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Chapter 8

Components of the forced
response

In most control textbooks, as well as in many textbooks of electrical
and electronics engineering, the notions of steady–state and transient
response are introduced at an intuitive level without formal definitions.
Often, the terms “steady state” and “transient” are not even listed in the
index. This is probably due to the fact that there appears to be no need
for precise definitions in the special cases of dc or ac excitations since the
corresponding outputs of a stable linear time–invariant continuous–time
system tend either to a constant or to a sinusoidal function of the same
frequency as the input with different amplitude and phase. In the control
literature, the limit response to unbounded inputs, such as polynomials,
is also referred to as “steady–state” response (see, e.g., [1]) even if the
term “asymptotic” seems to be more appropriate for unbounded inputs.

This chapter explores the concepts of steady–state, asymptotic and
transient response for linear time–invariant systems, and suggests a pre-
cise definitions for these notions along the lines of [2] ÷ [5]. To this pur-
pose, the forced response is decomposed into three components, named
“input”, “system” and “interaction” component [6] because they retain
some characteristics that are proper, respectively, to the input, to the
system, and to both. The definitions refer essentially to SISO systems
described by a strictly–proper rational transfer function and to inputs
whose Laplace transform is a proper rational function: it follows that
such inputs are formed by linear combinations of exponentials, possi-
bly multiplied by polynomials in t. Some extensions to the cases where
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one of the two functions is nonrational are briefly discussed in section
8.4. The linear system is assumed to be initially inert so that its output
coincides with the forced response (the free response is identically zero).

8.1 Decomposition of the forced response

Consider a system represented by a strictly–proper rational transfer
function

W (s) =
Nw(s)
Dw(s)

=
∑m

i=0 bis
i

∑n
i=0 ais

i
= Kw

∏m′

i=1(s− zi)µi

∏n′

i=1(s− pi)νi

, (8.1)

where the polynomials Nw(s) and Dw(s) are coprime, and µi and νi are
the multiplicities of the zeros zi and poles pi, respectively. Assume that
the input u(t) is Laplace transformable and its Laplace transform U(s)
is rational and proper, that is,

U(s) =
Nu(s)
Du(s)

=
∑q

i=0 dis
i

∑r
i=0 cis

i
= Ku

∏q′

i=1(s− ti)πi

∏r′

i=1(s− vi)ρi

, (8.2)

where the polynomials Nu(s) and Du(s) are also coprime, and πi and ρi
are the multiplicities of the corresponding zeros ti and poles vi.

The Laplace transform Yf (s) of the forced response yf (t) to u(t),
given by

yf (t) =
∫ t

0
w(t− τ)u(τ)dτ, (8.3)

where w(t) denotes the impulse response, is

Yf (s) = W (s)U(s) =
Nw(s)Nu(s)
Dw(s)Du(s)

. (8.4)

It is also assumed that the polynomials Nw(s) and Du(s) are coprime
as well as the polynomials Nu(s) and Dw(s), so that no cancellations of
factors common to the numerator and denominator of (8.4) are possible.
Instead, Dw(s) and Du(s) may have some roots in common. In this case,
Dw(s) can be written as

Dw(s) = D̄w(s)Cw(s), (8.5)
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whose factor Cw(s) contains all of the roots of Dw(s), with their mul-
tiplicities νi, that are roots of Du(s). Similarly, Du(s) can be written
as

Du(s) = D̄u(s)Cu(s), (8.6)

whose factor Cu(s) contains all of the roots of Du(s), with their multi-
plicities ρi, that are roots of Dw(s). Clearly, if all of the roots of Dw(s)
and Du(s) are simple, then Cw(s) = Cu(s).

Define now the polynomial:

C(s) := Cw(s)Cu(s). (8.7)

By construction, the three polynomials D̄w(s), D̄u(s) and C(s) are pair-
wise coprime. Therefore, the following result holds.

Proposition 8.1.1 The Laplace transform Yf (s) of the forced response
can be expressed as the sum of three strictly–proper rational functions
according to:

Yf (s) =
Nw(s)Nu(s)

D̄w(s)D̄u(s)C(s)
=
N̄w(s)
D̄w(s)

+
N̄u(s)
D̄u(s)

+
Nc(s)
C(s)

. (8.8)

Proof A classical result of polynomial algebra states that, given three
polynomials α(s), β(s) and γ(s), with α(s) and β(s) coprime, there exist
pairs of polynomials x(s) and y(s) satisfying the diophantine equation
(see, e.g., [7]):

α(s)x(s) + β(s)y(s) = γ(s). (8.9)

