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Preface

We study stability of minimal points and solutions to parametric (or
perturbed) vector optimization problems in the framework of real
topological vector spaces and, if necessary, normed spaces. Because
of particular importance of finite-dimensional problems, called mul
ticriteria optimization problems, which model various real-life phe
nomena, a special attention is paid to the finite-dimensional case.
Since one can hardly expect the sets of minimal points and solu
tions to be singletons, set-valued mappings are natural tools for our
studies.

Vector optimization problems can be stated as follows. Let X be a
topological space and let Y be a topological vector space ordered by
a closed convex pointed cone K. c Y. Vector optimization problem

K. - min lo{x)
subject to x E Ao , (Po)

where 1 : X ---+ Y is a mapping, and Ao C X is a subset of X, relies
on finding the set Min(fo, Ao,K.) = {y E 10{Ao) I10{Ao) n (y - K.) =
{y}} called the Pareto or minimal point set of (Po), and the
solution set S(fo, Ao,K.) = {x E Ao lfo{x) E Min(fo,Ao,K.)}. We
often refer to problem (Po) as the original problem or unper
turbed one. The space X is the argument space and Y is the
outcome space.

Let U be a topological space. We embed the problem (Po) into
a family (Pu ) of vector optimization problems parametrised by a
parameter u E U ,

K. - min I{u,x)
subject to x E A{u), (Pu )

where 1 : U x X ---+ Y is the pararnetrised objective function and
A : U=::t Y , is the feasible set multifunction, (Po) corresponds to a
parameter value 'Uo . The performance multifunction M : uz; y ,
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is defined as M(u) = Min(f(u, '), A(u),K:) , and the solution mu1
tifunction S ; U=t y , is given as S(u) = S(J(u,'), A(u), K), and
f : U X X ~ Y, A(u) eX.

Our aim is to study continuity properties of M and S as functions
of the parameter u. Continuous behaviour of solutions as functions
of parameters is of crucial importance in many aspects of the theory
of vector optimization as well as in applications(correct formulation
of the model and/or approximation) and numerical solution of the
problem in question.
We investigate continuity in the sense of Hausdorff and Holder of the
multivalued mappings of minimal points M(u) and solutions S(u)
as functions of the parameter u under possibly weak assumptions .
We attempt to avoid as much as possible compactness assumptions
which are frequently over-used (see eg [83]).
It is a specific feature of vector optimization that the outcome space
is equipped with a partial order generated by a cone the properties
of which are important for stability analysis. In many spaces cones
of nonnegative elements have empty interiors and because of this we
derive stability results for cones with possibly empty interior. This
kind of results are specific for vector optimization and do not have
their counterpart in scalar optimization.
We introduce two new concepts: the notion of containment(with
some variants for cones with empty interiors), [161, and the notion of
strict minimality, [12J.

The containment property (GP) , defined in topological vector spaces,
is introduced to study upper semicontinuities (in the sense of Haus
dorff) of minimal points, [11, 16J . It is a variant of the domination
property (DP) , which appears frequently in the context of stability
of solutions to parametric vector optimization problems. Although
it is not a commonly adopted view point, the domination prop
erty may be accepted as a solution concept which generalizes the
standard concept of a solution to scalar optimization problem. In
consequence, the containment property (GP) may also be seen as a
solution concept in vector optimization. To investigate more deeply
this aspect we interpret the containment property as a generaliza
tion of the concept of the set of </J-Iocal solutions appearing in the
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context of Lipschitz continuity of solutions to scalar optimization
problems. Under mild assumptions the containment property im
ply that the set weakly minimal points equals the set of minimal
points. This equality, in turn, is a typical ingradient of standard
finite-dimensional sufficient conditions for upper semicontinuity of
minimal points.
To study Holder upper continuity of minimal points we define the
rate of containment of a set with respect to a cone, which is a real
valued function of a scalar argument, see [14, 15]. The rate of growth
of this function influence decisively the rate of Holder continuity of
minimal points, [15].

Strictly minimal points are introduced to study lower sernicontinu
ities (lower Hausdorff, lower Holder) of minimal points [20, 13]- The
definition of a strictly minimal point is given in topological vector
spaces and it is a generalization of the notion of a super efficient
point in the sense of Borwein and Zhuang defined in normed spaces.
We discuss strict minimality in vector optimization by proving that
it is a vector counterpart of the concept of ifJ- local solution to scalar
optimization problem.

Theory of vector optimization may be considered as an abstract
study of optimization problems with mappings taking values in the
outcome space equipped with a partial order structure. As such, it
contains many concepts and results which generalize and/or have
their counterparts in scalar optimization. The very definition of the
set of minimal points of vector optimization problem in the outcome
space may serve as an example here. This is a counterpart of the
optimal value of scalar optimization problem. Another example is
the concept of well-posed optimization problem. In subsequent de
velopments we often compare our results and considerations with
the corresponding approaches in scalar optimization. For instance,
we define several classes of well-posed vector optimization problems
by generalizing the concept of scalar minimizing sequence and in
these classes we investigate continuity of solutions. For scalar op
timization problems, the existing approaches and results on well
posedness are extensively discussed in the monograph by Dontchev
and Zolezzi [33].
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Convergence and rates of convergence of solutions to perturbed op
timization problems is one of crucial topics of stability analysis in
optimization both from theoretical and numerical points of view.
For scalar optimization it was investigated by many authors see eg.,
[72], [32], [47], [78], [55), [81], [59], [60], [82], [2], and many oth-
ers. An exhaustive survey of current state of research is given in
the recent monograph by Bonnans and Shapiro [26]. In vector opti
mization the results on Lipschitz continuity of solutions are not so
numerous, and concern some classes of problems, for linear case see
eg.,[28], [29], [30], for convex case see eg., [25], [31].

The organization of the material is as follows. In Chapter 2 we
investigate upper Hausdorff continuity of the multivalued mapping
M, M(u) = Min(r(u)IK:) assigning to a given parameter value u
from a topological space U the set of minimal points of the set
r(u) C Y with respect to cone K: C Y, where for any subset A
of a topological vector space Y the set of minimal points is defined
as Min(AIK:) = {y E A I A n (y - K:) = {y}}, and r : U=t Y,
is a given multivalued mapping. The main tool which allows us to
obtain the general result is the containment property (GP). Some
infinite-dimensional examples are discussed. A special attention is
paid to the containment property (GP) in finite-dimensional case,
when Y = Jrl.

