
poprzednio

INSTYTUT BADA SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy

Tom 3 (15)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZ DZANIU

Pod redak
Andrzeja My sk go

Warszawa 2013

©

ISBN 9788389475442

REENGINEERING AND IMPLEMENTATION OF
ADAPTABLE AGENTS IN GRID ONTOLOGY

Katarzyna Wasielewska & Paweł Szmeja

Studia Doktoranckie IBS PAN,
e-mail: katarzyna.wasielewska@gmail.com, pawel.szmeja@gmail.com

Abstract.. The context for the paper is given by Agents in Grid (AiG) project,
which aims at the development of an agent-based infrastructure with semantic data
processing for efficient resource management on the Grid. All information required
by the system is ontologically demarcated, therefore, a set of ontologies was devel-
oped and/or adopted to represent respective data. Advances in ontology engineering
that have been made over the years since inception of the AiG warranted a revision
of the applied ontologies. This was done in order to modernize and bring them up
to the emerging ontology engineering standards as well as apply experience gained
throughout development of AiG. The aim of this paper is twofold. First, to dis-
cuss the process and issues encountered while reenginering existing AiG ontologies
and approach undertaken to design a hierarchy of ontologies that is extensible and
adaptable in case of many deployments. Second, to show how lessons learned were
applied to create from scratch the ontology of domain knowledge. Domain ontology
was initially created for the area of computational linear algebra, however, its struc-
ture was designed to be flexible enough to model arbitrary domain of knowledge.
Keywords: ontology engineering, Agents in Grid, AiG, domain knowledge

1 INTRODUCTION

The context for this paper is provided by Agents in Grid project (AiG;
[2, 5, 8]) aiming at development of a flexible agent-based infrastructure,
which is to facilitate intelligent resource management in the Grid. The
proposed approach is based on application of semantic data processing in
all aspects of the system, therefore, all knowledge is stored in ontologies,
while communication protocols utilize messages with ontological content
([4]). The first ontologies that were developed provided concepts nec-
essary to describe: (i) resources and Grid structure, (ii) contract require-
ments for Service Level Agreement negotiations, and (iii) content of mes-
sages that are exchanged in the system. Moreover, the ontology that mod-
els Grid structure was developed on the basis of the previously existing

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 69

Core Grid Ontology (CGO; [9]; 108 concepts, 57 properties). The origi-
nal CGO was extended (72 additional concepts, 27 additional properties)
and modified to match the needs of the AiG project (see, [4, 8]) and serve
as a top level (“base”) ontology. During the extension, features identified
as most problematic were modified as a method of troubleshooting prob-
lems that appeared as the development of AiG progressed. At this stage
analysis of how every modification would impact all the other ontologies
was not performed. Furthermore, conditions (29 additional concepts, 45
additional properties) and messaging (14 additional concepts, 3 additional
properties) ontologies have been created and incorporated into existing hi-
erarchy of ontologies. The next step in the ontology development was the
addition (development from scratch) of a new domain knowledge ontol-
ogy (currently 288 concepts, 29 properties) that is part of decision support
provided to the user. Fig. 1 shows hierarchy of ontologies utilized in the
system.

Fig. 1. Ontologies in AiG system

With increasing complexity of the ontological structures and gradual
move from simple to advanced reasoning (i.e. including hundreds of RDF
triples), we were faced with recurring errors generated by reasoners. Those
included mostly inferences that were not intended and unexpected (but still
a result of a sound reasoning) rather than those resulting in straight up
unsatisfiable or inconsistent ontologies. With further system development
and testing of the set of AiG ontologies, new needs arose to: (i) develop
a new domain knowledge ontology that would not duplicate problems al-

70 Katarzyna Wasielewska & Paweł Szmeja

ready existing in utilized ontologies, (ii) redesign structure of the ontology
hierarchy so that multiple deployments with slightly different knowledge
(in different Grid systems) would be supported. Ontology reengineering
became a necessity to alleviate and ultimately reduce the ontology related
problems to a minimum.