Moreover, if deg[γ(s)] < deg[α(s)] + deg[β(s)], there exists a unique
pair of polynomials x(s) and y(s) satisfying (8.9) such that deg[x(s)] <
deg[β(s)] and deg[y(s)] < deg[α(s)].
If x(s) and y(s) denote the unique solution of (8.9) corresponding to
α(s) = D̄w(s)D̄u(s), β(s) = C(s) and γ(s) = Nw(s)Nu(s), then Yf (s) in
(8.8) can be decomposed as:

Yf (s) =
Nw(s)Nu(s)

D̄w(s)D̄u(s)C(s)
=

y(s)
D̄w(s)D̄u(s)

+
x(s)
C(s)

. (8.10)

By identifying x(s) in (8.10) with Nc(s) in (8.8), and applying the same
procedure to the first addendum at the right–hand side of (8.10), the
following decomposition is obtained:

y(s)
D̄w(s)D̄u(s)

=
N̄w(s)
D̄w(s)

+
N̄u(s)
D̄u(s)

, (8.11)
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which proves (8.8). �

According to (8.8), the transformed response consists of three strictly–
proper components:

Yf (s) = Yw(s) + Yu(s) + Yc(s), (8.12)

with

Yw(s) :=
N̄w(s)
D̄w(s)

=
n′′∑

i=1

νi−1∑

j=0

Rw,ij
(s− qw,i)j+1

, (8.13)

Yu(s) :=
N̄u(s)
D̄u(s)

=
r′′∑

i=1

ρi−1∑

j=0

Ru,ij
(s− qu,i)j+1

, (8.14)

Yc(s) :=
Nc(s)
C(s)

=
v′′∑

i=1

φi−1∑

j=0

Rc,ij
(s− qc,i)j+1

, (8.15)

where: n′′ is the number of distinct poles qw,i of W (s) that are not in
common with U(s), r′′ is the number of distinct poles qu,i of U(s) that
are not in common with W (s), v′′ is the number of distinct common
poles qc,i, and φi is the sum of the multiplicities of the same pole in
W (s) and U(s).

Correspondingly, in the time domain:

yf (t) = yw(t) + yu(t) + yc(t), (8.16)

where

yw(t) = LT−1[Yw(s)], yu(t) = LT−1[Yu(s)], yc(t) = LT−1[Yc(s)].
(8.17)

Therefore, yw(t) is formed from modes present in w(t) but not in
u(t), even if some coefficients Rw,ij may well be zero, as is the case when
zeros of U(s) cancel poles of W (s)). For this reason, it is reasonable to
call the yw(t) component the system component.

The component yu(t) is formed from modes present in u(t) but not
in w(t), even if in this case too some Ru,ij may be zero so that the
corresponding mode is filtered out. It is reasonable to call the yu(t)
component the input component, since its form resembles the one of
u(t).
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The component yc(t) corresponds to poles that are common to yw(t)
and yu(t), and hence it can be referred to as the interaction or resonant
component.

Example A system with transfer function

W (s) = 10
s+ 4

(s+ 3)(s+ 5)
(8.18)

is subjected to an input whose Laplace transform is

U(s) = 5
3s+ 2.5

(s− 1)(s+ 3)
. (8.19)

By partial fraction expansion and inverse transformation, the forced
response turns out to be

yf (t) =
6750
512

e−5t +
1250
192

et − 34250
1536

e−3t +
61300
1536

te−3t. (8.20)

With the previous definitions,

yw(t) =
6750
512

e−5t, yu(t) =
1250
192

et, yc(t) = −34250
1536

e−3t +
61300
1536

te−3t.

(8.21)

As this example shows, yc(t) contains one or more modes that are
not present in w(t) and u(t).

8.2 Steady–state and asymptotic responses

From an etymological point of view, the commonly used terms of “tran-
sient, asymptotic and steady–state response” seem to be proper only
when:
(i) the system is bounded–input bounded–output (BIBO) stable, i.e.,
Re[pi] < 0, i = 1, . . . , n′, and
(ii) at least one input mode does not tend to zero, i.e., Re[vi] ≥ 0, for at
least one i.

In this case, both yw(t) and yc(t) tend to zero as t → ∞ since the
common poles between W (s) and U(s), if any, are in the open LHP.
Therefore, yc(t) and yw(t) can rightfully be called the transient terms
because they (practically) “continue for only a short time” [8].



96 Chapter 8. Components of the forced response

If it is further assumed that U(s) has no pole in the open RHP
and its purely imaginary poles vi are simple, then u(t) is bounded and
yu(t) may be called steady–state response, corresponding to the most
common interpretation of the term “steady state” and consistent with
the dictionary definition of “steady” as “regular” [8].

