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Abstract
The formation of structures in living organisms is addressed within the framework of far-
from-equilibrium chemical systems using methods of statistical physics, such as kinetic
theory and stochastic methods, at an intermediate, mesocopic scale. Three directions are
explored. For the purpose of investigating the stochastic elimination of a fast variable, a
fast species is eliminated from a nonlinear chemical mechanism. The fluctuations of the
slow species using Langevin equations and a master equation are not correctly predicted
by the reduced mechanism. The coupling between the fluctuations and the nonlinearities
of deterministic dynamics makes the use of the quasi-steady-state approximation deli-
cate when the studied system requires a good control such as in fluorescence correlation
spectroscopy (FCS). A submicrometric Turing pattern is simulated in a concentrated sys-
tem in order to refute certain objections to Turing’s model regarding the preservation
of proportions in embryos. Assuming an appropriate role of the solvent in the chemical
mechanism is sufficient to control the wavelength of the structure by monitoring the con-
centration of the solution. The results can be exploited to design materials with controlled
submicrometric properties in chemical engineering. Following a biomimetic approach, ex-
perimental conditions leading to the termination of the Turing structure associated with
a decrease of the wavelength are proposed. The sensitivity of the Fisher-Kolmogorov,
Petrovsky, Piskunov wave front to small perturbations is used to characterize the effects
of the deviation from the dilution limit on diffusion. As a result, the shift of the concentra-
tion profiles of two species associated with different diffusion coefficients is a well-adapted
criterion to detect perturbations induced by high concentrations. Contrary to the results
of a deterministic description, the front speed deduced from the master equation in the
dilute case sensitively depends on the diffusion coefficient of the consumed species. In the
case of a concentrated solution, the properties of the wave front obtained in the dilute
case remain valid but are mitigated by cross-diffusion terms which reduce the impact of
different diffusion coefficients.

http://rcin.org.pl



Streszczenie
Tworzenie struktur w organizmach żywych rozważane jest w ramach odległych od równowagi
układów chemicznych przy użyciu metod fizyki statystycznej, takich jak teoria kinetyczna
i metody stochastyczne, w pośredniej, mezoskopowej skali. Badane są trzy kierunki. W
celu zbadania eliminacji szybkiej zmiennej stochastycznej, wprowadzono szybko reagu-
jący związek do nieliniowego mechanizmu chemicznego. Fluktuacje związku o powolnej
dynamice uzyskane za pomocą równań Langevina i równania master nie są prawidłowo
przewidywane w mechanizmie zredukowanym. Sprzężenie fluktuacji z nieliniowością dy-
namiki deterministycznej sprawia, że stosowanie przyblizenia quasi-stacjonarnego jest de-
likatne, gdy badany układ wymaga dobrej kontroli, np. w spektroskopii korelacji fluo-
rescencyjnej (FCS). Submikrometryczna struktura Turinga jest symulowana w układzie
stężonym w celu odrzucenia pewnych zastrzeżeń do modelu Turinga dotyczących zachowa-
nia proporcji w zarodkach. Przyjęcie odpowiedniej roli rozpuszczalnika w mechanizmie
chemicznym jest wystarczające do kontroli długości fali struktury poprzez monitorowanie
stężenia roztworu. Wyniki mogą być wykorzystane do projektowania materiałów o kon-
trolowanych właściwościach submikrometrycznych w inżynierii chemicznej. Zgodnie z
podejściem biomimetycznym, proponowane są warunki doświadczalne prowadzące do za-
kończenia struktury Turinga związane ze zmniejszeniem długości fali. Wrażliwość frontu
fali Fishera-Kolmogorowa, Petrovskiego, Piskunova na małe perturbacje jest wykorzysty-
wana do scharakteryzowania wpływu odchylenia od granicy rozcieńczenia na dyfuzję. W
rezultacie, rozsunięcie profili stężeń dwóch składników związanych z różnymi współczyn-
nikami dyfuzji jest kryterium dobrze dostosowanym do wykrywania perturbacji wywołanych
przez wysokie stężenia. W przeciwieństwie do wyników opisu deterministycznego, pręd-
kość frontu wyprowadzona z równania master w przypadku rozcieńczonym zależy od
współczynnika dyfuzji gatunku konsumowanego. W przypadku roztworu stężonego, właś-
ciwości frontu fali uzyskane dla przypadku rozcieńczonego pozostają ważne, ale są łagod-
zone przez efekty dyfuzji krzyżowej, które zmniejszają wpływ odmiennych współczyn-
ników dyfuzji.
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Preamble

Living organisms are fascinating examples of reaction-diffusion systems evolving into self-
organized structures through sustained exchanges with the environment. Periodic time
oscillations of concentrations, chaotic behaviors, and complex spatial structures are ob-
served in chemical systems maintained far from equilibrium [1, 2, 3, 4].

The formation of Turing patterns and the propagation of a wave front are recognized
as playing an essential role in the structuring of living organisms [2]. In 1952, Tur-
ing proved that reaction-diffusion processes in initially homogeneous far-from-equilibrium
systems may lead to the formation of periodic spatial patterns observed in biology [5].
Zebra stripes and leopard spots are classical illustrations of the contribution of far-from-
equilibrium reaction-diffusion systems to the modeling of morphogenesis. Turing’s model
is now used as a chemical basis for embryo development, e.g. in limb formation and teeth
development [6, 7]. Even earlier, in 1937, Fisher built a model describing the propagation
of a favored trait in a population. Simultaneously, Kolmogorov, Petrosky, and Piskunov
studied the traveling solution of the same equation, further referred to as the FKPP wave
front. The information conveyed by a signaling wave front during segmentation is at the
base of different models of development [8, 9, 10, 11, 12].

Although associated with chemical mechanisms involving elementary steps between
molecules, Turing patterns and FKPP wave fronts were first studied within the framework
of a macroscopic approach based on partial differential equations. However, the descrip-
tion of phenomena arising during the early development, when the embryo is composed of
a small number of cells, may require approaches at smaller scales. The interplay between
fluctuations and nonlinear dynamics is known to induce non intuitive, model-specific be-
haviors [1, 13, 14]. The description of reaction-diffusion systems at the mesoscopic scale
requires stochastic methods introducing random variables but still ignoring the detail of
molecular dynamics [15, 16]. The crudest stochastic method used to describe reaction-
diffusion systems consists in adding a Langevin force to the deterministic equations and
assuming that the probability distribution of the concentrations is Gaussian [13, 14].
The correct description at the mesoscopic scale leads to a master equation relying on
the well-founded hypothesis that reactions and diffusion are Markov processes. Reac-
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tions are seen as birth and death processes, whereas diffusion is interpreted as jumps
between adjacent spatial boxes [1]. Numerical simulations become necessary to describe
dynamics at the molecular scale. When the details of electronic reorganization within a
molecule can be ignored, classical mechanics is sufficient to describe particle dynamics.
Simulations of molecular dynamics involve the computationally expensive deterministic
processing of particle displacements and collisions, which could compromise reaching the
space and time scales necessary for the emergence of structures in growing systems. In
these conditions, it is appealing to consider the smart method intuited and developed
by Graeme Bird and known as the direct simulation Monte Carlo (DSMC) [17, 18, 19].
DSMC has been designed to simulate the dynamics of dilute gases and is particularly
adapted to space applications [20, 21, 22]. The collisions are efficiently treated through
a random procedure known as Monte Carlo. It has been proven [23] that DSMC simu-
lates the Boltzmann equations governing the evolution of the distribution functions for
position and velocity of the particles [24]. In addition to following the laws of kinetic
theory, DSMC provides stochastic trajectories and correctly simulates the fluctuations
in agreement with the master equation [25]. Hence, the direct simulation Monte Carlo
method offers an efficient alternative to molecular dynamics and gives access to space and
time scales compatible with the simulation of emerging micrometric structures.

In this work, I developed stochastic approaches to far-from-equilibrium structures and
focused on Turing patterns and Fisher-Kolmogorov, Petrovsky, and Piskunov wave fronts,
both for their relevance in biology and the richness of their behavior from a fundamental
point of view. Within this framework, several usual approximations have been revis-
ited. The question of the elimination of a variable, encountered in the study of Turing
patterns, incited me to investigate the validity of the widely used steady-state approxi-
mation in systems with large fluctuations. I was also led to consider the deviation from
the high-dilution limit as a possible way to tune the features of a pattern. Beyond the ap-
plication to the adaptability of a structure, dealing with concentrated systems prompted
me to deepen my knowledge of the cross-diffusion phenomenon and the associated form
of Fick’s law deduced from irreversible thermodynamics in the linear domain [26]. In par-
allel, extending both the master equation and the direct simulation Monte Carlo method
to concentrated solutions was an attractive challenge.

The manuscript is organized as follows. In the Chapter I, I recall the analytical and
numerical methods that I used and adapted to concentrated systems.

The validity of the steady-state approximation in a small chemical system is questioned
in Chapter II. In order to investigate to which extent the description of the fluctuations
remains correct after elimination of a fast variable, I compared the correlations of concen-
tration fluctuations for two different chemical mechanisms leading to the same reduced
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mechanism in which a reactive intermediate species has been omitted. I first drew an
analogy between the steady-state approximation and the Born-Oppenheimer approxima-
tion and expressed the conditions of validity of the steady-state approximation applied at
the macroscopic scale. Then, I developed two stochastic approaches. Using an analytical
Langevin approach and simulations of the master equation, I showed that the correlations
of concentration fluctuations of the slow species are different depending on whether a fast
intermediate species is considered or not in the reaction scheme. In biology, Fluores-
cence Correlation Spectroscopy (FCS) is widely used to study the dynamics of labeled
species, for example to evaluate rate constants when the reaction scheme is supposed
to be known [27, 28]. The interpretation of the results requires the comparison of the
experimental data with analytical expressions of the correlations. My results point out
that, even if it enables the analytical computation of the correlations, a tractable reduced
reaction scheme could be misleading. The results have been published in G. Morgado,
B. Nowakowski, and A. Lemarchand, Elimination of fast variables in stochastic nonlinear
kinetics, Phys. Chem. Chem. Phys. 22, 20801 (2020) [29].

Chapter III is devoted to Turing patterns. After recalling the basics of Turing struc-
tures, I place the subject in the context of morphogenesis. Turing’s model relies on a
remarkably small number of processes involving two initially homogeneously distributed
chemical substances that interact to produce stable patterns. The model involves two
chemical species, an activator and an inhibitor. The minimal reaction-diffusion scheme
for the emergence of Turing patterns requires the autocatalytic production of the acti-
vator and the faster diffusion of the inhibitor [30]: The structure develops through local
self-enhancement in conjunction with long-range lateral inhibition [31]. The wavelength
of the periodic spatial structure is determined by the reaction rate constants and the
diffusion coefficients of the chemical species. Contrary to Taylor vorticies in hydrody-
namics, the striking property of Turing patterns is that the wavelength of the structure
does not depend on the boundary conditions. The robustness of Turing patterns is a
strong feature, but also an argument against them in morphogenesis. Indeed, Turing pat-
terns lack scaling properties: they do not account for size adaptation of the wavelength
to the global size of the system. Yet, models of somitogenesis should reflect that the size
of the vertebrae is proportional to the size of the embryo [32, 33, 34, 35]. I addressed two
points related to the growth of a Turing pattern in a growing system, the question of the
scaling properties of a periodic spatial structure and the question of the termination of
the structure.

Recently, the Polish-French group proposed to solve the problem of scaling of a Turing
pattern at the macroscopic scale by considering the possible perturbations induced by high
concentrations of reactants [36]. In these conditions, the variation of the concentration
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of the solvent cannot be neglected. The model that the group developed includes the
participation of the solvent into the reaction scheme. This third substance introduces an
additional variable concentration that can be harnessed to control the behavior of the
system. Changing the dilution of the medium makes it possible to tune the wavelength
of the emerging Turing pattern. During this PhD, I performed a deeper analysis of
the three-variable model at the microscopic scale and examined if the deviation from
the high-dilution limit also induces a control of the pattern in small systems. A proof
of concept based on simulations of particle dynamics was necessary. To this goal, I con-
sidered the direct simulation Monte Carlo (DSMC) method and adapted it to concentrated
solutions. The simulations show that doubling the concentration of the solute leads to
decreasing the wavelength of the structure by a factor of 2. The results can be considered
as a possible interpretation for proportion preservation of embryos in morphogenesis.
They can also be used to design materials with controlled submicrometric properties in
chemical engineering. The results have been published in G. Morgado, B. Nowakowski,
and A. Lemarchand, Scaling of submicrometric Turing patterns in concentrated growing
systems, Phys. Rev. E 98, 032213 (2018) [37] and were presented at the 31st International
Symposium on Rarefied Gas Dynamics in Glasgow, in 2018 [38].

The question of the termination of a spatial structure is compelling in morphogenesis:
The spine of the vertebrates ends with smaller vertebrae and the fingers with smaller
phalanges. Within the framework of Turing patterns, this phenomenon implies both a
decrease of the amplitude of the spatial oscillations and a decrease of the wavelength.
Deciphering the mechanisms actually controlling the termination of the spine in an em-
bryo is far beyond the scope of this work. The aim was to propose a possible mechanism,
inspired by biological structures and compatible with the implementation in a chemical
engineering context. The boundary conditions chosen by the group in 2016 [36] to model
the growth of the spine behind a freely propagating wave front are well adapted to the
design of an artificial spatial structure. I performed a systematic analysis of the effect
of all rate constants and diffusion coefficients on the stability and the wavelength of the
structure. Interestingly, a monotonous variation of almost any of the dynamical param-
eters leads to the simultaneous loss of stability of the structure and the decrease of the
wavelength. Only the variation of the diffusion coefficient of the activator causes anticor-
related results. Locally varying a rate constant or the diffusion coefficient of the inhibitor
in a given chemical system is not straightforward from an experimental point of view.
For an easy implementation in chemical engineering, I suggest to impose an appropriate
spatial profile for the concentration of the reservoir of inhibitor, resulting in the expected
variation of the effective rate constant controlling the injection of the inhibitor in the
system and leading to the desired termination of the structure. The results have been
published in G. Morgado, L. Signon, B. Nowakowski, and A. Lemarchand, Termination
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mechanism of Turing patterns in growing systems, Acta Phys. Pol. B, 50, 1369 (2019) [39].

The results obtained for the model of Turing patterns with a reactive solvent have
opened new directions of research. The deviation from the high-dilution limit has an
impact on both reaction and diffusion. In the case of Turing patterns, the perturbation of
diffusion induced by high concentrations has a negligible effect on the wavelength of the
structure. In order to investigate the possible consequences of the perturbation of diffusion
in a concentrated reaction-diffusion system, I considered the case of pulled wave fronts,
known to be sensitive to even small perturbations [40]. The results dealing with wave
fronts are given in Chapter IV. For species with identical diffusion coefficients, the group
already showed that an FKPP front is sensitive to the discrete nature of particles [41]
and to reaction-induced deviations from partial equilibrium [42]. I proposed an FKPP-
based model involving two species A and B engaged in the reaction A + B −−→ 2 A
with different diffusion coeffcients. In a concentrated system, the resulting wave front
turns out to be a sensor revealing perturbations of diffusion at the macroscopic scale.
Specifically, I showed that the difference of concentrations between the two species A and
B at the inflection point of the A profile is a good indicator for diffusion perturbation in
concentrated systems. The results have been published in G. Morgado, B. Nowakowski,
and A. Lemarchand, Fisher-Kolmogorov-Petrovsky-Piskunov wave front as a sensor of
perturbed diffusion in concentrated systems, Phys. Rev. E 99, 022205 (2019) [43].