In Chapter 3 we discuss upper Holder continuity of the minimal
point multivalued mapping M . To this aim we introduce the rate
of containment 8 which is a one-variable nondecreasing function,
defined for a given set A and the order generating cone K:. The
assumption of sufficiently fast growth rate of this function appears
to be the crucial assumption for all upper Holder stability results of
Chapter 3.

In Chapter 4 we apply the results obtained in Chapters 2 and 3
to derive conditions for upper Hausdorff and upper Holder stability
of minimal points to parametric vector optimization problems by
taking r(u) = f(u, A(u)). Moreover, we introduce the concept of
{p- strong solutions to vector optimization problem (Po), which is
a generalization of the concept of a q'>-local minimizer to scalar
optimization problem, the latter being introduced by Attouch and
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Wets [6J.

In Chapter 5 we investigate the lower continuity and lower Holder
continuity of the minimal point multivalued mapping M. To this
aim we introduce the notion of strict minimality mentioned above
and the rate of strict minimality. In Section 5.5 we apply the results
obtained in Chapter 5 to parametric vector optimization problems
and we derive sufficient conditions for lower and lower Holder conti
nuity of Pareto point multivalued mapping M. An important tool
here is the notion of <l>- strict solution to vector optimization prob
lem introduced in Section 6.1 . This notion can be interpreted as
another possible generalization of the concept of tj>-local minimizer.

In Chapter 6 we propose several definitions of a well-posed vector
optimization problem. All these definitions are based on properties
of c-solutions to vector optimization problems. For well-posed vec
tor optimization problems we prove upper Hausdorff continuity of
solution multivalued mapping S, S(u) = S(f(u,'), A(u), K).
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3

Holder continuity of minimal points under per
turbations of the set

In this chapter we derive criteria for upper Lipschitz/Hdlder and
Lipschitz/Holder continuities of the set of minimal points Min(AIK:)
with respect to a convex closed pointed cone K: c Y of a given subset
A c Y of a normed space Y when A is subjected to perturbations.
In general, there exist many ways of dealing with perturbations
whenever they appear. We express perturbations by multivalued
mappings I', defined on a space of perturbations U, with r(uo) = A,
and consider the family of problems (Pu ) of finding Min(r(u)IK).
Upper Holder property at tto ensures that the distance of a solution
of perturbed problem (Pu ) to the set of solutions of unperturbed
problem (Puo) can be estimated via the distance of perturbations
lIu - ttoll raised to ROme power q. Hence, upper Holder property
is of interest when it is impossible or too difficult to deal with the
original problem and one wants to know the magnitude of the error
made by accepting a solution of perturbed problem as a solution
of the original problem. For instance, numerical representation of
problems lead to perturbations due to finite precision. The upper
Lipsehitz property (upper Holder property with q = 1) has already
appeared in investigation of stability of different problems, see eg.,
[69, 70, 71].
In Sections 3.1, 3.2 we consider problems with intK f= 0. In Section
3.1 we introduce two functions measuring depart from minimality;
the in vidual rate of containment J.L defined for y E Y, and the rate

50



of containmment 8 of a subset A C Y with respect to K, which is
a real-valued function of one real variable and measures the depart
from minimality on A as a function of the distance from the minimal
point set. In Section 3.2 we investigate upper Holder continuity of
Min(f(u)IK) at a given point uo. The main requirement we impose
is that for small arguments the rate of containment fJ is a sufficiently
fast growing function.
In Sections 3.3,3.4 we do not make any assumption concerning the
interior of K. In Section 3.3 we define the dual rate of contain
ment d and in Section 3.4 we investigate upper Holder continuity of
Min(f(u)lK) at a given point Uo. The main requirement we impose
is that for small arguments the rate of containment d is a sufficiently
fast growing function.

Let U = (U, 11 . ID and Y = (y; 11 . ID be normed spaces. We say that
a multivalued mapping F : U-=t Y , is:

upper Lipschitz at Uo, (compare ego [69, 70, 71]), if there exist
a neighbourhood Uo of Uo and a positive constant L such that

F(u) C F(uo) + L ·lIu - uollB for u E Uo,

lower Lipschitz at Uo, if there exist a neighbourhood Vo of Uo
and a positive constant L such that

F(Uo) c F(u) + L . lIu - uollB for u E Vo,

Lipschitz continuous at Uo with constant L if it is upper and
lower Lipschitz continuous at Uo with constant L,

upper Holder of order q at Uo with constant L if there exists a
neighbourhood Vo such that

F(u) c Fuo) + Lllu - Uoll q
• B for u E Uo,

lower Holder of order q at Uo with constant L if there exists a
neighbourhood Vo such that

F(uo) C F(u) + Lllu - Uoll q
• B for u E Uo,

Holder at Uo of order f with constant L if it is upper and lower
Holder of order f at Uo with constant L.
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F : U=t Y , is locally Lipschitz around Uo, [91, if there exist a
neighbourhood Uo C domF of t4J and a positive constant P such
that

F(ur) C F(U2) + l!. Ilul - u211B for UJ, U2 E U.

Let Yo E F(uo). We say that F : trz;Y , is pseudo-Lipschitz,
[9], around (Yo, uo) E graphF, if there exist a neighbourhood Uo c
domF of Uo, a neighbourhood VO of Yo, and a positive constant P
such that

3.1 Rate of containment

Let Y = (Y, 1I . 11) be a normed space and let K be a closed convex
pointed cone in Y. By B(a, r) we denote the open ball of radius r
and centre a, B(O, 1) = B. For any subset A ofY and any yE Y we
have d(y, A) = infoE A lIy - all and B(A, c) = {y E Y I d(y, A) < s}.
For any e > °denote

A(c) = A \ B(Min(AjK)),c).

In e - fJ setting the containment property (CP) holds for a subset
A c Y if for every e > 0 there exists fJ > 0 such that

A(c) + B(O,fJ) c Min(AIK) +K. (14)

Definition 3.1.1 Let KeY be a convex cone in Y. A junction
cant : K .......,. R+, defined as

cont(k) = supjr I k +rB C K}

is called the primal cone containment function.