2 AiG ONTOLOGY REENGINEERING

In the process of reengineering of AiG ontologies the entire ontology hi-
erarchy was examined. Most of the work revolved around the top level
ontologies (CGO and AiG Grid Ontology1). The base ontologies have gen-
erally the most impact on AiG. Lower level ontologies import and use con-
cepts defined in upper levels, so any change on the top is essentially prop-
agated down the hierarchy. Since the hierarchy was built from the top (i.e.
top level ontologies are the oldest), the newer (lower) ontologies (created
with more experience) required little maintenance, which further merited
the focus on the ontological base.

2.1 Documentation standards

In any group effort documentation is an essential part of development.
This is especially important in case of ontologies, because, according to
the standards and best practices, they are meant to be reusable and inter-
connected. Proper meta-information makes ontologies more intuitive and
assures that the meaning of ontological concepts is clear. In OWL ([10]),
this can be achieved through proper documentation, clear naming scheme,
and overall consistency. After examination we have found out that the orig-
inal CGO had problems in those areas and some of them carried over into
AiG Grid Ontology.

General ontology engineering standards state that names of OWL classes

should be capitalized, whereas OWL property names should start with a
lowercase letter, preferably in the format of ”has[Property]”
or ”is[Property]”. This is particularly important for a hierarchy of ontolo-
gies, because naming schemes carry over to all ontologies that import a
given ontology. If ontologies in a hierarchy use different naming conven-
tions, the overall naming scheme is broken. Original CGO contained many
entities that did not conform to any standardized naming scheme. Being a
top level ontology any inconsistencies in naming carried over into all other

1 Please note that “AiG Grid Ontology” refers to a specific ontology file within the hierarchy of
AiG ontologies and is in no way synonymous with a set of all ontology files in AiG

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 71

AiG ontologies. An example is the operatingSystem property that not only
conflicted the naming scheme of “is/has” prefixes (the scheme was applied
to some other properties such as hasCPU and hasFileSystem), but also
could be easily confused with the OperatingSystem class. Recall that in
OWL, IRIs should be unique (i.e. one IRI can describe no more than one
entity). In the scope of one ontology it means that IRI fragment needs to
be unique. Since IRI does not contain any information about type of OWL
entity (i.e. property, class or individual) the class of OperatingSystem

and property of operatingSystem have IRIs that differ only by the capi-
talized (or not) letter “O”. Such naming made the ontology error-prone as
it was very easy for a programmer to make a small mistake in the IRI. Con-
sidering that a reasoner treats the asserted knowledge as undisputed facts,
mistaking OperatingSystem with operatingSystem would have critical
and unforeseen consequences for the operation of entire system. To solve
the problem, the property has been renamed to hasOperatingSystem. The
remaining (similar) problems have also been fixed.

OWL annotations are a very useful documentation tool. Original CGO
was sparsely annotated which made it difficult to know what usage the
authors intended for each of the entities. Concepts that did not have a sug-
gestive name, comments or usage ended up not being used, because there
was no indication of the reason for their existence or what the authors in-
tended for them. We have updated every ontology in the hierarchy with
annotations such as general comments and usage tips, versioning infor-
mation and entity labels (with language tags) in the hopes of decreasing
required maintenance and improve general understanding of the ontology.
AiG ontologies are constantly being updated with annotations that are to
serve both as documentation for developers and guidelines for the users
that are interested in technical details of applied ontologies. As part of
further development we plan to use annotations in the dynamic user inter-
face (see, [3] for more details). Here, the GUI, in addition to dynamically
adjusting to the ontology structure, would also display information taken
directly from OWL annotations to provide users with clear entity labels
and tooltips (possibly multilingual) explaining how to best use the system.

2.2 Ontology hierarchy

In the AiG the ontological base is comprised of CGO and AiG Grid Ontol-
ogy that imports it, both regarded as upper ontologies. In the scope of the
AiG those are viewed as being on the same (topmost) level in the hierar-
chy. For this reason when examining how the reengineering process would

72 Katarzyna Wasielewska & Paweł Szmeja

impact the hierarchy AiG Grid Ontology and CGO were considered (con-
ceptually) to be a single ontology. We examined how the upper concepts
would behave when extended (imported) into lower levels and came to the
conclusion that some of them were not suitable for a top-level ontology.

