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Preface

We study stability of minimal points and solutions to parametric (or
perturbed) vector optimization problems in the framework of real
topological vector spaces and, if necessary, normed spaces. Because
of particular importance of finite-dimensional problems, called mul-
ticriteria optimization problems, which model various real-life phe-
nomena, a special attention is paid to the finite-dimensional case.
Since one can hardly expect the sets of minimal points and solu-
tions to be singletons, set-valued mappings are natural tools for our
studies.

Vector optimization problems can be stated as follows. Let X be a
topological space and let Y be a topological vector space ordered by
a closed convex pointed cone K C Y . Vector optimization problem

K — min fo(z)
subject to x € A, (Po)

where f : X — Y is a mapping, and Ag C X is a subset of X, relies
on finding the set Min(fo, 40,K) = {y € fo(4o) | fo(A)N(y—K) =
{y}} called the Pareto or minimal point set of (F,), and the
solution set S(fy, A, K) = {r € Ao |fo(z) € Min(fo, Ap,K)}. We
often refer to problem (F,) as the original problem or unper-
turbed one. The space X is the argument space and Y is the
outcome space.

Let U be a topological space. We embed the problem (F) into
a family (P,) of vector optimization problems parametrised by a
parameter u € U,

K —min f(u,z)
subject to z € A(u), (P.)

where f : U x X — Y is the parametrised objective function and
A : UZZY, is the feasible set multifunction, (F,) corresponds to a
parameter value %p. The performance multifunction M : UZ3Y,




is defined as M(u) = Min(f(u, ), A(u),K), and the solution mul-
tifunction S : UZ3Y, is given as S(u) = S(f(u,-), A(u),K), and
J:UxX->Y,A(u)CX.

Our aim is to study continuity properties of M and S as functions
of the parameter ». Continuous belhaviour of solutions as functions
of parameters is of crucial importance in many aspects of the theory
of vector optimization as well as in applications(correct formulation
of the model and/or approximation) and numerical solution of the
problem in question.

We investigate continuity in the sense of Hausdorff and Hélder of the
multivalued mappings of minimal points M(u) and solutions S(u)
as functions of the parameter u under possibly weak assumptions.
We attempt to avoid as much as possible compactness assumptions
which are frequently over-used (see eg [83]).

It is a specific feature of vector optimization that the outcome space
is equipped with a partial order generated by a cone the properties
of which are important for stability analysis. In many spaces cones
of nonnegative elements have empty interiors and because of this we
derive stability results for cones with possibly empty interior. This
kind of results are specific for vector optimization and do not have
their counterpart in scalar optimization.

We introduce two new concepts: the notion of containment(with
some variants for cones with empty interiors),[16], and the notion of
strict minimality, {12].

The containment property (CP) , defined in topological vector spaces,
is introduced to study upper semicontinuities (in the sense of Haus-
dorff) of minimal points, {11, 16]. It is a variant of the domination
property (DP), which appears frequently in the context of stability
of solutions to parametric vector optimization problems. Although
it is not a commonly adopted view point, the domination prop-
erty may be accepted as a solution concept which generalizes the
standard concept of a solution to scalar optimization problem. In
consequence, the containment property (CP) may also be seen as a
solution concept in vector optimization. To investigate more deeply
this aspect we interpret the containment property as a generaliza-
tion of the concept of the set of ¢—local solutions appearing in the




context of Lipschitz continuity of solutions to scalar optimization
problems. Under mild assumptions the containment property im-
ply that the set weakly minimal points equals the set of minimal
points. This equality, in turn, is a typical ingradient of standard
finite-dimensional sufficient conditions for upper semicontinuity of
minimal points.

To study Hélder upper continuity of minimal points we define the
rate of containment of a set with respect to a cone, which is a real-
valued function of a scalar argument, see [14, 15]. The rate of growth
of this function influence decisively the rate of Holder continuity of
minimal points, [15].

Strictly minimal points are introduced to study lower semicontinu-
ities (lower Hausdorff, lower Hélder) of minimal points |20, 13]. The
definition of a strictly minimal point is given in topological vector
spaces and it is a generalization of the notion of a super eflicient
point in the sense of Borwein and Zhuang defined in normed spaces.
We discuss strict minimality in vector optimization by proving that
it is a vector counterpart of the concept of ¢— local solution to scalar
optimization problem.

Theory of vector optimization may be considered as an abstract
study of optimization problems with mappings taking values in the
outcome space equipped with a partial order structure. As such, it
contains many concepts and results which generalize and/or have
their counterparts in scalar optimization. The very definition of the
set of minimal points of vector optimization problem in the outcome
space may serve as an example here. This is a counterpart of the
optimal value of scalar optimization problem. Another example is
the concept of well-posed optimization problem. In subsequent de-
velopments we often compare our results and considerations with
the corresponding approaches in scalar optimization. For instance,
we define several classes of well-posed vector optimization problems
by generalizing the concept of scalar minimizing sequence and in
these classes we investigate continuity of solutions. For scalar op-
timization problems, the existing approaches and results on well-
posedness are extensively discussed in the monograph by Dontchev
and Zolezzi [33].




Convergence and rates of convergence of solutions to perturbed op-
timization problems is one of crucial topics of stability analysis in
optimization both from theoretical and numerical points of view.
For scalar optimization it was investigated by many authors see eg.,
[72], [32], [47], [78], [55], [81], [59], [60], [82], [2], and many oth-
ers. An exhaustive survey of current state of research is given in
the recent monograph by Bonnans and Shapiro {26]. In vector opti-
mization the results on Lipschitz continuity of solutions are not so
numerous, and concern some classes of problems, for linear case see
eg.,[28], [29], [30], for convex case see eg., [25], [31].

The organization of the material is as follows. In Chapter 2 we
investigate upper Hausdorff continuity of the multivalued mapping
M, M(u) = Min(['(u)|K) assigning to a given parameter value u
from a topological space U the set of minimal points of the set
I'(u) C Y with respect to cone X C Y, where for any subset A
of a topological vector space Y the set of minimal points is defined
as Min(AIK) = {y€e A| An(y—K) = {y}},and ' : UZY,
is a given multivalued mapping. The main tool which allows us to
obtain the general result is the containment property (CP). Some
infinite-dimensional examples are discussed. A special attention is
paid to the containment property (CP) in finite-dimensional case,
when Y = R™.

