. Currently, the
most commonly used techniques for studying the micro-rheological properties of
fluids involve some form of monitoring the motion of small probes inside the medium.
One such crucial technique is the Fluorescence Correlation Spectroscopy (FCS),
which can be used to study the flow and viscosity at the microscale simultaneously.
In FCS, a statistical analysis of the fluctuations in fluorescence intensity is performed
via time correlation. Such fluctuations occur due to the random Brownian motion of
fluorescent particles in a solution. It provides information on the photophysics that
cause the fluorescence intensity fluctuations, as well as diffusion behavior and ab-
solute particle concentrations. The most obvious and visible cause for fluorescence
fluctuations is due to the change in particle concentration in the observation volume.
Single fluorophores passing through the detection volume cause temporal changes
in fluorescence emission intensity, which are recorded by the method. By temporally
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auto-correlating the recorded intensity signal, these intensity changes can be quan-
tified in terms of their strength and duration. This results in the identification of the
average number of fluorescent particles in the detection volume and their average
diffusion time through the same volume. Eventually, important biochemical param-
eters as the concentration and size or shape of the particle (molecule) or viscosity of
the environment are determined through this process.

Holyst et al[84, 85, 86] have performed extensive studies using FCS for the nano-
scale motion of small probes in complex systems. In these studies, the starting point
for describing such motion was the Stokes-Sutherland-Einstein (SSE) equation that
uses simple diffusive motion for this purpose. The SSE equation is classified as a
fluctuation–dissipation (FD) relation. According to the fluctuation–dissipation the-
orem the diffusion coefficient D is inversely proportional to the friction experienced
by a particle during motion.

D =
kBT

6πηrp
(1.35)

where η is the viscosity experienced by a nanoprobe of radius rp, and kB is the Boltza-
mann constant. As per this relationship, one would expect a simple relation between
the different parameters such as:

D
D0

=
η0

η
(1.36)

However, it was observed[87] that small and large probes sedimenting in DNA solu-
tions exhibited sedimentation coefficients significantly different from those expected
by the use of Eq 1.36. Thus, it was proposed that there are three different regimes for
particle diffusion in polymer solutions. Transitions between these regimes are not
continuous. The regimes depend on the relation between the diameter of the probe
particle dp and characteristic length-scales in the polymer network. The first length-
scale was the correlation length ξ as per the size of the mesh in the interpenetrating
networks inside the complex system. Usually such a parameter could be obtained
through the relationships between the radius of gyration, Rg, and the concentration
region of the studied system. The second length-scale L was the distance between
the entanglement points of the polymer chains. This parameter was also depen-
dent on the concentration of the media, similar to the correlation length. In the first
regime where a probe has a diameter dp < ξ, the diffusion of the probe particle is
not affected by the polymer mesh. When ξ < dp < L, in short time scales, the mo-
tion of the probe particle is not affected by the presence of polymers. The long-time
self-diffusion coefficient is affected by the presence of polymer chains. The probe
in motion experiences an effective viscosity that scales with the dp/ξ ratio. In the
regime where L < dp, the motion of the probe particle is affected by relaxation of the
polymer chains and the probe experiences the macroscopic viscosity of the solution.
Holyst et al[84, 85] performed FCS studies on the transport properties of complex
liquids to observe this unusual length-scale dependence. They observed that the de-
viations from the SSE equation kept growing with reducing rp/Rg ratios, with Rg
being the radius of gyration of the polymer in the system. Based on such studies, an
approximate model was proposed that described the effective viscosity experienced
by probes undergoing motion in complex liquids, governed by the following key
equation:

η = η0 exp
[( γ

RT

)(Reff

ξ

)a]
(1.37)

where η is the effective viscosity, η0 is the viscosity of the solvent or media, ξ is
the correlation length, Reff is the effective size of the particles in the system, a is a
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FIGURE 1.10: A plot of the effective viscosity experienced by
nanoprobes moving in a solution of PEG in water. The diffusion coef-
ficient or mobility of any probe particle can be obtained directly from
this length-scale dependent viscosity curve [86]. This effective viscos-
ity approaches the nanoviscosity for smaller probes as also studied by

Phillies (1.6).

structural scaling parameter of the order of unity, γ is the activation energy of the
flow process and R is the universal gas constant. The correlation length ξ is obtained
by the following relation:

ξ = Rg(
c
c∗
)−β (1.38)

where, c∗ is the concentration at the crossover from dilute to semi-dilute regime and
also known as the overlap concentration, Rg is the radius of gyration of the coils and
β is a scaling exponent given by [12, 88]:

β = −ν(1− 3ν)−1 (1.39)

The parameter ν is defined from the mean-field theory and is indicative of the repul-
sive excluded-volume interactions. The overlap concentration c∗ is obtained as:

c∗ =
Mw

4
3 πR3

gNA
(1.40)

where Mw is the polymer’s molecular weight, and NA is the Avogadro number.
A key step in the development of this model was the introduction of the param-

eter Reff, which led the model to overcoming the issues of length-scale dependence.
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The parameter Reff was well defined by by Kalwarczyk et al[86] as:

Reff =

√
rp2Rh

2

rp2 + Rh
2 (1.41)

where Rh is the hydrodynamic radius of the polymer in the same solvent. Combin-
ing Eqs 1.35-1.41 into the model, it was proposed that the viscosity experienced by a
broad range of probes over length-scales from nano to macro and millimeter could
be expressed through this scaling model. The hydrodynamic size of the probe sets
the scale at which the flow occurs. Thus instead of being the property of an object
under motion, the viscosity experienced by the object is a property of the flow inside
the fluid and the length-scale of that flow. The motion of a probe in any complex
liquid generates hydrodynamic flow at a length-scale equal to Reff. The Fig 1.10 de-
veloped by Kalwarczyk[86] was a representation of the smooth dependence of the
viscosity on the length-scale of flow around the probing particle, when the results of
Eqs 1.35-1.41 are plotted.

Extensive studies were performed on nano-objects and colloids using this pro-
posed length-scale dependent viscosity model[84, 89, 85, 90, 91, 92, 93].However,
not a lot of studies were made to cover the macroscopic viscosity for complex sys-
tems. The first conscious approach to study complex systems in macroscale was
performed by Wisniewska et al[94], when polyethylene glycol (PEG/PEO) solutions
in water were studied. The study involved obtaining further information on the
activation energy for flow of complex systems, to complement the length-scale de-
pendent viscosity model. A simple, qualitative physical explanation of the observed
changes and crossover between concentration regimes was provided, along with
a semi-empirical quantitative formulation based on extensive rheological measure-
ments and literature data. In doing so, it was observed that the principles of the
model could be valid for all kinds of polymer systems, but it was never fully ex-
plored. The idea that polymer coil sizes can vary at the macroscale with chang-
ing concentration of the complex system, was also not identified by the proposed
length-scale dependent model, and required further investigation. A clearer idea
about the different parameters of the model and their inter-dependent relationships
at the macroscale was necessary.

1.7 Objective of this thesis

Rheology of polymer solutions suffers from the lack of a model of viscosity applica-
ble across wide range of concentrations, temperatures, molecular weights and other
processing variables. Previous scaling models lacked in one aspect or the other in
terms of the number of variables they described. The core idea of this thesis was to
apply to macroscale analysis the previously obtained scaling model from nanoprobe
diffusion in different polymer systems. The nanoscale diffusion model defined the
effective viscosity experienced by those probes as a function of: the probe size; the
concentration of the system; the molecular weight of the polymers; and the temper-
ature of the surroundings. In this work, we expanded the same model to macroscale
analysis of viscosity by applying it to different common polymer systems:

• polydimethylsiloxane (PDMS) in ethyl acetate

• hydroxypropyl cellulose (HPC) in water

• polymethylmethacrylate (PMMA) in toluene, and
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• polyacrylonitrile (PAN) in dimethyl sulfoxide (DMSO)

This work involved experiments for measuring the viscosities of the above men-
tioned polymer-solvent solution systems through rheometry at different concen-
trations and temperatures, hydrodynamic radii through dynamic light scattering
(DLS), and molecular weight distributions and polydispersity index through gel
permeation chromatography (GPC). Such measurements were crucial to obtaining
data required to apply and fit to the previous nanoprobe diffusion model so that the
length-scale dependent viscosity scaling model could be obtained. This model can
fulfil the following areas of concern:

• to cover concentrations from dilute to concentrated in solution;

• obtain relations between the coil dimensions as a function of concentrations;

• describe how it can be used with commercial or standard polymers with a
variety of molecular weight distributions;

• applicable for polymers with different polydispersities;

• be relevant for a wide range of temperatures at the normal operating range for
most everyday polymer products.

• provide detailed information about all the different parameters in the model.

The developed scaling model can then be used as a length-scale based polymer
characterization technique, developed on viscosity measurements. It is conventional
to measure the viscosity at all polymer processing industries, and so a characteriza-
tion technique through such measurements would be more comfortable compared
to others. Finally, for research and development purposes, this scaling model can be
applied for both nanoscale and macroscale analysis which would be unique.
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Chapter 2

Experimental methodology

2.1 Viscometry

Viscosity is the study of the resistance to flow for any fluid. It is an essential quantity
that is required for a large number of applications. A common example of dealing
with fluid motion in everyday life is that of mixing honey in tea, or squeezing tooth-
paste onto a toothbrush. For the large scale production of the honey or toothpaste, it
is vital to understand the viscosity characteristics of the different components. Vis-
cosity measurements are commonly performed by two types of equipment, a vis-
cometer or a rheometer.

A viscometer is a device used to calculate flow characteristics in Newtonian ma-
terials. A portable viscometer may be used for research in the field or at a distance.
These instruments can usually measure in the range of 0.1 to 1000 s-1. There are many
different types of viscometers, usually based upon two different techniques of mea-
surement. Both involves the relative motion of an object, such as a sphere or a rotor
blade, through a medium. Usually one of the two components is stationary while
the other component moves through it or past it. The different types of viscometers
are categorized based on the type of motion of the studied object, such as capillary,
falling ball, falling sphere, rotational, vibrational or oscillating piston. A com-
monly used technique is the Hoppler’s falling ball viscometer. This device uses the
Hoppler principle to measure the viscosity of Newtonian fluids. In this method, the
time required for a ball to fall under gravity through an inclined sample-filled tube
is measured. The tube is mounted on a pivot bearing which allows its quick rotation
through a complete 180 degrees, thereby allowing the test to be repeated immedi-
ately. A means to improve the accuracy of the measurements is to perform the tests
from both directions of the tube on the same sample. However, in our experimen-
tal studies, more complex rheometers were used for better characterization and are
shown next.