An example of how the original CGO was unsuitable for extension was
the clockSpeed property. It’s original use, in the CGO, is summarized by
two constructs: the restriction on the CPU class, and the domain specifi-
cation on itself. The first defines that every CPU needs defined property
clockSpeed. The latter restricts the clockSpeed to the CPUs only. In the
AiG Grid Ontology we introduced the GPU class that, just like CPU, had
to be described by the clock speed. Because of the domain restriction it was
impossible to use the clockSpeed property from the CGO. Any GPU that
used this property would be inferred to be a CPU. While formally sound,
such inference was against our intentions. Originally to avoid changing the
CGO file, a hasClockSpeed property was introduced in the AiG Grid On-
tology. There, it had the same interpretation as the clockSpeed from the
CGO, only with the GPU, as well as the CPU, in its domain.

This is an example of a concept that is “too specific” for an upper on-
tology. Putting a restriction on the property that is intended to represent a
clock speed we come to a false conclusion that only CPUs can have a clock
speed. It would not be a mistake in an ontology that deals specifically with
CPUs. In the Grid, however, we come across GPUs, and possibly APUs or
specialized (e.g. physics simulation) processing units, so in the context of a
Grid ontology clock speed should be applicable to various classes. Specif-
ically, its use should not be limited in the top level of ontology hierarchy.

While reengineering, the domain restriction on CGO property clock-
Speed was removed. Next AiG Grid Ontology clockSpeed property was
moved to CGO and finally renamed to hasClockSpeed. The class defini-
tions for both CPUs (defined in CGO) and GPUs (defined in AiG Grid
Ontology) contain a requirement to have a hasClockSpeed property with
an integer value. By removing the unnecessary restrictions from top level
ontologies we made it easier to use the upper concepts in lower level on-
tologies. Other such problems with different properties were resolved in a
similar fashion.

2.3 Cleaning conceptual inconsistencies

Careful examination of AiG ontologies revealed that a number of errors
has accumulated in them as a result of bugs in used and/or developed soft-
ware (that have been since fixed). One such group of errors were “du-

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 73

plicates” of entities. Those were entities with the same IRI fragment and
representing the same concept, but defined in different ontologies. An ex-
ample of such error was the CPU class that was defined both in CGO and
in AiG Grid Ontology. The definitions differed and, although when com-
bined they provided full description of CPUs, separately neither of them
was complete (e.g. only one had the hasClockSpeed property requirement).
Consequently results of reasoning about either of those classes was never
what we expected, despite being technically complete. That, in turn, led to
problems with inferring class hierarchy or classifying the ontologies. Note
that, these errors became apparent only after reasoners started to be used
in a working system on the full-blown ontology (400+ entities) rather than
on mini-examples (10-20 entities) used in testing the agent infrastructure.
Definitions of both CPU classes were merged and moved into CGO. The
declaration of CPU was removed from AiG Grid Ontology. Other problems
of this type were dealt with in the same way. As a result of this operation
the reasoning problems (unexpected results) were eliminated.

We have also found inconsistencies in definition of entities and their
usage. For example the original CPU class had a restriction of “hasClock-
Speed only string” in the definition which contradicted with the hasClock-
Speed property range which was an integer. Such formulation was formally
correct, but it rendered the hasClockSpeed property useless for CPUs. The
CPU definition was changed to accept integer values on hasClockSpeed
property. Other inconsistencies included seemingly random usage of some
properties in definitions. For instance, a hasName property had been put
in definitions of many classes, but with varying restrictions. Those ranged
from any of existential, type, quantifier, or universal restriction or any com-
bination of them. Since there was no indication as to why some classes
required a “name” specifically of type string, others could only have one
“name”, while some lacked any restrictions on hasName, we decided to
substitute the varying hasName restrictions with a set of consistent ones.
Now, any entity that by definition needs a name, has exactly one hasName
of type string. After examining definitions in every AiG ontology we re-
moved any inconsistencies. Even though those were not errors and some-
times didn’t impact the work of the system at all, removing them made the
ontology seem cleaner and more concise.