Deviations from the high-dilution limit are more prone to happen in small systems,
typically in a living cell, where the amplitude of concentration fluctuations are signifi-
cant. I therefore performed a stochastic analysis of fluctuation effects on an FKPP front
with perturbed diffusion in a mesoscopic system. Unexpected results on a more than
eighty-year-old problem have been obtained: In a dilute system of small size, the wave
front propagates more slowly than expected if species B diffuses faster than species A.
In a concentrated system, the results are mitigated by cross-diffusion which reduces the
effect of different diffusion coefficients. The results have been published in G. Morgado,
B. Nowakowski, and A. Lemarchand, Stochastic approach to Fisher and Kolmogorov,
Petrovskii, and Piskunov wave fronts for species with different diffusivities in dilute and
concentrated solutions, Physica A 558, 124954 (2020) [44].

Chapter V contains conclusions.
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Chapter I

Methods

This chapter presents different theroretical tools of macroscopic and stochastic descrip-
tions of dynamical systems in chemistry that will be used in later chapters. Mathematical
notations are also introduced.

I.1 Chemical kinetics

All considered systems involve reactive species and possibly non reactive species such as
the solvent. The steps of a reaction scheme are supposed to be elementary reactions for
which the standard laws of kinetics apply. The left-hand side of elementary steps involve
one or more molecules. When only one molecule is involved in the left-hand side, the step
leads to a first-order reaction rate. At the microscopic scale, it usually corresponds to
an internal molecular reorganization. When two molecules are involved in the left-hand
side, the step leads to a second-order reaction rate. At particle scale, it occurs through
reactive collisions between two molecules.

It is very unlikely that a collision of more than two molecules occurs. Therefore,
we consider that reactions of order higher than two result from the reduction of a set
of elementary steps of first and second orders. The assumptions making this reduction
possible will be discussed in Sec. II. Each chemical species is assumed to be subject to
diffusive transport.

For some systems, we introduce reservoirs. A reservoir maintains the concentration
of a chemical substance constant by instantaneously removing or adding molecules when
needed. A reservoir is denoted by the letter R in a reaction scheme, and its constant
concentration denoted by cR.

http://rcin.org.pl



2 Chapter I. Methods

I.1.1 Rate equations

We consider a reaction scheme involving m different steps with n different species Xi.
Each step j is associated with a rate constant kj such that

n∑
i=1

αi,jXi
kj−−→

n∑
i=1

βi,jXi (I.1)

where αi,j and βi,j are possibly vanishing stoichiometric coefficients.
The rate equations for the concentrations ci of species Xi associated with this reaction

scheme are

dtci =
m∑
j=1

kj [βi,j − αi,j ]
n∏

i′=1
c
αi′,j
i′ (I.2)

where the symbol dt denotes the derivative with respect to time d
dt .

The system state at a given time t is then defined by the vector of concentrations
c = (c1(t), c2(t), ..., cn(t))

If the chemical species Xi is involved in a second or higher-order reaction, the system
given in Eq. (I.2) is nonlinear and, in most cases, has no analytical solution.

I.1.2 Reaction-diffusion equation and Fick’s law

In addition to the reaction, we introduce diffusive transport. Diffusion tends to homoge-
nize concentrations in an inhomogeneous medium. According to Fick’s law, the diffusive
flux ji of a given chemical species Xi is proportional to the concentration gradient

ji = −Di∇ci (I.3)

where Di is the diffusion coefficient of species Xi. In a reaction-diffusion system, the local
variation of concentration ci of species Xi is expressed as the sum of a reactive term and
a diffusive term, where the latter is given by the divergence of the flux

∂tci =
m∑
j=1

kj [βi,j − αi,j ]
n∏

i′=1
c
αi′,j
i′ −∇ · ji (I.4)

where the symbol ∂t denotes the partial derivative with respect to time ∂

∂t
.

In concentrated mixtures involving more than two species, cross-diffusion effects may
appear and are discussed in Sec. I.3
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I.1 Chemical kinetics 3

Equation (I.4) is valid in a macroscopic approach, in which local fluctuations have
been neglected.

I.1.3 Linear stability analysis

In the general case of a homogeneous chemical system, dynamics is governed by a nonlinear
system of differential equations for the concentration vector c = (c1, ..., cn)

dtc = f(c) (I.5)

where f is a vector function characterizing the reaction rates.

The local dynamics around a steady state c0 = (c0
1, ..., c

0
n) obeying

dtc0
i = 0, ∀i (I.6)

can be studied by the linearized dynamics around this state. In order to perform a linear
stability analysis, we introduce the small deviation δci = ci− c0

i to the steady state which
obeys

dtδc = M0δc (I.7)

where δc = (δc1, ..., δcn) and

M0 =
(
∂f(c)
∂c

)
c=c0

(I.8)

is the Jacobian matrix for c = c0, called the stability matrix. Some laws of conservation
can be observed and reduce the number of independent variables. We consider that the
n variables are all independent. The deviation δc is related to the vector γ = (γ1, ..., γn)
in the eigenbasis of M0 by

δc = Pγ (I.9)

where P is the change-of-basis matrix. The linear differential equations given in Eq. (I.7)
lead to uncoupled equations in the eigenbasis of M0

dtγi = µiγi (I.10)

where µi are the eigenvalues of M0. Equation (I.10) is straightforwardly solved, leading
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4 Chapter I. Methods

Fig. I.1 The five typical phase portraits for an n = 2 system. [2]

to

γi = γini
i eµit (I.11)

where γini
i is the initial value of γi.

From Eq. (I.11), it appears that the linear stability of the system is governed by the
eigenvalues µi. If the real parts of all eigenvalues are negative, then the system eventually
converges towards the steady state c0. The time τi = 1/|Re(µi)| corresponds to the
typical relaxation time in the direction associated with γi, as long as the deviation δc is
in the linear domain around the steady state c0.

In Fig. I.1, different phase portraits are presented for an n = 2 system. Five typical
phase portraits exist: the stable node corresponds to two real negative eigenvalues, µ1 < 0
and µ2 < 0, the stable focus corresponds to two complex-conjugate eigenvalues whose real
parts are negative, Re(µ1)< 0 and Re(µ2)< 0, the unstable node corresponds to two real
positive eigenvalues, µ1 > 0 and µ2 > 0, the unstable focus corresponds to two complex-
conjugate eigenvalues whose real parts are positive, Re(µ1)> 0 and Re(µ2)> 0, and the
saddle corresponds to two real eigenvalues with different signs, det M0 = µ1µ2 < 0.
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I.2 Stochastic chemical kinetics 5

Finally, substituting Eq. (I.11) for γi into Eq. (I.9), we obtain

δci =
∑
j

Pijγ
ini
j eµjt (I.12)

Linear analysis describes local evolution around a steady state within the framework
of a macroscopic, deterministic approach. In small systems, close to situations where the
dynamics is sensitive to small perturbations, such as bifurcations, a deterministic analysis
may be insufficient. A stochastic approach, including the description of the fluctuations
at the mesoscopic scale, is then required.
I have used linear stability analyses extended to inhomogeneous systems to study the
termination of a Turing structure [39] presented in Sec. III.2.

I.2 Stochastic chemical kinetics

Although chemical dynamics is driven by discrete elementary processes, it is usually
sufficient to consider deterministic equations to describe the macroscopic evolution of
a chemical system. However, fluctuations may not be negligible in small systems and a
stochastic approach may be required [1, 16, 45]. In this section, we introduce two different
stochastic descriptions of a chemical system, the chemical Langevin equations [13, 14] and
the master equation [1].

I.2.1 Chemical Langevin equations

In this subsection, we introduce a probabilistic approach to a reactive system [46]. We
consider the vector of concentrations c as a vector of random variables. Intuitively, the
propensity or transition rate pj(c) that the j-th step of the reaction occurs in the next
time interval [t, t+ dt] depends on the order of the step. The probability for a first-order
step to occur is proportional to the number of molecules Ni in the system, since each
molecule is susceptible to be re-organized

pIj (c)dt =Probability that a molecule re-organizes itself

×Number of molecules Ni (I.13)
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6 Chapter I. Methods

The probability for a second-order step to occur depends on the product of two probabil-
ities

pIIj (c)dt =Probability that two given molecules collide

× Probability that two colliding molecules react

×Number of possible pairs of molecules (I.14)

According to kinetic theory, the first probability is proportional to the average relative
speed and collision cross-section of the two molecules and inversely proportional to the
system size Ω. The second probability expresses that reaction occurs if the collision
energy exceeds a certain threshold known as activation energy. The product of these two
probabilities gives the so-called rate constant introduced in Sec. I.1, except that specific
care is needed in order to convert a probability derived from a discrete number of molecules
into a proportionality factor that deals with continuous concentrations. Specifically, the
conversion introduces as much Ω factors as the order of the reaction.

If concentrations ci are locally homogeneous, pj(c) is typically similar to the reactive
term in Eq. (I.2) for all reaction orders

pj(c) ' Ωkj
n∏
i=1

c
αi,j
i (I.15)

During a finite but small time interval [t, t+ τ ], the number of reactions rj (c, τ) of step
j is a random variable whose mean 〈rj〉t,τ is deduced from Eq. (I.14)

〈rj〉t,τ = pj(c)τ (I.16)

where the concentration c is evaluated at time t. For the reaction scheme given in Eq. (I.1),
the concentration ci at time t+ τ is given by

ci(t+ τ) = ci(t) + 1
Ω

m∑
j=1

(βi,j − αi,j) rj (c, τ) (I.17)

Some conditions must be fulfilled for Eqs. (I.16) and (I.17) to hold. On the one hand, τ
must be sufficiently small for the variations of concentration between two consecutive time
steps to be small. It implies that the propensity given in Eq. (I.14) is constant over the
time interval [t, t+ τ ]. This condition is satisfied if the number of each type of molecules
in the system is much larger than 1. On the other hand, τ must be sufficiently large for
rj (c, τ) to be substantial, i.e. for the mean number of reactions 〈rj〉t,τ to be much larger
than one. It is not unusual to find systems with sufficiently large numbers of molecules
that respect both conditions. Typically, mesoscopic systems are of adequate size for these
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I.2 Stochastic chemical kinetics 7

two conditions to be satisfied.

It can be argued that each random variable rj (c, τ) follows an independent Poisson
distribution of mean µ. However, the construction of a standard Langevin equation
introduces independent first and second cumulants of the probability distribution of c.
Using the condition that the system contains a large amount of molecules, each Poisson
random variable rj (c, τ) can be approximated by a normal random variable N (µ, σ2) of
same mean µ and variance σ2. The linear combination theorem for normal distributions

N (µ, σ2) = µ+ σN (0, 1) (I.18)

and Eq. (I.16) allow us to write Eq. (I.17) into the form

ci(t+ τ) = ci(t) + 1
Ω

m∑
j=1

(βi,j − αi,j)
[
pj(c)τ + (pj(c)τ)1/2N (0, 1)

]
(I.19)

Considering the time τ as an infinitesimal time interval dt that respects the conditions
mentioned above and using Eq. (I.15), we write Eq. (I.19) as a chemical Langevin equation

dci
dt =

m∑
j=1

kj (βi,j − αi,j)
n∏

i′=1
c
αi′,j
i′ +

m∑
j=1

(βi,j − αi,j)
[
kj

n∏
i′=1

c
αi′,j
i′

]1/2

ξj(t) (I.20)

with independent Gaussian white noises ξj(t)

〈ξj(t)〉 = 0

〈ξj(t)ξj′(t′)〉 = δj,j′δ(t− t′) (I.21)

In Eq. (I.20), the first term is the deterministic rate equation given in Eq. (I.2) and
the second term is a noise term denoted by ηi. The noise ηi is written as the sum of the
noises ηi,j associated with the reaction steps j involving the chemical species Xi

ηi(t) =
m∑
j=1

ηi,j(t) =
m∑
j=1

(βi,j − αi,j)
[
kj

n∏
i′=1

c
αi′,j
i′

]1/2

ξj(t) (I.22)

The variances and covariances of the noises 〈ηi(t)ηj(t′)〉 are given by

〈ηi(t)ηj(t′)〉 =

 m∑
j′=1

kj′
(
βi,j′ − αi,j′

) (
βj,j′ − αj,j′

) n∏
i′=1

c
αi′,j′
i′

 δ(t− t′) (I.23)

I have used the Langevin approach in the study of the stochastic elimination of fast
variables [29] presented in Sec. II.
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8 Chapter I. Methods

I.2.2 Master equation

a) Reactive-only system

Although a Langevin approach is a good start, it requires some assumptions on the size
of the system and the nature of the fluctuations. The master equation offers a better
description of a system at a mesoscopic scale [1, 14, 47]. We consider that the system has
a given probability P ({Φ}, t) to be in a given state

{Φ} = {N1, N2, ..., Nn} (I.24)

at time t. The system state is described by the discrete numbers Ni of molecules of each
chemical species Xi. During a finite time interval [t, t+ τ ], the probability of finding the
system in a given state {Φ} evolves according to all possible reactions. The reactions
are assumed to be Markov processes. Consequently, the probability P ({Φ}, t+ τ) for the
system to be in state {Φ} at time t + τ only depends on system state at time t and the
transition rates or propensities between all states at time t and the state {Φ} at time t+τ

P ({Φ}, t+ τ) =P ({Φ}, t)× Probability to remain in the state {Φ}

+
∑
{Φ′}

[P ({Φ′}, t)× Probability to jump from state {Φ′} to state {Φ}] (I.25)

The probability of leaving a given state is the sum of the probabilities to go from that state
to any other one. The probability to remain in a given state is simply (1− Probability of
leaving that state). If we note T ({Φ} → {Φ′}) the transition rate from state {Φ} to state
{Φ′}, Eq. (I.25) can be written as

P ({Φ}, t+ τ)− P ({Φ}, t) =
∑
{Φ′}

[P ({Φ′}, t)× T ({Φ′} → {Φ})− P ({Φ}, t)× T ({Φ} → {Φ′})]

(I.26)

Intuitively, the probability of leaving the current state {Φ} is the probability that one
reaction occurs in the time interval [t, t+ τ ], as in Eq. (I.14). Therefore, we use the same
assumption as in Eq. (I.15) but with discrete numbers of molecules

∑
{Φ′}

T ({Φ} → {Φ′}) =
m∑
j=1

pjτ =
m∑
j=1

kj

n∏
i′=1

A
Ni′
αi′,jτ (I.27)

where we made explicit the number of possible pairs of molecules

A
Ni′
αi′,j = Ni′ !