Rheometers are more costly than viscometers, but they also have more versatil-
ity and offer a much broader variety of control and measurement parameters. A
rheometer allows for much more detailed analysis of flow, deformation, and even
material tackiness (for Newtonian and non-Newtonian materials). A rheometer
can measure shear rates ranging from 0.000001 to 10,000 s-1. A broader range en-
ables more accurate data to be obtained which is crucial for the purpose of complex
applications such as medical implants and devices. Rotational (shear type) and
capillary extrusion rheometers are the two most commonly used varieties of such
instruments. Capillary extrusion is typically utilised for highly concentrated sus-
pensions/pastes, while the rotational varieties are often used for systems that are
less concentrated (which could be either solutions, emulsions, or suspensions). For
obtaining information about how molecular structures influence processing charac-
teristics, rotational rheometers are chosen. They are relatively easy to use but their
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measurement inaccuracy is around±10%. Various designs exist: all types have some
form of element rotating inside the liquid at a constant rate. Most common rheome-

FIGURE 2.1: Malvern Kinexus Pro rotational rheometer used at the
IChF, PAN.

FIGURE 2.2: Bohlin Gemini rotational rheometer used at the MPIP,
Mainz.

http://rcin.org.pl



2.2. Dynamic Light scattering (DLS) 25

FIGURE 2.3: Types of geometries used in our studies.

ters have either two coaxial cylinders with the fluid to be measured contained be-
tween them, or a cone-and-plate design, where the liquid is placed on horizontal
plate and a shallow cone placed into it. The Figs 2.1-2.2 show the two types of ro-
tational rheometers used for our studies, while Fig 2.3 shows the geometries used
for the same. Common to all such equipment is the method of control for obtain-
ing the desired viscosity information depending upon the type of rheological fluid
analyzed. Such controls are usually of four types - constant stress, constant strain,
constant frequency or constant amplitude, and provide a wide range for character-
izing polymers based on the type of application.

2.2 Dynamic Light scattering (DLS)

We required a method to obtain the hydrodynamic radius of the polymers used in
our studies. For this reason, we used dynamic light scattering (DLS), a common
measurement technique for particle size analysis in the nanometer range. It uses the
principles of the Brownian motion of scattered particles in a solution, where they
move randomly in all directions. This principle states that there is constant colli-
sions between the solute particles and the solvent molecules due to their random
motions. As particles collide, a certain amount of energy is transferred, causing par-
ticle movement. Since energy transfer is more or less continuous, smaller particles
are affected more. Smaller particles diffuse at a higher rate than larger particles as
a result. By knowing all other parameters influencing the particle movement, the
hydrodynamic radius of the particles can be obtained from their diffusion character-
istics.

The relation between the diffusion rate of the particles and their size is given
by the Stokes-Sutherland-Einstein (SSE) equation. The translational diffusion coeffi-
cient D can be used to calculate the particle diffusion rate. Furthermore, since both
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the viscosity of the dispersant and the temperature have a significant impact on par-
ticle movement, they are included in the equation.

D =
kBT

6πηRh
(2.1)

where kB is the Boltzmann constant, T is the temperature, η is the medium’s vis-
cosity, and f = 6πηRH is the frictional coefficient for a hard sphere in a viscous
medium. One of the most important requirements for the Stokes-Einstein equation

FIGURE 2.4: Malvern Zetasizer Nano setup used at the IChF.

is that the particles must travel only in Brownian motion. There is no random move-
ment if there is sedimentation, which would contribute to misleading results. As
a result, the initiation of sedimentation denotes the DLS measurement’s upper size
limit. The lower size limit, on the other hand, is determined by the signal-to-noise
ratio. Since small particles scatter less light, the measurement signal is inadequate.
To track the movement of the particles, the scattered light is observed over a period
of time. The scattered light’s intensity does not remain constant over time, but it will
change.Smaller particles diffuse at a quicker rate than larger particles, resulting in
faster fluctuations. Larger particles, on the other hand, produce larger amplitudes
between the maximum and minimum scattering intensities. This initial intensity
trace is then used to create a correlation function, which is a mathematical repre-
sentation of the scattered light’s fluctuations. The translational diffusion coefficient
is calculated using it. This is the primary weighting model shown in DLS software
since the effects of DLS measurements are intensity-based (intensity variations over
time are detected). The volume- and number-based distribution can be recalculated
from the intensity-based distribution. The material refractive index and absorbance
of the measured sample at the laser wavelength must be determined for this. The
diffusion coefficient is calculated using the cumulant algorithm, which is included
in most software packages for measuring the various delay times of intensity fluctu-
ations; the hydrodynamic diameter (i.e. particle size) is estimated using the Stokes-
Einstein equation. DLS provides information not only about the mean particle size,
but also about the particle size distribution. Only low sample volumes are required
and the sample can be re-used after the measurement, which is a big advantage from
such a setup. The Malvern Zetasizer DLS setup used in our studies is shown in Fig
2.4.
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2.3 Gel permeation chromatography (GPC)

We required a technique to obtain the molecular weight distribution, and the poly-
dispersity of the polymers studied. For this purpose, we used gel permeation chro-
matography (GPC). Normally, all chromatography are separation methods used for
chemical analysis. A column, capillary, or other container containing a mobile and
stationary process is used in almost all chromatography equipment. Gel perme-
ation chromatography (GPC), also known as size exclusion chromatography (SEC),
is a type of liquid chromatography (LC). It consists of moving polymer solutions
through a column of chemically modified inorganic silicas or polymeric beads. The
size of the polymer molecules inside the solution determines the separation mech-
anism. The various lengths of polymer chains in a sample are isolated and their
relative abundance is determined using this method. For this purpose, the instru-
ment uses a pump for forcing the solvent through it, an injection port for inserting
the test sample onto the column, a column for retaining the stationary phase, some
detectors for detecting the components exiting from the column, and software for
monitoring the various parts of the instrument. The software is also used for mea-
surement information and to show the corresponding results. The components are
identified in different ways as they exit the column, and the sample’s elution activ-
ity is shown in a graph, or chromatogram. The chromatogram depicts the amount of
material that has departed the column at any given time. Higher molecular weight
(larger) polymer coils elute first, followed by lower molecular weight (and hence
smaller) chains. Elution volume is the principal criterion for separation. The chro-
matogram’s data is then compared to a calibration that depicts the elution activity
of a collection of polymers with known molecular weights. This enables the sam-
ple’s critical molecular weight distribution to be determined. After that, the data is
used to classify polymers and divide mixtures into discrete fractions. Different sepa-
rated components include polymers, oligomers, monomers and any non-polymeric
additives. GPC/SEC is the most readily used technique for obtaining the molecular
weight distribution of polymers. Furthermore, the polymer mixture can be sepa-
rated into individual components as necessary for any experiments or applications.
GPC/SEC is commonly used in conjunction with other techniques that classify poly-
mers based on their acidity, basicity, charge, or affinity.
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Chapter 3

Development of a universal
macroviscosity scaling model

3.1 Typical characteristics of a viscosity scaling model

The main limitation for a proper universal viscosity scaling model have been dis-
cussed before in section 1.3. Conversely, a model that overcomes those limitations
will have the ability to effectively describe the various structure-property relation-
ships associated with polymers. Thus a typical viscosity scaling model should have
interdependent relationships of:

• Concentration ranges

• Molecular weight ranges

• Hydrodynamic radius Rh, gyration radius Rg, correlation length ξ

• Temperature variations

• Molecular weight distribution

• Crossover points based on chain solvent interactions

• Polymer-solvent compatibility

• Activation energies for the process

Apart from these, there are limitations of the capacity to measure the viscosity ef-
fectively, the physical property of the polymers and solvents, etc., that determines
the applicability of the scaling model. Based on the above considerations, a few
critical parameters are available that are often used to construct any scaling model
for viscosity of polymer solutions. These parameters are described in detail in the
following section.

3.2 Proposed scaling model parameters

3.2.1 Hydrodynamic radius, Rh

The hydrodynamic radius, Rh, of any molecule in a solution is it’s effective radius,
measured by assuming that it is a body diffusing through the solution while feeling
resistance from the solution’s viscosity. The correlation curve is the measured data
in a dynamic light scattering (DLS) experiment. All of the information about parti-
cle diffusion inside the sample being measured is contained within the correlation
curve. D is the diffusion coefficient, which is determined by fitting the correlation
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curve to an exponential equation, with D proportional to the exponential decay’s
lifetime. The SSE equation is then used to measure the hydrodynamic radius, Rh,
from the diffusion coefficient.

The size calculated by DLS is defined as the radius of a conceptual hard sphere
that has a similar diffusion rate as the particle under study. Since such conceptual
or hypothetical hard spheres do not exist, this description is only valid for visu-
alization purposes. In practice, non-spherical, dynamic (tumbling), and solvated
macromolecules exist in solution. Consequently, the apparent size of the dynamic
hydrated/solvated particle is determined by the radius measured from the particle’s
diffusional properties. As a result, the word "hydrodynamic" radius was coined. In
general, empirical dimensionless power law equations relating the coil size (in nm)
and molecular weights M (in g/mol) for long chains are of the form:

Rc

R0
= K

(
M
M0

)y

(3.1)

where the parameter Rc is usually described as the the gyration or hydrodynamic
radius, R0 and M0 are some standard reference sizes, and K and y are dimensionless
constants with values unique to a polymer-solvent system [95, 96, 97]. Commonly,
such an equation as described in Eq 5.11 is simplified to the form [98]:

Rc = KMy (3.2)

These power law equation are used to define the different size parameters. The
results for the hydrodynamic radius obtained in our DLS measurements are fit to
the power law Eq 3.2, and corresponding parameters are shown in the Table 3.1.

TABLE 3.1: Power law parameters for defining hydrodynamic radius,
Rh (nm), of our different polymer systems, according to Eq 3.2, M

being in g/mol.

Equation Rh=K’My’

Polymer system K’ y’
HPC-water 0.0120 0.580

PMMA-toluene 0.0106 0.570
PAN-DMSO 0.0110 0.563

PDMS-ethyl acetate 0.0113 0.570

3.2.2 Gyration radius, Rg

For any object, the radius of gyration is the distance from its center of mass at which
the entire mass could be concentrated without changing its moment of rotational
inertia about an axis through that center of mass. This is also the root-mean-square
distance of the segments of a polymer chain from its center of mass. The radius of gy-
ration is a metric for the size of the random coil shape that many synthetic polymers
obtain in solution or in their amorphous bulk state. The size properties of a polymer
in solution are influenced by the molecular weight of a macromolecule, its structure
(whether or not it is branched, and how it is branched), and the degree of swelling
caused by the solvent. Similar to the hydrodynamic radius, it can be estimated from
power law equations relating it to the molecular weight of the polymers as expressed
through Eq 3.2. Unlike the Rh which is measured through DLS measurements, the
Rg can be measured through Static light scattering (SLS), as well as through neutron
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and X-ray scattering techniques. However, in our studies, the Rg values have been
estimated from reported literature values of similar polymer-solvent systems. The
Rg data were then fit through Eq 3.2 to obtain the different power law parameters,
which are shown in the table 3.2. Both Rg and Rh can be used to learn about the inter-

TABLE 3.2: Power law parameters for defining gyration radius, Rg
(nm), of our different polymer systems, according to Eq 3.2, M being

in g/mol.