The function cont is positively homogeneous, ie., cant(Ak) = Acont(k),
A > 0, and suplinear, ie., cant(kl + k2 ) ~ cont(kd + cont(k2 ) •

Definition 3.1.2 (Rate of containment) The junction J.L : Y 
R defined as

J-t(y) = sup cant(y - 1])
'1E M i n (AIK:)n (y - .q
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is the rate of containment of y with respect to A and !C. The
rate of containment of subset A C Y with respect to cone
K is the function 8 : R+ --? R U { +00, -oo} defined as

8(e) = inf p,(y).
II EA (e)

We have {y E Y I p,(y) > -oo} = Min(A!!C) + !C. For y E
Min(AI!C)' it is p,(y) = O. If int!C f 0 and y E [Min(Aj!C) + !Cl,
we have p,(y) ~ 0, and moreover, p,(y) = 0 if and only if y E
W Min(AI!C) (see Proposition 3.1.5 below). The value p,(y) gives
the maximal radius r such that k + rB C !C, over all kEy 
[Min(AI!C) n (y -!C)] c !Cl. In this sense p,(y) measures the depart
from minimality of an element y. If int!C = 0, then p,(y) = 0 for
any y E Min(AI!C) + !C. In turn, 8(e) ~ 0, e > 0, if and only if
A C Min(AI!C) +!C, ie., (DP) holds for A (see Proposition 3.1.2
below). For any subset A c Y of Y for which (DP) holds, and
any e > 0, the value 8(£) gives the minimal depart from minimality
over all elements of A whose distance from the minimal point set
Min(AI!C) is not smaller than c.

In the example below we calculate p,(y) for y from the closed unit
ball.

Example 3.1.1 Let Y = R2, and A = dB, and !C = R~ =
{(YI,Y2) E R2 I YI > 0 Y2 ~ O}. Cle.arly, (DP) and (GP) holds
for A, and

Min(AI!C) = {(171,TJ2) E A I TJ2 = -VI- TJr - 1 S TJl < O}.

Put Min(AI!C)1I = Min(AI!C) n (y -!C). For any representation of
(0,0) in the form (0,0) = TJ + k"1' where TJ E Min(AI!C) , k"1 E !C,
we have TJ = (TJll TJ2) E Min(AI!C)(o,o) = Min(AI!C) ,

cont(k"1) = min{ -TJ1> VI - TJf} = { VI - llr for -1 < TJl S -1/V2
-TJI for -1/V2 S TJI < 0

and p,((0, 0)) = sUP{-I~"1I~O} cont(k1j) = 1/V2. For yEA, y =
(Yll Y2) , Y2 ~ 0,

Min(AI!C)(lIhIl2) = {(TJI, TJ2) ITJ2 = -VI - TJr, -1 S TJI < min{O, YI}},
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and

J.t(y) = max cant(kTJ) = max min{Y1-171, Y2+V1 -17d
{-1:$'11 $ min{O,111}} {- 1:$'11:$min{O,111}}

For YEA, Y = (Yb Y2), Y2 < 0,

Min(AloK:)C1I1,1I2) = {(171,172) 1172 = -)1-17t, -)1- y~ < 171 ~ min{O,yd},

and

J.t(y) = max ccmt(k'1) = max min{Yl-17I, Y2+V1 -17D .
{~v'1-1I~:$'11:$min{O,Yd} {- v'1-1I~:$'11 :$min{O,1Il}}

Now we investigate the relationship between (C P) property and the
rate of containment 6 . We start with the following technical lemma.

Lemma 3.1 Let Y be a locally convex vector space and let oK: C Y
be a closed convex pointed cone in Y . Suppose that an element y E Y
has a representations in the form Y = aa: +ka:, If at least one of the
conditions holds:

(i) A is weakly compact,

(ii) A is bounded and weakly closed, and oK: has a weakly compact
base,

then Y can be represented in the form y = £lQ + ko, with £lQ E A,
ko E oK:, beeing limit points of some suimets contained in {aQ } and
{k a,} , respectively.

Proposition 3.1.1 Let Y = (Y, 11 · ID be a normed space. Let t: be
a closed convex pointed cone in Y and let A C Y be a subset of Y.
Under one of the following conditions:

(i) Min(AIK) is weakly compact,

(ii) Min(AloK:) is bounded, weakly closed, and K. has a weakly com
pact base,

for any y E Min(AloK:) +oK: , there exists a representation y = 'TJ1J+kl/ ,
with 1711 E Min(AloK:) , and k1l + J.t(y)B c x,
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Proof. Let y E Min(AIK:) + K:. For any a > 0, one can find
a representation y = ''la: + ka, 1]a E Min(AIK:) , ka E K:, ka +
cant(kaJB c K, satisfying

cant(kaJ ~ p,(y) and cant(ka) > p,(y) - a.

We start by proving that under any of the conditions (i), (ii) , Y
can be represented in the form

y=1]o+ko, (16)

where 'T/o E Min(AIK:) , ko E K:, 1]0 = lim., 1]a , ko = lim., ko: . In the
case (i) , since Min(AIK) is weakly compact, there exists a weakly
convergent subnet of the net {1]et} • Without loss of generality we can
assume that the net {'T/o:} weakly converges to some 1]0 E Min(AIK:) .
Since K: is closed and convex, the net {ko:} , where ko: = y - 1]et ,

converges weakly to k« E K:, and y = 1]0 + ko .
To prove (16) in case (ii) suppose that e is a weakly compact base
of K:, ko: = ).et(Jet, ).et > 0, and {(Jet} c e contains a weakly conver
gent subnet. Without loss of generality we can assume that {(Jet}

converges to 80 E 8 . Since Min(AIK:) is bounded and 1181! > Mo for
all 8 E 8 we get

for some positive constants M«, M1 • This implies that {).et} is
bounded, and thus the net {k et} contains a convergent subnet, ie., we
can assume that {ko:} weakly converges to some ko = ~(}o E K. In
consequence.m; = Y - ko: converges weakly to some 1]0 E Min(AIK:)
and we get a representation y = 1]0 + ko .

To complete the proof we show that ko + p,(y)B c K:. On the con
trary, if it were ko + p,(y)b ~ K:, for some bo E B, by separation
arguments it would be

f(ko + p,(y)bo) < 0 < f(k) for k E K:,

for some f E K* , K:* = {f E v- I f(k) 2: O}. By the weak con
vergence of {ko:} to ko , and {(cant (ket) - P,(y))bo} to zero we would
have
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which would contradict the fact that ka + cont(ka)B C K. 0

Let

dome = {c E R+ I O'(c) < +oo} = {c E R+ I A(c) f;0}

be the domain of 8 . The following properties of the rate of contain
ment are direct consequences of the definition.