In Chapter 3 we discuss upper Holder continuity of the minimal
point multivalued mapping M . To this aim we introduce the rate
of containment § which is a one-variable nondecreasing function,
defined for a given set A and the order generating cone K. The
assumption of sufficiently fast growth rate of this function appears
to be the crucial assumption for all upper Holder stability results of
Chapter 3.

In Chapter 4 we apply the results obtained in Chapters 2 and 3
to derive conditions for upper Hausdorff and upper Hélder stability
of minimal points to parametric vector optimization problems by
taking I'(u) = f(u, A(u)). Moreover, we introduce the concept of
®— strong solutions to vector optimization problem (F;), which is
a generalization of the concept of a ¢—local minimizer to scalar
optimization problem, the latter being introduced by Attouch and




Wets [6].

In Chapter 5 we investigate the lower continuity and lower Hélder
continuity of the minimal point multivalued mapping M . To this
aim we introduce the notion of strict minimality mentioned above
and the rate of strict minimality. In Section 5.5 we apply the results
obtained in Chapter 5 to parametric vector optimization problems
and we derive sufficient conditions for lower and lower Hélder conti-
nuity of Pareto point multivalued mapping M. An important tool
here is the notion of ®— strict solution to vector optimization prob-
lem introduced in Section 6.1. This notion can be interpreted as
another possible generalization of the concept of ¢—local minimizer.

In Chapter 6 we propose several definitions of a well-posed vector
optimization problem. All these definitions are based on properties
of e—solutions to vector optimization problems. For well-posed vec-
tor optimization problems we prove upper Hausdorff continuity of
solution multivalued mapping S, S(u) = S(f(», ), A(u),K).




Holder continuity of minimal points under per-
turbations of the set

In this chapter we derive criteria for upper Lipschitz/H6lder and
Lipschitz/Hélder continuities of the set of minimal points Min(A|K)
with respect to a convex closed pointed cone XC C Y of a given subset,
A C Y of a normed space Y when A is subjected to perturbations.
In general, there exist many ways of dealing with perturbations
whenever they appear. We express perturbations by multivalued
mappings I, defined on a space of perturbations U, with I'(ug) = A,
and consider the family of problems (F,) of finding Min(['(u)|K).
Upper Holder property at ug ensures that the distance of a solution
of perturbed problem (P,) to the set of solutions of unperturbed
problem (P,,) can be estimated via the distance of perturbations
|l — uo|| raised to some power ¢q. Hence, upper Hélder property
is of interest when it is impossible or too difficult to deal with the
original problem and one wants to know the magnitude of the error
made by accepting a solution of perturbed problem as a solution
of the original problem. For instance, numerical representation of
problems lead to perturbations due to finite precision. The upper
Lipschitz property (upper Hélder property with ¢ = 1) has already
appeared in investigation of stability of different problems, see eg.,
[69, 70, 71].

In Sections 3.1, 3.2 we consider problems with intKC # @. In Section
3.1 we introduce two functions measuring depart from minimality;
the invidual rate of containment u defined for y € Y, and the rate
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of containmment § of a subset A C Y with respect to X', which is
a real-valued function of one real variable and measures the depart
from minimality on A as a function of the distance from the minimal
point set. In Section 3.2 we investigate upper Hélder continuity of
Min(T'(u)|K) at a given point up . The main requirement we impose
is that for small arguments the rate of containment é is a sufficiently
fast growing function.

In Sections 3.3, 3.4 we do not make any assumption concerning the
interior of K. In Section 3.3 we define the dual rate of contain-
ment d and in Section 3.4 we investigate upper Hélder continuity of
Min(T'(u)|K) at a given point ug . The main requirement we impose
is that for small arguments the rate of containment d is a sufficiently
fast growing function.

Let U= (U,||-||) and Y = (Y, || - ||) be normed spaces. We say that
a multivalued mapping F' : UZ3Y , is:

upper Lipschitz at ug, (compare eg. [69, 70, 71]), if there exist
a neighbourhood Uy of ug and a positive constant I, such that

F(u) C Fuo) + L+ ||lu —u||B for ue€ Uy,

lower Lipschitz at ug, if there exist a neighbourhood Uy of ug
and a positive constant L such that

Flu) C Flu)+ L ||lu—wl|B for uel,

Lipschitz continuous at up with constant L if it is upper and
lower Lipschitz continuous at uy with constant L,

upper Hélder of order ¢ at up with constant L if there exists a
neighbourhood Uy such that

F(u) C Fup) + L|ju — uwl|?- B for u € Uy,

lower Hélder of order ¢ at uy with constant I, if there exists a
neighbourhood Uy such that

F(up) C F(u) + L||lu —u||?- B for u € Uy,

Holder at ug of order £ with constant L if it is upper and lower
Holder of order £ at up with constant L.
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F : UZ3Y, is locally Lipschitz around ug, [9], if there exist a
neighbourhood Uy C domF' of uy and a positive constant ¢ such
that

F(ul) - F(’UQ) +£. ||u1 = ’UQHB for U, Uz € U.

Let yo € F(up). We say that F' : UZ3Y, is pseudo-Lipschitz,
[9], around (yo, uo) € graphF, if there exist a neighbourhood Uy C
domF' of uy, a neighbourhood V; of yo, and a positive constant ¢
such that

Fu)) NV C Fug) + £+ ||uy — us|| B.

3.1 Rate of containment

Let Y = (Y,]} - ||) be a normed space and let K be a closed convex
pointed cone in Y. By B(a,r) we denote the open ball of radius
and centre a, B(0,1) = B. For any subset Aof Y and any y € Y we
have d(y, A) = infees ||y —al| and B(4,¢) = {y € Y | d(y, A) < }.
For any € > 0 denote

A(e) = A\ B(Min(A|K)),e).

In € — 6 setting the containment property (CP) holds for a subset
A C Y if for every € > 0 there exists § > 0 such that

A(e) + B(0,8) C Min(A|K) + K. (14)

Definition 3.1.1 Let X C Y be a convexr cone in Y. A function
cont : K — R, , defined as

cont(k) =sup{r | k+rB C K}
i3 called the primal cone containment function.

The function cont is positively homogeneous, ie., cont(Ak) = Acont(k),
A > 0, and suplinear, ie., cont(k; + k2) > cont(k,) + cont(kz).

