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Chapter 7

Stability margin design

A problem considered with interest in the recent control literature (see,
e.g., [1] ÷ [4]) is that of determining a controller that maximizes a given
stability margin or achieves a tradeoff between different stability mar-
gins so as to confer robustness to the control system. The solution to
this problem is expectedly more difficult when the plant transfer func-
tion Gp(s) has both poles and zeros in the right half–plane (RHP). In
this case, in fact, the achievable margins may not exceed certain upper
bounds depending on the location of the RHP poles and zeros of Gp(s).
These bounds have been expressed in [2, p. 202] in terms of the H∞
norm of the closed–loop transfer function (complementary sensitivity
function)

W (s) =
Gc(s)Gp(s)

1 +Gc(s)Gp(s)
, (7.1)

where Gc(s) is the controller transfer function.
For instance, assuming that the RHP poles ppi and zeros zpi of Gp(s)

are simple, the upper bound m∗ϕ on the absolute value of the achievable
phase margin mϕ is

m∗ϕ = 2 arcsin
[

1
γopt

]
, (7.2)

where
γopt = inf ‖W (s)‖∞ (7.3)

subject to
W (zpi) = 0, W (ppi) = 1. (7.4)
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It has been observed (see, e.g., [5] ÷ [8]) that a synthesis approach
based on a single optimization criterion may give rise to controllers that
are fragile with respect to other criteria. This difficulty arises, for ex-
ample, when a near–optimal phase margin is sought, since this criterion
usually leads to very small gain margins mg. Therefore, it is more rea-
sonable to seek a balance between mϕ and mg, especially when the
attainable margins are tiny. In the case of unstable plants, such a bal-
ance is obtained when the distance from the critical point −1+ 0 of the
intersections of the Nyquist diagram of the loop function

L(s) = Gc(s)Gp(s) (7.5)

with the real axis is (almost) equal to the distance of its intersections
with the unit circle centred at the origin.

However, both the phase and the gain margins can be large and yet
the Nyquist diagram of the loop transfer function can pass close to the
critical point. A better measure of the stability robustness is provided
by the distance δc from the critical point to the nearest point on the
Nyquist plot of the loop transfer function. This distance is given by

δc =
1

supω |S(ω)| (7.6)

which is the reciprocal of the H∞ norm of the sensitivity function

S(s) =
1

1 + L(s)
= 1−W (s). (7.7)

The minimization of the H∞ norm of S(s) leads to an allpass S(s) [1,
Lemma 1], that is, with |S(ω)| constant. In turn, this fact implies that
the Nyquist diagram of L(ω) is a circle with centre at −1 + 0, so that
the distance from the critical point to all of the points on the Nyquist
plot of the loop function L(ω) is the same.

Section 7.1 provides a characterization of the internally stabiliz-
ing controllers that ensure a circular Nyquist plot of the loop function
around the critical point. On the basis of this characterization, a simple
analytic procedure to find the desired controller is derived in Section
7.2 for an exactly–proper plant. In Section 7.3, the procedure is ex-
tended to strictly–proper plants. Section 7.4 shows how a controller
that maximizes either mϕ or mg can be obtained from the controller
that produces a circular Nyquist plot. The procedures are illustrated
by numerical examples. The following exposition follows closely those
in [9] and [10].
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7.1 Controller characterization

Consider first a plant characterized by an exactly–proper transfer func-
tion Gp(s) with all of its zeros and poles in the RHP, and assume that
these poles and zeros are simple (more general cases will be considered
later).

According to the Nyquist stability criterion, the Nyquist diagram of
the loop function L(s) must encircle the critical point counterclockwise
a number of times equal to the number nL of the RHP poles of L(s).
The desired circular shape is attained only if L(s) is exactly proper
(excluding the case in which L(ω) travels along the circle with unit
radius and centre in −1 + 0 and arrives at the origin as ω → ∞).
Therefore, the controller transfer function Gc(s) turns out be exactly
proper such as Gp(s).

If the diagram of L(ω) is a circle centred at−1+0, then the diagram
of the return difference

D(s) = 1 + L(s), (7.8)

is a circle centred at the origin, which implies that D(s) is an allpass
function of the form:

D(s) = KD

nL∏

i=1

(s+ qi)

nL∏

i=1

(s− qi)
(7.9)

whose poles qi are the negatives of its zeros −qi. According to [2, pp.
36–37], the following lemma can be stated.