Equation Rg=K”My”

Polymer system K” y”
HPC-water 0.0278 0.553

PMMA-toluene 0.0270 0.535
PAN-DMSO 0.0255 0.533

PDMS-ethyl acetate 0.0265 0.530

nal structure of polymer chains, which is an important aspect of their analysis. Rg’s
value is slightly more dependent on the structure of the molecule of interest than
Rh’s value because of the way it is calculated. The ratio of Rg and Rh, on the other
hand, is what really gives shape information about a polymer chain in any system.

3.2.3 Correlation length ξ

A crucial parameter related to the concentration of the polymer solutions is the corre-
lation length ξ or the distance between the chain interlink points inside the polymer
matrix. Also know as the mesh size, it is a characteristic length in polymer systems
that affects their viscosity. The most intuitive mesh size in a polymer matrix for most
researches is probably the distance between crosslinking points. It is mostly esti-
mated by theoretical calculations (e.g., tree-like approximation, real space renormal-
ized effective medium approximation), or certain light scattering experiments. For
any entangled system, ξ is the average distance between the entanglement points
of polymer chains [12, 99, 100] or in general it is a distance between the center of
masses of polymer coils. It is a characteristic length within which a monomer from
the same polymer chain is more likely to be found than monomers from other chains.
The screening length of the excluded volume effect is also known as the correlation
length. Owing to the presence of other polymer chains, the excluded volume effect
(intramolecular interaction) vanishes easily for a length scale larger than the correla-
tion blob. Blob size is another term for this correlation length (from de Gennes blob
theory) [12, 99]. It is determined experimentally through light scattering techniques
[101, 102, 86], and it depends on the concentration c as follows:

ξ = Rg(
c
c∗
)−β (3.3)

where, c∗ is the concentration at the crossover from dilute to semi-dilute regime
and also known as the overlap concentration, and β is a scaling exponent given by
[12, 88]:

β = −ν(1− 3ν)−1 (3.4)

The parameter ν is defined from the mean-field theory and is indicative of the repul-
sive excluded-volume interactions. As shown by Flory [10] in the mean field model,
ν is 0.6 for polymers in good solvents. Typically, it provides information about the
solvent quality for a particular polymer inside a solution. However, ξ is typically
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32 Chapter 3. Development of a universal macroviscosity scaling model

available for polymer solutions up to the semi-dilute concentrations, and loses sig-
nificance in the concentrated solutions or polymer melts. Therefore, in our studies,
the ξ values were kept constant beyond the semi-dilute regime.

3.2.4 Overlap concentration, c*

Polymer chains in dilute solutions are far apart from one another and act as isolated
hard spheres [10]. Further subdivisions of the dilute regime at lower limits have
been proposed in principle [103, 104, 105, 106], but such concentrations ultimately
approach infinite dilution and are not easily accessible using traditional experimen-
tal setups. At concentrations where polymer coils overlap, the semi-dilute regime
begins. The chains gradually interpenetrate each other as the concentration rises,
forming a uniform mesh-like structure. [94, 73]. At a critical concentration c*, when
the coils simply reach each other, the transition between isolated coils (dilute regime)
and interpenetrating coils (semi-dilute regime) occurs [12, 99, 100]:

c∗ =
Mw

4
3 πR3

gNA
(3.5)

where Mw is the molecular weight of the polymer, Rg is the radius of gyration, and
NA is the Avogadro number. Dynamic properties of macromolecules for both ran-
dom coils and rodlike chains tend to change rather abruptly in crossing over from
dilute to semidilute regimes. The crucial criterion that is considered through the
estimate of c* is the magnitude of the volume occupied by a random coil at that con-
centration. This allows to further identify the changes in the other related dynamic
parameters.

3.2.5 Activation energy parameter, γ

Viscosity represents the internal friction among the chains of a polymer melt or solu-
tion due to their motion. Such internal frictional forces are a source of energy barriers
for motion. These barriers are caused by intra-chain and inter-chain effects, or some
other interactions between the different molecules in the system. The Eyring theory
[107] assumes that viscous flow is therefore an activated-rate process, i.e., it involves
the overcoming of a potential energy barrier of height Ea. This energy barrier is
overcome when temperature changes cause random variations of the energy of an
atom or molecular segment with time, leading to a finite possibility of exceeding the
value Ea. As a result, there are minimum energy points created inside the molecular
structure which was termed as holes, surrounded by larger cages of molecules with
higher energy barriers. For the viscous flow of most polymers in molten or solu-
tion forms, the activation energy is this minimum energy Ea required for the flow
unit (chain segment, usually a monomer). To do so, the monomer transits from the
current position to the neighbouring hole during the flow process, leaving behind a
hole in its place. A monomer can theoretically move between any point inside the
structure, but the thermodynamics of the system favour motion to that of a mini-
mum energy. This also leads to the fastest possible flow rates, and the lowest possi-
ble viscosity and frictional losses, corresponding to the activated-rate process. The
viscosity as per the Eyring theory can be expressed through the following relation:

η =
Nah
V

exp
Ea

RT
(3.6)
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where Na is the Avogadro’s number, h is the Planck constant, V is the molal volume,
R is the gas constant, T the absolute temperature and Ea the activation energy of the
process. The schematic is shown in Fig 3.1. It means that for ordinary viscous flow

FIGURE 3.1: Activation energy, and associated hole in the flow pro-
cess, as per Eyring.

we expect the polymer chains layers to slip over each other into a small hole. The
viscous flow activation energy can therefore be used to judge the degree of difficulty
in the material’s fluidity and evaluate its processing performance. In any scaling
model, the activation energy plays a crucial part in proper characterization of the
polymer-solvent system.

3.2.6 Scaling parameter, a

Every polymer-solvent system is characterized by a parameter a of order unity,
which provides details on the internal structure of any complex liquid. Crossovers
between the dilute, semi-dilute, and concentrated solution concentration regimes
cause differences in the internal structures, and hence changes in the value of a. It
was observed that a = β−1 for the dilute regime and a = RhRg

−1β−1 for semi-dilute
regime of concentrations [85, 94]. As shown by Kalwarczyk et al [86], a varied from
1.29 for hard sphere-like objects in dilute polymer solutions and colloids to 0.78 in
entangled systems. Of course, in their studies[86, 94], the entangled systems did
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34 Chapter 3. Development of a universal macroviscosity scaling model

not extend to the concentrated zone, and so the value of a for highly entangled sys-
tems could be even lower. Chemically different polymers demonstrate universal
enhancement of various molecular properties with increase in the chain length or
molecular weight M, such as coil dimensions and relaxation times. When analyzing
a wide range of polymer solutions, there are differences when identifying the scale at
which entanglement sets in. Some expect it to be effective at the scale of monomeric
contact, whereas experimentally it is characterised by a molecular weight between
entanglements M of the order of 100-200 monomer units. On shorter scales in poly-
mer melts the simple scaling due to hydrodynamic screening is observed. For all
these reasons, a uniform scaling parameter that allows expression of the viscosity of
the polymer solution is essential, and provided by the parameter a here. The values
for a determines the quality of the solvent for a polymer as well as the the type of en-
tanglements present inside the system. This in turn provides information regarding
the other parameters defining the viscosity.
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Chapter 4

Experimental conditions and
results

4.1 Materials

We have chosen polymers based on their widespread use and applicability, and de-
termined good solvents for the polymers based on the solubility parameter values.
Four different systems were selected with polymers varying in their polydispersity.
The information about the selected systems are shown in the table below.

TABLE 4.1: Polymer-solvent systems studied in this thesis.

Polymer Solvent Company Mol. wt.(g/mol) Polydispersity

HPC Water Sigma Aldrich 80000 4.71
100000 4.82

PDMS Ethyl Acetate Alfa Aesar

9000 1.93
28000 2.15
63000 2.78

139000 2.14
PAN DMSO Sigma Aldrich 150000 2.45

PMMA Toluene In-House 24000 1.08
MPIP, Mainz 70000 1.14

The solvents were also obtained from the same companies as the polymers and
with purity of 99.2%. The polydispersity is the ratio of the weighted average and
number average molecular weights obtained from the GPC measurements for the
weight distribution, shown in Section 4.3.

4.2 Viscosity measurements

Polymer solutions were prepared in a wide range of concentrations, depending
upon the type of system and applicable solution concentrations in the Newtonian
viscosity ranges. We prepared solutions of PDMS in ethyl acetate at 12 different con-
centrations ranging from 0.001 – 8.000 g/cm3. HPC, PMMA and PAN were pow-
dered polymers with limited solubility ranges in the solvents unlike PDMS in ethyl
acetate. Different concentration ranges for the solutions for these three polymers
were prepared from 0.005 – 1.000 g/cm3. We stirred the solutions at 800 rpm for 1-2
days, and 3 days for the highest molecular weight of PDMS.

We measured the viscosity of these solutions at temperature intervals of 5 K, over
a temperature range of 283-303 K. The first criteria was to show the Newtonian na-
ture exhibited by each polymer-solvent system, as discussed previously in Chapter
1 and shown for PDMS-ethyl acetate. For this purpose, the measurements for PDMS
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FIGURE 4.1: Newtonian nature of our studied HPC-water system,
some examples.

FIGURE 4.2: Newtonian nature of our studied PMMA-toluene sys-
tem, some examples.
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4.2. Viscosity measurements 37

FIGURE 4.3: Newtonian nature of our studied PAN-DMSO system,
some examples.

and PAN solutions were completely performed on a Malvern Kinexus Pro rheometer
using cone-plate geometry. Viscosity measurements for HPC and PMMA solutions
were performed using a Bohlin Gemini rheometer using the same geometries with
same configurations. The geometry chosen had a 0.02 radian angular gradient. The
temperature was kept to within ±0.1 K. The viscosity of dilute polymer solutions
was similar to that of the solvent. We conducted experiments using coaxial cylin-
der geometries to provide more accurate data in this area. Depending on the type
of polymer analyzed, the shear rate was kept between 0.1-1000 s-1, and the shear
stress range was varied accordingly. All of the measurements were carried out at
constant shear rates. PAN measurements in DMSO were carried out up to 288 K,
but not below, because DMSO freezes below that temperature. The zero-shear vis-
cosity was calculated using the linear viscosity data collected. The Figs 4.1-4.3 show
the linear Newtonian nature of the zero-shear viscosity of HPC, PMMA and PAN
solutions. This was similar to the Newtonian nature seen in our results for PDMS
solutions, shown previously in Fig 1.2. This zero-shear viscosity represented the vis-
cosity of the polymer solution. The corresponding information is provided in the
two Figs4.4-4.5, to provide clarity between the much higher concentrations of PDMS
than the other polymers.
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FIGURE 4.4: Viscosity data for all studied concentrations of PDMS at
temperature range of 283-303K.