2.4 Reengineering summary

Let us note that, ongoing research and literature concerns ontology merg-
ing, alignment, mapping, but almost never concerns “software engineering

74 Katarzyna Wasielewska & Paweł Szmeja

like” principles for ontology re-use (see, for instance [1]). This being the
case let us summarize most important lessons learned from our work.

When working with multiple ontology files one should be mindful of
the existing (or planned) ontology hierarchy, and how a new/modified on-
tology would fit into it. Hierarchies can vary but it’s always good to re-
member that upper ontologies should contain as most as possible “general
concepts” and avoid introducing unnecessary conditions that would restrict
usage of upper entities. Consequently, the hierarchy level should be re-
flected in the level of ontological specialization, when moving deeper into
the imports chain. Special attention should be given to upper ontologies,
because the higher the level, the more ontologies are affected via imports.

We should always remember that ontologies are meant to be shared and
reused. Thus, it is crucial to clearly communicate their intended use (e.g.
by providing complete annotations and adhering to the naming standards).
This can help in prevention of misuse of a concept or (re)defining it more
times than intended. As the developed ontology grows, standards and con-
sistency in naming, annotating and definitions become an important tool in
prevention of human mistakes or unexpected and unwanted inference re-
sults. They also reduce maintenance time and increase understanding and
intuitiveness of an ontology.

Finally, applying an ontology in practice is indispensable for identify-
ing the problems that exist in its design and helps to understand the impor-
tance of developed standards and best practices.

3 FURTHER AiG ONTOLOGY RESTRUCTURING

The complexity of ontologies used in the system as well as logical division
of their scope lead to modularization. Ontologies form a hierarchy where
each conceptual level can contain multiple ontology files. Note that in an
OWL ontology we can distinguish three different types of statements2:
(i) T-Box (terminology) – describes conceptualization i.e. axioms defin-
ing and describing the classes, (ii) A-Box (assertions) – contains asser-
tions about the instances in the domain, (iii) R-Box (roles) – technically
a subset of A-Box, it consists of facts about roles such as inverse, prop-
erty chain etc. A-Box and T-Box statements together form a knowledge
base. The initial structure of AiG ontologies is presented in Fig. 1. During
the development process, it became necessary to redesign and restructure
ontologies in a way that would support multiple deployments. Through ex-
periments we have found that there is a clear distinction between the roles

2 this division comes directly from description logic (on which OWL is based)

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 75

of A-Box and T-Box in the context of a Grid system. Very often one con-
ceptual model (T-Box) is common for all deployments i.e. concepts related
to resource descriptions and possible properties are the same in all Grid en-
vironments where the system would run. On the other hand, instances and
their assertions (A-Box) are specific for a given deployment i.e. descrip-
tion of resources available in a given Grid is realized with A-Box state-
ments. Therefore, decision was made to split the AiG ontology hierarchy
into two branches – one containing the conceptual model and the other –
instances. From each ontology file we extracted A-Box facts and put them
in a separate file, while leaving T-Box in the original one. Resulting files
were put in a hierarchy that mirrors the one existing before and joined with
the old files using “horizontal” imports (i.e. imports realized on the same
conceptual level). The resulting ontology hierarchy presenting the import
structure is shown in Fig. 2.