Definition 3.1.2 (Rate of containment) The function p: Y —
R defined as

ply)=  sup cont(y — 1) (15)
ne Min(A|K)N(y—K)
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is the rate of containment of y with respect to A and K. The
rate of containment of subset A C Y with respect to cone
K is the function § : Ry — RU {400, —00} defined as
6(e) = it wy).

We have {y € Y | puly) > —oo} = Min(A|K) + K. For y €
Min(AlK), it is p(y) = 0. If intK # @ and y € [Min(A|K) + K],
we have p(y) > 0, and moreover, u(y) = 0 if and only if y €
W Min(A|K) (see Proposition 3.1.5 below ). The value u(y) gives
the maximal radius r such that kK +rB C K, over all k € y —
[Min(A|K) N (y — K)] € K]. In this sense u(y) measures the depart
from minimality of an element y. If intKC = @, then u(y) = 0 for
any y € Min(A|K) + K. In turn, §(¢) > 0, € > 0, if and only if
A C Min(AIK) + K, ie., (DP) holds for A (see Proposition 3.1.2
below). For any subset A C Y of Y for which (DP) holds, and
any € > 0, the value 6(¢) gives the minimal depart from minimality
over all elements of A whose distance from the minimal point set
Min(A|K) is not smaller than €.

In the example below we calculate u(y) for y from the closed unit

ball.

Example 3.1.1 Let Y = R?, and A = cIB, and K = R? =
{ty1,2) € R?* | y, > 0 yo > 0}. Clearly, (DP) and (CP) holds
for A, and

Min(AIK) = {(m,m) € A |2 = —/1—nf —1<m <0},

Put Min(A|K), = Min(A|K) N (y — K). For any representation of
(0,0) in the form (0,0) = n + ky,, where n € Min(A|K), k, € K,
we have nn = (,m2) € Min(A|K)e0 = Min(AK),

cmt(kn) :mjn{_"hﬂ/l—nf}:{ \/1—7]1 for —1<m < -—1/\/_

/i Jor  —1/4/2<m <0

and p((0,0)) = sup(_ i<, <o) cont(k,) = 1/v/2. Fory € A, y =
(ylayZ) s Y2 Z 01

Min(AIK) g p0) = {(m,m2) |12 = —/1 =13, =1 <7 <min{0,1}},
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and

) = By ) = By P v by T =)
Forye A,y = (y1,¥2), ¥2<0,

Min(AlC) gy = {(m,72) 172 = —y/1 =3, —/1 =43 <m < min{0,31}},

and

w(y) = max cont(ky) = max min{y;—m, y2+4/1 ~ 73} .
(/T E<m<min{o1]} T /I <m <min{o 1) ’

Now we investigate the relationship between (C P) property and the
rate of containment 6 . We start with the following technical lemma.

Lemma 3.1 Let Y be a locally convex vector space and let C C Y
be a closed convez pointed cone inY . Suppose that an elementy € Y
has a representations in the form y = an + ko, If at least one of the
conditions holds:

(i) A is weakly compact,

(ii) A is bounded and weakly closed, and IC has a weakly compact
base,

then y can be represented in the form y = ag + ko, with ag € A,
ko € K, beeing limit points of some subnets contained in {a,} and
{ka}, respectively.

Proposition 3.1.1 Let Y = (Y, || - ||) be a normed space. Let K be
a closed convex pointed cone inY and let A CY be a subset of Y.
Under one of the following conditions:

(i) Min(A|K) is weakly compact,

(i) Min(A|K) is bounded, weakly closed, and IC has a weakly com-
pact base,

Jor anyy € Min(A|K)+K, there exists a representationy = n,+k, ,
with n, € Min(A|K), and k, + p(y)B C K.
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Proof. Let y € Min(A|K) + K. For any @ > 0, one can find
a representation y = 7, + ko, N € Min(A|K), k, € K, ko +
cont(k,)B C K, satisfying

cont(ke) < p(y) and cont(k,) > p(y) —a.

We start by proving that under any of the conditions (%), (i), y
can be represented in the form

y =10+ ko, (16)

where 175 € Min(AlK), ko € K, 1o = limy 1, ko = lim, ke . In the
case (1), since Min(A|K) is weakly compact, there exists a weakly
convergent subnet of the net {7, } . Without loss of generality we can
assume that the net {7n,} weakly converges to some 790 € Min(A|K).
Since K is closed and convex, the net {k.}, where k, = ¥ — 7.,
converges weakly to ko € K, and y = 1o + kg .

To prove (16) in case (i2) suppose that © is a weakly compact base
of K, ko = Aaba, Aa = 0, and {6,} C O contains a weakly conver-
gent subnet. Without loss of generality we can assume that {6,}
converges to 6y € 6. Since Min(A|K) is bounded and ||0]| > M, for
all 8 € O we get

M; > ||y —1all = Aallfall = Mo,

for some positive constants My, M;. This implies that {)\.} is
bounded, and thus the net {k.} contains a convergent subnet, ie., we
can assume that {k,} weakly converges to some kg = Agbp € K. In
consequence, 7, = Y — k, converges weakly to some 9 € Min(A|K)
and we get a representation y =1 + ko .

To complete the proof we show that ko + p(y)B C K. On the con-
trary, if it were ko + p(y)b € K, for some by € B, by separation
arguments it would be

flko + p(y)bo) <0 < f(k) forkek,

for some f € K*, K* = {f € Y* | f(k) > 0}. By the weak con-
vergence of {k,} to ko, and {(cont(ka) — p(y))bo} to zero we would
have

f(katcont(ka)bo) = f(Ko+p(y)bo)+f (ka—ko)+f ([cont(kq)—p(y)lbo) < 0,
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which would contradict the fact that k, + cont(k,)B C K. O

Let
domé = {e € R, | 6(c) < +oo} = {e € Ry | A(e) # 0}

be the domain of §. The following properties of the rate of contain-
ment are direct consequences of the definition.

1. The rate of containment é : Ry — R is nondecreasing. Indeed,
let 1,62 € domé, €1 > €2 > 0. Then A(e;) C A(ez), and
consequently 8(e1) = infzea(e,) pu(z) > 6(e2) .

2. Assume that there exists at least one n € Min(A|K) which is not
an isolated point of A, and (DP) holds for A. Suppose that

one of the conditions holds:

(i) Min(A|K) is weakly compact,
(ii) Min(A|K) is bounded and weakly closed, and K kas a

weakly compact base.