FIGURE 4.5: Viscosity data for all studied concentrations of HPC,
PMMA and PAN at temperature range of 283-303K.
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FIGURE 4.6: Molecular weight distributions of PDMS measured at
298K by GPC.

4.3 GPC measurements

Gel permeation chromatography (GPC) measurements were performed to obtain the
molecular weight distribution and thereby the polydispersity index of each polymer.
GPC for PDMS were performed with a Viscotek dosing and pumping module GPC-
max VE 2001, triple detection module (RI, RALS / LALS, IV) Viscotek TDA 305, Vis-
cotek detector UV Detector 2600, Jordi Resolve DVB Medium MB gel column (300 x
7.8 mm), eluent - dichloromethane HPLC, flow 1 ml / min, separation temperature
and measurement 303 K. For calculations by conventional calibration, set 12 is used
narrow patterns PS ReadyCal set Mp 400-2 000 000.

Similarly, GPC measurements were performed for HPC, PAN and PMMA with
an Agilent Series 1260 device equipped with a PSS SECcurity pump and a PSS SEC-
curity RI refractive index detector. For the cellulose, 0.1M NaCl-water solution was
used as an eluent at a flow rate of 1.0 mL/min and at a temperature of 303 K . For the
PAN and PMMA, dimethyl formamide (DMF) and toluene, respectively, were used
as an eluent at a flow rate of 1.0 mL/min and at a temperature of 333 K and 303 K
respectively. Some of the obtained chromatography information is shown in Fig 4.6.
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4.4 DLS measurements

Hydrodynamic radius, Rh, of the polymer coils were measured through dynamic
light scattering technique (DLS). Dilute polymer solutions of a specific concentration
were used for each polymer molecular weight, and measurements were performed
at 293 K for all of them. A Malvern Zetasizer Nano equipment was utilized for this
purpose. the obtained mean size distribution for some polymer varieties variety are
shown in Fig 4.7. The setup was calibrated with standard PDMS and PMMA of
narrow molecular distribution and the sizes compared against literature. The mea-
surements for the polydisperse samples were performed after that. Sizes calculated
from light scattering is analyzed and reported as such.

FIGURE 4.7: Hydrodynamic radius, Rh, measured at 293 K for all
different molecular weights of PDMS through DLS.
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Chapter 5

Macroscopic viscosity analysis for
polymer solutions

5.1 Previously developed equation and its limitations

The viscosity of a solution is determined by a variety of internal characteristics
(which vary depending on the chemical composition of the solution) as well as
some key lengthscales in the system, such as size of the polymer coils (Rh and
Rg respectively), and the correlation length ξ [89, 101]. The correlation length is
strongly influenced by the polymer concentration in solution. As a result, polymer
solutions are typically divided into three types based on polymer concentration: di-
lute, semi-dilute, and concentrated. [12, 99, 73]. The idea of viscosity for different
length-scales was first explored during the previous studies of nanoprobe diffusion
in hexaethylene-glycol-monododecyl-ether and PEG/PEO solutions in water for a
wide range of nanoprobes’ sizes (0.28-190.00 nm) [84, 89]. The size of the probe sets
the length-scale at which we probe the viscosity. As already discussed in Chapter 1,
we determined the effective viscosity experimentally as a function of the probe size,
rp, from the diffusion coefficient of nanoprobes, D:

η(rp) =
kBT

6πDrp
(5.1)

The effective viscosity was calculated using the following theoretical equation:

η(rp) = η0 exp
[( γ

RT

)(Reff

ξ

)a]
(5.2)

Here, η(rp) is the effective viscosity experienced by the nano-probes (in units of
Pa.s), η0 is the solvent viscosity (also in units of Pa.s), R is the gas constant, T the
temperature in the absolute scale, kB is the Boltzmann constant, a is a structural
parameter of the order of unity, γ is the effective activation energy of the solution (in
kJ/mol), and ξ is the correlation length (in nm). Reff is the length-scale given by [85,
92, 94]:

Reff
-2 = rp

-2 + Rh
-2 (5.3)

where Rh is the polymer’s hydrodynamic radius in solution. In the case of large
probes, Rh<<rp, Eq 5.2 reduces to the macroscopic viscosity ηmacro of the polymer
solution:

ηmacro = η0 exp
[( γ

RT

)(Rh

ξ

)a]
(5.4)
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where ηmacro is the viscosity observed at the macroscale. This method has been suc-
cessfully applied to a variety of complex liquids: colloidal solutions, protein so-
lutions, micellar solutions, cytoplasm of HeLa cells and E.coli. Afterwards, a lot
of work was performed on analysis of the viscosity of polyethylene glycol (PEG)
solutions in water for dilute and semi-dilute concentration regimes, as elucidated
in a series of papers[89, 86, 102, 108]. As a consequence, a model for length-scale-
dependent viscosity in solutions was proposed, initially for a system comprising two
polymer species. The use of aqueous PEG/PEO solutions, whose single-component
solutions had already been well expressed in the form of viscosity scaling, offered
an easily interpretable comparison. The focus during development of the model
was entirely on double-entangled systems, which featured two characteristic length-
scales that were distinguishable to two different polymers, while ensuring that their
solution concentrations were such that they remained within the entangled zone.
For further identification of the individual contributions of each component, inves-
tigations were performed on systems that contained two PEG/PEO species with
molecular weights that vary by, at the very minimum, an order of magnitude. The
viscosity of all these systems were studied at both the macroscale (using rotational
rheometry) and nanoscale (through fluorescence correlation spectroscopic measure-
ment of molecular probe diffusion, similar to the previous nanoprobe diffusion stud-
ies). This approach allowed the development of the single equation, Eq 5.4 that was
thought of being capable for describing the viscosity of different types of polymer
solutions across all length-scales.

Previous approaches, on the other hand, were only valid in a modest parameter
space of concentrations (dilute, semi-dilute, or within some limits of these regimes),
molecular masses, and temperatures. One of the key issues with strong viscosity
models is the absence of results for various dependencies such as radius of gyration
as a function of concentration and temperature for various polymer-solvent systems
[73, 98] or activation energy for flow at various thermodynamic conditions. Al-
though the thermodynamics of polymer solutions is well understood [109], polymer
rheology is not. Another important underlying aspect integral to all these param-
eters is the molecular weight of the polymers, obtained from its distribution func-
tions. From the standpoint of theoretical developments, standard polymers with
well-characterized narrow chain distributions are ideal. On the other hand, practi-
cal applications are limited to faster manufacturing processes and techniques that
result in polymers with wider weight distributions. It’s also critical that the model
can be used on a larger scale, and that it can handle a wide range of polymers and
solvents, which was a limitation of the previous PEG/PEO-water model.

5.2 Applying overlap concentration, c*

To develop our model, our first consideration was expansion of the concentration
regimes to beyond the dilute-semi dilute studies for most well-developed scaling
theories, including our own model as described in Section 5.1. The classification of
concentration zones into non-entangled and entangled zones, as used in the PEG/PEO
systems, is based on the perspective of the polymer inside the solution. It allows us
to identify whether the polymers are well separated from each other (non-entangled,
or dilute), or their chain penetrate and intertwine with each other (entangled). Such
an approach can be effectively described by Fig 5.1.
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5.2. Applying overlap concentration, c* 43

FIGURE 5.1: Concentration zones based on whether systems are non-
entangled (dilute) or entangled (semi-dilute).

The crossover or overlap concentration c* was described previously in Eq 3.5.
Initially, the obtained viscosity data were plotted as a function of the c to c* ratio,
where both the concentration parameters c and c* were expressed in terms of the
mass of the polymer per unit volume of the solvent, according to de Gennes’ pro-
posed general scaling theory. The de Gennes’ theory states that such scaling plots
start to plateau off beyond the semi-dilute concentrations, after an initial linear rise.
As can be seen from Figs 5.2-5.3, a similar dependence was observed for our polymer
systems as in theory.

FIGURE 5.2: Results of relative viscosity measurements for PDMS-
ethyl acetate solutions plotted against ratio of concentration c to over-

lap concentration c*

However, such a theory is not enough to obtain a complete linear scaling across
different variables. This is because at higher concentrations, the plots plateau off
instead of collapsing on a single line. To take care of this, the viscosity scaling
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FIGURE 5.3: Results of relative viscosity measurements for HPC,
PMMA and PAN solutions plotted against ratio of concentration c

to overlap concentration c*

FIGURE 5.4: Initial scaling of viscosity data for PDMS of molecular
weight 28kg/mol at different temperatures. Only one crossover point
c* was applied (black vertical dotted line). The red vertical dotted line
indicated another change in properties from semi-dilute regime, al-
luding to the presence of a second crossover c** and the concentrated

zone. As per the fitting results, here we fixed c*.
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paradigm was developed initially by Wisniewska et al for PEG/PEO systems upto
semi-dilute concentrations, as mentioned before. The same scaling paradigm, Eq 5.4
was applied at first to our PDMS-ethyl acetate systems without making any changes
during fitting for any of the parameter values from the PEG/PEO-water system.
The results of such an approximate fitting are provided in Fig 5.4. It can be seen
from the Fig 5.4 that the low-concentration solutions complied with this relationship
to a greater extent than the samples with higher concentrations. Even though the
basic c/c* scaling of Fig 5.2 is also correct, the representation of Eq 5.4 scales the data
better. The deviation of this scaling results in Fig 5.4 from perfect linearity was due
to variations in the different fitting parameters of Eq 5.4 for a completely different
polymer-solvent system. However, the most crucial factor for such a deviation was
that there existed a second crossover at higher concentrations which was not con-
sidered. Such a crossover occurs within the entangled zone when the concentration
can no longer be classified as semi-dilute, but it is known as concentrated.