Lemma 7.1.1 Under the previous assumptions, the control system is
internally stable if and only if: (i) Re[qi] > 0, (ii) all of the np RHP
poles ppi of Gp(s) are also poles of D(s), and (iii) at the np RHP zeros
zpi of Gp(s) the interpolation conditions D(zpi) = 1 are satisfied.

An immediate consequence of condition (i) in Lemma 7.1.1 is that
all of the nc = nL − np poles of Gc(s), if any (a proportional controller
might be enough), are in the RHP, as stated by the next lemma.
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Lemma 7.1.2 If the control system is internally stable, the zeros of
Gc(s) are in the RHP.

Proof Consider the locus described by the roots of

1 +D(s) = 0 (7.10)

as KD varies over the extended real axis R. This root locus is formed
by nL branches, each of which passes through one pole qi of D(s) for
KD = 0 and through its zero −qi for KD = ∞, and is symmetric with
respect to the imaginary axis which is crossed for |KD| = 1 (in particular,
the point at infinity is crossed for KD = −1). Therefore, for |KD| 6= 1
all of the nL roots of (7.10) are in the same half–plane. Since the zeros
of Gc(s) are crossed by locus branches for the same value of KD as the
RHP zeros of Gp(s), they too must belong to the RHP. �

If the process and controller transfer functions are denoted, respec-
tively, by

Gp(s) = Kp

np∏

i=1

(s− zpi)

np∏

i=1

(s− ppi)

, (7.11)

Gc(s) =

Kcs
nc +

nc−1∑

i=0

bis
i

snc +
nc−1∑

i=0

ais
i

, (7.12)

then D(s) can be expressed as

D(s) =

[
snc +

nc−1∑

i=0

ais
i

] np∏

i=1

(s− ppi) +
[
Kcs

nc +
nc−1∑

i=0

bis
i

]
Kp

np∏

i=1

(s− zpi)

[
snc +

nc−1∑

i=0

ais
i

] np∏

i=1

(s− ppi)

(7.13)
whose high–frequency gain (ratio of the coefficients of the highest power
of s at the numerator and denominator) is given by

KD = 1 +KcKp. (7.14)



Chapter 7. Stability margin design 79

7.2 Synthesis procedure

In order for (7.13) to exhibit the form (7.9), the following polynomial
identity must be satisfied:

[
snc +

nc−1∑

i=0

ais
i

] np∏

i=1

(s− ppi) +
[
Kcs

nc +
nc−1∑

i=0

bis
i

]
Kp

np∏

i=1

(s− zpi)

= (−1)nc+np(1 +KcKp)
[
(−s)nc +

nc−1∑

i=0

ai(−s)i
] np∏

i=1

(−s− ppi). (7.15)

Equating the coefficients of si, i = 0, . . . , nc + np − 1, on both sides of
(7.15) (the coefficients of snc+np are necessarily equal) leads to a set of
ne = nc+np equations in the nx = 2nc+1 unknown parameters of (7.12).
These equations are nonlinear because the unknown high–frequency gain
Kc of (7.12) is multiplied by the ais.

An efficient procedure to arrive at a controller of minimal order nc
compatible with a D(s) of the desired form consists of the following
steps:
(i) set nc = np − 1 (in general, (7.15) does not admit solutions for
nc < np − 1);
(ii) by considering Kc as a parameter, obtain from (7.15) a set of 2nc+1
equations linear in the 2nc unknown coefficients ai and bi,
(iii) find the values of Kc that annihilate the determinant of the (2nc +
1)×(2nc+1) system matrix (only for these values a solution may exist);
(iv) for every real value of Kc, if any, check whether the set of equa-
tions admits a solution and, in this case, whether this solution leads
to an unstable and nonminimum–phase controller (which ensures that
the Nyquist diagram of L(s) encircles counterclockwise the critical point
nc + np times, as required by the Nyquist criterion);
(v) if more admissible solutions exist, choose the one corresponding to
the largest radius ρ = |KD| = |1 + KcKp| of the circular Nyquist dia-
grams for both D(s) and L(s); if no admissible solution exists, resort to
a more complicated controller and repeat the procedure (see later).