Then lim,_,q 6(¢) = 0. Indeed, suppose that
+oo > §(e,) = irylf € A(en)u(y) > c

for some €, — 0 and ¢ > 0. If so, then p(y) > c for all n and
y € A(e,). Moreover, one can choose y, — 1 € Min(A|K),
Yn € A(e,) , and there exists a representation y, = 7, +kn , 7, €
Min(A|K), k, + ¢B C K. In the same way as in Proposition
3.1.1, in view of (i) and (i) we can prove that n = no+ko, where
lim, 7, = no € Min(A|K), lim, k, = kg € K. Consequently, it
must be kg = 0, but on the other hand, k¢ + ¢/2B C K which
is a contradiction. This proves the assertion.

3. If intK = @, then, for any € € domé, é(¢) = 0 if and only if (DP)
holds for A, and &(¢) = —oc if and only if (DP) does not hold
for A.

Proposition 3.1.2 Let A C Y be a nonempty subset of Y with
Min(A|K) nonempty and closed. The following are equivalent:

(i) (DP) holds for A
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(ii) 6(¢) > 0 for alle € domd.

Proof. (ii) — (i¢). Suppose that (DP) does not hold, ie., there
exists y € A which cannot be represented in the form y = n + k,
withn € Min(A|K), and k € K. Hence, u(y) = —00. By closedness
of Min(A|K),y € A(e), for some € > 0. Consequently, §(¢) = —oo,
contradictory to (it) .

() — (2@). By (DP), foreachy € A wehavey =n+k,n €
Min(AJK), k € K. Hence, pu(y) > 0, and (it) follows. O

Proposition 3.1.3 Let Y be a normed space and let K be a closed
convex pointed cone with nonempty interior. Let A be a subset of
Y . The following are equivalent:

(i) (CP) holds for A,
(1) 6(¢) > 0 for each e € domd .

Proof. (z) — (it). By Proposition 2.1.4, for any ¢ € domé, and
y € A(e) # @, there exists k > 0 such that

y=n+k, n€ Min(AIK), k+xBcK.

Consequently, u(y) > &, and é() > x> 0.

(#i) — (¢). Let € € domé, and 6(¢) = ¢ > 0. Then u(y) > ¢, for each
y € A(e), which means that y = n, + k,, where n, € Min(A[K),
ky +¢/2-B c K. Thus, (CP) holds. 0

Proposition 3.1.4 Let KX C Y be a closed convezr pointed cone in
a normed space Y = (Y,|| - ||) and let inth #@. Let AC Y bea
nonempty subset of Y and let (CP) holds for A. Under one of the

following conditions:
(i) Min(A|K) is weakly compact,

(1) Min(A|K) is bounded and weakly closed, and K has a weakly
compact base,

for anye >0
(1) A(e) + 6(g)B C Min(A|K) + K,
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(2) each y € A(e) can be represented in the form y = n, +k, , where
ny € Min(AIK), k, +6(e)-BC K.

Proof. (2) follows directly from Proposition 3.1.1. (1) follows from
(2). a

Proposition 3.1.5 Let Y be a normed space and let X C Y be a
closed conver cone in Y, with nonempty interior. Let ACY be a
subset of Y and (DP) holds for A. The following are equivalent:

(i) u(y) =0,
(ii) y € WMin(A|K).

Proof. (i) — (i7). By (i), any representation of y in the form

y=n+k,n € Min(A|K), k € K, satisfies k¥ € OK which means

that AN [y — intK] =0, ie., y € WMin(A|K).

(%) — (¢). If it were u(y) > a > 0, it would be y =n+k,n €

Min(A|K), k+aB C K, which would imply that y & W Min(A|X).
0

3.2 Upper Hélder continuity of minimal points for cones
with nonempty interior.

Let U = (U,]| - ||) and Y = (Y,]| - ||) be normed spaces and let
I': UZ3Y be a multivalued mapping.

In this section we prove sufficient conditions for upper Hélder con-
tinuity of the minimal point set-valued mapping M : UZZY,

M(u) = Min(['(u)|K).

At the beginning of this Chapter we indicate some situations where
upper Hoélder continuity has a natural significance. One more ex-
ample of such situation comes from parametrie vector optimization.
Theorem 6.4 of {11] and Theorem 6.2 of [12] reveal the importance of
upper type continuities of the performance multivalued mapping P
for continuity of solutions to parametric vector optimization prob-
lems.

In the theorem below we give sufficient conditions for upper Hélder
continuity of minimal point multifunction M .
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Theorem 3.2.1 Let Y = (Y,|| - ||) and U = (U, || - ||) be normed
spaces. Let I C'Y be a closed conver pointed cone inY , intkC £ 0.
LetT': U3 Y , be a set-valued mapping which is upper Hélder con-
tinuous with ¢, and constant L, and lower Hélder continuous with
order {5 and constant Ls at uy. Suppose that one of the following
conditions hold:

(i) Min(I'(u)|K) is weakly compact,

(11) Min(I'(u)|K) is bounded and weakly closed and K has a weakly
compact base.

If the rate of containment & of I'(ug) , satisfies the condition 6(c) >
c-eP, withc >0, then

1

) i = o]

for all u in some neighbourhood of uy .

L+ Lo
¢

min{ty, B2lLi2ly o

M(u) C M(uo) + (L1 + (

Proof. By the upper Holder continuity of I',

[(u) C T'(uo) + Liflu — wl|™ - B
1 min{¢y,¢
C [M(uo) + Ly llu = woll - B + (L£2)7 - flu— ) ™5 . B
il % min{¢;, 25} &

UI(T (o) \ (M (uo) + (BE22) flu —wo||~ »~ + B)) + L1 - [lu — uol|** - B,
for u in a neighbourhood U of ug . By the lower Holder continuity of
I', there exists a neighbourhood U, of ug such that I'(ug) C I'(u) +
Lg“'u == ‘Zl.[)”l:B, for u € U1 .

We claim that for v € Uy N U,

Ll + L2 min{ég,22}
P

= BY4 Ly [lu—wof|-B] = 0. (+)

M@ o\ (M (o) + (=22 flu=uol

Indeed, y = v + by, where v € I'(ug) \ (M(uo) + (Q%l); [Ju —

minjll.lzt
uwl|” # - B), b € Lilju - wl|" - B.