5.3 Introduction of cross-over from semi-dilute to concentrated
solutions, c**

To identify this crossover point, we decided to approach the nomenclature of the en-
tangled zones from the perspective of the amount of solvent present in the system,
and the number of interactions of the solvent molecules with the monomer chains in
solution. Literature reviews provided a solution to calculating this unknown second
crossover point. As described by Cheng et al [98], and Daoud et al [73], with increas-
ing polymer concentration, coil dimensions begin to shrink. This is due to a decrease
in the number of solvent-monomer contacts as the molar fraction of polymers in so-
lution increases. The pure polymer melt is the extreme limit of the concentrated
regime of polymer solutions. Cheng et al [98] presented an equation for the concen-
tration at the onset of the transition between semi-dilute and concentrated regime:

c∗∗ =
Rg

Rg(θ)

2(3ν−1)/(2ν−1)

c∗ (5.5)

where Rg(θ) is Rg for the pure polymer melt [110]. The parameter ν = 0.6 is from
the Flory model for polymers in good solvent [10]. This model, however, does not
always match experimental data. For linear PDMS chains, we looked to the radius
of gyration, Rg description by Gagliardi et al[111] to obtain the required weighted
average values from:

Rg = (0.0265± 0.005)M0.53±0.02
w (5.6)

Thus in the case of PDMS solutions, we applied ν = 0.53 instead of 0.6 in Eq 5.5 to
calculate the prospective c** values. As we progress into the concentrated region,
this is the point at which the composition of the complex liquid changes quantita-
tively. We interpreted the various local molecular interactions between the monomer
and the solvent based on those quantitative values to widely classify the solution
into three concentration zones. Consequently, via the molecular proportion of the
interacting molecules, we were able to determine the shift from semi-dilute to con-
centrated zone at:

molecular fraction of monomers in solution > 0.5
=⇒ c ≥ c**
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We could explain this by the fact that the number of solvent molecules interacting
per monomer unit of the polymer chains in the solution was less than 1-2 at such
large concentrations. Fig 5.5 depicts this definition of the semi-dilute - concentrated
crossover point c**.

FIGURE 5.5: Crossover point c** from semi-dilute to concentrated
regime based on molecular interactions. The denotes the solvent

molecules, while the bigger denotes the monomers.

FIGURE 5.6: Initial scaling of viscosity data for PDMS of molecu-
lar weight 28 kg/mol at different temperatures with both crossover
points c* and c**. It was observed that further scaling with regards
to other parameters was necessary. As per the fitting results, here we

fixed c** and a.

The effect of the solvent on the polymer is determined by the intermolecular
interactions oberserved for polymer chains in solution [76]. Since the number of
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interacting solvent molecules is far greater at lower concentrations, the correlation
length, as measured by Eq 5.3 (the junction of hard-sphere polymer coil interactions
to entangled coil interactions), governs the change from dilute to semi-dilute. It
should be noted that the size of the monomer and solvent molecules in Fig 5.5 is
merely a representation of the transitional phase or crossover point, and not to scale
according to their actual sizes. The corresponding Fig 5.6 shows the results with
the same parameter values as in Fig 5.4, with the addition of c** values. It could
be clearly seen that while there was an improvement in the linearity of the scaling
function, it needed better analysis of the other parameters influencing the viscosity.

The same viscosity scaling paradigm, Eq 5.4 was applied to our other three poly-
mer systems of HPC-water, PMMA-toluene and PAN-DMSO as well. The approach
was kept similar to that of PDMS-ethyl acetate, without changing any of the fitting
parameter values from the PEG/PEO-water results [108] for the applied intial scal-
ing. However, because these three were powdered polymers with a saturation limit
of dissolution in the solvents within our temperature range, calculations of c∗∗ re-
vealed that, unlike with PDMS-ethyl acetate, the applied concentrations did not ven-
ture into the theoretical concentration ranges above c∗∗. As a result, all fitting was ap-
plied in the dilute and semi-dilute concentration ranges as done by Wisniewska et al
[108] on PEG/PEO-water solutions. Another reason for having lower concentration
ranges for these three polymers was their Non-newtonian behaviour in solution at
higher concentrations, especially for HPC. At around 313 K approximately, the HPC
in water solutions starts to separate out and form precipitates, making it imperative
that all solutions are prepared and stored at ambient temperatures bewteen 283-303
K. Beyond 5% by weight concentrations in solution, HPC exhibits non-Newtonian
behavior. HPC has a maximum solubility in water of about 30% by weight, after
which it exhibits totally non-Newtonian behavior. As such, theoretically it was pos-
sible to obtain c** values for HPC in water solutions by applying Eq 5.5, however
prepared solution concentrations for viscosity analysis were always lower than the
established c** values. Theoretical c** values was around 27-30% concentrations by
polymer weight. The same limits were found for PAN-DMSO and PMMA-toluene,
with similar explanations for higher theoretical c** values, so all experimental con-
centrations were restricted to the semi-dilute concentration areas.

5.4 Coil dimensions Rh and Rg variations with concentration

There are different parameters that define the dimensions of polymer coils inside
the solution, providing different representations of structure-property relationships.
The exponent ν (Eq (5.4)) from Flory’s mean-field theory [10] allows us to obtain the
parameter β=3/4 which is essential for the correlation length ξ estimation. The cor-
relation length ξ exists only in the entangled zone, and is different to the parameter
gyration radius, Rg. As mentioned before in section 3.2 Rg describes the isolated
polymer coil blob size at all concentrations, whereas ξ defines the distance between
the interconnection points of the polymer networks. When the polymer coils are
well-separated in dilute zone of the solution concentrations, they are ideally treated
as perfectly spherical objects. It is assumed in such a zone that any changes in con-
centration does not impact the size of the coils, since they remain apart from each
other regardless of local monomer density fluctuations. Therefore, for dilute solu-
tions where there is no interconnected networks, it is more accurate to define ξ as the
mean distance between the centre of masses of different nearby coils. Correspond-
ingly, this allows to identify the position of all coils of the polymer in solution, a
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characteristic that is valid for defining ξ across all regimes of solution concentration
classification. In this way, estimates of mesh sizes and blob sizes can be obtained
even in semi-dilute and concentrated solution regimes (as postulated by Rubinstein
[112]).

A different coil dimensional parameter - the hydrodynamic radius, Rh, of the
polymer coils (defined previously in section 3.2, were measured at dilute concen-
trations through dynamic light scattering technique. The data obtained, when com-
bined with available empirical values of Rh obtained from literature for our stud-
ied different polymer-solvent systems, was subsequently used to fit in the scaling
equation (Eq 5.4). For long chains, empirical power law equations of the type [98]
Rc=KMv

y connect coil size (in terms of nm) and molecular weights (in terms of
g/mol), as shown in Eq 3.2. The constants K and y have values unique to a polymer-
solvent system [95, 96, 97], and the parameter Rc is typically defined as the gyration
or hydrodynamic radius. However, such relationships are not adequate enough to
obtain fluctuations in coil sizes due to higher concentrations, where there are much
higher effects of chain stiffness for instance. Based upon the work of Gagliardi et
al [111], Eq 5.6 was used to calculate the gyration radius Rg for PDMS, with minor
changes in the power law coefficient to account for the change in solvent and fit the
experimental data. It was more difficult to obtain emipirical power law relationships
for the hydrodynamic radius Rh in the case of PDMS-ethyl acetate systems, due to
lack of previous research data for this specific polymer-solvent system. Therefore,
we used dynamic light scattering measurements to obtain information about the Rh
for PDMS-ethyl acetate at dilute concentrations. To ensure that power law would
be valid, we fit the measured data within limits of other empirical power law equa-
tions available for different polymer systems [94] including other solvent systems
for PDMS [97, 96]. The fitting of Rh with Eq 5.4 resulted in the following power law
relation for PDMS-ethyl acetate:

Rh = (0.0113± 0.001)M0.57±0.01
w (5.7)

where Rh is determined in nanometers (nm). Power law relationships for Rh for the
other three polymer-solvent systems- HPC-water, PMMA-toluene, and PAN-DMSO,
were also obtained similarly from the DLS measurements. Similar to PDMS, they
were combined with available literature data [96, 97, 113, 114, 115, 116, 117, 118],
and the resultant coefficients and exponents of the different power law relations for
both Rh and Rg of our studied polymer-solvent systems have been presented earlier
in Tables 3.1-3.2.

When analyzing the structure within the polymer solutions, the coil dimensions
are considered constant, as formerly stated, even as concentrations increase. Usually
it is because previous studies of polymer solutions were focused on either the dilute
region of concentrations, or in the semi-dilute zones very close to the dilute regime.
The polymer coils are separated and far apart in the dilute solutions [73]. With such
a small number of coils in the solution, interchain or intrachain interaction effects
are irrelevant, and the coil dimensions are unaffected by even small concentration
changes. As such, the ratio of the coil dimensions Rh and Rg remain fixed at the
values obtained from power-law relationships. In the case of PDMS-ethyl acetate
for instance, the ratio in the dilute regime is given by:

Rh

Rg
= A, c < c∗ (5.8)
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where, the parameter A is obtained from Eqs(5.6,5.7) as:

A =
(0.0113± 0.001)M0.57±0.01

w

(0.0265± 0.005)M0.53±0.02
w

(5.9)

The corresponding Rh/Rg ratios for HPC-water, PMMA-toluene and PAN-DMSO
in the dilute solution regimes can be similarly obtained by dividing their power
law relationships available in Tables 3.1-3.2. Considering that previously established
values of Rh/Rg are approximately around 0.6 numerically for most polymers in
good solvents [119, 120, 121], the relationship for all our polymer-solvent systems
maintain the same numerical state in the dilute regime.