Essentially, point (iii) requires the solution of an algebraic equation
and point (iv) the solution of sets of 2nc equations in the 2nc unknown
coefficients ai and bi. Of course, an admissible solution might entail
cancellations in the resulting controller transfer function, which implies
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that the actual order of the controller is less than nc. This rare situation
occurs for particular pole–zero distributions of the plant transfer func-
tion [9]. Concerning point (v), to increase the controller complexity, it is
reasonable to resort to a new controller transfer function of immediately
higher order. To this purpose, a fixed far–off RHP pole is added to the
nc poles to be determined. In this way, the number of denominator pa-
rameters in not increased whereas the numerator contains an additional
unknown coefficient. Therefore, the number of equations still matches
the number of unknowns.

Example If the plant transfer function is [3]

Gp(s) =
(s− 1)(s− 3)
(s− 2)(s− 4)

, (7.16)

eqn. (7.15) with nc = np − 1 = 1 particularizes to

(s+ a0)(s− 2)(s− 4) + (Kcs+ b0)(s− 1)(s− 3)

= −(1 +Kc)(−s+ a0)(−s− 2)(−s− 4). (7.17)

Equating the coefficients of the equal powers of s on both sides of (7.17)
leads to

(2 +Kc)a0 + b0 = 10Kc + 12,
6Kca0 − 4b0 = 5Kc, (7.18)

(16 + 8Kc)a0 + 3b0 = 0.

The system matrix is then:

A =




2 +Kc 1 −(10Kc + 12)
6Kc −4 −5Kc

16 + 8Kc 3 0


 (7.19)

whose determinant is equal to 0 for Kc = −1.44428 and Kc = −1.01286.
The latter value leads to the acceptable solution: a0 = −1.13746, b0 =
2.99421. Therefore, the transfer function of the internally stabilizing
controller ensuring the desired circular form of the loop Nyquist diagram,
depicted in Fig. 7.1, is:

Gc(s) = −1.01286
s− 2.95619
s− 1.13746

. (7.20)
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The tiny radius of this diagram is ρ = |KD| = |1 + KcKp| = 0.01286.
Correspondingly, the H∞ norm of the sensitivity function is ‖S(s)‖∞ =
1/0.01286 = 77.760497, which coincides with its lower bound. The ab-
solute value of the upper and lower phase margins (related, respectively,
to the lower and upper intersections of the loop Nyquist diagram with
the unit circle centred at the origin) is equal to 0.7368◦. The upper and
lower gain margins (related, respectively, to the right and left intersec-
tions with the real axis) are mg,u = 0.112425 dB and mg,l = −0.110988
dB.
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Figure 7.1: Tiny circular Nyquist diagram of the loop function L(s) =
Gc(s)Gp(s) with Gp(s) and Gc(s) equal to (7.16) and (7.20), respectively
.

7.3 Extension to strictly–proper plants

It is shown next that the procedure of Section 7.2 can be extended to
the case of plants that are characterized by a strictly–proper transfer
function and exhibit left half–plane (LHP) poles and zeros, too.

Assume first that all of the poles and zeros of Gp(s) are in the RHP
and denote by η its pole–zero excess. Then, the procedure of Section
7.2 can be applied to

Ĝp(s) =
1

(−z)η Gp(s)(s− z)
η, (7.21)
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where the additional RHP zero z is much greater that the largest mag-
nitude of all the poles and zeros of Gp(s). In this way, the zero at
infinity of multiplicity η of Gp(s) is converted into a finite but large
RHP zero of equal multiplicity of Ĝp(s), while the low–frequency gain
is retained. The resulting controller transfer function Gc(s) will make
the Nyquist diagram of L̂(s) = Gc(s)Ĝp(s) circular around the criti-
cal point. Correspondingly, a long initial part of the Nyquist diagrams
of L(s) = Gc(s)Gp(s) and L̂(s) will almost overlap, and their stability
margins will be practically the same.

The LHP poles and zeros of Gp(s), if any, can safely be cancelled
without endangering internal stability. However, if the number of LHP
poles exceeds that of the LHP zeros, a remote pole of suitable multiplic-
ity must be included in the controller to ensure that its transfer function
remains proper.