By Proposition 3.1.4, any z € I'(uo) \ [M(w) +¢-B|], e > 0,
can be represented in the form z = 7, + k,, n, € Min(['(u)|K),
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k; +6(e)- B C K. Hence,

Li+1L min{ty.f2}
=ty 1 € M), 022 E2) o 2525

By the lower Hélder continuity of I', .y, =11 + b2, 11 € '(u), b2 €
La||u — uol|*? - B, and consequently, since §(¢) > c- €?,

y—m =7y+bi—ntbh=n+k+bh-n+b
C k, +(L1+L2)I|u-—UQ"mm{t1’l2} B
_J_J.z_

C ey 6((BE2)7 [ — o **5) B C K.

By this, (*) follows. Hence,

m!njl“tzt
M(u) C M(up) + Ly - u—uoll - B+ (k2 ) N — uol] -B

1 . min{i,29}
C M) + (L + (E52)7) fu — g™ =554 - B,
for u € Uy N Uy, which completes the proof.
a

Corollary 3.1 Let Y = (Y,|| - ||) and U = (U,|| - ||) be normed
spaces. Let KX C'Y be a closed convez pointed cone inY , intlC #£ .
Let T': UZ3Y be a Hélder set-valued mapping of order € at ug with
constant L. Suppose that one of the conditions hold:

(1) Min(T(uo)|K) is weakly compact,
(1) Min(T'(up)|K) is bounded and weakly closed and KC has a weakly
compact base.

If the rate of containment of ['(up) satisfies the condition §(e) >
c-e?, withp > 1, and ¢ > 0, then minimal point multivalued mapping

1
M is upper Hélder at ug with constant (L + (.2%)?) and order é.
Corollary 3.2 Let Y = (Y,|| - |I), U = (U, ]| - ||) be normed spaces.
Let K C Y be a closed convex pointed cone in a normed space Y,

mtlC # 0. Let I' : UZZY be a Lipschitz set-valued mapping at ug
with constant L. Suppose that one of the conditions holds:
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(i) Min(T'(u)|K) is weakly compact,

(i) Min(T'(up)|K) is bounded and weakly closed, and K has a weakly
compact base.

If the rate of containment of I'(ug) satisfies the condition 6(¢) > c-e,
where ¢ > 0, then M is upper Lipschitz at up with constant f"—?)ﬁ ‘

3.3 Rate of weak containment.

Let X C Y be a closed convex pointed cone in a normed space
(Y, |l - ||) with the dual K* C Y*. Let ©* be a base of K*.

Definition 3.3.1 A function dconty. : K — R, defined as
dcontg. (k) = inf{0*(k) | 0* € ©*}
i3 called the ©*—dual cone containment function.

If it is clear from the context which base ©* is used, we omit the in-
dex 8* and we apply the simplified notation dcont . The terminology
”primal cone containment function” and ”dual cone containment
function” is motivated by the fact that the fomulae defining these
functions form a pair of dual optimization problems (see also Section

2.4, Example 3.3.1).

By formula(10) of Section 2.4,
sup{r | k—r-yo € K} =inf{0(k) | 0" () =1, 0" € K*}.
This proves that cont(k) < dcontg-(k) for each k € K.

In Theorem 1.1.2 and Proposition 1.1.4 we have shown that when
intKC # @ (i.e., corK # @) cone K* has a base. By similar arguments,
K* has a base whenever X! = {y € Y | f(y) > 0 forall f €
K\ {0}} #0. Indeed, if yo € K*, the set

O ={f ek | f(y) =1} (17)
is a base of XC*.

Proposition 3.3.1 X* has a base if and only if ' # 0.
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Proof. We need only to show the ”only if” part. Since any base ©*
of K* is convex, 0 € w — * — cl(©*, which means that there exists
an yo € Y with the property that 6*(yo) > & > 0 for each 6* € ©*,
which entails that yy € K. a

Let A C Y be a subset of Y. As defined in Section 2.3, Definition
2.3.1, the weak containment property, (WCP), holds for A if for
every € > 0 there exists § > 0 such that for each y € A(e) there
exists 7, € Min(A|K) satisfying

9*(31 - Wy) > 6
for each 6* € ©*.

Definition 3.3.2 (Weak containment rate) The rate of weak
containment of a set A with respect to X is the function d :
R,y — R defined as

d(e) = inf v(y)

yE A(e)
where v : Y — R is the dual rate of containment of y with
respect to A and X

v(y) = sup inf 6*(y—n).
ne Min(A|K)N(y-K) 8 €©

Denote Min(A|K), = Min(AIK)N(y—K), for any y € Min(A|KX)+
K. If y € Min(A|K) + K, then v(y) > 0.

By using the function dconte- defined in Definition 3.3.1, the rate
of weak containment can be rewritten as follows

d(e) = inf  sup deonte-(y—17).
YEA(S) ne Min(A|K)y

Proposition 3.3.2 Let (Y, || - ||) be a normed space and let ACY
be a subset of Y. Let X C Y be a closed convez pointed cone in'Y
and let K* C Y* be its dual cone with a base ©*.

For any y € Min(A|K)+ K, if Min(A|K), is weakly compact, then
there ezist n, € Min(A|K) such that

v(y) = inf 0"(y —m).
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Proof. Let y € Min(A|K)+ K. We have infsco- 0*(y—7) < v(y),
for each n € Min(A|K),, and for any p > 0, there exists 7, €
Min(A|K), such that for any §* € ©*

0"(y —mp) 2 jinf 6(y ~m,) > v(y) —p.

Since Min(A|K), is weakly compact, the net {n,} contains a weakly
convergent subnet and without loss of generality we can assume that
the net {7,} converges weakly ton, € Min(A|K), . Since K is weakly
closed, the net {k, = y—7,} tends tosome k, € K, andy =17, +k, .
Thus,

G 0°(y —my) 2 v(y),

which completes the proof. O

Proposition 3.3.3 Let (Y, | - ||) be a normed space and let ACY
be a subset of Y. Let K C Y be a closed convez pointed cone in Y
and let K* be its dual with a base ©* . The following conditions are

equivalent:
(i) (WCP) holds for A,
(it) d(g) > O for eache > 0.

Proof. (i) — (it). Take any € > 0 and y € A(e). By (WCP),
there exist 6 > 0 and n, € Min(A|K) such that

inf 6"(y—my)2>6.