As we move further into higher concentration regimes, it is vital to consider the
effect of the local monomer fluctuations on the size of the polymer coils, to obtain
a clearer characterization of polymer solutions. Rh and Rg provide us information
not only about the effective size and orientation of polymer coils in solution, but
also regarding the hydrodynamic and static screening lengths that occur [122, 73].
Daoud and Jannink [73], and later on Cheng et al [98] proposed that due to increas-
ing screening effects of repulsive intrachain interactions being far greater than that
of interchain interactions, the coil dimensions should decrease with increasing con-
centrations in the semi-dilute and concentrated regimes. Bennett et al [122] utilized
the same approach to make it applicable for higher concentration regimes beyond c*,
while predicting that the variations of hydrodynamic screening length would lead
to fluctuations of polymer coil sizes as well. However this approach, which was
applied for PDMS solutions with other good solvents such as toluene and benzene,
predicts a decrease in the static and hydroydynamic screening length with increas-
ing concentration. The ratio of the hydrodynamic to the static screening lengths
therefore increase with increasing concentration. But this approach was developed
by having measurements of solutions with concentrations up to 0.2 g/ml, which is
slightly lower than the end of the predicted semi-dilute zone in our data for PDMS-
ethyl acetate systems. It is also the same situation when using dynamic light scat-
tering measurements to obatining information for Rh, where we are limited to using
concentrations within the dilute or lower semi-dilute zone. In order to obtain any
information about further effects of coil dimension changes, we are usually limited
to thoretical assumptions based on neutron scattering experiments. Our viscosity
paradigm scaling theory instead provides information about coil dimension fluctu-
ations with concentration changes in the same principle as that of Bennett, upto the
semi-dilute zone. This leads to a slight increase in the coil dimensions in the semi
dilute zone, and we initially determined the following relationship in the case of
PDMS-ethy acetate systems:

Rh

Rg
= Ax0.053±0.005, c∗∗ > c > c∗ (5.10)

with x being the mole fraction of the monomer in the solution, and parameter A as
obtained from Eq 5.14 above. Our predicted exponent for x (approximately 0.053)
is slightly lower than that developed by Bennett et al [122] (approximately 0.15) for
other PDMS-solvent systems. Following this, we applied the same theory for our
other three polymer-solvent systems, and by fitting all the relevant data through Eq
5.4, we arrived at the following general relationship for polymer coil size variations
in the semi-dilute regime:

Rh

Rg
∼ xr, c∗∗ > c > c∗ (5.11)
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where r is the value of the exponents for the mole fractions in the case of each dif-
ferent polymer system. The values of A can be determined using Tables 3.1-3.2 as
mentioned before. All our predicted exponents r for the polymer mole fractions
are provided in Table 5.1. The exponents for HPC are far lower than for the other

TABLE 5.1: Exponent r defining the dependence of coil sizes on mole
fractions x

Polymer system r
HPC-water 0.005

PMMA-toluene 0.043
PAN-DMSO 0.053

PDMS-ethyl acetate 0.053

polymers [118, 123, 124], as HPC has a far stiffer chain and resists deformations.
Consequently, it leads to far lower increase in sizes as compared to the other poly-
mers.

The interactions between the monomer and the solvent are reduced to a greater
degree in the concentrated zone than in the semi-dilute zone. The screening effect
explained by Bennett [122] or Cheng [98] extends to the concentrated zone, possibly
before the onset of the second crossover. However, we assume that the intrachain
repulsive interactions in the semi-dilute zone are much greater than those in the con-
centrated zone. Interchain attractive interactions significantly outnumber intrachain
repulsions at large polymer concentrations, and this accumulation of chains within
the solution matrix decreases the hydrodynamic to static screening ratio as concen-
tration rises. Correspondingly, a decrease in the Rh/Rg ratio follows. For the sake of
convenience, we suggest that beyond the second crossover, at higher concentrations,
the coil dimensions shrink:

Rh

Rg
= Ax−0.047±0.001, c > c∗∗ (5.12)

The coil dimensions become similar to the original unperturbed sizes as the solution
approaches melt properties. The above Eqs 5.8-5.16, and fitting of the experimental
viscosity data to the values of the constants allows us to gain a better understanding
of the effect of concentration on coil dimensions. This is extremely crucial to the
analysis of the structure and behavior of polymer coils in good solvents.

The three powdered polymers HPC, PMMA and PAN did not have solution con-
centrations that could reach the concentrated zones, and so, their ceoncentration-size
dependence in the cocentrated regime was not determined, unlike for PDMS-ethyl
acetate [2]. This is a general issue with most polymers in that their effective concen-
tration zones usually lie in the semi-dilute concentration regions by theory. This also
explains why most available scaling theories in literature were usually developed
for semi-dilute concentration regimes. The parameter Rh is crucial for obtaining the
specific polymer-solvent relationship. The Rh/Rg ratio is calculated using our fitted
model, and it implicitly relates to hydrodynamic volume changes relative to viscos-
ity as described under shear flow (obtained through Eqs 5.1, 5.3, and 3.3). Most
importantly, we have attempted to offer a simpler model that explicitly provides the
size changes due to various stiffness effects, rather than the different variables that
affect chain stiffness.
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5.5 Scaling parameter a

The scaling exponent a in Eq 5.4 is a parameter of order unity that changes discon-
tinuously at the crossover to the different concentration regimes. When the initial
scaling paradigm was developed in PEG/PEO-water solutions, it was observed that
a = β−1 for the dilute regime and a = RhRg

−1β−1 for semi-dilute regime of concen-
trations [108]. This parameter a is clearly a feature of a particular polymer-solvent
system, and it provides details on the internal configuration of any complex liquid
[101]. Changes in the internal properties (as illustrated by the differences in coil
sizes) result from switching between the three regimes of dilute, semi-dilute, and
concentrated solutions, and hence leads to changes in the value of a. [12, 64, 125,
126]. Fitting of the Eq 5.4 allows us to obtain the different values of a within accept-
able deviations as provided in the Table 5.2 for all polymer systems investigated so
far [94, 2, 127].

TABLE 5.2: Scaling parameter a values for different polymer systems,
in different concentration regimes - dilute (Dil), semi-dilute (SDL)

and concentrated (Conc).

Scaling parameter a values
Polymer system Dil SDL Conc Error

HPC-water 1.28 0.85 - ± 0.02
PMMA-toluene 1.25 0.75 - ± 0.02

PAN-DMSO 1.25 0.86 - ± 0.02
PDMS-ethyl acetate 1.28 0.85 0.59 ± 0.02

The values are in line with the available literature values for other polymer sys-
tems [128, 129, 130, 131] in dilute and semi-dilute systems. It can also be seen from
Table 5.2 that the values of a for dilute and semi-dilute regimes maintains the same
form, as shown in the polymer systems developed by Wisniewska et al [94, 108]
for PEG/PEO-water. Fitting also allows us to obtain the a values for the concen-
trated zone as well in the case of PDMS-ethyl acetate solutions. The obtained data
for a remain applicable for all different molecular weights of these polymer-solvent
systems. Our scaling parameter a is very similar to and of the same order as the
well-defined Mark Houwink parameter. As observed for the Mark Houwink param-
eter, typical values are around 0.8 for a good solvent for polymers, with variations
between 0.5-0.8. As the polymer flexibility in the solution reduces, this parameter
value rises to beyond 1.0. Similarly, in our case, the scaling parameter a is depen-
dent on the chain entanglements, with purely inflexible spherical approximation in
the dilute zone (a = 1.25-1.30), and according to variation in semi-dilute (a = 0.75-
0.86) and concentrated zones (only for PDMS solutions) (a = 0.58-0.61).

5.6 Activation energy parameter, γ, and its components

Viscosity is a rate activated entity for flow processes, similar to that of chemical reac-
tions. Every motion requires an overcoming of the barrier or threshold, below which
the motion stays inactive and above which the it proceeds. For any fluid to flow, it
needs to arrest the various frictional forces existing between the molecular layers.
Thus there exists a parameter in our scaling paradigm for identifying the amount
of threshold energies required for negating before the the viscous flow is activated.
Our developed activation energy parameter γ [94] is related through the rate theory
of Eyring [107, 132], as already discussed in section 3.2. The basis of parameter γ
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is overcoming the molecular layer frictional energies so that the layers start to slip
over each other by one molecule at a time. This slippage of one molecular layer past
the surrounding molecules though a small hole results in the flow of the solution.
We further expanded the study of this parameter to identify the exact nature of its
components [2]. Depending on the solution concentrations, the amount of frictional
interactions inside the system varies, and so does the energy required for the flow
of the viscous solution. Since there is always a certain amount of polymer present
in our solutions, the total interaction parameter, γ, is assumed to be a sum of the
weighted fractions of the different molecules inside the system. Thus γ is defined
as:

γ = γ1,2X1 + γ2,2X2 (5.13)

where the subscripts 1 denote solvent and 2 denotes monomer, and X denotes the
mole fraction of the corresponding component. Through the fitting procedure ap-
plied to Eq 5.4, we obtain estimates of the different activation energy parameters in
the same way as we obtained for the coil size fluctuations and scaling parameter
before. The results of the fitting for γ parameters are provided in the Table 5.3.

TABLE 5.3: Activation energy parameters for all polymer-solvent sys-
tems studied in Eq 5.13

All γ are in units of kJ/mol
Polymer-solvent γ1,2 γ2,2

HPC-water 4.20±0.50 2.70±0.30
PMMA-toluene 4.60±0.70 3.10±0.60

PAN-DMSO 4.30±0.30 2.90±0.25
PDMS-ethyl acetate 4.00±0.50 2.75±0.50

The subscripts 1, 2 denote the solvent-monomer activation parameter, which is
the prevalent one in the semi-dilute zone, as previously mentioned. Accordingly,
any variations in the total energy are affected by gamma1,2 values during the fitting
process, while the other components are considered constant. This is maintained in
the same manner for the concentrated zone with γ2,2. Both components are kept con-
stant during the fitting for the dilute zone, since such situations involve activation
energies primarily due to the frictional forces of the solvent molecules. The pure sol-
vent viscosity parameter, η0, provides the necessary solvent molecular interactions
for consideration. From the information of Table 5.3, it can be seen that the overall
γ varies around 4.00 kJ/mol (± 0.50 kJ/mol) across all range of mole fractions for
all the molecular weights. Activation energies for different systems as reported in
various literature [94, 108] are of the same magnitude for the viscous motion of such
polymer solutions. The activation energies for the systems are very similar, even
though there are differences in the monomer sizes of the different polymers. The
expected HPC monomer size is almost 7-8 times larger than that of PMMA, PEG,
PDMS or PAN monomers. It implies that the activation energy of polymer solutions
is not very dependent on the monomer size. Most analysis for polymer solutions
utilize the well-known Flory-Huggins interaction parameter for identifying the in-
ternal interaction values inside them. From literature reviews, we observed that the
values of the Flory-Huggins parameter for each of our four polymer-solvent systems
also has very close values around 0.48 for all. They vary by 5-10% in their values de-
pending upon the types of solvents. It is similar to our observations that simple
molecular interactions are not the exact source for the activation energies, regardless
of the concentration of the solution. This is contrary to our original assumptions for
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describing the nature of the activation energies for viscous flow of solutions. Ini-
tially we felt that the amount of the three internal interactions in a two-component
system - monomer-monomer, monomer-solvent and solvent-solvent interactions -
would determine the effective activation energy required for the viscous flow. How-
ever, in such an assumption the size of the monomer would indeed play a big part,
which does not seem to be the case when we consider the derived activation energies
for the HPC-water solutions. It could be due to the fact that water-soluble polymers
often develop hydrophobic interactions, which strikingly lead to phase separation
or a demixing on heating. This rather complex cooperative interaction induces an
additional ordering of the water molecules in the immediate vicinity of hydrophobic
groups. With semi-flexible chains like the cellulose derivatives, long chains may be
soluble, but short ones of the same substitution pattern unexpectedly become insol-
uble and tend to crystallize [133]. We assume that such tendencies lead to lowered
activation energies for the HPC monomers in water solutions, even though their
sizes are larger.