(Ni′ − αi′,j)!
(I.28)
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I.2 Stochastic chemical kinetics 9

Finally, assuming that the time τ is sufficiently small to be considered as an infinitesimal
time interval dt and using Eqs. (I.26) and (I.27), we write the master equation for a
homogeneous reactive system

∂tP ({Φ}, t) =
m∑
j=1

kj

[
n∏

i′=1
A
Ni′−(αi′,j−βi′,j)
αi′,j P ({Φ′j}, t)−

n∏
i′=1

A
Ni′
αi′,jP ({Φ}, t)

]
(I.29)

where the state {Φ′j} is the state that evolves into the state {Φ} after one elementary
reaction j.

b) With diffusion

In order to take diffusion into account in a master equation, we introduce at least one space
dimension and the transition rates describing the diffusive processes. For any reaction-
diffusion system, the master equation can be divided into two terms

∂tP ({Φ}, t) = ∂tP ({Φ}, t)|reaction + ∂tP ({Φ}, t)|diffusion (I.30)

where the first term accounts for the reactive processes described in Eq. (I.29) and the
second term accounts for the diffusive processes. For the sake of simplicity, we assume that
there are N molecules of only one chemical species X. The system is a one-dimensional
array of length L, divided into ` boxes of length ∆x = L

`

where each box is considered homogeneous. We use periodic boundary conditions. The
number of molecules in each box i is denoted by N(i, t). The state of the system is given
by

{Φ} = {N(1, t), N(2, t), ..., N(i, t), ..., N(`, t)} (I.31)

Similarly to Eq. (I.26), the probability to leave the state {Φ} during a time interval [t, t+τ ]
is equal to the probability that a single molecule of the system jumps from its current
box to a neighboring one [1, 14]. Assuming that boxes are independent, the probability
to leave the state {Φ} can be written as the sum of all probabilities in each box for one
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10 Chapter I. Methods

molecule to jump

Prob. to leave state {Φ} =
∑
{Φ′}

T ({Φ} → {Φ′}) (I.32)

=
∑̀
i=1

Prob. that one molecule leaves box i (I.33)

The probability to remain in the state {Φ} is then simply (1-Probability to leave state
{Φ}). Hence, we only need to determine the probability that a molecule leaves a box i.
This probability is given by the propensity di that one molecule leaves the box i

didt =(Probability that the molecule jumps to the left (I.34)

+Probability that the molecule jumps to the right) (I.35)

×Number of molecules in the box i (I.36)

According to kinetic theory, the probability for a molecule to go left or right is proportional
to the square root of temperature [14]. The Einstein relation gives the relation between
the macroscopic diffusion coefficient of Eq. (I.3) and temperature. Typically, in large
systems, the diffusive flux between two cells is related to the propensity di. We have

di '
2D
∆x2N(i, t) (I.37)

where D is the diffusion coefficient of the chemical species X. Using this approximation,
we write the diffusion term of Eq. (I.30) for a single species in the form

∂tP ({Φ}, t)|diffusion = D

∆x2

∑̀
i=1

(Ni + 1) [P ({N(i− 1, t)− 1, N(i, t) + 1}+ P ({N(i, t) + 1, N(i+ 1, t)− 1}]

− 2NiP ({Φ}, t) (I.38)

where only the number of molecules differing from N(i, t) in cell i are made explicit.
I have used a master equation approach in the study of the stochastic elimination of a

fast variable [29] presented in Sec. II and in the analysis of fluctuation effects of an FKPP
wave front [44] presented in Sec. IV.2.2.

I.3 Concentrated solution

Usually, in solutions, solvent particles are nonreactive and in large excess compared to
reactants. Hereafter, a solution is said highly diluted when the local solvent concentra-
tion is arguably constant. Considering the high-dilution limit ensures that the diffusion
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I.3 Concentrated solution 11

coefficient of all reactants and the concentration of the solvent are constant. Hence, in
the case of a reactive solvent, its concentration can be included into the rate constants of
the corresponding reactions. However, small systems may be crowded, which invalidates
the approximation of a large amount of solvent. The study of the effects of a deviation
from the high-dilution limit in small systems is therefore necessary.

I.3.1 High-dilution limit

We present the effect of the deviation from the high-dilution limit on the reaction-diffusion
dynamics using a simple example. We consider the Verhulst model [48]

A + S k−−→ 2 S (I.39)

where A is a reactive species and S a reactive solvent. In the absence of hypothesis on
the relative orders of magnitude of the concentrations cA and cS of species A and S, the
rate equation for A is

dtcA = −kcAcS (I.40)

The total concentration ctot of chemical species

ctot = cA + cS (I.41)

is constant according to Eq. (I.39). Therefore, we can eliminate Eq. (I.40)’s dependency
on cS

dtcA = −kctotcA
(

1− cA
ctot

)
(I.42)

and recognize the logistic function. The solution of Eq. (I.42) is

cA(t) = ctotciniA e
−kctott

ctot + ciniA (e−kctott − 1) (I.43)

where ciniA is the initial value of cA.
However, if the reaction scheme involves more steps and is more complex, the associated
rate equations may not be solvable. In this case, it is possible to assume that the concen-
tration of solvent cS is much larger than the concentration of reactants. Consequently,
cS is considered constant and the reaction step becomes a lower-order reaction

A kS−−→ 2 S (I.44)
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12 Chapter I. Methods

where the modified rate constant kS is given by

kS = kcS (I.45)

This approximation is what we call the high-dilution limit. Our aim is to characterize the
deviation from the high-dilution limit. Thus, we define the parameter

δ =

∑
i6=S

c0
i

ctot
= 1− c0

S

ctot
(I.46)

that represents the ratio of the sum of the concentrations c0
i of all non-solvent reactants

evaluated at a steady state and the total concentration. When δ tends to 0, the solvent
is in large excess with respect to the other species and the high-dilution approximation
is valid. On the contrary, when δ increases, the deviation from the high-dilution limit
increases, and the previous assumption fails. This parameter is defined at a homoge-
neous stationary state such that it remains constant even if the system exhibits spatial
structures such as Turing patterns. If the system exhibits multiple stationary states, the
parameter is defined according to the stable homogeneous stationary state of interest.

I.3.2 Modified Fick’s law in a concentrated solution

According to Fick’s law applied to a dilute system, the diffusive flux of one species is
proportional to the gradient of its concentration. The associated diffusion coefficient is
derived from kinetic theory according to the characteristics of the species. In a concen-
trated solution, the concentration of one species has an impact on the diffusion of another
species and cross-diffusion terms must be considered. We consider a concentrated solution
of species A and B. The solvent S is still considered in excess but not in great excess, so
that we are confronted with a ternary mixture of A, B, and S particles [36].

In a highly diluted solution, the center of mass of the solvent and the center of mass
of the system are typically the same. However, we expect that, in a concentrated system,
the two centers of mass are different. The idea is to exploit the frame of the solvent in
which Fick’s law takes a simpler form [26, 36]. The flux of species X=A,B in the frame
of the solvent is

jSX = cX(uX − uS) (I.47)

where uX is the velocity of the center of mass of species X in the frame of the system.
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I.3 Concentrated solution 13

By definition, the flux of the solvent vanishes in the frame of the solvent

jSS = 0 (I.48)

The fluxes in the frame of the solvent can be expressed in terms of the fluxes in the frame
of the system using Eq. (I.47)

jSX = cX(uX − u + u− uS) (I.49)

= jX −
cX
cS

jS (I.50)

which gives, using the law of conservation ctot = cA + cB + cS and Eq. (I.48)

jA =
(

1− cA
ctot

)
jSA −

cA
ctot

jSB (I.51)

jB = − cB
ctot

jSA +
(

1− cB
ctot

)
jSB (I.52)

Next step consists in using Fick’s law relating the fluxes in the frame of the solvent and
the concentration gradients. Within the framework of linear irreversible thermodynamics,
the entropy production per unit mass due to isothermal diffusion is given by

σ = 1
T

∑
X=A,B,S

jX · (−∇TµX) (I.53)

where T is the temperature, ∇T the spatial gradient at constant temperature, and µX

the chemical potential of species X. Assuming that the deviation from the high-dilution
limit remains sufficiently small, the chemical potential for a given species is the same as
in an ideal solution

µX = µ0
X + kBT log cX

ctot
(I.54)

where µ0
i is the standard chemical potential of species X and kB is the Boltzmann constant.

At constant pressure and temperature, the Gibbs-Duhem equation states that

∑
X=A,B,S

cX · (−∇TµX) = 0 (I.55)
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14 Chapter I. Methods

Using Eqs. (I.48) and (I.55), we write Eq. (I.53) in the form

σ = 1
T

∑
X=A,B,S

cX(uX − uS + uS − u) · (−∇TµX) (I.56)

= 1
T

∑
X=A,B

jSX · (−∇TµX) (I.57)

By introducing phenomenological coefficients ΩXY to write linear relationships between
fluxes and forces

jSX =
∑

Y=A,B
ΩXY (−∇TµY ) (I.58)

and using Eq. (I.54), we obtain the Fick’s law in the frame of the solvent

jSX =
∑

Y=A,B
DS
XY (−∇cY ) (I.59)

where DS
XY are diffusion coefficients. However, even in a concentrated solution the no-

tion of solvent keeps some relevance. Although the variation of the concentration of the
solvent cannot be ignored, the concentrations of A and B are significantly smaller than
the concentration of the solvent S. In these conditions, the vast majority of the binary
collisions involve at least one S solvent particle. Hence, diffusion of species X=A,B is
mainly imposed by the collisions between X and the solvent S while the impact of the
collisions between A and B is negligible. We therefore admit that DS

XY is negligible for
X6=Y and we denote DS

XX by DS
X , for X=A,B. Consequently, Eq. (I.59) becomes

jSX = DS
X(−∇cX) with X=A,B (I.60)

so that the flux of X in the frame of the solvent only depends on the concentration of X.
Finally, the modified Fick’s law in the frame of the system that accounts for the deviation
from the high-dilution limit in a ternary mixture is given by

jA = −
(

1− cA
ctot

)
DS
A∇cA + cA

ctot
DS
B∇cB (I.61)

jB = cB
ctot

DS
A∇cA −

(
1− cB

ctot

)
DS
B∇cB (I.62)

(I.63)
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I.4 Numerical methods 15

which can also be written under the matrix form

(
jA
jB

)
=


(

1− cA
ctot

)
− cA
ctot

− cB
ctot

(
1− cB

ctot

)

(
−DS

A∇cA
−DS

B∇cB

)
(I.64)

I have used the modified Fick’s law to study the effect of the deviation from the
high-dilution limit in Sec. IV.2.

I.4 Numerical methods

I.4.1 Gillespie algorithm

In the general case, the master equation presented in Eq. (I.29) is not solvable. Neverthe-
less, it is possible to generate a stochastic trajectory using the Gillespie algorithm [49].
Gillespie uses a kinetic Monte Carlo procedure to directly simulate the reaction and dif-
fusion processes and solve the master equation. The general formulation of the algorithm
contains several steps, which are presented hereafter.

a) Reactive-only system

We consider the reaction scheme presented in Eq. (I.1) and the associated master equation
given in Eq. (I.29). Each reaction step j has a certain probability to occur within a
random time interval [t, t+ τ ]. During this time interval, the propensity pj that the next
elementary reaction is a reaction j is given by Eq. (I.14), with the same assumptions as
for Eq. (I.27)

pj = kj

n∏
i′=1

A
Ni′
αi′,j (I.65)

Thus, the propensity p0 that any reaction occurs is the sum of all propensities pj of the
m steps

p0 =
m∑
j=1

pj (I.66)

If the time interval [t, t+ τ ] is split into infinitesimal intervals dt

t t+ τ︸︷︷︸
dt

then the probability P�(τ) that no reaction occurs in the time interval [t, t+ τ ] is equal
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16 Chapter I. Methods

to

P�(τ) = lim
dt→0

(1− p0dt)
τ

dt = e−p0τ (I.67)

Therefore, the probability P0 that at least one reaction occurs is

P0 = 1− e−p0τ (I.68)

implying that the probability distribution of random reaction time τ is

p(τ) = ∂τP0 = p0e
−p0τ (I.69)

The random reaction time τ is exponentially distributed with mean

〈τ〉 = 1
p0

(I.70)

The first step of the simulation is the initialization of all numbers of molecules, rate
constants of the reaction, and the random number generators. Then, in the second step,
we generate a random time interval according to Eq. (I.69) and select a random elementary
reaction proportionally to its propensity using Eq. (I.66). In the third step, we update the
number of molecules according to the reaction that occurred and increase the time step
by the randomly generated reaction time. Finally, we go back to the second step where
we generate a new random reaction time and a new elementary reaction. Eventually, the
simulation stops when the number of reactants has reached zero or the simulation time
has run out.

b) With diffusion

When diffusion processes are involved, the Gillespie algorithm can be easily adapted. We
now consider the system described by Eq. (I.30). During a random time interval [t, t+ τ ],
the propensity dXi that a molecule X leaves the box i is given by Eq. (I.37)

dXi = dXi |left + dXi |right '
2DX

∆x2 NX(i, t) (I.71)

where dXi |left and dXi |right denote the propensity that a molecule X in the box i jumps
to the left or to the right, respectively. A priori, these two propensities are equal. The
propensity d0 that any molecule leaves its box is

d0 =
∑
X

∑̀
i=1

dXi (I.72)
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which can be added to the propensity given by Eq. (!.66) . T hen, we adapt the second 

step of the algorithm such that a random elementary process (reaction or diffusion) is 

selected proportionaly to its propensity. 

I have used Gillespie a lgorithm .in the study of the elimination of a fast variable [ 

presented in Sec. II and the study of an FKPP wave front in a concentrated system [ 

presented in Sec. IV.2.2. 

1.4.2 Direct Simulation Monte Carlo method 

a) Concept 

The Direct Simulation Monte Carlo method (DSMC) , developed by Graeme Bird in 

the 60's, is a numerical method used to compute molecular gas flows in aerodynam

ics [ ]. It has been successfully extended to include reactive mechanisms and can 

be used to simulate highly diluted solutions. The method relies on a kinetic Monte Carlo 

algorithm which generates stochastic trajectories of particles and amounts to a direct 

simulation of the Boltzmann equations including fluctuations. Particles are hard spheres 

of mass m and radius r with continuous positions and velocities. Initial positions of the 

particles, compatible with the macroscopic initial conditions for the concentrations, are 

randomly chosen. The initial velocities are sampled according to a Maxwellian distribu

tion with kBT = 1. During a time step; positions are updated according to the velocities. 

The main feature of DSMC is to treat collisions statistically. The space is discretized into 

cells of length Llx, where particles are susceptible to collide only with particles inside the 

same cell. According to the collision integral of the Boltzmann equation, the probability 

of collision of two particles is proportional to their relative velocity [ ]. The "No Time 

Counter• (NTC) algorithm [ ] derives an integer upper bound to the maximum num

ber of collisions to be performed during the time step. An acceptance-rejection method 

is then used to test whether a collision between two randomly chosen particles in a box is 

accepted or not. The collisions are considered elastic from the mechanical point of view 

and the final relative velocity of the colliding pair is determined according to isotropic 

scattering. 