1. The rate of containment 8 : R+ --+ R is nondecreasing, Indeed,
let Cl,c2 E dome , Cl > £2 > O. Then A(CI) C A(C2) , and
consequently o(£d = infx EA (&l ) I£(x) 2: O'(c2) .

2. Assume that there exists at least one"l E Min(AIK) which is not
an isolated point of A, and (DP) holds for A. Suppose that
one of the conditions holds:

(i) Min(AIK) is weakly compact,

(ii) Min(AIK) is bounded and weakly closed, and K kas a
weakly compact base.

Then lim,.....o 6(£) = O. Indeed, suppose that

+00 > 6(£n) = inf E A(cn)I£(Y) > c
y

for some Cn --+ 0 and c > O. If so, then I£(Y) > c for all nand
Y E A(£n)' Moreover, one can choose Yn --+ "l E Min(AIK),
Yn E A(cn) , and there exists a representation Yn = ''In+kn , ''In E
Min(AIK), kn + cB c K. In the same way as in Proposition
3.1.1, in view of (i) and (ii) we can prove that "l = "lo+ko, where
lim., ''In = "lo E Min(AIK), lim., kn = ko E K. Consequently, it
must be ko = 0, but on the other hand, ko + c/2B c K which
is a contradiction. This proves the assertion.

3. If intK = 0, then; for any c E dome, O'(c) = 0 if and only if (DP)
holds for A, and o(c) = -00 if and only if (DP) does not hold
for A.

Proposition 3.1.2 Let A C Y be a nonernpty subset of Y with
Min(A1K) nonempty and closed. The following are equivalent:

(i) (DP) holds for A
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(ii) 6(e) 2: 0 for all e E domo .

Proof. (ii) ~ (i). Suppose that (DP) does not hold, ie., there
exists yEA which cannot be represented in the form y = TJ + k,
with TJ E Min(AIK:) , and k E K:. Hence, J..L(Y) = -00. By closedness
of Min(AIK:) , y E A(e) , for some e > O. Consequently, 6(e) = -00,

contradictory to (ii) .
(i) ~ (ii). By (DP) , for each yEA we have y = TJ + k, TJ E
Min(AIK:) , k E K:. Hence, J..L(Y) 2: 0, and (ii) follows. 0

Proposition 3.1.3 Let Y be a normed space and let K: be a closed
convex pointed cone with nonempty interior. Let A be a subset of
Y. The following are equivalent:

(i) (GP) holds for A ,

(ii) 6(e) > 0 for each e E domo .

Proof. (i) ~ (ii). By Proposition 2.1.4, for any e E dome , and
yE A(e) :/= 0, there exists K, > 0 such that

Y = TJ + k, TJ E Min(A)K:) , k + K,B c le.

Consequently, J..L(Y) 2: K" and 6(e) ~ K, > O.
(ii) ~ (i). Let e E dome , and 6(e) = c> O. Then J..L(Y) > c, for each
Y E A(e) , which means that Y = TJIJ + kll , where TJII E Min(Alle) ,
ky + c/2· Bc K:. Thus, (GP) holds. 0

Proposition 3.1.4 Let K: C Y be a closed convex pointed cone in
a normed space Y = (Y, 11 . 11) and let intX =I 0. Let A C Y be a
nonempty subset of Y and let (CP) holds for A. Under one of the
following conditions:

(i) Min(AIK:) is weakly compact,

(ii) Min(AIK:) is bounded and weakly closed, and K: has a weakly
compact base,

for anye > 0

(1) A(e) +6(e)B C Min(AIK:) + K:,
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(2) each y E A(e) can be represented in the form y = Tly +k y , where
TIll E Min(AIK) , ky +8(e) . B c K.

Proof. (2) follows directly from Proposition 3.1.1. (1) follows from
(2). 0

Proposition 3.1.5 Let Y be a normed space and let KeY be a
closed convex cone in Y, with nonempty interior. Let A c Y be a
subset of Y and (DP) holds for A. The following are equivalent:

(i) J.L(Y) = 0,

(ii) yEWMin(AIK).

Proof. (i) ~ (ii). By (i), any representation of y in the form
y = 'T/ + k, TI E Min(AIK) , k E K, satisfies k E 8K which means
that An [y - intK] = '/), ie., yEWMin(AIK) .
(ii) ~ (i). Hit were J.L(Y) ~ 0: > 0, it would be y = 'T/+k, 'T/ E
Min(AIK) , k+o:B C K, which would imply that y ~ W Min(AIK) .

o

3.2 Upper HOlder continuity of minimal points for cones
with nonempty interior.

Let U = (U,II . 11) and Y = (1"; 11 . 11) be normed spaces and let
r : tiz; Y be a multivalued mapping.
In this section we prove sufficient conditions for upper Holder con
tinuity of the minimal point set-valued mapping M : U~ Y ,

M(u) = Min(r(u)IK).

At the beginning of this Chapter we indicate some situations where
upper Holder continuity has a natural significance. One more ex
ample of such situation comes from parametric vector optimization.
Theorem 6.4 of [11] and Theorem 6.2 of (12] reveal the importance of
upper type continuities of the performance multivalued mapping 'P
for continuity of solutions to parametric vector optimization prob
lems.
In the theorem below we give sufficient conditions for upper Holder
continuity of minimal point multifunction M.
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Theorem 3.2.1 Let Y = (Y, 11 . 11) and U = (U, 11 . 11) be normed
spaces. Let K. c Y be a closed convex pointed cone in Y, intK =I 0.
Let r : U-=t Y , be a set-valued mapping which is upper Holder con
tinuous with £1 and constant L 1 and lower Holder continuous with
order £2 and constant L2 at 'l4J. Suppose that one of the following
conditions hold:

(i) Min(f('l4J)IK.) is weakly compact,

(ii) Min(f(UQ)IK.) is bounded and weakly closed and K has a weakly
compact base.