Example Assume that the plant transfer function is

Gp(s) =
(s− 2)(s+ 4)

(s− 1)(s− 3)(s+ 5)
. (7.22)

Form the “augmented” plant transfer function:

Ĝp(s) = −1
z
Gp(s)

(s− z)(s+ 5)
s+ 4

(7.23)

with z large compared to the magnitude of the other poles and zeros.
By applying the procedure of Section 7.2 to (7.23) with z = 1000, the
following internally stabilizing controller transfer function is found:

Gc(s) =
933.77s− 1400
s− 874.8336

(7.24)

leading to a perfectly circular Nyquist diagram of L̂(s) = Gc(s)Ĝp(s)
with upper and lower phase margin equal to m̂ϕ = ±3.792◦, and upper
and lower gain margins equal, respectively, to m̂g,u = 0.5952 dB and
m̂g,l = −0.5568 dB.
The controller transfer function for the actual plant (7.22) can be chosen
as:

Ĝc(s) =
s+ 5
s+ 4

Gc(s). (7.25)

The Nyquist diagram of L(ω) = Ĝc(ω)Gp(ω) tends to the origin after
encircling the critical point the required number of times. However, its
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Figure 7.2: Nyquist diagram for the loop function L(s) = Ĝc(s)Gp(s)
with Gp(s) and Ĝc(s) equal to (7.22) and (7.25), respectively.

stability margins differ only slightly from those for L̂(s). Precisely they
are: mϕ = ±3.534◦, mg,u = 0.5952 dB and mg,l = −0.5471 dB. The
Nyquist diagram for L(s) is shown in Fig. 7.2.

7.4 Margin maximization

If the Nyquist diagram of L(ω) is a circle centred at −1+0 with radius
ρ, the absolute value of the upper and lower gain margins are not equal
because the one corresponding to the intersection with the real axis at
the right of the critical point is larger than the one corresponding to
the intersection at the left of the same point. On the other hand, the
Nyquist diagram retains the circular shape if L(s) is multiplied by a
factor k, which modifies its gain. Simple geometric considerations show
that the absolute values of both gain margins become equal, so that the
smaller of the two is maximized, for

k =
1√

1− ρ2
. (7.26)

Moreover, for this value of k the derivative dmϕ/dk equals zero and the
absolute value |mϕ| of the upper and lower phase margins reaches its
maximum. For instance, by multiplying (7.20) by k = 1/

√
1− 0.012862 =
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1.0000827, the absolute value of both phase margins for the example of
Section 7.2 becomes 0.737◦ and that of both gain margins 0.112 dB.
Clearly, in this delicate case, the improvements are tiny.

If it is no longer required that the loop Nyquist diagram be circu-
lar, either the phase or the gain margins can be broadened. A simple
procedure to maximize one of them is outlined next.

Let Gc(s) be the internally stabilizing controller transfer function
that leads to a circular loop Nyquist plot according to the procedure of
Section 7.2, and denote by mϕ the absolute value of the related phase
margins. Replacing such Gc(s) by

Gc,a(s) = −Gc(s)[Gc(−s)Gp(−s)]−1 = −Gc(s)L−1(−s) (7.27)

the loop transfer function becomes

La(s) = −L(s)L−1(−s) (7.28)

which has the same number of RHP poles as L(s) but whose order is
2nL.
The magnitude and phase of La(ω) are

|La(ω)| = 1,∀ω, and arg[La(ω)] = −π + 2 arg[L(ω]. (7.29)

Therefore, the Nyquist diagram of (7.28) is superimposed on the arc
of the unit circumference centred at the origin whose phase is included
between −π− 2mϕ and −π+ 2mϕ (like the arc inside the narrow ellipse
represented in Fig. 7.3). By indicating with ωi the nL − 1 positive
angular frequencies such that arg[La(ω)] = −π, the 2nL poles of the
closed–loop function

Wa(s) =
La(s)

1 + La(s)
(7.30)

are: 0,±ωi (i = 1, . . . , nL − 1) as well as ∞. These points correspond
to the 2nL intersections with the imaginary axis of the 2nL branches of
the root locus for the equation

1 +KaLa(s) = 0 (7.31)

whose departure and arrival points are:
(i) the nL RHP poles of L(s) and the nL LHP poles of L−1(−s) (that
are the negatives of the nL RHP zeros of L(s));
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(ii) the nL RHP zeros of L(s) and the nL LHP zeros of L−1(−s) (that
are the negatives of the nL RHP poles of L(s)).
For Ka = −1 in (7.31) nL branches arrive at the imaginary axis from
the left and nL branches arrive there from the right. Indeed, controller
(7.27) leads to such a critical situation in which the gain margins are
equal to zero but the absolute value of the phase margins is maximal.
From this controller, however, an internally stabilizing controller leading
to a near–maximal value of the phase margins can be obtained by slightly
perturbing the parameters of (7.27) as follows.