During a collision, a chemical reaction may happen. The reaction occurs with a proba

bility proportional to the corresponding rate constant determined by a steric factor PAB 

and an activation energy EA. According to kinetic theory, in a binary mixture of A and 

B species, the collision frequency is given by 

(!.73) 
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where σAB is the cross-section of the collision and µAB = mAmB

mA +mB
is the reduced mass

of the reactants. Only the fraction of encounters that has a relative kinetic energy greater
than the activation energy EA of the reaction reacts. Therefore, the rate of the reaction
is

vAB = ZABρABexp
(
−EA
RT

)
(I.74)

If we compare this result to Eq. (I.2), where the rate of a binary reaction is vAB = kjcAcB,
the expression of the rate constant as a result of kinetic theory is

kAB = ρABσAB

√
8kBT
πµAB

exp
(
−EA
RT

)
(I.75)

In the simulations that we performed, it is assumed that the activation energy of all
reactions is equal to 0 and that no reaction is endothermic or exothermic. Therefore,
the temperature is constant and homogeneous in all simulations. The cross-section of the
collisions between two molecules A and B is given by

σAB = π(rA + rB)2 (I.76)

for all collisions considered. The procedure used to obtain desired diffusion coefficients is
also derived from kinetic theory. In a binary mixture, the diffusion coefficients of both A
and B particles are equal and given by

DA = DB = DAB '
3

8(cA + cB)(rA + rB)2

√
kBT

πµAB
(I.77)

In this expression, the diffusion coefficient depends on the local concentration cA + cB.
However, diffusion coefficients are assumed to be constant in space and time in Eq. (I.4).
This hypothesis requires that no particle is created ex nihilo or destroyed, and that ex-
changes with the exterior (such as reservoirs) do not radically change the local concen-
tration. Therefore, we make sure that the concentration cA + cB is arguably constant in
the simulation. Another condition for collisions to be correctly simulated is that the cell
length ∆x is smaller than the mean free path of colliding particles

` = 1√
2ctotπ(rA + rB)2 (I.78)

In highly diluted solutions, the excess of solvent makes this condition hard to fulfill while
keeping reasonable computation times. The condition can be relaxed if the mean gradients
of concentration between two neighboring cells are typically smaller that the amplitude
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of the concentration fluctuations.
I have used the DSMC method to simulate species with different diffusion coefficients and
Turing structures in a concentrated system [37]. The results are presented in Sec. III.3.

b) Third-order reaction

In the article [37] presented in Chapter III, we consider a ternary mixture of A, B, and S
species where one step of the reactive mechanism is a third-order reaction. The difficulty
was to adapt the DSMC algorithm to correctly simulate a third-order reaction. The issue
has been solved as follows by M. Mareschal et al. [51] and already used by the group [52].
The reaction

2 A + B k−−→ 3 A (I.79)

is split into two second-order reactions

A + B k1=k−−−→ AB (I.80)

AB + A k2→∞−−−−→ 3 A (I.81)

where the first reaction occurs with the same rate constant k as the third-order reaction
and the second reaction is supposed instantaneous. The simulations reproduce the third-
order reaction given in Eq. (I.79) as follows. When a binary collision between a particle
A and a particle B is accepted in a given spatial box, a complex AB is supposed to be
formed. A third particle is randomly chosen in the same spatial box. If it is an A particle,
the AB complex is immediately transformed into two A particles. Hence, according to
Eq. (I.75) and the probability cA

ctot
of picking a particle A, the rate constant k obeys

k = 4(rA + rB)2

ctot

√
πkBT ∝

1
ctot

(I.82)

with µAB = EA = ρAB = 1. Due to the proportionality to 1/ctot, the rate constant k
depends on the deviation δ from the high-dilution limit from Eq. (I.46).

c) Diffusion in a ternary mixture

Observing a Turing structure requires the simulation of sufficiently different diffusion coef-
ficients for the activator and the inhibitor. As already mentioned, the diffusion coefficients
of the two components are identical in a binary mixture. The solvent, introduced to study
concentrated solutions, advantageously plays the role of the third kind of particles with
respect to diffusion. The problem of tuning the diffusion coefficients in the simulation of
a ternary mixture has already been addressed by the group [53] and I recall the main lines
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of the method. Qualitatively, faster diffusion of the inhibitor is obtained by considering
particles of the same mass but different diameters. In a ternary mixture of A, B, and
S [54], the fluxes of matter jA, jB, and jS are expressed as

jX = D′XY ∂xcY +D′XZ∂xcZ (I.83)

for X,Y, Z = A,B,R, where the three-component diffusion coefficients D′AB, D′AS , and
D′BS are derived from the two-component diffusion coefficients DAB, DAS , and DBS from
Eq. (I.77)

D′XY = DXY

[
1 + cZ(DXZ −DXY )

cXDY Z + cYDXZ + cZDXY

]
(I.84)

The presence of the concentrations in the expression of the diffusion coefficients may imply
non desired space-dependent diffusivities. However, considering

cSD
′
AB � cAD

′
BS + cBD

′
AS (I.85)

cS � cA (I.86)

cS � cB (I.87)

and using Eq. (I.84) leads to

D′AB ' D′AS ' DAS (I.88)

D′BA ' D′BS ' DBS (I.89)

which, combined with Eq. (I.83) for ctot = cA + cB + cS constant, gives

jA = −DAS∂xcA (I.90)

jB = −DBS∂xcB (I.91)

Thus, when the solvent is sufficiently in excess, the diffusion coefficients of A and B
species are the same as in a binary mixture of A and S particles and B and S particles,
respectively. Intuitively, in a system with S particles in excess, the proportion of collisions
involving no S particles is negligible. Hence, we assume that the diffusive mechanism of
A and B particles is dominated by their interaction with the S particles. For the sake of
simplicity, we write

DA ' DAS (I.92)

DB ' DBS (I.93)
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In Eq. (I.77), the diffusion coefficient depends on the local concentration of the two
species involved in the diffusive process. In Chapter. III, we study Turing structures with
spatial oscillations of the concentrations, which undermines the hypothesis of constant
diffusion coefficients. In order to derive appropriate diameters for the different types of
particles [53], we consider spatial averages of the concentrations. Then, writing d = DB

DA
and mA = mB, and using Eq. (I.77), we get

rB = rA + (1−
√
d′)rS√

d′
(I.94)

where d′ = d(cS + cA)
cR + cB

' d. As rB must be positive, we obtain the condition

rA > (
√
d′ − 1)rS (I.95)

If this last condition is satisfied with a small margin, then

rB � rA (I.96)

and DB � DA as desired.
Finally, introducing Eq. (I.95) into Eq. (I.85), we obtain the condition on the concentration
of solvent S for the proper simulation of the diffusion coefficients

cS �
√

(dcA + cB)(cA + cB)
(

1− 1√
d′

)
(I.97)
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Chapter II

Stochastic approach to the steady-state
approximation

The usual adiabatic elimination often encountered in chemistry is the steady-state ap-
proximation, consisting in eliminating a fast concentration. In a complex mechanism,
identifying a fast concentration is not straightforward [55, 56, 57, 58, 59, 60]. A linear
analysis may be locally performed and requires linearizing the rate equations, computing
the eigenvalues, and using the change-of-basis matrix to relate the concentrations and the
eigenmodes. The relationships between the eigenvalues and the rate constants may not
be trivial and the knowledge of the rate constants is not always sufficient to identify a
fast variable at first glance.

II.1 Context

We give an example of steady-state approximation in a simple case involving two elemen-
tary steps with rate constants of different orders of magnitude, sufficient to generate a
fast concentration. The example also illustrates how third-order steps may be obtained
by reduction of a mechanism containing second-order steps.

We consider a reaction scheme involving two elementary steps and four species A, B,
C, and D

A + B εk−−→ C

A + C k−−→ 2 D (II.1)

The first step is supposed to be much slower than the second one, i.e. the parameter ε
obeys ε� 1. The quantities cA + cC + cD and cA− 2cB − cC are conserved and dynamics
involves two independent variables. It is however simpler to keep the three variables cA,
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cB, and cC . The rate equations are given by

dtcA = −εkcAcB − kcAcC (II.2)

dtcB = εkcAcB (II.3)

dtcC = εkcAcB − kcAcC (II.4)

Introducing a new time scale τ = εt, expanding the concentrations into power series of ε,
and using Eq. (II.4) at zeroth order, we deduce that c(0)

C = 0. Consequently, we have

dτ c(0)
C = kc

(0)
A (c(0)

B − c
(1)
C ) = 0 (II.5)

which implies c(1)
C = c

(0)
B . Finally, Eqs. (II.2) and (II.3) lead to

dτ c(0)
A = −2kcA(0)cB(0) (II.6)

dτ c(0)
B = −kcA(0)cB(0) (II.7)

which corresponds to the rate equations associated with a third-order reaction

2 A + B εk−−→ 2 D (II.8)

The reaction between nitrogen monoxide and chlorine

2 NO + Cl2 −−→ 2 NOCl (II.9)

illustrates the reduced mechanism given in Eq. (II.8). The mechanism proposed in Eq.
(II.1) does not rely on any chemical considerations and is only one possible two-step
mechanism compatible with the reaction between nitrogen monoxide and chlorine.

II.2 Summary of the results

In the previous example, the dynamics of the system is described at a macroscopic scale.
The nonlinearities of the deterministic dynamics and the large fluctuations reached in
small systems are known to interact [61, 62, 63] and make the elimination of fast concen-
trations a nontrivial problem in stochastic systems [58, 64, 65]. In biological experiments,
Fluorescence Correlation Spectroscopy (FCS) [66] is widely used to study the dynamics
of labeled species, for example, to evaluate rate constants when the reaction scheme is
supposed to be known. The interpretation of the results requires the comparison of the
experimental data with analytical expressions of the correlations of concentration fluc-
tuations for the reaction scheme of interest. However, reaction schemes in biology often
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involve hundreds of steps and the computation of the correlations is not tractable before
a reduction of the mechanism. Defining the scope of fast concentration elimination in
stochastic nonlinear dynamics is therefore essential to interpret FCS results. Similarly,
the reduction of a mechanism may lead to nonpolynomial nonlinearities, as exemplified
by the reduced Michaelis–Menten scheme. The conclusions that could be derived from
the stochastic analysis of the reduced Michaelis–Menten model may differ from the direct
analysis of the complete scheme [67]. In order to analyze the consequences of mecha-
nism reduction, I consider a minimal chemical model involving two species of variable
concentrations capable of evolving into a Turing pattern. Then, the two-variable model
is assumed to be the reduction of two different three-variable models. The problem is
to determine if the correlations of fluctuations in the three-variable models are correctly
predicted by the two-variable model, in the limit where the reduction of determinis-
tic dynamics is valid. I developed an analytical approach based on chemical Langevin
equations linearized around the steady state of interest as presented in Sec. I.2.1. Fol-
lowing the method applied in references [61, 62, 63] to characterize the asymmetry of
time cross-correlations in far-from-equilibrium systems, I determined the expressions of
the correlations of concentration fluctuations in the two- and three-variable models. In
parallel, I performed simulations of the corresponding master equations (see Sec. I.2.2)
using Gillespie algorithm according to the procedure given in Sec. I.4.1. The weaknesses of
the Langevin approach in the description of the internal fluctuations in a nonlinear chem-
ical system have been highlighted [68]. The master equation approach has proven that
the two-variable model does not correctly predict the fluctuations in the three-variable
systems. We concluded that the coupling between the fluctuations and the nonlineari-
ties of deterministic dynamics makes the use of the steady-state approximation delicate
when the studied system requires a good control of the fluctuations. The predictions
of the correlations based on a reduced mechanism must be considered with special care
when preventing hazards in explosive phenomena, modeling pattern formation in biol-
ogy, or dealing with small systems in which variances of fluctuations are detected as in
fluorescence correlation spectroscopy [65, 69].

II.3 Publication

The results are published in the article “Elimination of fast variables in stochastic non-
linear kinetics”, G. Morgado, B. Nowakowski, and A. Lemarchand, Phys. Chem. Chem.
Phys., 22, 20801-20814 (2020) [29].
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Chapter III

Turing patterns

In 1952, Alan Turing presents one of his later most famous works [5]. He proposes
a mathematical analysis of reaction-diffusion systems that may exhibit periodic spatial
structures from an initially homogeneous state. The discovery of time oscillations in
a chemical reaction was made in the 50s by the Russian biochemist B. Belousov, while
looking for a non-organic analog to the Krebs cycle [70]. A young chemist, A. Zhabotinsky,
became famous in the 60s for the work he devoted to this reaction with the observation
of spatial structures and chemical wave fronts [71]. Nowadays, the tradition associates
their two names to designate this complex reaction. Experimental evidence of Turing
type nonequilibrium chemical patterns has been provided in 1990 by the group of De
Kepper [72].

III.1 Emergence of a Turing pattern

Turing patterns (or Turing structures) only appear in out-of-equilibrium systems, there-
fore relying on the outside environment to maintain the pattern. Initial conditions and
parameters such as the kinetic rate constants and the diffusion coefficients of the reac-
tive species are also crucial for the existence and the shape of the pattern. The patterns
appear when an inhomogeneous perturbation arises in a homogeneous stationary state.
One of the simplest systems that exhibits Turing patterns is the Gray-Scott model [73],
which involves two reactive species A and B in a third-order autocatalytic reaction

A k1−−→ RA (III.1)

2 A + B k2−−→ 3 A (III.2)

B k3−−⇀↽−−
k∗−3

RB (III.3)
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42 Chapter III. Turing patterns

where RA and RB are reservoirs of particles A and B, respectively. The associated
reaction-diffusion equations are

∂tcA = −k1cA + k2c
2
AcB +DA∂

2
xcA (III.4)

∂tcB = −k2c
2
AcB − k3cB + k−3 +DB∂

2
xcB (III.5)

where k−3 = k∗−3cRB with cRB constant. The system possesses three stationary states.
The steady state

c0
A = 0 (III.6)

c0
B = k−3

k3
(III.7)

corresponds to the absence of A particles and is obviously stable according to the chemical
scheme given in Eqs. (III.1-III.3). The two other states are derived from Eqs. (III.4)
and (III.5)

c±A =
k−3 ±

√
k2
−3 − 4k

2
1k3
k2

2k1
(III.8)

c±B = k−3 − k1c
±
A

k3
=
k−3 ∓

√
k2
−3 − 4k

2
1k3
k2

2k3
(III.9)

By performing a linear stability analysis, as presented in Sec. I.1.3, we show that the
state (c+

A, c
+
B) is stable towards homogeneous perturbations whereas (c−A, c

−
B) is unstable.

Knowing that Turing patterns emerge from inhomogeneous perturbations, we consider
the evolution of a local inhomogeneous perturbation δc = (δcA, δcB) around the state
(c+
A, c

+
B). According to Eqs.(III.4) and (III.5) and in the framework of a linear approach,

the Fourier transform of the perturbation

δc̃ = 1√
2π

∫
dxδc · e−iqx (III.10)

obeys

∂tδc̃A = −k1δc̃A + k2
(
2c+
Ac

+
Bδc̃A + c+

A
2
δc̃B

)
− q2DAδc̃A (III.11)

∂tδc̃B = −k2
(
2c+
Ac

+
Bδc̃A + c2

Aδc̃B
)
− k3δc̃B − q2DBδc̃B (III.12)
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Fig. III.1 Stationary states of the model given in Eqs. (III.1-III.3)
in the space of concentrations (cA, cB)

from which we obtain the stability matrix

M =
(
m11 − q2DA m21

m12 m22 − q2DB

)
(III.13)

where

m11 = −k1 + 2k2c
+
Ac

+
B (III.14)

m21 = k2c
+
A

2 (III.15)

m12 = −2k2c
+
Ac

+
B (III.16)

m22 = −k2c
+
A

2 − k3 (III.17)

The two eigenvalues of the stability matrix are

µ± = 1
2

[
m11 +m22 − q2(DA +DB)±

√
[(m11 −m22)− q2(DA −DB)]2 + 4m21m12

]
(III.18)
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The steady state (c+
A, c

+
B) is unstable if the real part of one eigenvalue is positive. We

look for the Fourier mode qmax that maximizes the largest eigenvalue µ+

qmax =

√√√√m11 −m22
DA −DB

− DA +DB

DA −DB

√
−m12m21
DADB

(III.19)

If the value µ+(qmax) is positive, then the inhomogeneous perturbation grows and a Turing
pattern emerges. The pattern consists of sinusoidal oscillations of A and B concentrations
with the wavelength

λ = 2π
qmax

(III.20)

Equation (III.19) is valid for any reaction mechanism involving two chemical species sus-
ceptible to evolve into a Turing pattern. We can therefore express general conditions for
the emergence of Turing patterns. First, we remark that if the two diffusion coefficients
are equal, i.e. DA = DB, then Eq. (III.19) diverges and no Turing pattern can emerge.
Second, the wavelength depends only on the rate constants and the diffusion coefficients,
and not on the boundary conditions of the system. This makes the Turing pattern inde-
pendent of the size of the system, at least at the macroscopic scale [74, 75, 76].