9-co
Hence
v(y) = e o Jnf 0°(y—n) =24,
and d(g) = infye gy ¥(y) > 6 > 0.
(74) — (i). Let d(g) = @ > 0. For each y € A(e)

sup inf &*(y—n) > a,
neMin(A|K), 9°€©" ( "

and consequently,

inf 6'(y —1m,) > a/2,

8*co*
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for some 7, € Min(A|K), , ie., (WCP) holds.

]

Proposition 3.3.4 Let K C Y be a closed conver pointed cone in
a topological vector space Y with K* # 0. If ©} and ©} are any two
bases of the form (17), with y,,yo € K* such that y, € (ry; + K),
then there erists a positive real number 3 with

dconte; (k) > - dcontey (k) .

Proof. Let ©3, ©} be any two bases of the form (17), ie., for
y1,Y2 € K we have

O1 = {61 e £ | 61(1n) = 1}
©; = {0; € £* | O3(y2) = 1}.

For any k € K, and 0] € ©}, there exists 83 € ©3 such that
01(k) = 67 (y2)03 (k) ,
where 67(y2) > 0. Hence,
61(k) 2 01(ve) jinf O(k) 2 61(s2) juf, B2 (k).

1

and
oL 65() > inf 61(ss) int 63(k), (18)
Since y; € 7-y1 + K, by (10), § = infp:ce: 67(y2) > 0, and by (18),
dCOﬂte; Z ,6 * dCO’nte; s

a

Example 3.3.1 Cone containment functions in finite-dimensional

case
In Definitions 3.1.1, 3.3.1 we have defined two cone containment
functions for a closed convez cone K in'Y having the dual K* C Y*

with a base ©*. Namely,
the primal cone containment function cont: X — R, ,

cont(k) =sup{r | k+rB C K},
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and
the ©*—dual cone containment function, dconte. : K — R, ,

deonte-(k) = inf{6°(k) | 6* € ©* }.

LY =(R%[-lo), K= R, B={y € R" | [lyllo < 1}.
The function cont has the form :

cont(k) = max r

subject to
kl—’f'_>_0
k‘z—’r_>_0
k,n—r>0

This is a linear programming problem. On the other hand, the func-
tion dcont has the form

deont(k) = min ciky + ... + cukn
subject to
a+...+ec,=1
(5] Z 0

cn >0

3.4 Upper Hélder continuity of minimal points for cones
with possibly empty interior.

Now we prove the main theorem of this section.

Theorem 3.4.1 Let Y = (Y,| - ||) and U = (U, || - ||) be normed

spaces. Let KK C Y be a closed conver pointed cone in Y, and let

K* be its dual with an equicontinuous base ©*. LetI' : U3 Y, be a

set-valued mapping which is upper Holder of order ¢, with constant
L, and lower Hélder of order €5 with constant Lo at ug.

if
(i) the dual rate of containment d of I'(ug), satisfies the condition
dle) > c-e?P, withc> 0,
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(11) Min(['(w)|K) is weakly compact,
then

L+L min min!],z}
M(u)cM(uo)+(L1+( 1 2) M — uo||Pin e ==Y . g

for all u in some nez’ghbourhood of ug.

Proof. In this proof we follow the same reasoning as in the proof
of Theorem 3.2.1. Using the same notation we only need to show
that under our assumptions, for u € Uo NnU;

Li+ Ls __LL_Z.}_
L W

M) (o) \(M (o) +(2
To this aim take any

L1+L2 _.1_1_2i

v € PN\ (M) + (2252 Jumsa 5 By L a1,

foru e UyNU;. We have y = 7+b1, where v € T'(ug) \ (M(uo) +
I L 1 min{¢y, ¢

(225227 Jlu — o) ™5 . B),, by € Lyflu - wo||* - B

Since ©* is equicontinuous we can assume that §*(B) < 1, for each
6* € ©". Hence, for each b € L, ||u — uo||”* - B we have

~Laflu—uol|* < 6°(b) < Luffu — uol|® .
By Proposition 3.3.2, there exists 7, € Min(I'(u)|K) satisfying
0°(y —my) 2 v(y) = inf 0"(y—7) 2 d(e) 2 c-€”

for each 6* € ©*. By the lower Hélder continuity of I', n, = 7 +
ba, 1 € T(u), by € Ly|lu — u||® - B. Finally
" (y—mn) =0 (y—7) +0(y—m) +0"(ny -
> —Lyflu — uol — Lalu — uo|* +d<(2£1—+—f'z)'° llu = wo|
> —(Li + La)||u — uo||™ilef2t 1 2(Ly + Ly)|lu — uel{™n#14} > 0.

Consequently, f(y —v) > 0 for any f € K*. By Lemma 8.6 of [54],
¥y —m € K, which proves (*) and completes the proof.

mm{tl i} )
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3.5 Rate of containment for convex sets

By definition, for any subset A C Y,

8(e) = ) éﬂ{e)"(y) ;

where A(e) = {y € A | d(y, Min(A|K)) > €}.

Proposition 3.5.1 Let A C Y be a convex subset of Y . Under one
of the following conditions:

(i) Min(A|K) is weakly compact,

(ii) Min(A|K) is weakly closed and bounded, and K has a weakly
compact base,

we have

6(e) = inf u(y), (19)

veE(e)
where E(e) = {y € A | d(y, Min(A|K)) =¢€}.

Proof. We have
< i .

() < ,é%fe) 1Y)
If it were 6(€) < infyep(e) 4(y) = €o, then u(y) < eg,forsome € A4,
d(y, Min(A|K)) > €. In view of Proposition 3.1.1, § = n, + ky,
ky‘l'ﬂ(g)‘BCK.
On the segment (1,,y) C A one could find a point z belonging to
E(e), z = My + (1 — A)y. Hence, z =, + (1 — Nky = my + &z,
ky = (1= X)ky, k. + (1 = )u(@)B C K, and u(§) > (1 - A)u(@) =
u(z) > eg, contrary to the choice of §.

a
A convex subset A C Y of a space Y is strictly convex if each
boundary point is extremal, ie., cannot be represented as a convex
combination of any two other different points of A.

