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1. Problem statement 
 
The subject of this study is an efficient approach to the development of a finite element framework, which is 

intended to be used for solving a variety of problems in computational solid mechanics. One of such 

problems, recently becoming an active field of research, is topology optimization of structures made of 

elastic-plastic materials. For finding the optimal topology of real, practical and complex structures the 

knowledge of a number of numerical algorithms is required, to mention a few: modification of finite element 

meshes, aggregation of tangent stiffness matrices, or direct and iterative solvers.  

The classical computer implementation of the original Classical Optimality Criteria method (COC) of the 

topology optimization problem given by Bendsoe and Sigmund [1] is relatively simple and contains 99 lines 

of code in the MATLAB language. However, it assumes that there exists only a single loading case, single 

displacement (compliance) constraint, the material is linearly elastic and the optimal topology can be found 

using the so-called Solid Isotropic Material with Penalization (SIMP) algorithm, which is based on the 

original COC method. In reality, engineers face a slightly different problem. They need to find the topology 

of a minimum weight structure subjected to multiple loading cases, made of an elasto-plastic material, and 

with a limit on stresses. The above mentioned SIMP approach may not lead to an optimal solution [2].  

To avoid this obstacle in this study we reformulate the minimum compliance problem so that we look for a 

minimum weight structure subjected to multiple loading under stress constraints instead of volume fraction 

constraint. In this way several local constraints are used instead of a single global one. 

Mathematically, we can express our approach for topology optimization in the following form 

Find minimum of 𝑉(𝜌) = ∫ 𝑑𝑉
𝑉

 

Subject to   ∫ 𝜎𝑖𝑗𝛿휀𝑖𝑗 𝑑𝑉
𝑉

− ∫ 𝑓𝑖𝛿𝑢𝑖 𝑑Γ = 0
𝜕𝑉

 

   |𝜎𝑟𝑒𝑑| ≤ 𝜎0 

𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥 

where 𝑉 is the volume of the structure, 𝜎𝑖𝑗 is the stress tensor, 𝛿휀𝑖𝑗 is the virtual strain, 𝑓𝑖  represents surface 

loading, 𝛿𝑢𝑖  is the virtual displacement, 𝜎𝑟𝑒𝑑 is the von Mises stress, 𝜎0 denotes the yield limit and finally 𝜌 

represents the density of the material distribution. 

In computational mechanics the above formulation is usually discretized using the finite element method. 

Then, the structural topology optimization investigated in this study can be expressed in the following form 

Find minimum of 𝑉(𝛒) = ∑ 𝑉𝑒𝑒  

Subject to   𝐊𝐮 − 𝐟 = 𝟎  

|𝛔𝑟𝑒𝑑| ≤ 𝜎0𝐈ρ 

𝜌𝑚𝑖𝑛𝐈ρ ≤ 𝛒 ≤ 𝜌𝑚𝑎𝑥𝐈ρ 

where 𝐊 is the tangent stiffness matrix, 𝐮 is the vector of displacement, 𝛒 is the vector of material 

distribution density, and 𝐈ρ is the identity vector. 

To find the optimal structural topology using the above formulation a large number of iterations and finite 

element analyses are required. To compensate this great demand on computational power we propose an 

effective architecture of our FE code, which is based on the functor-oriented programming paradigm [3]. 
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2. Functor based finite element programming 
 

The classical formulation of finite elements 

usually contains a class called finite element 

whose purpose is not only to approximate some 

fields (displacements, temperature or own 

geometry) but also to define matrices necessary 

for a particular analysis (Listing 1). It often leads 

to a sophisticated class hierarchy of finite 

elements. 

In our approach matrices necessary for an 

analysis (tangent matrix, mass matrix) are in 

separate classes. The hierarchy of these classes 

can be developed almost separately from finite 

elements. Also the finite elements hierarchy is 

much smaller. Because each class represents one 

kind of matrix computed in the analysis, the best 

(in our opinion) kind of object to use in this case 

is a functor. A functor represents one subroutine 

and it can also be called as a function: 

functor(FiniteElement). (Listing 2). By 

contrast, in the classical approach each matrix 

function in a finite element has its own unique 

name. It makes aggregation process more complex. The connection of the functor with the finite element is 

only accomplished through the call parameter. In the other words, the finite element is the parameter of the 

functor. Another advantage of our approach is the use of templates. This allows us to avoid the overhead 

associated with virtual function call in those places of the code, where it is especially important (e.g. 

calculations at Gauss points). 

 

3. Topology optimization under stress constraints 

 

The effectiveness of functor-oriented programming in optimal design has been demonstrated on several 

examples including benchmark problems like cantilever or simply supported beam (Figure 1).  

 

 

 

 

 

 

 

 

 

a) Design domain b) Optimal solution 
 

Figure 1. Optimal topology of the simple supported beam. 
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class FiniteElement 

{ 

     vector<Node> nodes; 

     Material *mat 

public: 

... 

  virtual Vector getX( Vector ksi)  = 0; 

  virtual Matrix getStifnessMatrix()= 0; 

  virtual Matrix getMassMatrix()    = 0; 

  virtual Matrix getTangentMatrix() = 0; 

... 

}; 
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template <class T> 

class TElemFunctor 

{ 

public: 

  TElemFunctor( const DTvec &dv):m_dofs( dv){ } 

  virtual TElemFunctor* Clone() const = 0; 

  const T& GetValue() const { return m_value; } 

  virtual const T& operator() 

       (  const CFEInstance &ielem  ) = 0; 

protected: 

    T m_value; 

}; 
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