III.2 Termination mechanism of Turing patterns

III.2.1 Context

Models of periodic spatial patterns usually involve infinite systems or periodic boundary
conditions [77, 78, 79]. However, in morphogenesis, the question of the termination of
a structure arises [80, 81]. Specifically, the spine of the vertebrates ends with smaller
vertebrae. In the framework of Turing patterns, this phenomenon implies both a decrease
of the amplitude of the spatial oscillations and a decrease of the wavelength. Deciphering
the mechanisms controlling the termination of the spine in an embryo is far beyond the
scope of this work. Our aim is to propose a possible mechanism at the macroscopic scale,
inspired by biological structures and compatible within a chemical engineering context.
The boundary conditions chosen by the group in 2016 [36] to model the growth of the
spine are well adapted to the design of an artificial spatial structure. In the model of
reference [36], the Turing pattern develops behind a wave front propagating from left to
right. Neumann or second-type boundary conditions are chosen at the left boundary at
which the derivative of the concentration with respect to the spatial coordinate x vanishes.
The emerging Turing pattern will therefore possess an extremum at the left boundary. A
free boundary is imposed at the right, i.e. the system grows freely in this direction, so
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III.2 Termination mechanism of Turing patterns 45

that the propagation of the wave front to the right is not perturbed. The right part of
the Turing pattern, located behind the front, is free and not affected by the boundaries.

III.2.2 Summary of the results

As explained in Sec. III.1, the stability of the Turing pattern is related to the eigenvalues
of the stability matrix around the homogeneous steady state. A real, positive eigenvalue
µ+ corresponds to an unstable homogeneous steady state and a stable Turing structure.
As µ+ tends to 0, the amplitude of the spatial oscillations decreases. Destabilization is
reached when µ+ = 0. Using Eqs. (III.18) and (III.20), I performed a systematic analysis
of the effect of all rate constants and diffusion coefficients of the model given in Eqs. (III.4)
and (III.5) on the eigenvalue µ+ and the wavelength of the structure λ. Interestingly, a
monotonous variation of almost any of the dynamical parameters leads to the desired
behavior. In particular, either the increase or the decrease of a rate constant leads to the
simultaneous loss of stability of the structure and the decrease of its wavelength. Only
the variation of the diffusion coefficient DA of the activator causes anti-correlated results,
i.e. a decrease of the oscillation amplitude and an increase of the wavelength. For a given
chemical system, locally varying a rate constant or the diffusion coefficient DB of the
inhibitor is not straightforward in the framework of chemical engineering. For an easy
implementation, I suggest to impose an appropriate spatial profile for the concentration
of the reservoir RB, resulting in the increase of the effective rate constant k−3RB of the
process given in Eq. (III.3) and the desired termination of the structure.

III.2.3 Publication

The results are published in the article “Termination mechanism of Turing patterns in
growing systems”, G. Morgado, L. Signon, B. Nowakowski, and A. Lemarchand, Acta
Phys. Pol. B, 50, 1369 (2019) [39].
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The question of the termination of a periodic spatial structure of Turing-
type in a growing system is addressed in a chemical engineering perspective
and a biomimetic approach. The effects of the dynamical parameters on the
stability and the wavelength of the structure are analytically studied and
used to propose experimental conditions for which a Turing pattern stops
by itself with a decreasing wavelength. The proposed mechanism is suc-
cessfully checked by the numerical integration of the equations governing
the dynamics of the activator and the inhibitor. We conclude that a local
increase of the concentration of the reservoir which controls the injection
rate of the inhibitor into the system can be used to achieve the appropriate
termination of a Turing pattern.

DOI:10.5506/APhysPolB.50.1369

1. Introduction

During embryonic development, segmented structures of the body such
as the spine and the digits are formed by the production of repeated ele-
ments. Since the seminal work of Turing [1] accounting for the formation
of biological pattern in the framework of reaction–diffusion models, exper-
imental evidences of Turing structures have been given in chemistry [2–4]
and biology [5, 6]. Recent years have witnessed a growing number of pa-
pers where reaction–diffusion principles are proposed to model the forma-
tion of biological periodic spatial structures [7–13]. Following Turing, a
† Corresponding author: anle@lptmc.jussieu.fr

(1369)
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two-component chemical system composed of an autocatalytically-produced
activator by consumption of an inhibitor that diffuses faster may produce
periodic spatial structures such as stripes in one-dimensional (1D) systems
and hexagons in 2D. In other words, a Turing pattern emerges by local
self-activation and lateral inhibition [14]. The concepts developed to model
living systems provide a source of inspiration in chemical engineering [15–22].
However, standard models of Turing patterns generate structures in infinite
systems and the question of the termination of a striped structure in a finite
system arises in a perspective of biomimetism in material science. Specifi-
cally, it is desirable to find experimentally achievable conditions creating a
finite-size structure, whose growth stops by itself with decreasing oscillation
amplitude and respects the decrease of the wavelength during the termina-
tion process. To this aim, we use an as simple as possible reaction–diffusion
model [23] admitting a Turing structure developing behind a propagating
wave front and examine the effect of all parameters on both the stability
and the wavelength of the structure [5, 22]. We already used a stochastic
approach to a Turing pattern [23] and showed that, contrary to intuition, the
internal fluctuations may have a constructive effect and stabilize the struc-
ture outside the domain of stability predicted by a deterministic description.
Here, we adopt a macroscopic approach. Our goal is to select suitable condi-
tions from this systematic approach and to propose termination mechanisms
compatible with processing in chemical engineering.

The paper is organized as follows. In Section 2, a reaction–diffusion
model involving local activation and long-range inhibition is presented. An
analytical stability condition and the wavelength expression of the Turing
pattern are given. The influence of the parameters of the model on the
stability and the wavelength of the pattern is studied in Section 3. The
analysis of the results leads to the selection of a user-friendly termination
mechanism in the framework of chemical engineering. The analytical predic-
tions regarding stability and wavelength are compared to numerical results
for the chosen mechanism. Section 4 contains conclusions. The possibil-
ity that the different mechanisms exhibited could be found as termination
scenarios in morphogenesis is raised.
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2. Model

We consider the following reaction mechanism inspired from the Schna-
kenberg model [24] and the Gray–Scott model [25]:

A
k1−→ R1 , (1)

2A + B
k2−→ 3A , (2)

B
k3

k−3

R2 , (3)

where R1 and R2 are reservoirs. The concentrations R1 and R2 of the reser-
voirs are assumed to be constant in time. The reaction given in Eq. (2)
autocatalytically produces species A and consumes species B. Due to the
ability of accelerating its own production, species A is called an activator
whereas species B, which is consumed by the same process, is called an in-
hibitor. The macroscopic dynamics of the system is governed by two partial
differential equations [9, 23]

∂A

∂t
= −k1A+ k2A

2B +DA
∂2A

∂x2
, (4)

∂B

∂t
= k−3R2 − k3B − k2A2B +DB

∂2B

∂x2
(5)

for the concentrations A and B of the activator and the inhibitor supposed
to have different diffusion coefficients DA and DB. For appropriate rate
constant values, such that

∆ = (k−3R2)
2 − 4k21k3/k2 ≥ 0 , (6)

the system admits two steady states (A0 = 0, B0 = k−3R2/k3) and

AT =
k−3R2 +

√
∆

2k1
, (7)

BT =
k−3R2 −

√
∆

2k3
(8)

that are stable with respect to homogeneous perturbations. The index T
stands for Turing. A linear stability analysis of Eqs. (4) and (5) reveals that
the steady state (AT, BT) can be destabilized by inhomogeneous perturba-
tions [3, 5, 9, 23]. The Fourier transforms Aq(t) =

∫∞
−∞A(x, t)e−iqxdx and

Bq(t) =
∫∞
−∞B(x, t)e−iqxdx, where q is the Fourier mode, are introduced.

In the Fourier space, the linear stability operator M is given by

M =

(
k1 −DAq

2 k2A
2
T

−2k1 −k2k−3R2

k1
AT −DBq

2

)
. (9)
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The eigenvalues of the matrix M obey the characteristic equation µ2 +αµ+

β = 0, with α = k1− k2k−3R2

k1
AT− (DA +DB)q2 and β = 2k21AT/BT− (k1−

DAq
2)(k−3R2/BT + DBq

2). The Turing structure develops if the largest
eigenvalue

µ =
1

2

(
k1 −

k2k−3R2

k1
AT − (DA +DB)q2

+

√(
k1 +

k2k−3R2

k1
AT + (DB −DA)q2

)2

− 8k1k2A2
T


 (10)

is real and positive [3, 5]. Indeed, a system of differential equations, lin-
earized around a homogeneous steady state, is easily solved by diagonalizing
the linear operator. Then, the solution is a linear combination of eigenmodes
which exponentially depend on time according to the corresponding eigen-
values. A term associated with a real, positive eigenvalue grows in time,
leading to trajectories in the concentration space that move away from the
fixed point [5]. In the studied system, the destabilization of the steady state
occurs in favor of a Turing pattern. Equation (10) imposes conditions on
the parameter values. In particular, the diffusion coefficient DB of the in-
hibitor B must be sufficiently larger than the diffusion coefficient DA of the
activator A: The destabilization of the homogeneous steady state (AT, BT)
requires local self-activation, ensured by the autocatalytic production of the
activator through the reaction given in Eq. (2), as well as long-range inhibi-
tion, due to the larger diffusion coefficient of the inhibitor. The mode qmax,
which maximizes the eigenvalue µ, is the most unstable Fourier mode

qmax =

√
AT(DA +DB)

√
2k1k2DA/DB − k1 − k2k−3R2AT/k1

DB −DA
. (11)

In order to account for the termination of the Turing pattern in a growing
system, including the fact that the structure ends with a gradually shorter
spatial oscillation, we need to find conditions for which the structure tends
to lose its stability while its wavelength decreases. The wavelength of the
periodic structure is given by

λ =
2π

qmax
. (12)

The Turing structure becomes unstable as the value of the largest eigenvalue
vanishes for the mode qmax associated with the maximum of µ
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µmax =
1

2

(
k1 −

k2k−3R2

k1
AT − (DA +DB)q2max

+

√(
k1 +

k2k−3R2

k1
AT + (DB −DA)q2max

)2

− 8k1k2A2
T


 (13)

with qmax given in Eq. (11). Figure 1 illustrates the behavior of µmax for
parameter values associated with a stable Turing pattern with µmax > 0. It
is also shown that it is sufficient to increase the value of k−3R2 to shift the
curve µ(q2) down and lose the stability of the Turing pattern.

Fig. 1. The largest eigenvalue µ of the linear operator M versus square of Fourier
mode q2. Solid line: k−3R2 = 8.76. Dashed line: k−3R2 = 10. Other parameter
values: k1 = 2.92, k2 = 1, k3 = 2.19, DA = 1, DB = 10.

In the next section, we investigate the behavior of λ and µmax as each
parameter controlling dynamics varies. Specifically, we aim at identifying
diffusion coefficients or rate constants whose variation leads both to a de-
crease of the wavelength and a destabilization of the Turing structure, i.e.
negative values for the maximum of the eigenvalue.

3. Results

The concentration R2 of the inhibitor reservoir is first assumed to be
homogeneous. Figures 2 and 3 show the variations of the wavelength λ
and the maximum value µmax of the eigenvalue with one of the diffusion
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Fig. 2. Top: Scaled wavelength λ/∆x of the Turing pattern versus diffusion coeffi-
cient DA of species A. Bottom: Maximum value µmax of the largest eigenvalue of
the linear operator M versus DA. Parameter values: k1 = 2.92, k2 = 1, k3 = 2.19,
k−3R2 = 8.76, DB = 10, ∆x = 0.1.

Fig. 3. Top: Scaled wavelength λ/∆x of the Turing pattern versus diffusion coeffi-
cient DB of species B. Bottom: Maximum value µmax of the largest eigenvalue of
the linear operator M versus DB . Parameter values: k1 = 2.92, k2 = 1, k3 = 2.19,
k−3R2 = 8.76, DA = 1, ∆x = 0.1.
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coefficients, the other parameters being constant. The results are deduced
from Eqs. (11) and (12) for λ and Eq. (13) for µmax, the expressions of the
steady state (AT, BT) being given in Eqs. (7) and (8). To facilitate the
comparison with the numerical integration of Eqs. (4) and (5) that will be
performed in the following, the wavelength is given in a number of spatial
cells of length ∆x = 0.1. As shown in Fig. 2, the decrease in the maximum
value µmax of the eigenvalue as the diffusion coefficient DA of species A
increases is accompanied by an increase of the wavelength λ: The loss of
stability of the Turing structure occurs with an increase of the spatial period.
We conclude that a variation of the diffusion coefficientDA cannot be argued
as a justification of the termination process. The behavior with respect to
the diffusion coefficient DB of species B is different. The simultaneous loss
of stability of the structure and the decrease of the wavelength are observed
in Fig. 3 as DB decreases: The diffusion coefficient DB of species B can be
considered as a suitable parameter in the search for a termination model.

Figures 4–7 show the variations of the wavelength λ and the maximum
value µmax of the eigenvalue with rate constants. The variations of λ are
given in a bounded interval of rate constant values, in which the Turing pat-
tern is stable. At one of the endpoints of the interval, the eigenvalue µmax

vanishes and at the other endpoint, the condition of existence of the steady

Fig. 4. Top: Scaled wavelength λ/∆x of the Turing pattern versus rate constant k1
of the chemical reaction given in Eq. (1). Bottom: Maximum value µmax of the
largest eigenvalue of the linear operator M versus k1. Parameter values: k2 = 1,
k3 = 2.19, k−3R2 = 8.76, DA = 1, DB = 10, ∆x = 0.1.
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Fig. 5. Top: Scaled wavelength λ/∆x of the Turing pattern versus rate constant k2
of the chemical reaction given in Eq. (2). Bottom: Maximum value µmax of the
largest eigenvalue of the linear operatorM versus k2. Parameter values: k1 = 2.92,
k3 = 2.19, k−3R2 = 8.76, DA = 1, DB = 10, ∆x = 0.1.

Fig. 6. Top: Scaled wavelength λ/∆x of the Turing pattern versus rate constant k3
of the forward chemical reaction given in Eq. (3). Bottom: Maximum value µmax

of the largest eigenvalue of the linear operator M versus k3. Parameter values:
k1 = 2.92, k2 = 1, k−3R2 = 8.76, DA = 1, DB = 10, ∆x = 0.1.
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Fig. 7. Top: Scaled wavelength λ/∆x of the Turing pattern versus rate con-
stant k−3R2 of the backward chemical reaction given in Eq. (3). Bottom: Maxi-
mum value µmax of the largest eigenvalue of the linear operator M versus k−3R2.
Parameter values: k1 = 2.92, k2 = 1, k3 = 2.19, DA = 1, DB = 10, ∆x = 0.1.

state (AT, BT) given in Eq. (6) is no longer satisfied. The two desired behav-
iors, i.e. the decrease of both λ and µmax, are observed as k1 decreases, k2
increases, k3 decreases, and k−3R2 increases. For an assumed homogeneous
concentration R2 of the reservoir, the variations of λ and µmax with R2 are
analogous to the variations with k−3R2. According to the chemical reaction
given in Eq. (1), decreasing the rate constant k1 tends to increase the con-
centration of species A. Following Eq. (2), increasing the rate constant k2 of
the autocatalytic step tends to increase the concentration of species A and
decrease the concentration of species B. This last result seems to be incon-
sistent with the consequences drawn from the decrease in k3 or the increase
in k−3R2, which result in increasing the concentration of species B according
to Eq. (3). However, we already stated that increasing B through soliciting
the reservoir R2 results in consuming species B faster by the autocatalytic
step given in Eq. (2) [9, 26]. In particular, we observed that introducing a
local source of species B leads to the nonintuitive local decrease of B con-
centration. Hence, all the variations of the rate constants that lead to a loss
of stability of the Turing pattern are eventually associated with an increase
of A concentration and a decrease of B concentration.
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The diffusion coefficients and the rate constants characterize dynamics
and are intrinsic to the reaction–diffusion system. Nevertheless, it is always
possible to imagine spatial variations of the dynamical parameters. Well-
chosen variations of the diffusion coefficient DB of the inhibitor and each of
the four rate constants of the chemical mechanism could be a priori used
to build a termination model. In the framework of the application to devel-
opmental biology, steric hindrance and molecular crowding in the tail of an
embryo may be invoked to justify the decrease of the diffusion coefficients.
In chemical engineering, a local increase of temperature could be used to
induce a local increase of the rate constants. However, a local increase of
molecular crowding or temperature is susceptible to simultaneously affect
several dynamical parameters [13, 22, 27–32]. Whereas a decrease of DB is
desired to destabilize the Turing pattern, while decreasing its wavelength, a
simultaneous decrease of DA would be detrimental. Similarly, an increase
of k2 and k−3 due to temperature increase could be satisfying but the joint
decrease of k1 and k3 could blur the effect on the Turing structure. The
simplest way to imagine the control of a targeted parameter leading to the
desired behavior is to impose well-chosen spatial variations of the reservoir
concentration R2. Indeed, the product k−3R2 plays the role of an apparent
rate constant for the backward reaction given in Eq. (3) that can be fixed
at will in chemical engineering in the case of a single dynamical system with
uniquely defined intrinsic parameters.