Proposition 3.5.2 Let A be a strictly convex subset of Y, and
y € AN (Min(A|K) + K). If u(y) is attained, there is ezactly one
representation y =n+k, n € Min(A|K), k+ B0, u(y)) € X.
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Proof. Suppose that there are two different representations y =
m+ ky, y=m+ k2$ N, € Mzn(AIIC), ky + B(O,,u(y)) € K:
ks + B(0, u(y)) € K. Since (y—K)NAis convex, forany 0 < A< 1,
My + (1= A € (y — K) N A. By the strict convexity of A, there
exists k3 # 0, ks + B(0,a) C K, a > 0, such that 1/2n; + 1/2n, =
73 + ka3, 13 € Min(A}K). Indeed, if there would be no such k3, it

would be 1/2m + 1/2n2 € Min(A|K), hence 1/2m, + 1/2n, would
be a boundary point which is impossible. Consequently, we have
Yy—n3 = 1/2]51 + 1/2k2 + k3 ’ and

1/2ky + 1/2ks + k3 + B0, u{y) +a) C K,
contrary to the definition of u(y)-
O

Proposition 3.5.3 Let A be a convex subset of (Y,|| - ||) and let
(DP) hold for A. If the norm ||-|| is K—monotonic, then the distance

function d(z, Min(A|K)) iz conver.

Proof. Let us take any 1, T2 such that ||z1—m || = d(z1, Min(A|K)) =
€1, | — || = d(zs, Min(A|K)) = €3, and 0 < X < 1. Let
A = (1 —=XNm+ Az, £(A) = (1= A)z; + A- 73. We have

lz(X) = £ (1= ANer + A-e3.

By the convexity of A, () € A, aud by (DP), n(A) = 3 + k,
where 173 € Min(A|K), k € K. Now, by the X—monotonicity of the
norm

l2(2) —msll < ll=(A) —2(Mf,
which proves the convexity of d(zx, Min(A|K)).

O
Proposition 3.5.4 Let A CY be a subset of Y. Under one of the
following conditions

(i) Min(A|K) is weakly compact,
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(ii) Min(A|K) is weakly closed and bounded, and K has a weakly
compact base,

for anyy € Min(A|K) + K, and 0 < < 1, we have

py(B)) = Buly),

where y =n, + ky, n, € Min(A|K), k, + B(0, u(y)) € K, and

y(ﬂ) :ny"'ﬂ'ky-
Proof. Let y € Min(A|K) + K. By Proposition 3.1.1, a repre-
sentation y = n, + ky, 7, € Min(A|K), k, + B(0,u(y)) C K ex-
ists. Since pk, + B(0,5 - u(y)) C K, we have u(y(B)) = Buly).
If it were p(y(6)) > Pp(y), then it would exist a representation
y(B) =m + ki , such that k; + B(0,a) C K, and & > Bu(y). Then,
since0< <1,

ka=y-m=y—yB)+y(B)—m=(01-0B)k,+k €L,

and
(1=PB)ky +k1+ B(0,(1-P)uly) +e) C K,
(1 - Bu(y) + a > p(y), which would contradict the definition of

uly).
O

. Proposition 3.5.5 Let A be a conver subset of Y. Suppose that
one of the following conditions hold:

(1) Min(A|K) is weakly compact,

(ii) Min(A|K) is bounded and weakly closed and K has a weakly
compact base.

The function u is concave on Min(A|K) + K.

Proof. Let 3,1 € Min(A|K)+K, and 0 < A < 1. By Proposition

3.1.1, there exist 11,72 € Min(A|K) such that y1 =m + k1, y2 =

2+ ka2, Ky + p(.’tl)B CK,k+ [J(.T:g)B C K. Since A is convex,

Min(AlK) + K is convex, and

y(A) = Ay +H(1=A)ye = Ay +(1=Ama+ Ak +H(1-A)kz € Min(A|K)+K,
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Hence, 7() = Ay + (1 — Nmz € Min(AIK) + K, n()) = n3 + k3,
where 73 € Min(A|K), k3 + p(n(A\))B C K.
Finally,

y(A) =n3 + k3 + Ak + (1 - A)ke,

and k3 +Aky + (1= A)ka + B(0, u(m(A)) + A1) + (1 - Ap(ze)) C K,
ie., w(y(A) 2 Au(in) + (1= Aulye).

]

Corollary 3.3 Under assumptions of Proposition 3.5.5 the function
1 i3 locally Lipschitz and weakly upper semicontinuous on Min(A|KX)+
ntkC.

Proof. See Theorem 10 of [36].

O

Proposition 3.5.6 Under assumptions of Proposition 3.5.5 the rate
of containment § is continuous.

Proof. In view of standard theorems on continuity of the marginal
function (see [24],[8]) it is enough to show that the set-valued map-

ping A: R,3Y,
A(e) = {y € A| d(y, Min(AK)) > ¢}

is lower and upper Hausdorff semicontinuous.
For ¢ > & we have A(¢) C A(eo). To prove the upper Hausdorff
semicontinuity we need to show that for any @ > 0 there exista § > 0

such that for § < e < gy
A(e) C Aleo) + aB.

O

Now we are in a position to prove the convexity result for the func-
tion §.
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Theorem 3.5.1 Let K C Y be a closed convex pointed cone in a
normed space (Y , ||+ ||), inthC £ 0. Let ACY be a conver subset of
Y and one of the following conditions hold:

(1) Min(A|K) is weakly compact,

(i) Min(A|K) is bounded and weakly closed and X has a weakly
compact base.

If (DP) holds for A, then § is quasiconvez.
Proof. Since A is convex, by Proposition 3.5.1,
6(e) = inf u(y)= inf wu(y).

yEA(e) VEE(e)

Let €1, €2 € domd, &3 < €;. For any a > 0 we choose 3§ € E(e;)

such that
uig) < () +a. (20)

In view of Proposition 3.1.1, by (%), or (i), there exists a represen-
tation realizing the rate of containment of y{*,

yr=n"+k* €A,
where 71* € Min(A|K), k* + B(0, p(y5)) C K, [k 2 &1 .