Fig. 2. Ontologies in AiG system after restructuring

The set of ontologies collectively named Instances (with the “Instances”
postfix in the name) is treated as deployment specific. AiG system compo-
nents first load T-Box ontologies (Core Grid Ontology, AiG Grid Ontology,
AiG Conditions Ontology, AiG Messaging Ontology, AiG Expert Ontol-
ogy), and then, depending on system startup parameters, required instance
ontologies. It should be noted, that namespaces used in instance ontolo-
gies are different for each ontology (different for e.g. Core Grid Instances,

76 Katarzyna Wasielewska & Paweł Szmeja

AiG Grid Instances, AiG Conditions Ontology), however, in order to avoid
unnecessary complication of the process of ontology loading, for each de-
ployment specific ontology for a corresponding conceptualization (T-Box)
ontology the namespace is the same e.g. for AiG Grid Instances ontology
it should be the same for deployment in any environment. The constraint
of such approach is that for each hierarchy level only one ontology file
with instances can be loaded. We have made an assumption that in most
cases every deployment would need only one set of ontologies and differ-
ent deployments do not have any connection with each other, so there is no
possibility of IRI conflict. This assumption can be relaxed by setting the
system startup parameter identifying deployment to a set of proper names-
paces of multiple instance ontologies on a given level.

4 DESIGN OF NEW ADAPTABLE DOMAIN ONTOLOGY

During the development of AiG system the need arose to add a new (cre-
ated from scratch) ontology that would provide means to achieve goals
described in [6, 7]. Specifically, AiG system is to provide support beyond
the functionalities found in existing Grid middlewares i.e. help the user to
choose optimal algorithm and/or resource to solve a given problem utiliz-
ing ontological representation of domain knowledge. Computational linear
algebra was chosen as an initial domain to be modeled. The most cru-
cial concepts that the domain ontology should specify are: problems, algo-
rithms/methods to solve them, and objects on which algorithms/methods
operate. The ontology under development is included in ontology hierar-
chy presented in Fig. 2 and is extending the existing AiG ontologies. More-
over, while creating the AiG Expert Ontology experiences and conclusions
from reengineering were taken into account.

The main goal of the new ontology is to provide concepts necessary to
capture main aspects of a given domain and at the same time retain struc-
ture that is universal for any domain. Initially, the expert ontology was
developed for a single domain of knowledge – computation linear alge-
bra. However, we believe that the selected approach will enable the AiG
system to also work with other domains e.g. differential equations. There-
fore, apart from identifying concepts common for description of any area
of knowledge, the naming conventions that were applied should be eas-
ily adaptable for arbitrary domain e.g. class initially named MatrixProp-
erty was renamed to DataProperty, property forMatrix was renamed to
forData. Proper naming does not limit the understanding of data to only
matrices, since in different domain, objects on which algorithms operate

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 77

may be of different types. The main concepts included in AiG Expert On-
tology that are used to model knowledge from one or more domains are
(see Fig. 5):

– Domain – identifies the area of knowledge that is modeled. Other con-
cepts in the ontology can be related to a given domain with the hasDo-
main property.

– Problem – hierarchy of problems from a given domain (see Fig. 3).
Instances of class Problem can point to a domain in which they are
defined with hasDomain property.

Fig. 3. Part of hierarchy of problems for computational linear algebra in AiG Expert Ontology

– Algorithm – algorithms/methods that can be used to solve problems
from a given domain. Instances of class Algorithm can point to a do-
main in which they can be applied with hasDomain property.

Fig. 4. Part of hierarchy of algorithms for computational linear algebra in AiG Expert Ontology

78 Katarzyna Wasielewska & Paweł Szmeja

– Data Element – type of input data (objects) that algorithms/methods
operate on e.g. simple, structured.

– Data Property – the hierarchy of properties that can characterize in-
put data. For computational linear algebra properties are grouped into
subclasses of MatrixProperty and MatrixElementProperty. Instances of
Data Element and Data Property classes are related with hasProperty
object property.

– Data Storage Format – file format in which input data is stored. Class is
a range for hasStorageFormat property, which domain is DataElement.
For computational linear algebra example formats are: CSV, MAT, MTX.

– Domain Expert – concept representing experts (people or computer
system) that provide recommendations within a given domain.