5.7 Molecular weight averaging function in polydisperse sam-
ples

We have shown previously that through GPC measurements, we obtain the molecu-
lar weight distribution of our polymers which provides their weight average molar
mass, Mw. This mass is used as the molecular weight in the scaling model to obtain
the different scaling parameters. When the scaling model was developed initially
for PEG/PEO-water solutions or for nanoprobe diffusion, highly standard polymers
with narrow molecular weight distributions were used. For this reason, there was no
reason to consider any polydispersity effects in the scaling method. In our studies,
we have tried to ensure that the model can be used for a wide variety of polymers
with different variables, including the ability to use it for non-standard industrial
polymer grades. The easiest way to do that is to ensure that the molecular weight
distribution covers the differences in individual chain masses due to polydispersity.
We initially tried to apply the weighted average Mw for the scaling model, and ob-
served that the scaling obtained for our polymer systems were not as linear as it
could be. In the Figs 5.7-5.9, we show the results of scaling for some of our polydis-
perse polymer systems - HPC-water and PAN-DMSO. We also combined it with the
scaling for monodispersed PMMA-toluene solutions, and the results confirmed that
a rectification of the averaging function employed for the polydispersed samples
was necessary.

Different forms of averaging functions of the generated chromatographic weight
distributions may be used to determine the molecular weight of polymer chains.
Within any polymer, the chains are seldom of equal length and weight, resulting in
a weight distribution. Because of the kinetics or thermodynamics of the reactions,
polymerization techniques cause molecular weights to be scattered across various
polymer chains. This distribution of molecular weights (MWD) determines the be-
havior of a polymer in solution or melt form. It is important to obtain a definition
of mean or average of these MWDs in order to link the polymer’s behavior to its
typical molecular weight. Theoretically, different methods are available in litera-
ture for determining this average molecular weight [134, 135, 136, 137], and they
are employed through fractionation techniques such as GPC to obtain information
about the different fractions. In reality, however, the separated fractions are only
somewhat narrower in distribution than the rest of the polymers. These fractions
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FIGURE 5.7: Viscosity scaling plots for HPC-water at all temperatures
(283-303 K), plotted for calculations made with Mw.

FIGURE 5.8: Viscosity scaling plots for PAN-DMSO at all tempera-
tures (283-303 K), plotted for calculations made with Mw.
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FIGURE 5.9: Combined viscosity scaling plots for all molecular
weights of HPC-water, PAN-DMSO and PMMA-toluene at all tem-
peratures (283-303 K), plotted for calculations made with Mw. As per

the fitting results, here we fixed the coil dimension changes and γ.

are imagined as perfect and reported as such. Mathematically, the simplest method
for obtaining the average molecular weight is simply an arithmetic mean of the mo-
lar masses of each macromolecule, and is know as the number average molecular
weight, Mn. It is of the form:

Mn =
∑∞

i=1 MiNi

∑∞
i=1 Ni

(5.14)

The weight average molecular weight, Mw, is the second and most widely used
averaging term. It considers the sum of the product of the weight fraction and the
molar mass of each species. It is usually calculated by:

Mw =
∑∞

i=1 Mi
2Ni

∑∞
i=1 MiNi

(5.15)

The Mn predicts the number of particles in each species present inside a system. The
Mw however informs not only about the number of molecules in each species, but
also their masses The polydispersity index, or PDI, of a polymer sample is calculated
using the ratio of the above two mass indices. Therefore:

PDI =
Mw

Mn
(5.16)

The closer this index approaches to 1, the more similar the fractions within the poly-
mer are in terms of length and weight, and the narrower their distribution function
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becomes. However, polymers synthesized using standard industrial manufacturing
methods are seldom flawless in terms of polymer chain uniformity. As a result, the
PDI of polymers is always greater than 1, and Mn<Mw. It also indicates that using
Mw or Mn to define the mass of polydisperse samples isn’t appropriate, since two
individual polymer chains of greatly differing weights may be described by a mean
unrelated to their characteristics.

There is another function that can also be used to obtain the molecular weight
of the polymers by using a relative method, as developed by Chee et al [138]. It
involves measuring the intrinsic viscosities of dilute polymer solutions, and using
the Mark-Houwink-Sakurada (Eq 5.5) relationship to obtain the viscosity average
molar mass as:

Mv =

[
∑∞

i=1 Mi
1+a′Ni

∑∞
i=1 MiNi

] 1
a′

(5.17)

where a′ is the Mark-Houwink (MH) parameter available for specific polymer-solvent
systems. The Mark-Houwink (MH) equation can also be obtained when our Eq 5.4
is reduced to a generalized form. In fact, the scaling parameter a in our Eq 5.4 is of
the same form as the MHS exponent a′, and replaces it in all of our calculations, as
already discussed in section 5.5. Mv always takes up values in between Mn and Mw
[136, 139, 140]. The distribution of molar masses can be depicted as in Fig 5.10. It

FIGURE 5.10: Molar Mass distributions.

can be seen that for all situations, Mn<Mv<Mw. Using Taylor series expansion of
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Eq 5.17, and disregarding the higher expansion terms of a, a simple linear equation
relating Mw and Mv can be obtained as:

Mv = Mw + S(a− 1) (5.18)

where S is quantified as:

S =
∑∞

i=1 Mi
2Ni

∑∞
i=1 MiNi

lnMi −MwlnMw (5.19)

On further investigation, it can be observed that the parameter S and Mw can be
related through a digamma function of PDI, and it is of the form:

S
Mw

= ψ(b + 2)− ln(b + 2) (5.20)

Here ψ(x) is the digamma function in (x), which in this scenario is the parameter b,
and b itself is related to the PDI as:

b =
PDI− 2
1− PDI

(5.21)

It demonstrates that, despite the fact that most literature uses Mw and Mv inter-
changeably for molecular weight data, this is not always the case. The values will
differ greatly depending on the polydispersity in a lot of situations. Crucially, it can
be observed that the Eqs 5.20-5.21 cannot describe the case when the PDI = 1 exactly,
since b becomes undefined. Taking limits of Eq 5.20, we find that:

for PDI−→ 1
=⇒ S/Mw −→ 0

& Mv −→ Mw

in Eq 5.18. The Schulz distribution function, on which the above Eqs 5.20-5.21 are
based on, was derived from real systems, and in all such cases, Mn≤Mw. For the
ideal perfect scenario where Mw = Mn, there is no need for any model or rele-
vant equations and the distribution function shown in Fig 5.10 collapses to a sin-
gle straight line. Consequently, Mv is the same in this case as the other molecular
weight averaging methods. Therefore, the aforementioned equations are significant
because they provide a method for obtaining various averaging indices of molecular
weights dependent on their features in real systems. This is more beneficial.

TABLE 5.4: Mv and Mw relations for the polymer systems

Polymer Mw g/mol PDI S/Mw Mv g/mol
HPC80k 107336 4.71 -0.442 95475

HPC100k 146690 4.82 -0.446 130346
PMMA24k 25063 1.08 -0.037 24831
PMMA70k 73416 1.14 -0.381 66418
PAN150k 333257 2.45 -0.324 306266

PDMS9000 12167 1.93 -0.260 11375
PDMS28000 27615 2.15 -0.291 25607
PDMS63000 55870 2.78 -0.353 50936
PDMS139000 92895 2.14 -0.290 86168

Commercial polymers’ polydispersity has a major impact on their applicability.
All previous scaling models were created for highly monodispersed standardized
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FIGURE 5.11: Viscosity scaling plots for HPC-water at all tempera-
tures (283-303 K), plotted for calculations made with Mv.

FIGURE 5.12: Viscosity scaling plots for PAN-DMSO at all tempera-
tures (283-303 K), plotted for calculations made with Mv.
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FIGURE 5.13: Combined viscosity scaling plots for all molecular
weights of HPC-water, PAN-DMSO and PMMA-toluene at all tem-
peratures (283-303 K), plotted for calculations made with Mv. As per

the fitting results, here we fixed Mv, and replaced all Mw.

polymers, as mentioned earlier. Mass production of monodispersed polymers is un-
common in reality. Through Eqs 5.15-5.21, we show the capacity to use our base Eq
5.4 for all types of polymer molecular weight distributions, whether wide or narrow.
As can be seen from our GPC results, the HPC polymers had high polydispersities of
over 4, and even the polyacrylonitriles had a relatively higher polydispersity. Judg-
ing from Eq 5.18, it can be seen that for monodisperse samples and PDI close to 1,
the different molecular weight averages, Mw and Mv, are identical and it does not
matter which is used for quantitave measurements through the model. In this sce-
nario, it’s more popular to use a distribution that can be accessed more quickly by
testing, such as GPC. However, once the PDI reaches a certain level, the distance be-
tween the distributions widens, making Mv a more accurate option for polydisperse
samples. It takes various chain weight fractions into account and gives an averaging
method that is closest to the peak. As such, applying Eqs 5.15-5.21, we can obtain
the Mv for the different polymer fractions with different molecular weights and it
is shown in the Table 5.4. It can be seen from the Table 5.4 that in case of PMMA
systems, the PDI is very low, and can always be approximated as monodispersed
sample. However, there is still certain variations in the different molecular weight
distributions, and the low effect of it is observed through the S/Mw ratios.

The scaling parameter a used in these equations is the same as the scaling param-
eter a used in our modelling of the dilute solution zones. All of these calculations
for Mw or intrinsic viscosity per the Mark-Houwink equations are done at dilute
solution ranges, which is consistent with theory. It keeps our study on point with
the theory and moves the averaging value to a more accurate estimate. As can also
be seen from Table 5.4, the difference in Mw and Mv for the highly monodisperse

http://rcin.org.pl



60 Chapter 5. Macroscopic viscosity analysis for polymer solutions

samples is extremely low (less than 5%) and therefore maintains the theory that they
can be used interchangeably in all such calculations.

Applying Mv for Mw for HPC and PAN calculations provides us with an overall
linear fitting as can be seen in Figs 5.11-5.13. All the fitting curves are compared
with the use of Mw (Fig 5.9) and Mv (Fig 5.13) separately, and the linearity of the
curves noted. It informs us that fitting with Mv is clearly a better choice than Mw,
and therefore should be considered in the case of polydisperse samples to obtain a
more accurate picture.

5.8 Final fitting results

The final accurate curve of the scaling paradigm was obtained by proper interpre-
tation and implementation of the various parameters in Eq 5.4. Having applied the
appropriate values of all the different parameters mention in sections 5.1-5.7, we ar-
rived at the Fig 5.14 for PDMS-ethyl acetate systems. Since the PDMS system was
the only one containing the concentrated regime in its scaling, it is necessary to show
its fitting separately to give a better idea, as shown in Fig 5.14.