If the LHP base points of La(s), that is, the poles and zeros of
L−1(−s), are shifted slightly towards the left, for Ka = −1 the points
on the related new root locus are all in the LHP, except for one point
at infinity. Therefore, by setting either Ka = −1 + ε or Ka = −1 − ε
(whatever applies), with ε suitably small, it is possible to locate all of
the poles of the closed–loop transfer function in the LHP, as shown by
the following example.

Example Consider again the plant transfer function (7.22). For Gc(s)
as in (7.20), the controller transfer function (7.27) particularizes to

Gc,a(s) = −Gc(s)L−1(−s) =
(s− 2.95619)(−s− 1.13746)(−s− 2)(−s− 4)
(s− 1.13746)(−s− 2.95619)(−s− 1)(−s− 3)

. (7.32)

Correspondingly, the Nyquist diagram of the loop transfer function La(s)
is an arc passing through −1 + 0 (see arc in Fig 7.3) and all of the
poles of the closed–loop transfer function are purely imaginary. Shifting
the LHP poles and zeros of (7.32) to the left by 0.01 and making its
high–frequency gain equal to −1− ε = −1.000005 lead to the controller
transfer function

Gc,ϕ(s) =

− 1.000005
(s− 2.95619)(s+ 1.14746)(s+ 2.01)(s+ 4.01)
(s− 1.13746)(s+ 2.96619)(s+ 1.01)(s+ 3.01)

(7.33)

which results in mϕ = 1.447◦, only a little smaller than its upper bound
1.4739◦. The resulting loop Nyquist diagram is similar to the narrow
ellipse surrounding the critical point shown in Fig. 7.3. Observe, by way
of comparison, that the controller derived in [3] for the same plant with
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the objective of making mϕ greater than 1◦ leads to the following lower
and upper phase margins: 1.0428◦ and −1.0654◦.
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Figure 7.3: Nyquist diagram for the loop function La(s) defined in (7.28)
with Gp(s) and Gc(s) given by (7.16) and (7.20), respectively (arc inside
the ellipse), and Nyquist diagram for the slightly modified loop function
corresponding to (7.33) (narrow ellipse).

A procedure similar to the one used for maximizing mϕ can be con-
ceived for maximizing the absolute value of the gain margins. In this
case, it is enough to shift slightly to the left the LHP poles and zeros of

Lb(s) = −L(s)L(−s) (7.34)

whose Nyquist diagram is superimposed to a horizontal segment passing
through the critical point.

7.5 Concluding remarks

Stability margins are important measures of stability robustness. How-
ever, the gain and phase margins can be large and yet the Nyquist
diagram of the loop function L(ω) can pass close to the critical point.
A more meaningful measure of stability robustness, especially when the
plant is unstable and nonminimum–phase, is provided by the minimal
distance of this diagram from the critical point, which is the inverse of
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the H∞ norm of the sensitivity function S(s). Indeed, the minimization
of this norm leads to |S(ω)| = const and, thus to |1 − L(ω)| = const.
In agreement with this result, a stabilization procedure that ensures a
circle–shaped loop Nyquist diagram around −1+ 0 has been suggested.

The procedure, which leads to a minimal–order internally stabilizing
controller, entails the solution of a simple algebraic equation and a set
of linear equations. Both the case of an exactly–proper plant and that
of a strictly–proper plant have been considered. It has been shown how
from the controller obtained according to the aforementioned procedure
another controller can be constructed that almost doubles either the gain
margin or the phase margin, thus approaching their respective upper
bounds. However, the order of the resulting controller is higher than
that of the controller that ensures a balance between the two margins
and the robustness of the design decreases.

The procedure has been illustrated by means of a rather critical
example [3] for which the phase margin may not exceed 1.4739◦.
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