If the rate of containment 0 of f(uo) , satisfies the condition o(c) -~

c . E:P , with c > 0, then

1

M(u) c M(UQ) + (L
1
+ (L1 : L2 ) P)llu _ UQllmin{lt,IIlln{~1 ,l2}} . B.

for all u in some neighbourhood of u«,

Proof. By the upper Holder continuity of I",

I'[u) c f(uo) + L1 11 u - 'l4JII l
t • B

c [i\!f(uo) + L 1 . IIu - uoll l t . B + (Ll~L2)*./Iu - UoII min {~1,l2} • B]U

U[(f(uo) \ (M(uo) + (LI1;L2) ~ lIu - uoll min{~),l2} • B)) + L1 ·lIu - uolll 1 • BJ,

for u in a neighbourhood Uo of uo. By the lower Holder continuity of
I', there exists a neighbourhood U1 of Uo such that f(UQ) C I'(u) +
L 2 11u - uoll l 2B, for u E U1 •

We claim that for u E UonUl
1

M(u)n[(f(uo)\(i\!f(uo)+(L 1
; L 2

) p IIu_UQllmln{~!,l2} .B)+L1 11 u- UQW1.BJ = 0. (*)

1

Indeed, y = 'Y + b1, where 'Y E f(Uo) \ (M(uo) + (Ll~L2) P IIu -
mln{ll ,fz} l

tl{)11 l' • B), b1 E L1llu - Uoll ! • B.
By Proposition 3.1.4, any z E quo) \ [M(UQ) + E: • Bl, E: > 0,
can be represented in the form z = TJz + kz, TJz E iYfin(f(uo)jK) ,
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k, + 8(e) . B C K.. Hence,
1

(
L l + L 2 ) j) mln{tl,l2}

{= 1]-r+k., , 1]-r E M(uo) , k-r+8( c IIU-llQll P ).B c K..

By the lower Holder continuity of r , 1]-r = {I + b2 , {I E r(u) , ~ E
L211u - 'l1()W2 • B, and consequently, since 8(e) ~ c- eP ,

Y - {I = I + b1 - 1], + ~ = 1]-r + k-r + b1 - 1]-r+~
C k-r + (L1 + L2)llu - uollmin{llh} . B

c k-y + 8( (LI ~L2) ~ lIu - 'l1()1Imln{~lol2}) • B C K.

By this, (*) follows. Hence,

M(u) C M(uo) + L1 • Ilu - 'l1()ll l 1 • B + (Ll:L2) t . Ilu - Uoll mln{~!ll2} • B

c M(uo) + (L1+ (LI~L2 )t)llu - 'l1()lImin{ll,mln{~I,l2}}. B,

for u E Uon U1 , which completes the proof.

o

Corollary 3.1 Let Y = (Y,lI . ID and U = (U,1l . ID be normed
spaces. Let KeY be a closed convex pointed cone in Y , intK -=I 0.
Let I' : U=t Y be a Holder set-valued mapping of order eat'l1() with
constant L. Suppose that one of the conditions hold:

(i) Min(r('l1())IK) is weakly compact,

(ii) Min(r(Uo)IK.) is bounded and weakly closed and K has a weakly
compact base.

If the rate of containment of qUo) satisfies the condition 8(e) ~

c-et , with p > 1, and c > 0, then minimal point tnultiualued mapping

M is upper Holder at Uo with constant (L + e:-) ~) and order ~ .

Corollary 3.2 Let Y = (Y, 11 . 11), U = (U, 11 . ID be nortned spaces.
Let K. C Y be a closed convex pointed cone in a normed space Y ,
intK -=I 0. Let r : U=t Y be a Lipschitz set-valued mapping at 'l1()

,with constant L. Suppose that one of the conditions holds:
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(i) Min(f('zl(j)jK) is weakly compact,

(ii) Min(f(uo)IK) is bounded and weakly closed, and K has a weakly
compact base.

If the rote of containment off(Uo) satisfies the condition 8(e:) :2: c-s ,

where c > 0, then M is upper Lipschitz at Uo with constant (2:C)L.

3.3 Rate of weak containment.

Let KeY be a closed convex pointed cone in a normed space
(Y, 11 . 11) with the dual K* C Y· . Let e* be a base of K· .

Definition 3.3.1 A junction dcont(J' : K ----7 R+ , defined as

dcont(J.(k) = inf{O*(k) I O· E e·}

is called the 8·-dual cone containment function.

If it is clear from the context which base e· is used, we omit the in
dex O· and we apply the simplified notation dcont . The terminology
"primal cone containment function" and "dual cone containment
function" is motivated by the fact that the fomulae defining these
functions form a pair of dual optimization problems (see also Section
2.4, Example 3.3.1).

By formula(10) of Section 2.4,

sup[r ) k - r » Yo E K} = inf{O·(k) I O·(Yo) = 1, O· E K·}.

This proves that cont(k) < dconte.(k) for each k E K.

In Theorem 1.1.2 and Proposition 1.1.4 we have shown that when
intK i- 0 (i.e., cork: i- 0) cone K· has a base. By similar arguments,
K· has a base whenever K i = {y E Y I f(y) > 0 for all f E
K \ {O}} i- 0. Indeed, if Yo E x: , the set

(17)

is a base of K* .

Proposition 3.3.1 K· has a base if and only if x: i- 0.
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Proof. We need only to show the" only if' part. Since any base 8*
of /C* is convex, 0 f/. w - * - cl(8*, which means that there exists
an Yo E Y with the property that O*(Yo) > K > 0 for each 0* E 8* ,
which entails that Yo E /Ci . 0

Let A c Y be a subset of Y. As defined in Section 2.3, Definition
2.3.1, the weak containment property, (WCP) , holds for A if for
every e > 0 there exists 8 > 0 such that for each y E A(c) there
exists fly E Min(AI/C) satisfying

O*(y - fly) > 8

for each 0* E 8* .