According to Fig. 7, increasing R2 tends to destabilize the Turing pattern
and decrease its wavelength. We examine if the results deduced from a
stability analysis can be used in a dynamical approach. The results of the
numerical integration of Eqs. (4) and (5) for a homogeneous concentration
R2 and a piecewise linear profile are given in Fig. 8. The initial condition is
a step function between the steady state (AT, BT) in the first 10 cells on the
left and the steady state (A0, B0) in the remaining cells. The initial total
number of cells is set at n0 = 610. Introducing the cell label i = x/∆x,
where ∆x is the cell length, and the discrete time s = t/∆t, where ∆t is the
time step, we choose

A(i, s = 0) = AT , B(i, s = 0) = BT , for 1 ≤ i ≤ 10 , (14)
A(i, s = 0) = A0 , B(s, s = 0) = B0 , for 11 ≤ i ≤ n0 . (15)

To account for the growth of the system and simultaneously avoid boundary
effects that may alter the wavelength of the structure [16], we impose a fixed
boundary on the left and a free growing end on the right [9, 23, 26]. For
parameter values for which the steady state (AT, BT) is unstable with respect
to inhomogeneous perturbations, a Turing pattern develops after the passage
of a chemical wave front. More precisely, according to Eqs. (4) and (5) and
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due to the no-flux boundary conditions applied on the left boundary, the
concentrations in the first cell obey

A(1, s+ 1) = A(1, s)− k1∆tA(1, s) + k2∆tA(1, s)2B(1, s)

+DA
∆t

(∆x)2
(A(2, s)−A(1, s)) , (16)

B(1, s+ 1) = B(1, s) + k−3R2∆t− k3∆tB(1, s)− k2∆tA(1, s)2B(1, s)

+DB
∆t

(∆x)2
(B(2, s)−B(1, s)) (17)

so that both A(1, s) and B(1, s) are extremum of the Turing pattern in the
first spatial cell i = 1.

(a) (b)

Fig. 8. Spatial profiles deduced from the numerical integration of Eqs. (4) and (5)
for k1 = 2.92, k2 = 1, k3 = 2.19, k−3 = 8.76, DA = 1, DB = 10, ∆t = 10−4,
tend/∆t = 2000000, ∆x = 0.1. Black dotted line: Imposed concentration R2 of
the reservoir. (a) Homogeneous concentration R2 = 1, (b) Piecewise linear R2

profile. Gray/blue dashed line: Concentration of species A versus cell label x/∆x.
Black/red solid line: Concentration of species B versus cell label x/∆x.

Spatial cells are added to the right end of the system at the front speed to
counterbalance the progression of the wave front and mimic system growth:
At all the discrete times s for which the concentration B(n − 600, s) of
species B in the n−600 cell becomes smaller than 0.99B0, the total number n
of cells is increased by 1. Provided that the front propagates at a speed
smaller than ∆x/∆t, this protocol ensures that a layer of about 600 cells

http://rcin.org.pl



1380 G. Morgado et al.

remains in the stationary state (A0, B0) on the right of the system, so that
the propagation of the front is not significantly affected by the finite size of
the system. To draw Fig. 8 (b), we have chosen the parameter values given
in the caption of Fig. 1 and imposed k−3 = 8.76 for the following spatial
profile for the concentration R2 of the inhibitor reservoir:

R2 = 1 , for 1 ≤ i < 500 , (18)
R2 = 2.83× 10−4i+ 0.858 , for 500 ≤ i < 1000 , (19)
R2 = 1.14 , for 1000 ≤ i . (20)

The simulation is stopped at time tend for which the wave front has passed
cell i = 1000. It is worth noting that the Turing pattern is unchanged for
larger values of the final integration time. Then, only the position of the
concentration gradients associated with the traveling wave evolve in time but
the Turing structure has stopped growing and remains in a steady state with
a fixed number of wavelengths. As desired, the increase of the concentration
R2 leads to the termination of the Turing structure.

As illustrated in Fig. 7, the Turing structure is expected to be stable
in the range of 1 ≤ i < 500 for which k−3R2 = 8.76 and unstable in the
range of i ≥ 1000 for which k−3R2 = 10. More precisely, according to
Eq. (13), the maximum of the eigenvalue µmax vanishes for k−3R2 = 9.75,
i.e. R2 = 1.11 for k−3 = 8.76, which occurs in spatial cell i = 900. Hence,
the Turing pattern is predicted to be stable in the range of 0 ≤ i < 900 and
unstable beyond this domain. The results shown in Fig. 8 (b) confirm the
analytical predictions. The amplitude of the spatial oscillations decreases
between i ' 500 and i ' 1000. The system is in a steady state in the range
of 1000 ≤ i < 1500.

The increase of R2 not only destabilizes the Turing structure but also
modifies the steady state values and the propagation speed of the wave front.
The comparison between Figs. 8 (a) and 8 (b) shows that, as R2 increases, the
wave front propagates faster, AT increases, BT decreases and B0 increases.
As a consequence of the variation of AT and BT, the oscillations of A and
B concentrations are not symmetrical in the range of 500 ≤ i < 900. The
decrease of the wavelength predicted in Fig. 7 is more difficult to check by
a qualitative analysis. Using the numerical results illustrated in Fig. 8 (b),
we evaluate the local wavelength by computing the number of cells between
two minima of the A concentration profile. The results are given in Fig. 9
and compared to the analytical prediction deduced from Eqs. (11) and (12).
The agreement between the numerical and analytical results is very satis-
fying in the range of 600 ≤ i < 900. Oscillations of very small amplitude
are observed in Fig. 8 (b) in the range of 900 ≤ i < 1000, proving that a
very damped Turing structure remains in a small area where instability was
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predicted. The wavelength of the structure in the range of 1 ≤ i < 500 is
slightly affected by the increase of R2 from cell i = 500 but the deviation
from the analytical prediction is only 2.5 percent. This small difference is
related to the linear approximation used in wavelength evaluation that ne-
glects non-linear terms that may be more important for large structures.
Interestingly, the wavelength is sensitively decreased in the expected area in
which the concentration of the reservoir R2 increases: As shown in Fig. 9,
the wavelength is reduced from 72 spatial cells to less than 61, before the
structure disappears. We conclude that an increase in the concentration of
the reservoir R2 related to the inhibitor B is sufficient to account for the
destabilization of the Turing pattern associated with a decrease of the wave-
length. As anticipated by the results given in Fig. 7, according to which an
increase of R2 decreases the wavelength λ and leads to a negative eigenvalue
µmax around (AT, BT), we suggest that an appropriate spatial variation of
R2 can be used in chemical engineering to stabilize the homogeneous steady
state and induce a termination of the Turing pattern in a growing system.

Fig. 9. Spatial variation of the scaled wavelength λ/∆x of the Turing pattern
versus cell label x/∆x for the parameter values given in the caption of Fig. 8 (b).
Symbols: Results deduced from the numerical integration of Eqs. (4) and (5). Solid
line: Analytical prediction given in Eq. (12).

4. Conclusion

In a biomimetic approach, we have addressed the question of the ter-
mination of a Turing structure in a growing system. A free boundary is
imposed at the growing part, which ensures that the wavelength of the pat-
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tern is not perturbed by fixed boundary conditions. After deriving analytical
expressions for the stability condition and the wavelength of the structure,
we perform a systematic analysis of the effect of all dynamical parameters
on the pattern. Apart from the variation of the diffusion coefficient of the
activator, a well-chosen variation of the dynamical parameters leads to the
desired behavior, i.e. the simultaneous loss of stability and the decrease
of the wavelength. In particular, an increase of the effective rate constant
k−3R2, where k−3 is the rate constant of the reaction injecting the inhibitor
from the reservoir at the concentration R2, is associated with a destabiliza-
tion of the Turing pattern accompanied by a decrease of the wavelength.

Imposing a spatial variation of the concentration of the reservoir R2

turns out to be an appropriate protocol for chemical engineering. However,
the proposed procedure imposes the total length of the structure but not
its number of wavelengths. In the framework of developmental biology, for
example in the case of the growth of the digits or the spine of the verte-
brates, the termination process has to respect the total number of segments
for a possible variation in the length of the global structure. Therefore, it is
necessary to imagine that the system itself is able to count the number of al-
ready formed segments and to trigger the variation of a parameter leading to
smaller subsequently formed segments. If the concept of the Turing structure
is kept in the formation of biological patterns, the presented results could
be used to suggest such relevant parameters. The local increase of the rate
constant k−3 that would be activated when a given number of segments has
already been formed can be straightforwardly proposed. Similarly, the local
increase of the rate constant k2 controlling the autocatalytic production of
the activator or the local decrease of the rate constant k1 or k3, associated
with the absorption of the activator or the inhibitor by reservoirs, would lead
to the desired phenomenon. The local decrease of the diffusion coefficient of
the inhibitor offers an alternative. The nature of the mechanism that would
trigger such a response of the system when a given number of segments has
been created remains an open question.

This publication is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No. 711859 and has benefited
from financial resources for science awarded by the Polish Ministry of Science
and Higher Education in the years 2017–2021 for the implementation of an
international cofinanced project.
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III.3 Scaling of Turing patterns

III.3.1 Summary of the results

The lack of adaptability to the global size of the system is topical [82, 83, 84, 85, 86, 87, 88]
and one of the main objections against Turing-based models in morphogenesis. Specifi-
cally, in somitogenesis, it is expected that vertebra size adapts to the size of the embryo.
Just before my arrival in the group, B. Nowakowski and A. Lemarchand introduced a
model, inspired by the Schnakenberg model [89] and the Gray-Scott model [73] capable
of addressing this issue at the macroscopic scale [36]. They proposed to address the prob-
lem in the context of molecular crowding, known to lead to non-negligible effects on the
chemical mechanism [90, 91, 92, 93, 94, 95]. They considered a concentrated system in
which the variations of the concentration of the solvent cannot be neglected and admitted
that the reaction scheme presented in Eqs. (III.1-III.3) is modified as follows

A + S k1−−→ RA (III.21)

2 A + B k2−−→ 3 A (III.22)

B + S k3−−⇀↽−−
k−3

RB (III.23)

They solved the partial differential equations governing the evolution of the concentrations
and proved that the wavelength of the Turing pattern can be controlled by the deviation
from the high-dilution limit, roughly defined as the ratio (cA + cB)/cS of the solute
concentration and the solvent concentration.

The deviation from the high-dilution limit is more prevalent in smaller systems such
as biological cells. The challenge I faced was to adapt the model to simulations of particle
dynamics based on the direct simulation Monte Carlo method presented in Sec. I.4.2. Even
if the number of particles in the system varies, one of the constraints of the simulations
is to keep the total number of simulated particles constant, in order to check the absence
of bias in the total momentum and kinetic energy. It may imply the creation of ghost
particles that slow down the simulation. The scheme given in Eqs. (III.21-III.23) does
not conserve the number of particles and involves reservoir particles that are also time
consuming.
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I proposed to solve the problem using the following scheme

A + S k1−−→ 2 S
2 A + B k2−−→ 3 A
B + S k3−−→ 2 S

(III.24)

 RB
k−3−−→ B

S −−→ RS
(III.25)

in which the solvent particles play the role of particles of the reservoirs RB and RS. In
other words, when the process given in Eq. (III.25) occurs in a given spatial box, the
particle B is created with the velocity and the position of a randomly chosen particle S of
the same box. At the same time, the particle S disappears exactly at the same constant
rate k−3 as the particle B is created. The step cannot be written S k−3−−→ B, because it
would introduce a term k−3S in the rate equation of B instead of the constant term k−3.
I performed DSMC simulations of a reactive ternary mixture of A, B, and S particles
with different diameters in order to reproduce different diffusion coefficients as presented
in Sec. I.4.2. My results show that the wavelength of Turing patterns can be tuned at
the submicrometric scale by controlling the total concentration, i.e. the deviation from
the high-dilution limit. More precisely, doubling the concentration of the solute decreases
the wavelength of the structure by a factor of 2. The results can be considered as a pos-
sible interpretation for proportion preservation of embryos in morphogenesis. We suggest
that they could be used to design biomimetic materials with controlled submicrometric
properties in chemical engineering.

III.3.2 Publication

The results are published in the article “Scaling of submicrometric Turing patterns in
concentrated growing systems”, G. Morgado, B. Nowakowski, and A. Lemarchand, Phys.
Rev. E, 98, 032213 (2018) [37].
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Chapter IV

Fisher-Kolmogorov-Petrovsky-Piskunov
front

For more than eighty years, the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) wave
front has been providing new puzzles to researchers in dynamical systems theory and
statistical physics. Within the framework of a deterministic description, corrections to
the asymptotic propagation speed have been determined depending on the steepness of the
initial condition first by Bramson [96, 97], then by Ebert and Saarloos [98], and currently
by Brunet and Derrida [99, 100]. The role of fluctuations on the propagation speed has
been first numerically detected using Langevin equations [101, 102], a master equation,
DSMC and molecular dynamics simulations [103] The analytical stochastic description of
FKKP fronts continues to be developed [104]. My contribution to the subject differs by
taking into account different diffusion coefficients for the two reacting species.

IV.1 State of the art for identical diffusion coefficients

The FKPP model generalizes the Verhulst model, presented in Eq. (I.39),

A + B k−−→ 2 A (IV.1)

to inhomogeneous systems. For species A and B with the same diffusion coefficient D,
the rate equations are written

∂tcA = kcAcB +D∂2
xcA (IV.2)

∂tcB = −kcAcB +D∂2
xcB (IV.3)

According to Eq. (IV.1), the quantity ctot = cA + cB is conserved, leading to the single
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74 Chapter IV. Fisher-Kolmogorov-Petrovsky-Piskunov front

Fig. IV.1 Left: Concentrations of A and B species vs. space coordinate x at
time t = 0. Right: Concentrations of A and B species vs. space coordinate x
when t→∞. The wave travels with a stationary velocity v∗.

rate equation

∂tcA = kctotcA

(
1− cA

ctot

)
+D∂2

xcA (IV.4)

This equation exhibits traveling wave solutions, here between the unstable steady state
cA = 0 and the stable steady state cA = ctot.

IV.1.1 Minimum velocity v∗

The specific properties of an FKPP front can be qualitatively understood as follows. The
unstability of the stationary state cA = 0 makes the leading edge of the front sensitive
to perturbations. From a theoretical point of view, the properties of the leading edge in
which the concentration cA is small can be studied within the framework of a linearized
analysis. The front is "pulled" by the leading edge and the propagation speed does not
depend on the nonlinearities of the dynamics.