FIGURE 5.14: Complete viscosity scaling for PDMS-ethyl acetate so-
lutions at all moleular weight ranges, including the temperature de-
pendence and the change of parameters at different crossovers. The
labels ’D’ represents the dilute regime, ’SD’ the semi-dilute regime
and ’C’ the concentrated regime, with the dotted lines in-between
representing the cross-over points c* and c** respectively. All fitting

parameters were verified before.

Individual scaling curves for HPC, PAN and including PMMA were already
shown in Figs 5.13, which contained the proper application of all the different scaling
parameters as per Eq 5.4. The following Fig 5.15 is just a combination of the results
from Fig 5.13 and Fig 5.14 to provide a complete picture of the total linear scaling.
Taking into account the proposed model’s simplicity as well as the assumptions and
estimations used in the descriptions of ξ, crossover points c∗ and c∗∗, coil dimen-
sions Rh and Rg, viscosity average molecular weight distribution Mv, and scaling
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and activation energy parameters a and γ, we deem the linear model’s consistency
to the experimental data to be really successful. This can be seen in Figs 5.14-5.15.

FIGURE 5.15: Continuation of the complete viscosity scaling includ-
ing the temperature dependence and the change of parameters at
different crossovers. Measurements were performed on PDMS-ethyl
acetate, HPC-water, PAN-DMSO and PMMA-toluene, for different
molecular weights (9-300 kg/mol), concentrations (0.001-8.000 g/cm3

for PDMS, 0.005-0.300 g/cm3 for HPC, PAN and PMMA), and tem-
peratures (283-303 K). All fitting parameters were verified before.

5.9 Connectivity to established scaling laws

We probed further into the applicability of the linear scaling model from Eq 5.4
than the viscosity scaling models provided in literature by the general Kirkwood-
Riseman [120], Martin [32], Huggins [30], Baker [36], and others [34, 35, 38, 39, 141,
43, 28, 42, 41, 72, 77]. There have also been equations specific to certain polymer-
solvent systems as developed by Warrick et al [53] and Kolorlev et al [52]. These
equations have the basic form of the relationship for viscosity of polymer solutions
as:

η = η0(1 + c[η]) (5.22)

where [η] is the intrinsic viscosity. As mentioned before, for the non-entangled
regime (dilute solutions), a=β-1, and the general form of Eq 5.4 reduces to:

η = η0[1 +
γ1,2

RT
(

Rh

Rg
)a c

c∗
] (5.23)

where we consider only the first term of the series when the exponential function in
Eq 5.4 is expanded. This shows that our scaling equation has the same form as Eq
5.22 when considered in the same limits of low concentrations for solutions. Eq 5.22
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and Eq 5.23 are of the same general form, and the intrinsic viscosity is expressed as:

[η] =
γ1,2

RT
(

Rh

Rg
)a 1

c∗
(5.24)

The inverse relationship between intrinsic viscosity and overlap concentration
c* is also observed in this form , as per the Mark-Houwink equation [66, 142, 143].
Easy estimations of the intrinsic viscosity for polymer dilute solutions can be made
through Eq 5.24. More expansion terms of the exponential series in Eq 5.4 will show
more precise equations that are similar to the Huggins equation in its most widely
used form [30].

If we replace the concentration in g/mL in our Eq 5.4 by the volume fraction φ
occupied by the polymers in the solution, then the general equation can assume a
different form similar to that of Krieger-Dougherty. For a constant molecular weight,
the size parameters would be a constant, and instead of c*, we would obtain a max-
imum packing volume fraction φm when the viscosity approaches infinite values.
With γ, R and T being constants as well, The Eq 5.4 would then take up the form:

η

η0
= exp

[(γ1,2

RT

)(
k′′

φ

φm

)]
(5.25)

where k” is a constant obtained from the calculations of radius and molecular weights.
Depending on whether we use a stretched exponential function or not, the equation
can accordingly reach the form of Mooney [41] or Krieger-Dougherty [42].

If we replace the radius parameters in Eq 5.24 with their power law forms as
shown in Eq 3.2 (R ∝ My), and the form of c* in Eq 3.5, we can arrive at the following
general form:

[η] = A
(γ1,2

RT

)
Ma′′ (5.26)

where A is a constant obtained by replacing the coefficients in the different equa-
tions, and a′′ is the accordingly obtained exponent of the order of unity. For other
parameters remaining constant, this is the form exhibited by models such as that
of Lyons-Tobolski [43] or Mark-Houwink [49] ([η]=KMa’]. Of course all our plots
are dimensionless stretched exponential curves related to the concentration, and it
conforms to the models of Simha [58], Utracki [57], Zakin [60], etc.

The Monkos model (Eq 1.33) can be obtained directly if we substitute our param-
eters to obtain similar form to the constants in his model. This way we obtain the
general form:

η ∝ exp
( γ

RT

)
(5.27)

where we obtain direct relation between the viscosity to the activation energies.
As a result, the relationship defined by Eq 5.4 can be suggested for a broad range

of scenarios involving the characterization and analysis of polymer solutions in all
regimes.
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Chapter 6

Summary and Conclusions

FIGURE 6.1: Summary of macroscopic viscosity scaling model.

In this work, we have developed the previously established nanoscale viscosity
scaling paradigm for suitable application to macroscale viscosity analysis as a poly-
mer characterization technique. Utilizing previous studies of PEG/PEO-water solu-
tions as the base, we investigated and modified all the different model parameters,
and applied it to multiple different polymer solutions systems. We have ensured
that proper definitions of variables that affect the viscosity of a polymer solution
have been obtained so that this scaling model can function as an universal charac-
terization technique.

• Our scaling provides a method for characterizing the macroscale viscosity of
polymer solutions. It is applicable for a broad range of concentrations, molec-
ular weights, temperatures and polydispersities.

ηmacro = η0 exp
[( γ

RT

)(Rh

ξ

)a]
(6.1)

η(rp) =
kBT

6πDrp
(6.2)

Reff
-2 = rp

-2 + Rh
-2 (6.3)
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• Our studies involved measurable parameters, not simply fitted parameters.

Rc = KMy (6.4)

ξ = Rg(
c
c∗
)−β (6.5)

• Two distinct crossovers between the concentration regimes were found in our
overall studies, as represented by the c* and c**. The scaling parameters as well
as the concentration dependent coil dimensions are altered at these crossover
points. The equations for crossover points were:

c∗ =
Mw

4
3 πR3

gNA
(6.6)

c∗∗ =
Rg

Rg(θ)

2(3ν−1)/(2ν−1)

c∗ (6.7)

• Scaling parameter a changes were of the same order as for the previously re-
ported polymer systems.

• Coil dimension model was carefully developed and applied here appropri-
ately [2]. This allows to guarantee that the effects of concentration changes,
interchain and intrachain interations, repulsions and screenings are portrayed
in the resulting size and structure of the polymer-solvent systems. These find-
ings reaffirm that the volume occupied by macromolecules, as well as the dy-
namic molecular structures created by them, greatly influence the rheological
properties of complex systems.

Rh

Rg
∼ xr, c∗∗ > c > c∗ (6.8)

• Previously developed notions of viscous flow as an activated energy process
[92, 108, 94, 2] have been successfully reevaluated to obtain information re-
garding the various components influencing the flow of complex systems.

γ = γ1,2X1 + γ2,2X2 (6.9)

• The proposed approach has been developed based on common polymer char-
acterization notions: Flory exponents, correlation length and hydrodynamic
and gyration radii. All parameters were carefully interpreted and calculated
while taking into consideration every variations due to concentration and tem-
perature changes.

• Furthermore, through Eqs 5.18-5.21, We use it for a wide range of standardized
and non-standard polymers.

Mv = Mw + S(a− 1) (6.10)

This allows for a greater application of the technique from pure academic re-
search to useful industrial processing applications, with an emphasis on com-
mercially used polymers. The majority of studies use samples that are ex-
tremely monodispersed. However, large-scale synthesis of such monodispersed
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polymers is impractical, and the resulting theories are of limited use in large-
scale applications. The ultimate effect of obtaining a general scaling model
applicable for large numbers of commercially available polymers is highly im-
portant since they are used more regularly.

• Our scaling model is not directly applicable for polymer melts. The use of the
solvent viscosity and the solvent component of the interaction energy are vital
to this form of scaling, but these parameters do not exist for a pure polymer
melt. Our model can be approximated to reach the form of η ∝ M3.4 relation-
ship for polymer melts as proposed by various models [19, 144], however, the
exponent would not be the same. For a specific temperature, the different pa-
rameters used in our Eq 5.4 such as η0, ξ, and γ1,2 are constants. In fact, ξ is
maintained as a constant for the concentrated solution regime and does not
change beyond the semi-dilute regime as it has no physical meaning in such a
regime. Therefore, the Eq 5.4 can be treated as:

η = A exp
[(

γ1,2X1 + γ2,2X2

RT

)(
Rh

B

)a]
(6.11)

where A and B are constants relating to the entanglements present inside a
system. In fact, the first term in the brackets of the above Eq 6.11 would also
become 0 for a polymer melt. Since the coil sizes would still be a function of
the molecular weight of the polymer, the entire equation can be rewritten to
the form:

η = A′ exp
[(γ2,2

RT

)
Mm

]
(6.12)

where A’ is an overall constant and m exponent relates the molecular weight
dependence of the viscosity for polymer melts. This has the same form as pro-
posed in literature [19, 144]. Of course, polymer melts are rarely Newtonian
in nature, and require far in-depth rheological studies to determine their vis-
cosity as well as other properties. Since polymer solutions have different form
compared to polymer melts, we conclude that our scaling model requires more
investigation into identifying the constants mentioned in Eqs 6.11-6.12 so that
it can also be applied to polymer melts.

• We developed our conclusions after performing precise viscosity measure-
ments through accurate techniques for a number of model good solvent sys-
tems: HPC in water, PMMA in toluene, PAN in DMSO, and PDMS in ethyl
acetate. Based on previously well established scaling model, this investiga-
tion shows that it can be further enhanced to cover more extensive complex
systems. Literature data [86, 94, 108, 2, 98, 122, 111] supports the validity of
our proposed physical approach, in conjunction with curves obtained from our
own experimental results. We have therefore shown through extensive stud-
ies that such a model that was developed from the diffusive motion studies
of nanoscale objects in complex systems [89, 85, 102] can be used to analyze
and characterize polymer solutions for all purposes. This completes our ap-
proach to establishing a uniform length-scale characterization method for dif-
ferent types of polymer systems with different purpose of application.
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