Let 0 < A < 1. Since the distance function d(-, Min(A|X)) is con-
tinuous, there exists 0 < x(A) < 1 such that d(y*()\), Min(A|K)) =
Agy + (1 — A)ea, where y*()) = n* + £(A)k™ € A. By Proposition
3.5.4, u(y*(A)) = w(A)p(yf) -
Let e(\) = Asy + (1 — A)ez. We have
6(e(N) = iﬂfyeﬂ(s(.\)) #(y)

< p(¥*(A) = s(A)p(yt)

<d(e1) +e.
Since a > 0 is arbitrary, by noting that 8(e;) > 6(e;) we get

d(e(N)) < max{é(e1), 6(ea)}.
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A subset A of a linear space Y is starshaped at a € Aif (1—a)a+
a-y € A whenever y € A and a €]0, 1]. A subset A of a linear space
Y is starshaped if it starshaped at 0, ie., if & -y € A whenever
y € A and a €]0,1]. A function f : Y — R is called starshaped if

its epigraph
Epi(f) ={(y,r) €Y xR | f(y) 2 1}
is starshaped, ie., f(av) < af(v) for a € [0,1], and v € domf .

We have the following proposition.

Proposition 3.5.7 Let K C Y be a closed convez cone in a normed
spaceY, intkC £ 0. If ACY is a starshaped subset of Y and (DP)
holds for A, then, under one of the following conditions:

(i) Min(A|K) is weakly compact,

(ii) Min(A|K) is bounded and weakly closed and K has a weakly
compact base,

for any y € A and B €]0,1], we have
1B - y) 2 Bu),
ie., 1 18 starshaped for y € A.

Proof. Take any y € A and 3 €|0,1]. By Proposition 3.5.4, y can
be represented in the form

y=1yt+ky, (*)

where 1, € Min(A|K), ky + u(y)B C K. Since A is starshaped,
ﬁye As and b}' (*): gy =ﬂﬂu+ﬁ’°v-
Since 7, € A, we have fn, € A and, by (DP), there exists 7; €
Min(A|K) and k) € K such that fn, = n; + k; . Finally,

ﬁyth + k +ﬂkys

and p(By) > Buly).



3.6 Holder continuity of minimal points for cones with
nonempty interior

We say that a multivalued mapping I' : U3 Y , is locally Lipschitz
around ug if there exists a constant L > 0 such that
I'(u1) € I'(ug) + Lijuy — uzf| - B

for u;,us from a neighbourhood Up of ug .
We say that a multivalued mappingI' : U3 Y, is locally Hélder
around uy of order £ if there exists a constant L > 0 such that

T'(w1) C T'(ug) + L|luy — |’ - B

for u;,us from a neighbourhood Uy of g .
Let £ : UZ}Y, be a set-valued mapping defined on a normed
space U. By §(-,u) we denote the rate of containment of the set

¥ (u) with respect to K.

Definition 3.6.1 We say that (CP) holds uniformly for £ on a
subset AC U if, for anye >0,

é(e) =&2£6(€,u) > 0.

Definition 3.6.2 We say that (C P) holds uniformly for ¥ around
ug if there exists a neighbourhood Uy of ug such that for anye >0,

5(e) = uiéltt;o 8(s,u) > 0.

In both cases §(¢) is called the uniform rate of containment.

Proposition 3.6.1 Let X C Y be a closed convex pointed cone in
a normed space (Y, ||-||), intC #0. Let T : UZ]Y , be a set-valued
mapping defined on a normed space U. Suppose that one of the
conditions hold:

(i) Min(X(u)|K) are weakly compact for all u from some neighbour-
hood U, of ug,

(ii) Min(X(u)|K) are bounded and weakly closed for all u from some
neighbourhood U, of ug, and K has a weakly compact base.
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If (CP) holds uniformly for ¥ around ug, for any ¢ > 0, each
y € %(u) \ [Min(E(u)|K) + ¢ - B] can be represented in the form

y=m+k, mn€Min(E(u)K), k+5e)-BCK,
Jor all u from some neighbourhood of ug .

Proof. Observe that since §(¢,u) > 0 for all 4 in a neighbourhood
Up of 4o, by Proposition 3.1.3, (CP) holds for ¥(u), u € Up.

Let & > 0 and u € UyNU; . Take any y € Z(u)\[Min(Z(u)|K)+e-B].
By Proposition 3.1.4,

y=n,+k,, 1, €Min(S@)|K), k, +uly,Z()-BCK,
and thus
ky+8(c) - B C ky +6(e,u) C ky + p(y, E(u))- BC K.

a
m

Theorem 8.6.1 Let KX C Y be a closed convex pointed based cone
in a normed space (Y,[|-||), intC £ 0. Let T : U — Y be a set-
valued mapping defined on a normed space U. Suppose that one of

. the conditions holds:

(i) Min(I'(u)|K) are weakly compact for all u from some neighbour-
hood Uy of ug,

(ii) Min(T'(u)|K) are bounded and weakly closed for allu from some
neighbourhood Uy of uo, and K has a weakly compact base.

If
(1) T is locally Hélder at uo, of order fwith constant L ie.,
() € T(ua) + Liju, — wl* - B,
for any u1,uz from some neighbourhood Uy of ug ,

(2) the uniform rate of containment 6 satisfies the condition 6(c) >
c-e?, wherec >0,
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then 5 :
M(us) € M(ua) + (L + =) s — - B,

for all uy , uy in some neighbourhood of uy .

Proof. Let
6(e) = inf 8(eu),

andul, UQGUQnUI. By (1),

D(w) C Iug) + Liju1 — ugfl* - B :
C [M(us) + Lijes — wall* - B + L2L5 |jus ~ |3 - BJU
UI(ua) \ (M(ua) + 22L7 lus = wal|? - B)] + L flun — wall* - B.

Let us take any
v € D) (TN M)+ L Lo —sall- B + LB,

We havey = y-+by , where 7 € I'uz) \(M(ug)+ L3 |luy —wg]| - B),
and b, € L|ju; — up||* - B. Furthermore, by Proposition 3.6.1,

- J
v =Ny +ky, where ny € M(ug), kw+5({/T_L'l’llu1—uaII5)-B cK.
Again, by (1),
7y = + by, where 7 € D(w1), b € Liluy —ugl*- B,

and consequently, since §(g) 2 ¢ €?,

y—n=1tbh-—mtha=n+k+bh-n+b
C ky+2L|uy — uall’ - B C ky + 6(22L5 [lus — wa]|7) - B
CK,
(21)

By:(21), y & Mi{w,) fox any y € T} N [0(0) \ (M) + 215w~
w)]|? - B) + Ljluy — ug||* - B]. Hence,

2
M(w) C M(wa) + (L + ~L%)|[w1 — wsl|# - B,

fOl’UGUoﬂU].
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