The propagation speed v of the front is derived from the linearized version of Eqs. (IV.4)
around the unstable state (cA = 0, cB = ctot) in the moving frame ζ = x− vt

−vdcAdζ = kctotcA +D
d2cA
dζ2 (IV.5)

Provided that the profile cA follows an exponential form in the leading edge

cA ' e−γζ (IV.6)
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IV.1 State of the art for identical diffusion coefficients 75

Fig. IV.2 Diagram representing the two branches γ+(v) and γ−(v) for k =
ctot = D = 1.

where γ depends on v, Eq. (IV.5) leads to a second-order polynomial

Dγ2 − vγ + kctot = 0 (IV.7)

with real solutions

γ± = v ±
√
v2 − 4kctotD

2D (IV.8)

if v2 − 4kctotD ≥ 0.
For sufficiently steep initial conditions, in particular for the step function shown in
Fig. IV.1, the wave front converges towards a stationary profile that travels at the mini-
mum speed v∗ [105]. According to Eq. (IV.8), the minimum speed v∗ is given by

v∗ = 2
√
kctotD (IV.9)

Figure IV.2 shows the two branches γ+(v) and γ−(v). The minimum speed v∗ corresponds
to the meeting point γ+(v∗) = γ−(v∗) of the two branches.

IV.1.2 Cutoff effect

In 1997, Brunet and Derrida showed that the introduction of a cutoff in the leading edge
of the front significantly reduces the minimal velocity of the front. In this section, I recall
the main lines of the demonstration [106]. If a cutoff ε is introduced in the reaction term
of Eq. (IV.1), the rate equation for concentration cA is

∂tcA = kctotcA

(
1− cA

ctot

)
Θ( cA
ctot
− ε) +D∂2

xcA (IV.10)
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76 Chapter IV. Fisher-Kolmogorov-Petrovsky-Piskunov front

Fig. IV.3 The three regions introduced by Brunet and Derrida [106] in the
leading edge of an FKPP wave front with a cutoff ε.

where Θ(x) is the Heaviside step function. Introducing the scale variables

c = cA
ctot

(IV.11)

x′ =

√
kctot

D
x (IV.12)

t′ = k(ctot)2t (IV.13)

and the coordinate ζ = x′− vt′ in the moving frame, and looking for stationary solutions
c(ζ), we find

vc′ + c′′ + c(1− c)Θ(c− ε) = 0 (IV.14)

Denoting the velocity vε of the front with a cutoff, Brunet and Derrida introduce the shift
∆ with respect to the minimum velocity

∆ = v∗ − vε (IV.15)

As shown in Fig. IV.3, three different regions can be defined in the leading edge: In
region I, c is of order 1, in region II ε < c � 1, and in region III c < ε. In region I, the
front is not significantly affected by the cutoff and the differential equation is expected to
be the same as Eq. (IV.5). In region II, the concentration c is negligible with respect to
1 and the nonlinear term c2 can be neglected compared to the linear term. In region III,
the reaction term vanishes due to the Heaviside funtion.
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IV.1 State of the art for identical diffusion coefficients 77

It reads 
Region I v∗c′ + c′′ + c = 0
Region II vεc

′ + c′′ + c = 0
Region III vεc

′ + c′′ = 0
(IV.16)

These three second-order linear differential equations can be solved. The main issue is to
build a continuous, derivable solution at the boundaries of the different regions. Denoting
γ∗ and γr ± iγi the solutions of Eq. (IV.8) for v∗ and vε respectively yields

Region I cI(ζ) ' CIζe−γ
∗ζ

Region II cII(ζ) ' CIIe−γrζ sin (γiζ + C ′II)
Region III cIII(ζ) ' εe−vε(ζ−ζ0)

(IV.17)

where CI , CII , C ′II , and ζ0 are constants that can be derived from the boundary condi-
tions. Between the regions I and II, the boundary condition imposes

CIζe
−(γ∗−γr)ζ = CII sin (γiζ + C ′II) (IV.18)

On the one hand, it is expected that, according to Eq. (IV.15), the difference γ∗ − γr is
of order ∆. On the other hand, Eq. (IV.8) shows that γi is of order ∆1/2. Therefore,
imposing C ′II = 0 at the leading order in ∆1/2 yields

CI = CIIγi (IV.19)

Between regions II and III, the concentration is equal to the cutoff ε and ζ = ζ0. The
conditions of continuity and derivability of the function c(ζ) are given by

{
CIe

−γrζ0 sin (γiζ0) = εγi

CIe
−γrζ0 [−γr sin (γiζ0) + γi cos (γiζ0)] = −vεεγi

(IV.20)

Combining these two equations gives

vε = γr −
γi

tan(γiζ0) (IV.21)

Intuitively, the difference ∆ is expected to be small, i.e. γr ' γ∗ = 1 and vε ' v∗ = 2.
Therefore, it is possible to write

tan(γiζ0) ' −γi (IV.22)
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78 Chapter IV. Fisher-Kolmogorov-Petrovsky-Piskunov front

which is ensured only if γiζ0 ' π + γi. Introducing this last assumption in Eq. (IV.20)
and assuming that ζ0 � 1 leads to

ζ0 ' −
ln ε
γ∗

(IV.23)

γi '
π

ζ0 − 1 '
π

ζ0
' πγ∗

| ln ε| (IV.24)

Brunet and Derrida expand vε into power series of γi,

vε ' v(γ∗ ± iγi) ' v(γ∗)− 1
2v
′′(γ∗)γ2

i (IV.25)

and find that the shift in velocity due to the cutoff obeys

∆ ' v′′(γ∗)π2γ∗2

2(ln ε)2 (IV.26)

For the same parameter values as in Fig. IV.2, the shift is of order π2

2(ln ε)2 . The in-
troduction of a cutoff in the deterministic equation has been shown to correctly repro-
duce the effect of fluctuations in different stochastic systems that can be associated with
Eq. (IV.4) in the macroscopic limit. In particular, branching Brownian motion [107] and
the reaction-diffusion master equation associated with the scheme A + B −−→ 2 A [103]
both lead to corrections of the propagation speed obeying Eq. (IV.26). Qualitatively,
the discrete nature of the random variables in the two considered stochastic approaches
implies the existence of a rightmost particle, which plays the role of a cutoff in the leading
edge of the front.

IV.2 Results for different diffusion coefficients

IV.2.1 Deterministic description

a) High-dilution limit

The result given in Eq. (IV.9) is obtained for DA = DB. I address the more general case
DA 6= DB, which implies that the quantity cA + cB is not constant. It is to be noted that
the deterministic model with different diffusion coefficients cannot straightforwardly be
associated with elementary diffusion processes at the particle scale. Indeed, in a binary
mixture, the diffusion coefficients of the two species are identical as shown in Eq. (I.77).
A ternary mixture involving a solvent S in addition to A and B species offers a possible
microsocopic picture of a model with DA 6= DB., as shown in Sec. I.3.2. The excess of
solvent with respect to the solute implies that the collisions between S and A particles,
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IV.2 Results for different diffusion coefficients 79

on the one hand, and S and B particles, on the other hand, determine the diffusion
coefficients of A and B, respectively. Therefore, we introduce a solvent S that allows the
diffusion coefficients of A and B species to be different. The rate equations are

∂tcA = kcAcB +DA∂
2
xcA (IV.27)

∂tcB = −kcAcB +DB∂
2
xcB (IV.28)

Linearizing the equations in the moving frame ζ = x − vt around (cA = 0, cB = c0)
leads to

−v∂ζcA = kc0cA +DA∂
2
ζcA (IV.29)

−v∂ζcB = −kc0cA +DB∂
2
ζcB (IV.30)

where c0 is the boundary value of cB on the right side of the system, According to
Eq. (IV.29), cA does not depend on cB, which means that the same procedure asDA = DB

can be applied. We conclude that the minimum velocity of the front is given by

v∗ = 2
√
kc0DA (IV.31)

for all DB. Intuitively, the leading edge asymptotically tends to the state (0, c0), for any
given value of DB. The propagation speed of pulled fronts being imposed by the leading
edge, it is not surprising that the velocity does not depend on DB.

In the high-dilution limit, the challenge was to find properties of the front profile
susceptible to be affected by the difference of diffusion coefficients between species A
and B. The linearization of the Eqs. (IV.27) and (IV.28) does not help in achieving this
objective. I worked to develop an analytical approach, important to test the quality of
the numerical results for possibly small perturbations of front properties. I focused on an
expansion method proposed by Murray to give an estimation of the profile width of an
unperturbed FKPP front [2]. The idea implemented by Murray is to consider 1/v2 as a
small parameter. Clearly, the quality of the expansion is not excellent, v∗ being equal to
2 for the scaled variables given in Eqs. (IV.11-IV.13). As a consequence, the first-order
expansion delivered results valid in a small interval of DB close to the value set for DA

and I was obliged to determine the second-order corrections. According to the approach
of Murray, it was legitimate to first consider whether the width of the front would be
affected by different diffusion coefficients for A and B. Even if the width is perturbed, the
effect remains small. By examining the results of the numerical integration of Eqs. (IV.27)
and (IV.28), I then stated that the vertical shift between the profiles of A and B could
be a good candidate. I proposed to use what I called the height h between the A and B
profiles, defined as the difference cA(ζ = 0) − cB(ζ = 0), where the origin ζ = 0 of the
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80 Chapter IV. Fisher-Kolmogorov-Petrovsky-Piskunov front

moving frame is set at cA(ζ = 0) = ctot/2. The results are very satisfying. The height h
changes sign for DA = DB and reaches more than 5% of ctot in the investigated range of
DB smaller than DA and more than −25% of ctot for values of DB larger than DA.

b) Concentrated system

The results I obtained in the dilute case were very encouraging regarding the initial goal of
using the FKPP front as an indicator of diffusion perturbation in a concentrated system.
I therefore considered the modified rate equations associated with the FKPP model

∂tcA = kcAcB +DA∂x

[(
1− cA

ctot

)
∂xcA

]
−DB∂x

(
cA
ctot

∂xcB

)
(IV.32)

∂tcB = −kcAcB +DB∂x

[(
1− cB

ctot

)
∂xcB

]
−DA∂x

(
cB
ctot

∂xcA

)
(IV.33)

obtained from Eqs. (IV.27) and (IV.28) by taking into account the modified Fick’s law
given in Eqs. (I.61) and (I.62). The same procedure than in Eqs.(IV.29) and (IV.30) is
applied, but the minimal velocity of the front remains the same as in Eq. (IV.31). My
initial motivation for studying the propagation of an FKPP front was to exploit its sen-
sitivity to small perturbations in order to use the front as a sensor of the perturbation
of diffusion induced by high concentrations. From this point of view, this result, which
states that the propagation speed does not depend neither on the diffusion coefficient of
species B nor the concentration of the system, is disappointing. However, the results that
I obtained within the framework of a stochastic description based on a master equation,
with the introduction of a cutoff, interestingly challenges the result given in Eq. (IV.31).

I used the same expansion technique as in the dilute case to determine analytical
expressions of the width and the height in the concentrated case. The results were con-
firmed by the numerical solutions of Eqs (IV.32) and (IV.33). The height h proved to
be a good criterion to reveal the perturbation of diffusion in a concentrated system. The
high-concentration-induced correction to the height monotonically decreases as DB in-
creases and remains larger that 5% for DB = 20DA. Values of DB smaller than DA lead
to high-concentration-induced corrections to the height of more than 25%. However, this
good score is partly due to the intrinsically small values of h in the range DB ≤ DA. In
particular, it should not be forgotten that h vanishes for DB = DA and cannot be used
in this specific case.

To conclude, the experimental determination of the vertical shift h between the profiles
of the two species at the origin of the moving frame and the comparison with the expected
value in the high-dilution limit should provide a satisfying test of high-concentration-
induced perturbation of diffusion, more accurate in the range 2DA ≤ DB ≤ 20DA.
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c) Publication

The results about the deterministic approach to the perturbation of an FKPP front
for different diffusion coefficients in the dilute and concentrated cases are published in
“Fisher-Kolmogorov-Petroskii-Piskunov wave front as a sensor of perturbed diffusion in
concentrated systems”, G. Morgado, B. Nowakowski, and A. Lemarchand, Phys. Rev. E,
99, 022205 (2019) [43]
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90 Chapter IV. Fisher-Kolmogorov-Petrovsky-Piskunov front

IV.2.2 Stochastic description

The results I obtained in Sec. IV.2.1 within the framework of a deterministic description
show that introducing different diffusion coefficients DA 6= DB does not modify the wave-
front speed.

The contribution of a stochastic description involving discrete random variables, as is
the case for a master equation, is specially valuable. Using Gillespie algorithm recalled
in Sec.I.4.1, I performed simulations of the master equation associated with the reaction
A+B −−→ 2 A andDA 6= DB. The results are qualitatively different from the results of the
deterministic description. The master equation predicts that the propagation speed of the
front is sensitively decreased if species B diffuses faster than species A. Typically, the front
speed is reduced by 22% for DB = 16DA. This result can be qualitatively interpreted as
follows. The fast diffusion of particles B quickly brings them to the vicinity of A particles
where they are consumed by the autocatalytic reaction. Contrary to intuition, a large
value of DB leads to a smoother B profile. Hence, the rightmost particle A is surrounded
by a smaller number of particles B than in the case DB ≤ DA and the front propagates
more slowly.
From a theoretical point of view, this result is the most striking contribution of my PhD
work. It is rewarding to bring out a new result on a problem that is more than 80 years
old.
Using a deterministic analogy inspired from the cutoff approach of Brunet and Derrida,
I consider Eqs. (IV.27) and (IV.28) in which a cutoff ε is introduced

∂tcA = kcAcBΘ( cA
ctot
− ε) +DA∂

2
xcA (IV.34)

∂tcB = −kcAcBΘ( cA
ctot
− ε) +DB∂

2
xcB (IV.35)

The linear analysis leads to a correction to front speed obeying Eq. (IV.26) which does
not account for the behavior at large DB. The problem is nonlinear and the linear cutoff
approach presented in Sec. IV.1.2 fails. As suggested in Fig. IV.4, I conjecture that, for
DB > DA, the leading edge of the A profile sees a smaller concentration of B than for
DB ≤ DA, leading to the empirical formula

vε = 2
√

2cBεDA

(
1− π2

2(ln ε)2

)
(IV.36)

where the B concentration cBε at the abscissa xε for which cA(xε)/ctot = ε is deduced
from the numerical integration of the deterministic equations.

The results of the master equation satisfactorily agree with the empirical formula
in which, according to reference [103], the cutoff ε is evaluated by the inverse of the
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number of particles in the reactive interface. Despite intensive efforts and trials involving
many methods, I could not derive an analytical prediction of the correction to the front
speed for DB > DA. Using the perturbative approach in power of 1/v2 developed in the
deterministic case as explained in Sec. IV.2.1 does not help as the nonlinear effect of DB

is lost when Eqs. (IV.34) and (IV.35) are linearized. Deducing the variance 〈cAcB〉 from
a Langevin approach as in Sec. II is of no use because it involves continuous variables
and even misses the linear cutoff effect. Applying the Hamilton-Jacobi technique to
solve the master equation [108, 109] is also not successful. The effect of fast diffusion
of the consumed species on the propagation speed that I numerically evidenced opens
new perspectives in the fundamental description of Fisher - Kolmogorov, Petrovsky and
Piskunov wave fronts.

a) Concentrated system

In a stochastic description using a master equation, diffusion is a jump process from one
spatial cell to an adjacent cell. In a dilute system, the diffusion rate of a given species
only depends on the number of particles of that species in the departure cell. The main
difficulty in the master equation approach to a concentrated system is the definition of
the transition rates including cross-diffusion.