If, instead, the input is unbounded because some of the poles of
U(s) are in the open RHP or some of its purely imaginary zeros are not
simple, then it appears more reasonable to refer to the input component
as the asymptotic response, rather than “steady state”. Actually, this
asymptotic response is dominated by the mode in yu(t) with the most
positive value of Re[vi], or, if the maximum of Re[vi] = 0, with the
highest power of t.

Example Let

W (s) =
1

s+ 1
and U(s) =

1
s2
. (8.22)

In this case:
Yu(s) =

1
s2
− 1
s

(8.23)

so that the input component

yu(t) = t− 1, t > 0, (8.24)

is the asymptotic response dominated by the mode t.

Note that, in the control literature, the polynomial part of the forced
response to a canonical input u(t) = 1

(i−1)! t
i, t > 0, is often called

steady–state response; for example, in [9, p. 78] the steady–state re-
sponse to a ramp–function input is identified with a term of the form
k0 + k1t.

If the assumptions (i) and (ii) at the beginning of this section do
not hold, the suggested terminology seems to be no longer meaningful.
For instance, if the system is unstable, then yw(t) cannot be called tran-
sient; also, the fastest growing term of the forced response could belong
to yw(t) itself rather than to yu(t). If, on the contrary, the system is
stable and u(t) is composed of terms that tend to zero, the overall re-
sponse will be “transient”; the expression “asymptotic” could then refer
to the slowest decaying term which, however, could belong to yw(t) (for
a definition of dominant modes, see [10]).
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In conclusion, it appears appropriate to use the terms “transient”,
“steady–state” or “asymptotic” only when Re[pi] < 0, ∀i, and Re[vi] ≥ 0
for at least one i. In these cases, yw(t) is indeed transient, and the
steady–state or asymptotic response corresponds to the input component
yu(t) (or to its fastest growing term). Of course, the decomposition of the
overall forced response into a system component, an input component
and, possibly, a resonant component is always valid.

8.3 Properties of the input component

The steady–state response is sometimes computed by assuming that the
input is applied at t = −∞, using the convolution integral

y(t) =
∫ t

−∞
u(τ)w(t− τ)dτ. (8.25)

However, care must be taken, when computing the steady–state response
in this way, that the integral in question is well defined. For instance,
if Re[vi − pj ] < 0, ∀i and ∀j, then (8.25) diverges for all finite t. To see
this, consider the simple case where

u(t) =
r∑

i=1

Qu,ie
vit, w(t) =

n∑

i=1

Qw,ie
pit (8.26)

so that the integral (8.25) becomes
∫ t

−∞
u(τ)w(t− τ)dτ =

r∑

i=1

n∑

j=1

Qu,iQw,i
vi − pj

epjt
[
e(vi−pj)τ

]∣∣∣∣
t

−∞
=∞. (8.27)

However, the integral is well defined and does define the steady state
when Re[pi] < 0 and Re[vi] ≥ 0, since then

∫ t

−∞
u(τ)w(t− τ)dτ =

r∑

i=1

( n∑

j=1

Qu,iQw,i
vi − pj

)
evit (8.28)

is finite for all finite t and contains only the modes of u(t).
The considered property does not hold, instead, if u(t) includes exponen-
tial terms with a negative real part of vi and/or the system is unstable
because the integral (8.25) does not converge in those cases.

Another interesting property of the input component yu(t) is ex-
pressed by the following proposition.
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Proposition 8.3.1 The input component yu(t) is a linear combination
of u(t) and its first r − 1 successive derivatives:

yu(t) =
r−1∑

h=0

fh
dhu

dth
, t > 0. (8.29)

Proof To avoid complex notation, reference is made to the case of a
U(s) whose poles vi are all simple. Therefore, u(t) is as in (8.26) and
yu(t) particularizes to

yu(t) =
r′′∑

i=1

Ru,ie
vit, (8.30)

where, again, r′′ denotes the number of distinct poles of U(s) that are
not in common with W (s). It follows that the coefficients fh in (8.29)
can uniquely be determined by solving the matrix equation:




1 v1 v2
1 . . . vr−1

1

1 v2 v2
2 . . . vr−1

2

. . . . . . . . . . . . . . .

1 vr′′ v2
r′′ . . . vr−1

r′′

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
1 vr v2

r . . . vr−1
r







f0

f1

. . .
fr′′−1

. . .

