
FUNCTOR-ORIENTED FINITE ELEMENT PROGRAMMING WITH

APPLICATION TO STRUCTURAL TOPOLOGY OPTIMIZATION

P. Tauzowski
1
, B. Blachowski

1
, and J. Logo

2

1
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

2
Budapest University of Technology and Economics, Budapest, Hungary

e-mail: ptauzow@ippt.pan.pl

1. Problem statement

The subject of this study is an efficient approach to the development of a finite element framework, which is

intended to be used for solving a variety of problems in computational solid mechanics. One of such

problems, recently becoming an active field of research, is topology optimization of structures made of

elastic-plastic materials. For finding the optimal topology of real, practical and complex structures the

knowledge of a number of numerical algorithms is required, to mention a few: modification of finite element

meshes, aggregation of tangent stiffness matrices, or direct and iterative solvers.

The classical computer implementation of the original Classical Optimality Criteria method (COC) of the

topology optimization problem given by Bendsoe and Sigmund [1] is relatively simple and contains 99 lines

of code in the MATLAB language. However, it assumes that there exists only a single loading case, single

displacement (compliance) constraint, the material is linearly elastic and the optimal topology can be found

using the so-called Solid Isotropic Material with Penalization (SIMP) algorithm, which is based on the

original COC method. In reality, engineers face a slightly different problem. They need to find the topology

of a minimum weight structure subjected to multiple loading cases, made of an elasto-plastic material, and

with a limit on stresses. The above mentioned SIMP approach may not lead to an optimal solution [2].

To avoid this obstacle in this study we reformulate the minimum compliance problem so that we look for a

minimum weight structure subjected to multiple loading under stress constraints instead of volume fraction

constraint. In this way several local constraints are used instead of a single global one.

Mathematically, we can express our approach for topology optimization in the following form

Find minimum of 𝑉(𝜌) = ∫ 𝑑𝑉
𝑉

Subject to ∫ 𝜎𝑖𝑗𝛿휀𝑖𝑗 𝑑𝑉
𝑉

− ∫ 𝑓𝑖𝛿𝑢𝑖 𝑑Γ = 0
𝜕𝑉

 |𝜎𝑟𝑒𝑑| ≤ 𝜎0

𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥

where 𝑉 is the volume of the structure, 𝜎𝑖𝑗 is the stress tensor, 𝛿휀𝑖𝑗 is the virtual strain, 𝑓𝑖 represents surface

loading, 𝛿𝑢𝑖 is the virtual displacement, 𝜎𝑟𝑒𝑑 is the von Mises stress, 𝜎0 denotes the yield limit and finally 𝜌

represents the density of the material distribution.

In computational mechanics the above formulation is usually discretized using the finite element method.

Then, the structural topology optimization investigated in this study can be expressed in the following form

Find minimum of 𝑉(𝛒) = ∑ 𝑉𝑒𝑒

Subject to 𝐊𝐮 − 𝐟 = 𝟎

|𝛔𝑟𝑒𝑑| ≤ 𝜎0𝐈ρ

𝜌𝑚𝑖𝑛𝐈ρ ≤ 𝛒 ≤ 𝜌𝑚𝑎𝑥𝐈ρ

where 𝐊 is the tangent stiffness matrix, 𝐮 is the vector of displacement, 𝛒 is the vector of material

distribution density, and 𝐈ρ is the identity vector.

To find the optimal structural topology using the above formulation a large number of iterations and finite

element analyses are required. To compensate this great demand on computational power we propose an

effective architecture of our FE code, which is based on the functor-oriented programming paradigm [3].

41st Solid Mechanics Conference (SOLMECH 2018) Warsaw, August 27-31, 2018

490
http://rcin.org.pl

2. Functor based finite element programming

The classical formulation of finite elements

usually contains a class called finite element

whose purpose is not only to approximate some

fields (displacements, temperature or own

geometry) but also to define matrices necessary

for a particular analysis (Listing 1). It often leads

to a sophisticated class hierarchy of finite

elements.

In our approach matrices necessary for an

analysis (tangent matrix, mass matrix) are in

separate classes. The hierarchy of these classes

can be developed almost separately from finite

elements. Also the finite elements hierarchy is

much smaller. Because each class represents one

kind of matrix computed in the analysis, the best

(in our opinion) kind of object to use in this case

is a functor. A functor represents one subroutine

and it can also be called as a function:

functor(FiniteElement). (Listing 2). By

contrast, in the classical approach each matrix

function in a finite element has its own unique

name. It makes aggregation process more complex. The connection of the functor with the finite element is

only accomplished through the call parameter. In the other words, the finite element is the parameter of the

functor. Another advantage of our approach is the use of templates. This allows us to avoid the overhead

associated with virtual function call in those places of the code, where it is especially important (e.g.

calculations at Gauss points).

3. Topology optimization under stress constraints

The effectiveness of functor-oriented programming in optimal design has been demonstrated on several

examples including benchmark problems like cantilever or simply supported beam (Figure 1).

a) Design domain b) Optimal solution

Figure 1. Optimal topology of the simple supported beam.

Acknowledgments The Authors are grateful for financial support provided by the National Research, Development and

Innovation Office (grant K 119440) - Joint grant of the Hungarian and the Polish Academy of Sciences.

References

[1] M. P. Bendsoe, O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer-Verlag, 2004.

[2] K. Mela, J. Koski, On the equivalence of minimum compliance and stress-constrained minimum weight design of

trusses under multiple loading conditions, Struct Multidisc Optim, 46: 679, 2012.

[3] D. Vandevoorde, N. M. Josuttis, D. Gregor, C++ Templates - The Complete Guide, 2
nd

 ed., Addison-Wesley, 2017.

 Listing 1.

1

2

3

4

5

6

7

8

9

10

11

12

class FiniteElement

{

 vector<Node> nodes;

 Material *mat

public:

...

 virtual Vector getX(Vector ksi) = 0;

 virtual Matrix getStifnessMatrix()= 0;

 virtual Matrix getMassMatrix() = 0;

 virtual Matrix getTangentMatrix() = 0;

...

};

 Listing 2.

1

2

3

4

5

6

7

8

9

10

11

12

template <class T>

class TElemFunctor

{

public:

 TElemFunctor(const DTvec &dv):m_dofs(dv){ }

 virtual TElemFunctor* Clone() const = 0;

 const T& GetValue() const { return m_value; }

 virtual const T& operator()

 (const CFEInstance &ielem) = 0;

protected:

 T m_value;

};

Session: Poster session Abstract P076

491
http://rcin.org.pl