I considered the master equation given in Eq. (I.30) and wrote the associated diffusion
term as

∂tP ({Φ}, t)|diffusion =
∑
i

[T−NA(i)+1P ({NA(i− 1)− 1, NA(i) + 1})

+ T+
NA(i)+1P ({NA(i) + 1, NA(i+ 1)− 1})

+ T−NB(i)+1P ({NB(i− 1)− 1, NB(i) + 1})

+ T+
NB(i)+1P ({NB(i) + 1, NB(i+ 1)− 1})] (IV.37)

where T±NX(i) are the transition rates associated with the jump of a particle X=A,B from
cell i containing NX(i) particles to the left (-) or the right (+), respectively. The transi-
tion rates must be compatible with the macroscopic diffusion fluxes given in Eqs. (I.61)
and (I.62). Consequently, T±NX(i) has a nontrivial dependence on the particle numbers of
the two species in both the departure and arrival cells.

In order to propose an appropriate expression of T±NX(i), I introduced a discrete flux
jX(i + 1/2) at the interface between the cells i and i + 1 and related it to the difference
of transition rates to the left and to the right. Using Eqs. (I.61) and (I.62) and replacing
∂xcX by NX(i+ 1)−NX(i)

Ω∆x
where Ω stands for the volume of a single cell, I assigned
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92 Chapter IV. Fisher-Kolmogorov-Petrovsky-Piskunov front

Fig. IV.4 (a) Numbers NA of particles A (red dashed line) and NB of parti-
cles B (black solid line) versus spatial coordinate x deduced from simulation of
the master equation for DA = 1, DB = 16 (other parameter values given in
reference [44]). The vertical dashed line indicates the rightmost cell occupied
by A particles. (b) Concentrations cA of species A (red dashed line) and cB of
species B (black solid line) versus spatial coordinate x deduced from numerical
integration of the deterministic equations in the presence of a cutoff ε. The ver-
tical dashed line indicates the abscissa xε for which the scaled A concentration
cA(xε)/ctot reaches the cutoff value ε. The horizontal line indicates the value cBε
of B concentration at the abscissa xε.

well-chosen terms of the flux jX(i+ 1/2) to the transition rates to the left and to the right

T±NA(i) = DA

∆x2NA(i)− NA(i± 1/2)
Ωctot∆x2 [DANA(i)−DBNB(i± 1)] (IV.38)

T±NB(i) = DB

∆x2NB(i)− NB(i± 1/2)
Ωctot∆x2 [DBNB(i)−DANA(i± 1)] (IV.39)

in order to ensure that T±NX(i) is positive or equal to zero for any number of particles.
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The expression of T±NX(i) depends on the number of particles NX(i+ 1/2) at the interface
between two cells. Various definitions of this number of particles may be proposed. I
checked that different definitions, all ensuring that the transition rate vanishes when the
departure cell is empty, lead to similar results.
Simulations of the resulting master equation using Gillespie algorithm have been per-
formed for different values of the diffusion coefficient DB of species B. I found that the
decrease of the propagation speed of the front observed as DB increases is mitigated by
cross-diffusion which reduces the impact of different diffusion coefficients.

b) Publication

In addition to evidencing fluctuation effects on front speed, which constitutes the major
result, I characterized profile width W and height h in the stochastic approach, in both
the dilute and concentrated cases. The results about W and h are closer to what could
be expected after the deterministic study [43]. All my results about the stochastic ap-
proach to FKPP fronts are published in the article “Stochastic approach to Fisher and
Kolmogorov, Petrovskii, and Piskunov wave fronts for species with different diffusivities
in dilute and concentrated solutions”, G. Morgado, B. Nowakowski, and A. Lemarchand,
Physica A, 558, 124954 (2020) [44].
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Conclusion

In this work, I have been concerned with the formation of structures in living organisms. I
chose to describe biological systems at an intermediate, mesocopic scale, using methods of
statistical physics, such as kinetic theory and stochastic methods. My contribution to the
stochastic elimination of fast variables in the framework of chemical kinetics [29] has illus-
trated the complex interplay between nonlinear deterministic dynamics and fluctuations.
Specifically, I have shown that the linearized Langevin equations used to analytically com-
pute the correlations of concentration fluctuations around steady values do not correctly
capture the behavior of the system, in particular close to bifurcations. As a perspective,
with the aim of developing an improved analytical approach, I suggest to consider the
procedure proposed by Roberts and collaborators [110, 111, 112, 113] to derive stochastic
normal forms valid in the vicinity of the center manifold. Roberts et al. assign orders of
magnitude to the different terms of the evolution equations, in particular the Langevin
forces. They derive approximate equations for the slow variables, describing the dynamics
on the center manifold up to the desired order. The technique generalizes the ideas devel-
oped by Arnold to derive deterministic normal forms [114]. The treatment of the vicinity
of a bifurcation is naturally included in the method and simply consists in including
small terms related to the bifurcation parameter in the expansion procedure. It is to be
noted that the expansion leads to non trivial noise terms involving convolution integrals
of exponential terms and Langevin forces, which introduce memory noise terms in the
reduced stochastic dynamics. Higher order terms of the expansion even yield nonlinear
noise combinations between a Langevin force and a convolution integral of an exponential
function and a Langevin force, which shows how complex the stochastic elimination of fast
variables is [110]. The quality of the approach, i.e. the order at which the expansion can
be troncated, could be checked by numerical integration of the Langevin equations, using
the Euler-Maruyama method with Itô interpretation of the multiplicative noise [115]. The
great advantage of the numerical integration of the Langevin equations would be to facili-
tate the comparison with the simulation of the master equation. As proved in the study of
time asymmetry of correlation functions in far-from-equilibrium conditions in a bistable
system [63], in oscillating systems close to a Hopf bifurcation [63, 62] and a saddle-node
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infinite period bifurcation [63], it is however probable that the Langevin approach, al-
though including multiplicative noise terms and all the nonlinearities of the dynamics,
will not be sufficient to capture the subtleties of the interaction between fluctuations and
deterministic nonlinearities. In general, the non Gaussian character of chemical noise
intrinsically invalidates the Langevin approach. It is especially true in the intricate case
of the stochastic elimination of fast variables. The correct description of concentration
fluctuations is essential to predict the behavior of many systems that are sensitive to
perturbations, in particular due to explosive behavior, the vicinity of a bifurcation, the
existence of many simultaneously stable states or simply because they are small [116].
Hence, combustion hazards, pattern formation in developmental biology including Turing
structures and Fisher - Kolmogorov, Petrovsky, Piskunov (FKPP) wave fronts require
stochastic analyses.
The simulations of a submicrometric Turing pattern in a concentrated system I performed
refute certain objections to Turing’s model regarding the preservation of proportions in
embryos. Assuming an appropriate role of the solvent in the chemical mechanism is suf-
ficient to control the wavelength of the structure by monitoring the concentration of the
solution. A significant decrease of the wavelength is obtained in a more concentrated so-
lution for the considered chemical scheme. The adaptation of the size of the structure to
the size of the embryo then follows from the hypothesis that a smaller embryo has greater
concentrations of morphogens, imposed by the mother and not by the size of the embryo.
In this respect, small embryos lead to a crowded environment [117, 118, 119]. The re-
sults can be exploited to design materials with controlled submicrometric properties in
chemical engineering [120, 121, 122, 123]. Following a biomimetic approach, I proposed
experimental conditions, compatible with the requirements of chemical engineering, to
observe the termination of a Turing structure in a growing system. Among the different
parameters playing on the stability of the pattern and the value of the wavelength, I
selected the concentration of the reservoir which sets the injection rate of the inhibitor
into the system for its easy control in the region where the experimentalist wishes the
structure to stop.

I also characterized the effect of concentrated solutions on another spatio-temporal
structure, often encountered in biology, a Fisher - Kolmogorov, Petrovsky, Piskunov
(FKPP) wave front, used to model the propagation of a virus or a favorable genetic trait
in a population. I focused on the modification of diffusion due to high concentrations.
Beyond the description of concentrated solutions, I was led to consider reactive species
with different diffusion coefficients. Performing simulations of the master equation, I ob-
tained a nice result stating that an FKPP front is slowed down when the consumed species
diffuses faster than the autocatalytically produced species. The analytical description of
this phenomenon, using a nonlinear cutoff approach, is certainly a reasonable perspec-
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tive. The consequences of high concentrations on biological structures deserves further
attention. The results show that, using particle dynamics simulations, it is possible to
check the validity of macroscopic models at the submicrometric scale. The new directions
explored in the field of chemical engineering, as part of a biomimetic approach, could
encourage experimentalists to design model systems for testing the main influence of high
concentrations on organized behaviors.

The results obtained during my PhD led me to formulate some general ideas about the
modeling of structures in biology and prompted me to revisit how the vision of biological
patterns had evolved over the last century and the beginning of 21st century. Morphogen-
esis is an important part of developmental biology. Axial segmentation and the formation
of periodic patterns are observed in invertebrates such as insects and crustaceans as well
as in vertebrate embryos. The striking analogies between biological structures and the
patterns that spontaneously emerge in far-from-equilibrium chemical systems logically
incited theoreticians to use models of chemical kinetics to study biological phenomena.
Experimental evidence of periodic spatial structures in a reaction-diffusion system, with-
out the contribution of physical phenomena such as gravity and mechanical instabilities,
was given in 1990 [72], long after the corresponding model was proposed by Turing in 1952.
Previously, it had taken even more time to apply the concepts of dynamical systems, de-
veloped by mathematicians such as Henri Poincaré around 1900, to the description of
far-from-equilibrium nonlinear phenomena in uniform systems. The temporal organi-
zation in homogeneous chemical systems, from periodic oscillations to chaos, has been
interpreted in the context of dynamical systems theory in the 70s, first from a theoretical
point of view, in particular in the group of the Nobel prize Ilya Prigogine in Brussels.
Then, in the 80s, the Belousov–Zhabotinsky (BZ) reaction has been extensively stud-
ied. With the development and mastery of continuously stirred tank reactors (CSTRs)
ensuring far-from-equilibrium conditions, the BZ reaction proved to provide an ideal ex-
perimental example of dynamical systems exhibiting all the different types of bifurcations
and scenarios to chaos [124, 125, 126, 127, 128]. Application to biology arrived later and,
at the very beginning of the 2000s, the concept of systems biology was introduced. It is
indeed tempting to apply the notions of the theory of dynamical systems to model cer-
tain biological phenomena. Living systems are typically maintained far from equilibrium
by exchanges of energy and matter with the environment and spontaneously evolve into
organized structures.

Two antagonistic views, known as holism and reductionism, are usually adopted to
study chemical systems and provide disjointed information. On the one hand, holism
proposes a global approach to a system and neglects the discrete nature of matter. After
a modeling effort to identify essential mechanisms and extract a small number of dynam-
ical variables, the system is described at the macroscopic scale. It is then possible to
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write differential equations governing the evolution of a homogeneous system and partial
differential equations in the case of an inhomogeneous system. The nonlinearities of the
equations determine the behavior of the system, depending on the parameter values and
the involved bifurcations. A global, general classification of some biological phenomena
can be obtained within the framework of such a deterministic, macroscopic analysis. Such
a description ignores the fluctuations of the macroscopic variables that are induced by
the microscopic dynamics of a huge number of elementary constituents. This global ap-
proach can be misleading in systems of small size like the systems typically studied in
developmental biology. The role of fluctuations on the macroscopic behavior of a system
is also significant, even in a large system, close to bifurcations [29] or for marginally stable
solutions such as FKPP fronts [44].

On the other hand, reductionism focuses on the atomistic or molecular scale. However,
the huge number of particles prompts the use of numerical simulations. The evolution of
wave functions or particle positions and velocities, dictated by fundamental interactions
according to quantum or classical mechanics, can then be followed. Even with the lat-
est generation of computers, it is still extremely long to reach the space and time scales
necessary to observe the formation of macroscopic patterns using ab-initio simulations,
density functional theory, and even molecular dynamics. Moreover, the connection be-
tween changing a parameter characterizing atomistic interactions and changing a macro-
scopic property of a structure is not firmly established. The numerical simulations at
the microscopic scale may provide empirical knowledge but it remains difficult to build
qualitative relationships between the molecular structure and the macroscopic properties
of the system. Reductionism gives access to the specific properties of a given system but
the prediction of the behavior of a system showing a small difference in the microscopic
characteristics often fails. Generalization within a reductionist approach is delicate.

In order to bridge the gap between the two remote microscopic and macroscopic scales,
I chose to develop a description at the mesoscopic scale, which presents the advantage
of accounting for the fluctuations as well as providing a general framework to develop
analytical approaches. The strength of statistical physics is to propose a probabilistic de-
scription of a system composed of a large number of components. Microscopic features of
molecules such as their atomic components, their chemical functions, and their structure
are not explicitly taken into account by the stochastic description, which retains some
consequences of these microscopic properties at the mesoscopic scale and take them into
account in a coarse-grained manner. In particular, the notion of stochastic trajectory
includes dissipation and irreversibility but with a more refined approach than the macro-
scopic description. Specifically, microscopic reversibility with respect to time reversal is
lost in a master equation approach [61, 62, 63] but the production of entropy may de-
crease along a stochastic trajectory. The fluctuation theorem demonstrated by Galavotti
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and Cohen makes precise the probability that such an event occurs [129, 130, 131, 132].
Writing a master equation associated with a given system, for example to account for
cross-diffusion in a concentrated system [44], already represents an effort of modeling, i.e.
an effort to extract ingredients from the microscopic scale that are essential to describe
the phenomenon of interest at the mesoscopic scale. Approximating a master equation by
Langevin equations makes it possible to derive analytical expressions that better point out
the discontinuities in the properties induced by bifurcations [29]. From a general point of
view, the analytical approaches made available by statistical physics offer the possibility
to better « understand » complex phenomena. They at least guide the intuition and make
it possible to guess the behavior of an unknown system having some points in common
with the one previously studied.

The categorization of a given description into a holistic approach or a reductionist
approach is not always clear. Specifically, the stochastic description using Langevin equa-
tions is obtained by adding a noise term to the deterministic equations, which includes a
part of the microscopic complexity into the equations. In this respect, the description by
Langevin equations lies between the two approaches.

Kinetic theory offers another interesting view by considering both deterministic macro-
scopic behavior and intrinsic probabilistic behavior of matter: It looks at the evolution
of the distributions of the position and velocity of the particles. In particular, collision
integrals govern the evolution of particle velocities. I have illustrated how kinetic theory
is able to make the link between the elastic and reactive collisions between hard spheres
and macroscopic parameters such as diffusion coefficients and rate constants [37]. The
need for considering a mixture of at least three different species to obtain different diffu-
sion coefficients for two reactants becomes obvious in kinetic theory whereas it is hidden
in the two partial differential equations governing the macroscopic evolution of the con-
centrations of the two reactants [37]. As a conclusion, I would like to point out the value
of describing a biological system on a mesoscopic scale in order to extract minimal in-
gredients, decipher mechanisms, and obtain some analytical results guiding intuition and
understanding [133, 134, 135, 136]. However, the master equation and the kinetic equa-
tions are not usually solvable without strong approximations. It is of primer importance
to check the validity of the analytical results. In this respect, both approaches benefit
from the possibility to perform direct simulations of the equations using kinetic Monte
Carlo simulations. Gillespie algorithm simulates stochastic trajectories obeying the mas-
ter equation and the direct simulation Monte Carlo method (DSMC) introduced by Bird is
a direct simulation of the kinetic equations including fluctuations. In a DSMC simulation,
a particle represents thousands of true molecules [18], is assimilated to a hard sphere, and
its collisions are randomly treated in an approximate way. Under these assumptions, par-
ticle dynamics is simulated up to thousand times faster than using molecular dynamics,
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which allows us to simulate Turing patterns in a reasonable computation time, even in a
concentrated system [37]. Finally, it is worthwhile to notice that the efficient simulation
tools provided by kinetic Monte Carlo algorithms, that I first applied to materials sci-
ence, specifically to the submicrometric simulation of gypsum crystallization [137, 138],
are particularly well adapted to the simulations of biological submicrometric systems,
which gives an idea of the potential of such methods.
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