– Job Profile – concept that with respective properties relates instances of
Problem, Data Element and Algorithm classes with instances of Expert
Opinion class. Class expression is specified by the user to describe what
problem does she want to solve, and what is her knowledge about in-
put data and algorithm (not all properties have to be used e.g. user may
know problem and general properties of input data but has no knowl-
edge about possible algorithms). The class expression is then matched
with job profiles that are available in AiG Expert Ontology.

– Expert Opinion – concept that relates instances of Domain Expert and
Grid Entity classes i.e. expert with the resource specification that she
recommends for solving a specific problem. Obviously, resources orig-
inate from AiG Grid Ontology.

Fig. 5. Relations between concepts from AiG Expert Ontology

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 79

It can be easily noticed that a new domain knowledge can be added
to the ontology by extending the hierarchy of subclasses for any of the
main concepts e.g. class Problem at the moment has one subclass Linear
Algebra Problem, however, one can add another subclass e.g. Differential
Equations Problem and its possible further decomposition into more spe-
cific problems. Similarly, new subclasses can be defined for Algorithm and
Data Property classes (see Fig. 6 for sample ontology scheme with generic
class naming). Obviously, for the division of concepts between domains,
new instances of Domain class should be defined and assigned as value to
hasDomain property of respective instances. Alternatively, ontologies for
different domains can be stored in separate OWL ontology files, but the
top level concepts and properties will be common.

Fig. 6. Sample generic ontology structure in AiG Expert Ontology

In the AiG Expert Ontology earlier specified guidelines for ontology
engineering were followed, e.g. naming conventions for classes and prop-
erties, filling annotations for ontology elements. The following example
shows definition of Chebyshev Iteration class. Each new class has a defined
label that is to be displayed in the user interface taking into account also
language attribute. Moreover, classes have comments that indicate their
meaning and possible usage. This information can be as well displayed as
tooltip in the user interface.

<o w l : C l a s s r d f : a b o u t =”&AiGExper tOntology ; C h e b y s h e v I t e r a t i o n ”>
< r d f s : l a b e l xml: lang =” en ”>Chebyshev I t e r a t i o n< / r d f s : l a b e l>

80 Katarzyna Wasielewska & Paweł Szmeja

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =”&AiGExper tOnto logy ;
N o n s t a t i o n a r y S o l v e r ” />

<r d f s : s u b C l a s s O f r d f : r e s o u r c e =”&AiGExper tOnto logy ;
Nonsymmet r i cMat r i xSo lv e r ” />

<rd f s : comment xml: lang =” en ”>The Chebyshev I t e r a t i o n
r e c u r s i v e l y d e t e r m i n e s p o l y n o m i a l s wi th c o e f f i c i e n t s
chosen t o minimize t h e norm of t h e r e s i d u a l i n a min−max
s e n s e .< / r d f s : comment>

< / o w l : C l a s s>

5 CONCLUDING REMARKS

The aim of this paper was to present lessons learned from the process of
ontology reengineering and restructuring based on AiG ontologies. Sec-
ondly, the experiences gained during the modernization and extension of
AiG ontologies, were applied to develop a new adaptable and easily exten-
sible ontology to be used within the AiG system. Our next goal is to further
develop adaptable domain knowledge ontology of computational linear al-
gebra as well as other selected domain and apply it in the user decision
support within the AiG system with the functionality of switching between
domains.

References

1. Fensel Dieter. Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-
merce. Springer-Verlag, New York, 2003.

2. Mateusz Dominiak, Wojciech Kuranowski, Maciej Gawinecki, Maria Ganzha, and Marcin Pa-
przycki. Utilizing agent teams in Grid resource management—preliminary considerations. In
Proc. of the IEEE John Vincent Atanasoff Conference, pages 46–51, Los Alamitos, CA, 2006.
IEEE CS Press.

3. Michał Drozdowicz, Maria Ganzha, Katarzyna Wasielewska, Marcin Paprzycki, and Paweł
Szmeja. Using ontologies to manage resources in grid computing: Practical aspects. In Sascha
Ossowski, editor, Agreement Technologies, volume 8 of Law, Governance and Technology Se-
ries, pages 149–168. Springer Netherlands, 2013.