. . .
fr−1




=




Ru,1/Qu,1
Ru,2/Qu,2

. . .
Ru,r′′/Qu,r′′

0
. . .
0




(8.31)

whose coefficient matrix is nonsingular. �

A definition of steady–state response based on (8.29) was proposed in
[11]. Precisely, the steady–state response was defined as a solution (for
t > 0) of the system inhomogeneous equation having the form (8.29).
The input component yu(t) defined in this chapter is certainly a linear
combination of u(t) and its derivatives but it is also a solution of the
system inhomogeneous equation only if yc(t) ≡ 0. This can easily be
realized by considering that the system component yw(t) is a solution
of the system homogeneous equation and, therefore, yu(t) + yc(t) is a
particular solution of the inhomogeneous equation; since yc(t) does not
satisfy the homogeneous equation, yu(t) alone cannot be a solution of
the inhomogeneous one if yc(t) is not identically zero.
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8.4 Extensions

In the previous sections both U(s) and W (s) were rational functions
In this section, instead, the case in which either of these functions is
nonrational is briefly examined. Assume first that the nonrational term,
taken to be the input transform U(s) without loss of generality, may be
expressed as

U(s) =
∞∑

i=1

ψi∑

j=0

Ru,ij
(s− vi)j+1

, (8.32)

which typically occurs when u(t) is periodic with an infinite number of
harmonics. For instance, the square wave of amplitude 1 and period 4:

u(t) = δ−1(t) + 2
∞∑

i=1

(−1)iδ−1(t− 2i), (8.33)

where δ−1(t) denotes the unit step function, has the following nonra-
tional transform [12]:

U(s) =
1
s

[
1 + 2

∞∑

i=1

(−1)ie−2is

]
=

1
s

tanh(s) (8.34)

which can be rewritten as

U(s) =
∞∑

i=1

2
s2 + ω2

i

with ωi = (2i− 1)
π

2
. (8.35)

Taking the inverse Laplace transform of every term in (8.35), the follow-
ing Fourier expansion is obtained:

u(t) = δ−1(t)
[ ∞∑

i=1

2
ωi

sin(ωit)
]
. (8.36)

If W (s) or U(s) has a finite number of poles, Yf (s) can still be
decomposed as in (8.12), even if, in this case, either Yw(s) in (8.13) or,
respectively, Yu(s) in (8.14) will have an infinite number of terms. For
instance, if U(s) is given by (8.35) and

W (s) =
1

s+ 1
, (8.37)
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then

Yf (s) =
∞∑

i=1

1
s+ 1

2
s2 + ω2

i

=
[ ∞∑

i=1

2
1 + ω2

i

]
1

s+ 1
+
∞∑

i=1

2
1 + ω2

i

1 + s

s2 + ω2
i

.

(8.38)
The first term at the right–hand side of (8.38) is Yw(s) whereas the
second one is Yu(s); no interaction term is present.

Concerning the coincidence of yu(t) with the response that the sys-
tem would have produced if the input had been applied at t = −∞,
this indeed happens if each addendum of u(t), as obtained from (8.32)
by inverse Laplace transformation, satisfies the integrability conditions
for (8.25), which is true in the above example. Specifically, the inverse
Laplace transform of Yw(s) is

yw(t) = U(−1) e−t = 0.762 e−t (8.39)

and the inverse Laplace transform of Yu(s) is

yu(t) =
∞∑

i=1

2
1 + ω2

i

[
1
ωi

sin(ωit)− cos(ωit)
]

(8.40)

which coincides with

y(t) =
∫ t

−∞

[
2
∞∑

i=1

1
ωi

sin(ωiτ)
]
e−(t−τ)dτ. (8.41)

Instead, the property expressed by Proposition 8.3.1 is no longer true if
U(s) is nonrational, as clearly shown by the above example in which the
input is a square wave: the steady–state response yu(t) is given by (8.40)
and this cannot be obtained by combining the considered piecewice con-
stant u(t) and its derivatives, which are everywhere zero except for the
discontinuity points.

Consider now a case in which the nonrational function has no finite
poles. Precisely, assume that u(t) is given by

u(t) = e−t
2
δ−1(t) (8.42)

whose Laplace transform is [12]

U(s) =
√
π

2
e

s2

4 erfc
[
s

2

]
. (8.43)
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If W (s) has n simple poles pi, the forced response transform can be
written as