Definition 3.3.2 (Weak containment rate) The rate of weak
containment of a set A with respect to /C is the function d :
R+ - R defined as

d(c) = inf v(y)
YEA(f:)

where v : Y - R is the dual rate of containment of y with
respect to A and /C

v(y) = sup inf O*(y - fl) .
71EMin(AIK)n(y-K) O'Ee'

Denote Min(Aj/C)y = Min(AI/C)n(y-/C) , for any y E Min(AI/C) +
/C. If y E Min(A//C) + /C, then v(y) 2: O.
By using the function dcante• defined in Definition 3.3.1, the rate
of weak containment can be rewritten as follows

d(c) = inf sup dcante' (y - fl) .
lIEA(~) 71EM i n(A jK)\I

Proposition 3.3.2 Let (Y, 11 . 11) be a normed space and let A c Y
be a subset of Y. Let /C c Y be a closed convex pointed cone in Y
and let /C* c y* be its dual cone with a base 8* .
For any yE Min(AIK) + /C, 'if Min(AI/C)lI is weakly compact, then
there exist fly E Min(AIK) such that

v(y) = inf O*(y - fly).
O'Ee'
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Proof. Let y E Min(AIK) +K. We have inf(l~Ea" (}*(Y-1]) ~ v(y) ,
for each 1] E Min(AjK)II' and for any p > 0, there exists 1]p E
Min(AIK)y such that for any 0- E 8*

O*(y - "1p) > inf O*(y - "1p) > v(y) - p .- (I"Ea-

Since Min(AjK:)1I is weakly compact, the net {1]p} contains a weakly
convergent subnet and without loss of generality we can assume that
the net {"1p} converges weakly to"1y E Min(AIK)y. Since K: is weakly
closed, the net {kp = y -1]p} tends to some ky E K , and y = "111 +ky .
Thus,

inf (}*(y - "111) ~ v(y) ,
(I"Ea"

which completes the proof. o

Proposition 3.3.3 Let (Y, /I. ID be a normed space and let A c Y
be a subset of Y. Let KeY be a closed convex pointed cone in Y
and let K" be its dual with a base 8*. The following conditions are
equivalent:

(i) (WCP) holds for A,

(ii) d(c) > 0 for each e > O.

Proof. (i) ~ (ii). Take any c > 0 and y E A(c). By (WCP) ,
there exist 6> 0 and "1y E Min(AIK:) such that

inf (}*(y - "1y) > 6.
(I'Ea" -

Hence
v(y) = sup inf (}*(y - "1) ~ 6,

'1EM in (A IK )lI (I"Ea'

and d(c) = infYEA(E:) v(y) > 6> O.

(ii) ~ (i). Let d(c) = a > O. For each y E A(c)

sup inf (}*(y - "1) > a,
'1EM in (AIK )y O'Ea' -

and consequently,

inf O*(y-1]y) > a/2,
O'Ea"
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for some 7]y E Min(AIJC)y, ie., (WCP) holds.

o

Proposition 3.3.4 Let JC C Y be a closed convex pointed cone in
a topological vector space Y 'l.lJith JCl i- 0. If 8i and 8 2 are any two
bases of the form {17), with Yb Y2 E JCI such that Y2 E (TYI + JC) ,
then there exists a positive real number f3 with

dcuntsi (k) 2:: f3. dcont s 2(k) .

Proof. Let 8i, 8 2 be any two bases of the form (17), ie., for
YI,Y2 E K i we have

Si = {Oi E K:' I0i(yd = I}
8; = {02 E JC. I O;(Y2) = I}.

For any k E K, , and 0i E 8i , there exists if2E 8; such that

0i(k) = 0i(Y2)if;(k) ,

where O;(Y2) > O. Hence,

O~(k) 2:: O;(Y2) jnf if~(k) 2:: 0i(Y2) inf O~(k),
~ES; ~E~

and
inf 0i(k) > inf 0i(Y2) inf O;(k) , (18)

0iE8i - 9iESi 6iES2

Since Y2 Er · YI +JC, by (10), f3 = infoiE8j 0i(Y2) > 0, and by (18),

dconts i > f3 .dcont82.

o
Example 3.3.1 Cone containment functions in finite-dimensional
case

In Definitions 3.1.1, 3.3.1 we have defined two cone containment
functions for a closed convex cone K in Y having the dual K· C Y·
with a base 8·. Namely,
the primal cone containment function cont: K, -+ R+,

cont(k) = sup{r I k + rB c K,} I
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and
the 8* -dual cone containment function, dconts» : K -+ R+ ,

dcante·(k) = inf{O*(k) I 0* E 8* }.

1. Y = (Jr\ 11·1100), K = lG-, B = {y E Rn I lIylloo ~ I}.
The function cant has the fonn

cant(k) = max r
subject to
k1 - r ~ 0
k2 - r ~ 0

kn -r ~ 0

This is a linear progmmming problem. On the other hand, the func
tion dconi has the fonn

dcont(k) = min C1k1 + ... +c-k«
subject to
Cl + ... + en = 1
Cl > 0

3.4 Upper Holder continuity of minimal points for cones
with possibly empty interior.

Now we prove the main theorem of this section.

Theorem 3.4.1 Let Y = (Y, 11 . 11) and U = (U, 11 • 11) be normed
spaces. Let KeY be a closed convex pointed cone in Y, and let
K* be its dual with an equiconiinuous base 8*. Let r :U=: Y , be a
set-valued mapping which is upper Holder of order £1 with constant
L 1 and lower Holder of order £2 with constant £2 at 'U{).

If

(i) the dual rote of containment d of r(uo) , satisfies the condition
d (c) > c- eP , with c > 0 ,
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(ii) Min(r(Uo)IK) is weo.kly compact,

then
1

M(u) C M(uo) + (L
1

+ (2 L1; L2y ;)lI u - uollmin{ll,min{~I,l2}}. B.

for all u in some neighbourhood of Uo.

Proof. In this proof we follow the same reasoning as in the proof
of Theorem 3.2.1. Using the same notation we only need to show
that under our assumptions, for u E Uon U1

1

M( u)n[(r(uo)\(M(uo)+ (2 L1; L2) P Ilu-uoll mln{~1,l2} .B))+L1I1u-uoll l 1.B] = 0. (*)

To this aim take any
1

yE r(u)n[(r(uo)\(M(uo)+(2L1: L2
) P lIu-uoll min{~I,l2l- .B))+L1I1u-U()W

1.BJ,

for u E u« n VI' We have u= ,+ b1 , where I E r(Uo) \ (M(Uo) +
(2~)~ lIu - uoll min{~1,l2} . B), b1 E L111u - uoll l 1 • B.

Since e* is equicontinuous we can assume that f)*(B) ~ 1, for each
f)* E S" . Hence, for each bE L 1 11 u - Uoll'l . B we have

-L111u - uoll l 1 < rr(b) ~ L111u - uoll l 1
•

By Proposition 3.3.2, there exists "11 E Min(r(Uo)IK) satisfying

f).(r - "11) ~ v(r) = ()inf
e

f)"(r - "11) ~ d(c:) > c- e;P
'E •

for each ()* E S*. By the lower Holder continuity of I", "1"'1 = 11 +
~, 11 E I'(u) , b2 E L211u - U()W'2 . B. Finally

(}"(Y-,1) = f)*(y - I) +O*(r - "I''') + (}"("I-y - 11)

> -L111u - uoll'l - L211u - UoW2 +d((2Ll~L2)t Il u _ uoll min {~1,i2})
~ -(L1 + L2)lIu - uol/ m in{l l ,12} + 2(L1 + L2 )11u - Uoll mi n{l l ,l 2} > O.