4. Michał Drozdowicz, Katarzyna Wasielewska, Maria Ganzha, Marcin Paprzycki, Naoual At-
taui, Ivan Lirkov, Richard Olejnik, Dana Petcu, and Costin Badica. Ontology for Contract
Negotiations in Agent-based Grid Resource Management System. Saxe-Coburg Publications,
Stirlingshire, UK, 2011.

5. Wojciech Kuranowski, Maria Ganzha, Maciej Gawinecki, Marcin Paprzycki, Ivan Lirkov, and
Svetozar Margenov. Forming and managing agent teams acting as resource brokers in the
grid—preliminary considerations. International Journal of Computational Intelligence Re-
search, 4(1):9–16, 2008.

6. Michael Lucks. A Knowledge-Based Framework for the Selection of Mathematical Software.
PhD thesis, Southern Methodist University, 1990.

REENGINEERING AND IMPLEMENTATION OF AGENTS IN GRID ONTOLOGY 81

7. Dana Petcu and Viorel Negru. Interactive system for stiff computations and distributed com-
puting. In Proceedings of IMACS’98: International Conference on Scientific Computing and
Mathematical Modelling, pages 126–129. IMACS, 1998.

8. Katarzyna Wasielewska, Michał Drozdowicz, Maria Ganzha, Marcin Paprzycki, Naoual Attaui,
Dana Petcu, Costin Badica, Richard Olejnik, and Ivan Lirkov. Trends in Parallel, Distributed,
Grid and Cloud Computing for engineering. chapter Negotiations in an Agent-based Grid
Resource Brokering Systems. Saxe-Coburg Publications, Stirlingshire, UK, 2011.

9. Wei Xing, Marios D. Dikaiakos, Rizos Sakellariou, Salvatore Orlando, and Domenico
Laforenza. Design and Development of a Core Grid Ontology. In Proc. of the CoreGRID
Workshop: Integrated research in Grid Computing, pages 21–31, 2005.

10. OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/.

Dostosowanie oraz implementacja elastycznych ontologii w ramach
systemu Agents in Grid

Streszczenie.
Kontekst dla artykułu stanowi projekt Agents in Grid (AiG), którego

celem jest rozwój infrastruktury do wydajnego zarza̧dzania zasobami na
Gridzie w oparciu o agenty programowe oraz semantyczne przetwarzanie
danych. Wszystkie informacje wykorzystywane przez system AiG repre-
zentowane sa̧ ontologicznie, dlatego też, na potrzeby przechowywania is-
totnych danych, został zaimplementowany lub zaadaptowany zestaw on-
tologii. Ze wzglȩdu na postȩpy w obszarze inżynierii ontologii, które nasta̧-
pi}ly w latach od rozpoczȩcia prac nad AiG, rewizja istnieja̧cych ontologii
stała siȩ koniecznośća̧. Prace miały na celu modernizacjȩ oraz uaktual-
nienie ontologii zgodnie z pojawiaja̧cymi siȩ standardami dotycza̧cymi
inżynierii ontologii, jak również korekty wynikaja̧cej z doświadczeń, zdoby-
tych podczas implementacji systemu. Cel tego artykulu jest dwojaki. Po
pierwsze, omówienie procesu oraz problemów napotkanych podczas dos-
tosowywania istnieja̧cych w systemie AiG ontologii oraz nowego podejścia
do zmiany struktury ontologii, która ułatwi dalsza̧ rozbudowȩ oraz przys-
tosowanie w przypadku wielu wdrożeń. Po drugie, pokazanie w jaki sposób
wnioski wycia̧gniȩte podczas zmian w istnieja̧cych ontologiach zastosowano
przy tworzeniu od podstaw nowej ontologii, przechowuja̧cej wiedzȩ domeno-
wa̧. Ontologia domenowa została pocza̧tkowo opracowana dla obszaru obli-
czeniowej algebry liniowej, natomiast jej struktura została zaprojektowana
w sposób umożliwiaja̧cy modelowanie wiedzy z różnych dziedzin.