Yf (s) = W (s)U(s) =
n∑

i=1

R̂i
s− pi

+ Ŷf (s), (8.44)

where
R̂i = lim

s→pi

(s− pi)W (s)U(s) (8.45)

and Ŷf (s) has no poles.
Clearly, under the above assumptions, no resonance component is present,
that is, Yc(s) = 0. The summation at the right–hand side of (8.44) has
the form of the transform of a free evolution and, therefore, can be
considered as the transform Yw(s) of the system component. For this
reason, one might regard Ŷf (s) as the input component because it de-
pends on u(t) and does not contain any mode of the free evolution. It is
easy to see that, in this case, ŷf (t) is not given by a linear combination
of u(t) and its derivatives. In fact, ŷf (t) is a particular solution of the
system inhomogeneous equation, being the difference between the par-
ticular solution yf (t) of the inhomogeneous equation and the solution
yw(t) of the homogeneous one, that is,

n∑

i=0

ai
diŷf
dti

=
m∑

i=0

bi
diu

dti
. (8.46)

Now, if

ŷf (t) =
K∑

k=0

fk
dku

dtk
(8.47)

were true, then u(t) would satisfy the homogeneous equation

n+K∑

i=0

[
bi −

i∑

j=0

ai−jfj

]
diu

dti
= 0 (8.48)

and U(s) would be rational, thus contradicting the assumption.
Furthermore, ŷf (t) may not coincide with the system response to an
input acting from t = −∞. For example, if U(s) is given by (8.43) and
W (s) by (8.37), the overall forced response is

yf (t) =
∫ t

0
e−(t−τ)e−τ

2
dτ = e−t

{
e

1
4

√
π

2

[
erfc

(
− 1

2

)
− erfc

(
t− 1

2

)]}
=
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= e−t
[
1.730− 1.138 erfc

(
t− 1

2

)]
, t > 0. (8.49)

According to (8.44) and (8.45), the system component is

yw(t) = U(−1)e−t = 1.730 e−t, t > 0, (8.50)

so that

ŷf (t) = yf (t)− yw(t) = −1.138 erfc
(
t− 1

2

)
e−t, (8.51)

whereas the response y(t) for t > 0 to the input u(t) = e−t
2

acting from
t = −∞ is

y(t) =
∫ t

−∞
e−(t−τ)e−τ

2
dτ = e−t

{
e

1
4

√
π

2

[
2− erfc

(
t− 1

2

)]}
=

= e−t
{

2.276− 1.138 erfc
(
t− 1

2

)]}
. (8.52)

In the previous example it was possible to determine both ŷf (t) and
y(t), and yw(t) turned out to be real. There are cases, however, in
which, even if a nonrational U(s) exists and yf (t) may be computed
(and is real), y(t) cannot be determined and/or yw(t), ŷf (t) are not real.
For instance, the input

u(t) =
1

t+ t0
, t > 0, (8.53)

gives rise to the real finite forced response

yf (t) = e−t
∫ t

0

eτ

τ + t0
dτ, t > 0, (8.54)

whereas the integral from −∞ does not converge.
Moreover, for the system with transfer function (8.37) and impulse

response w(t) = e−t δ−1(t), the system component yw(t) = U(−1)e−tδ−1(t)
is complex if U(−1) is complex. For example, if u(t) = (1/

√
t) δ−1(t),

then U(s) =
√
π/s and U(−1) is imaginary. Similarly, if u(t) = [ln(t) +

γ] δ−1(t), where γ is the Euler constant (γ ' 0.577), then U(s) =
−(1/s) ln(s), and again U(−1) is imaginary. Obviously, when yw(t) is
complex, ŷf (t) must also be so since yf (t) is real. Similar considera-
tions could be made for the case in which U(s) is rational and W (s) is
nonrational (but has no poles): the forced response is then formed by a
combination of input modes (input component) and by another term to
be regarded as the system compenent. Such a decomposition of yf (t) is
not possible if both U(s) and W (s) are nonrational.



Chapter 8. Components of the forced response 103

8.5 Concluding remarks

A precise definition of steady–state, asymptotic and transient response
for linear time–invariant systems has been provided. In particular, it
has been shown that, when both the transfer function W (s) and the
Laplace transform U(s) of the input are rational, the forced response
can uniquely be subdivided, according to (8.16) and (8.17), into three
parts that have been named the system component, the input component
and the interaction component (Section 8.1).

The form of the system component yw(t) is similar that of the im-
pulse response w(t) and the form of the input component yu(t) is sim-
ilar to that of the input u(t), whereas the interaction component yc(t)
contains terms that are not present in w(t) and u(t). Under suitable
assumptions (see Section 8.2), yw(t) can reasonably be called transient
response and yu(t) steady–state response. The expression “asymptotic
response” seems to be more appropriate when u(t) and, thus, yu(t) are
unbounded.

The possibility of determining the steady–state response from the
indefinite integral (8.25) has been considered as well as the use of linear
combinations of u(t) and its derivatives (Section 8.3). Possible exten-
sions of the previous concepts to the cases where either W (s) or U(s) is
nonrational have been discussed in Section 8.4.
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