Consequently, f(y - 11) ~ 0 for any f E K" . By Lemma 8.6 of [54],
Y - /1 E K, which proves (*) and completes the proof.

o
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8.5 Rate of containment for convex sets

By definition, for any subset A c Y ,

b(e) = inf p.(y) I
IfEA(e)

where A(e) = {y EA j d(y, Min(AIK» > e} .

Proposition 8.5.1 Let A c Y be a convex subset ofY. Under one
of the following conditions:

(i) Min(AIK) is weakly compact,

(H) Min(AjK) i8 weakly closed and bounded, and K has a weakly
compact base,

we have
bee) = inf p.(y) ,

IIEE(~)

where E(e) = {y E A I d(y, Min(AjK» = s} .

Proof. We have

(19)

~.

b(e) ~ inf JL(Y).
IIEE (e)

IT it were b(e) < inflfEE(e) p.(y) = eo, then p.(y) < eo , for some yEA,
d(y, Min(AIK» > e. In view of Proposition 3.1.1, y = 1171 + ~,

kif + p.(fi) . B c K .
On the segment (11If' y) c A one could find a point z belonging to
E(e) , z = >'1171 + (1 - >.)y. Hence, z = 1111 + (1 - >.)klf = 1111 + k% ,
kll: = (1 - >')k71 , k% + (1 - >.)p.(y)B c K, and p.(fi) > (1 - >.)p.(y) =
p.(z) > eo , contrary to the choice of y .

o
A convex subset A c Y of a space Y is strictly convex if each
boundary point is extremal, ie., cannot be represented as a convex
combination of any two other different points of A.

Proposition 3.5.2 Let A be a strictly convex subset of Y, and
yEA n (Min(AjK) + K). If p.(y) is attained, there is exactly one
representation u= 11 + k , 11 E Min(AIK) , k + B(O,p.(y» E K.
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7

(ii) Min(AI.q is weakly closed and bounded, and JC has a weakly
compact base,

for any yE Min(AIJC) +JC, and°:5 (3 :5 1, we have

p(y({3)) =(3p(y) ,

where y = ""u + ku , ""u E Min(AIJC) , ku +B(O, p(y)) E JC, and
y((3) = .,.,~ + (3 •ku .

Proof. Let y E Min(AIJC) + JC. By Proposition 3.1.1, a repre
sentation y = .,.,~ + kll , ""U E Min(AIJC) , ~ + B(O,p(y)) C JC ex
ists. Since (3ku + B(O, (3. p(y)) C JC, we have p(y((3)) ~ (3p(y).
IT it were J.I(y((3)) > (3J.1(Y) , then it would exist a representation
y((3) = ""1 +k, , such that k l +B (0,a) C JC I and a > (3J.1(Y). Then,
since 0:5 (3 <1,

k2 = Y -""1 = Y - y((3) +y((3) -""1 = (1- (3)k~ + kl E JC,

and
(1 - (3)k~ + kl + B(O, (1- (3)J.I(Y) + a) C JC,

(1 - (3)J.I(Y) +Cl > J.I(Y) , which would contradict the definition of
p(y) .

o

Proposition 3.5.5 Let A be a convt::I: subset of Y. Suppose that
one of the following conditions hold:

(i) Min(AIJC) is weakly compact,

(ii) Min(AIJC) is bounded and weakly closed and JC has a weakly
compact base.

The function p is concave on Min(AIJC) + JC.

Proof. Let YI> Y2 E Min(AIJC) +JC , and°:5 A:5 1. By Proposition
3.1.1, there exist ""1>""2 E Min(AIJC) such that YI = ""1 +k l , Y2 =
""2 + k2, kl + J.I(xI)B c JC, k2 + J.I(x2)B c JC. Since A is convex,
Min(AIJC) + JC is convex, and

Y(A) = AYl+(1-A)Y2 = A""I+(1-A)""2+Akl+(1-A)1v.l E Min(AIJC)+JC,
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•

Theorem 3.5.1 Let IC c Y be a closed convex pointed cone in a
nonned space (Y, 11·11), intIC =f. 0. Let A c Y be a convex subset of
Y and one of the following conditions hold:

(i) Min(AIIC) is weakly compact,

(ii) Min(AIIC) is bounded and weakly closed and IC has a weakly
compact base.

If (DP) holds for A, then 0 is quasiconvex.

Proof. Since A is convex, by Proposition 3.5.1,

O(E) = inf lJo(y) = inf lJo(y).
UEA(.) uEE(.)

Let El, E2 E dome , E2 < El ' For any et > 0 we choose yf E E(EI)

such that
lJo(yf) < 5(EI) +et. (20)

In view of Proposition 3.1.1, by (i), or (ii), there exists a represen
tation realizing the rate of containment of yf ,

yr=17a+kaeA,

where n" e Min(AIJC) , ka +B(O,IJo(ylll c IC, IIkall > El.

Let 0 $ x$ 1. Since the distance function d(·, Min(AIIC)) is con
tinuous, there exists 0 $ IC(~) $ 1 such that d(ya(~),Min(AIIC)) =
k l + (1 - ..\)E2' where ya(..\) = ,.". + K(..\)ka eA. By Proposition
3.5.4, 1'(11'("\)) = 1C(..\lIJo{yf) •

Let E(..\) =..\EI +(1- ..\)E:j. We have

5(E(..\)) = infl/EE«(,X» J'(y)
$ IJo (11' (..\) ) .:... K(..\)IJo(yf)
< o(EIl +et.

Since et > 0 is arbitrary, by noting that 5(EI) ~ O(E2) we get

5(E(..\)) < max{5(EI), 5(E2)}.

o
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A subset A of a linear space Yis starshaped at a e A if (l-a)a+
a' yeA whenever yEA and a e]O, 1). A subset A of a linear space
Y is starshaped if it starshaped at 0, ie., if a . yEA whenever
yEA and a EjO, 11 . A function f : Y -+ R is called starshaped if
its epigraph

Epi(f) = ((y,r) E Y x RI f(y) ~ r}

is starshaped, ie., f(av) ~ o:f(v) for 0: E [0, IJ, and v e domf.

We have the following proposition.

Proposition 3.5.7 Let KeY be a closed convex cone in a normed
spaceY, intK i' 0. If A c Y is a starshaped subset ofY and (DP)
holds for A, then, under one of the following conditions:

(i) Min(AIK) is weakly compact,

(ii) Min(AIK) is bounded and wenkly closed and K has a weakly
compact base,

for any yEA and fJ e)O, 1), we have

p.(fJ· y) ~ fJp.(y),

ie., p. is starshaped for !I eA.

Proof. Take any yeA and fJ EJO, 1). By Proposition 3.5.4, y can
be represented in the form

y=TJu+ku ' (*)

where TJu E Min(AIK) , ku + p.(y)B C K. Since A is starshaped,
fJye A , and by (*), f3y = fJThJ + fJku·
Since TJu E A, we have f3TJu e A and, by (DP), there exists TJl E
Min(AIK) and k) E K such that fJTJu = TJl + k). Finally,

(3y = TJ) +k) + (3ku,

and p.((3y) > (3p.(y).

o
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3.6 Holder continuity of minimal points for cones with
nonempty interior

We say that a multivalued mapping r :U=t Y , is locally Lipschitz
around Uo if there exists a constant L > 0 such that

for Ul, U2 from 8 neighbourhood Uo of Uo•
Wesay that a multivalued mapping r :U=t Y, is locally Holder

around Uo of order l if there exists a constant L > 0 such that

for Ul, U2 from a neighbourhood Uo of Uo•
let E : U::: Y, be a set-valued mapping defined on a normed

space U. By c5(.,u) we denote the rate of containment of the set
E(u) with respect to K.

Definition 3.6.1 We say that (GP) holds uniformly for E on a
subset A c U if, for anye > 0,

c5(e) = inf c5(e, u) > O•
..eA

Definition 3.6.2 We say that (GP) holds uniformly forE around
Uo if there exists a neighbourhood Uo of Uo such that for any e > 0,

c5(e) = in! c5(e, u) > O.
ueUo

In both cases c5(e) is called the uniform rate of containment.

Proposition 3.6.1 Let KeY be a closed convez pointed cone in
a normed space (Y, 11 • ID, intK- ::f: 0. Let E : U=t Y , be a set-valued
mapping defined on a normed space U. Suppose that one of the
conditions hold:

(i) Min(E(u)/K) are weakly compact for all U from some neighbour
hood U1 of l4J,

(ii) Min(E(u)IK) are bounded and weakly closed for allu from some
neighbourhood U1 of Uo, and K has a weakly compact base.
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If (CP) holds uniformly for E arotlnd Uo, for any e > 0, each
yE E(u) \ [Min(E(u)IK:) +';' B) can be represented in the form

y = 1/~ +Ai, , 71~ E Min(E(u)IK:) , Ai, +5(,;) . B C K:,

for all u from some neighbourhood of Uo•

Proof. Observe that since 5(<:,u) > 0 for all u in a neighbourhood
Uo of Uo, by Proposition 3.1.3, (CP) holds for E(u) , u E Uo•
Let s > 0 and u E UOnU1 • Takeanyy E E(u)\[Min(E(u)IK:)+,;·B).
By Proposition 3.1.4,

y = 1/11 +k ll , 71~ E Min(E(u)IK:), k~ +Jj(Y, E(u»· Bc K:,

and thus

Ai, +5(,;) . B C Ai, +5(c, u) c Ai, +Jj(Y, E(u» . B c K:.

o
ill

Theorem 3.6.1 Let K: C Y be a closed convex pointed based cone
in a normed space (Y, 11 • ID, intK: '" 0. Let I' : U -+ Y be a set
valued mapping define..d on a normed space U. Suppose that one of
the conditions holds:

(I) Min(f(u)IK:) are weakly compact for all 'U from some neighbour
hood U1 of Uo,

(H) Min(f(u)IK:) are bounded and weakly closed for all u from some
neighbourhood Ut of Uo, and K: has a weakly compact base.

If

(1) r is locally H6lder at Uo, of order fwith constant Lie.,

feud c r(UJ) +Lllul - UJllt . B,

for any Ul, 'U2 from some neighbourhood Uo of Uo ,

(2) the uniform rote of containment 5 satisfies the condition 5(<:) ~
c·,;P, wherec> 0 ,
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then

;

2 1 J.
M(Ul) C M(U2) + (L + -Lp)lIul - U211' . B,

c
for all Ul, U2 in some neighbourhood of Uo •

Proof. Let
e5(e) = in! 6(e, u) ,

ueU]

and u" U2 E Uo n U1 • By (1),

r(Ul) c r(U2) + Lllul - 1£211'· B
c [M(U2) +Lllul - U2/1'. B + ~Ltllul - u211~' BjU

.ro 1 J.
u[r(U2) \ (M(U2) + '1-L;;lIul - u211' . B)] + L ·lIul - 1£2/1'· B.

Let us take any

~ 1 I
s e r(ul)n[(r(U2)\[M(U2)+-L.llul-U2I1'·BJ)+Lllul-u2I1'·B].c

'M 1 J.
We havey ='Y+~, where 'Y E r(u2)\(M(u2)+7L·lIuI-U2/1.·B) ,
and b1 E Lllul - U2I1' . B. FUrthermore, by Proposition 3.6.1,

~ 1 J.'Y =Tf'Y + k-" where 11'1 E M(U2) , k'Y +6(-L'lIul -U2I1')' B c K..
c

Again, by (1) ,

'fl'Y = "11 + 1J.z, where "11 E I'(uIl, b2 E Lllul - U2/1' . B,

and consequently. since 6(e) > c- er>,

Y - "11 = "1 + b1 - 'fl'Y + IJ.z = Tf'Y + k-, + ~ - 'h + IJ.z

c k-, +2Lllul - u211' . Bcle-, + e5(~dllul - U2l1 i ) .B
c K,

(21)
By (21), Y ~ M(Ul) for any yE r(Ul) n (l'(U2) \ (M(U2) + aL~lIul -

1 c
U211' . B) +Lllul - U2/1' . B]. Hence,

2 1 L
M(uIl c M(U2) + (L + -L· )/11£1 - 1£211" B,

c
foruEUonU1 •

o
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