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Abstract: We propose a methodology to support decisions on
how to construct rankings of objects which account for decision mak-
ers’ preferences. As it is not always so that objects to be ranked are
known upfront, the methodology is focused on constructing ranking
algorithms rather than rankings themselves.

The methodology builds on Multiple Criteria Decision Making
paradigms. To operationalize it we provide a consistent interactive
framework which allows the decision maker to express his preferences
with respect to objects directly, with respect to the criteria selection
process (multiple criteria model building), and with respect to at-
tributes resulting from the selected criteria.

The methodology is illustrated by a numerical example of mu-
nicipality rankings.

Keywords: multiple criteria ranking, interactive multiple cri-
teria decision making, holistic preferences, atomistic preferences,
model building.

1. Introduction

In present-day life, object (variant, potential action) rankings are routinely used
to make decisions. Because of their ubiquity, rankings are of extreme importance
for quality of our lives. Depending on the context, consequences of a decision
taken on the basis of rankings are observed directly, indirectly, instantly, or after
some period of time, but in any case – only a posteriori.

In general, decision processes can be differentiated with respect to participa-
tion rights. In autonomous processes participation rights are held exclusively by
the decision maker (DM). In consequence, the DM is sovereign as to the course

∗Submitted: May 2011; Accepted: October 2011.
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✲ ✲ ✲ ✲ ✲

✻
✛

❄ intelligence design choice review

learning loop

Figure 1 Four phases of decision making process

of the decision making process. In contrast to autonomous processes, in nonau-
tonomous processes the course of the decision making process is conditioned by
participation rights of other agents.

There is a widely accepted consensus that any rational decision making pro-
cess consists of four phases closed by the learning loop, namely intelligence,
modeling, choice, and review (Simon, 1977, see Fig. 1). Following the above def-
inition, the decision process is autonomous if in every phase the DM is sovereign
in his decisions.

A process ceases to be autonomous if DM’s sovereignty with respect to the
course of the decision process becomes constrained. Constraints (permanent
or temporary) can be imposed on any stage of decision processes by external
agents holding participation rights. A constraint of the sort can be constituted
by, for example, the necessity to consult the manner of conducting the decision
process, to adhere to predefined decision making scenarios, or to justify the
selected scenario to a third party. This can go to the extreme, when participation
rights are held by public parties, and the decision maker is bound to select an
unequivocal decision making procedure and make it known to interested parties
without possibility to make later changes in it. Such processes are called frozen
(see Chmielewski, 2008). Phases of frozen processes are represented in Fig. 2.

Frozen processes are a rule in public tenders, where participation rights hold-
ers, next to the tender issuing party, are also bidders, supervisory agencies, and
last but not least the whole society with its state and social (media!) monitor-
ing institutions. Here consequences of selecting an erroneous decision making
procedure (ranking algorithm) are borne in the first place by the issuing party,
but also, directly or indirectly, by other participation rights holders.

Further instances of frozen processes are provided by procedures for person or
institution evaluations of general public interest, for example — official rankings
of academic institutions.

In a frozen ranking process the consequences of selecting an unsatisfactory
ranking algorithm are irreversible. Moreover, if the selection of a ranking algo-
rithm has to be made a priori, i.e. without knowing objects to be ranked, the
chances to select a satisfactory algorithm are limited.

A satisfactory ranking algorithm is understood here as follows: the algorithm
is satisfactory if the ranking derived by this algorithm is that which would be
derived by the DM if the decision process were autonomous. An unsatisfactory



Multiple criteria ranking decision support 1163

✲ ✲ ✲ ✲intelligence design choice

Figure 2 Phases of decision making when the process is frozen

algorithm (and therefore also an unsatisfactory ranking) is the source of DM’s
actual (posterior) regret.

Regret is a notion widely applied and investigated in decision theory, in the
form minmax regret principle (see Luce, Raiffa, 1957; Savage, 1951), and also
in a form being an extension of utility theory (see Bell, 1982; Lomes, Sugden,
1982). Both approaches rely on probabilities of events, this information being
in the case of rankings in general hard to provide.

Therefore, in this work we seek inspiration in behavioral research on ex-
pected regret conducted by psychologists (Janis, Mann, 1977; see also Zeelen-
berg, 1999). Janis and Mann claim that anticipated occurrence of regret causes
people to make more ”rational” decisions – because of anticipated regret they
think more and think more elaborately before the final decision is made. They
state

”Before undertaking any enterprise of great pith and moment, we usually
delay action and think about what might happen that could cause regret ... Such
worries, which include anticipatory guilt and shame, provoke hesitation and
doubt, making salient the realization that even the most attractive of the available
choices might turn out badly.”

In ranking processes the range of information the DM possess about objects
can vary between two extremal cases: from the full extent of information (all
objects are known to the DM before the ranking algorithm is selected, e.g. as in
the case of ranking academic institutions), to the total lack of information (no
object is known, e.g. as in the case of a public tender).

If objects to be ranked are not known before a ranking algorithm is selected,
the DM still has possibilities to express his preferences. He can make use of
hypothetical objects, which reflect his expectations, based on experience and
possibly previous similar ranking problems, what real objects can be. Also
criteria, which are an element of a DM preference structure, can be selected
independently of objects to be ranked.

In this research we have been motivated by the fact that in nonautonomous
processes, and specifically in ranking processes, actual regret can be ”arbitrarily
large”. What we aim for is to provide the DM with means (methodologies
and computer-based tools) similar to those he has in the case of autonomous
ranking processes, namely possibilities to assess the consequences of decisions
taken (rankings formed). But as when dealing with autonomous processes DM’s
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goal is to construct the most preferred ranking1, with nonautonomous processes
his goal is to select a ranking algorithm which would preserve DM’s preferences
expressed during the ranking selection (decision) process. In other words, we
aim to provide means to minimize actual regret understood as the result of
comparing ex post DM’s expectations with respect to the most preferred ranking
(i.e. the ranking which the decision maker prefers the most) with the ranking
provided by the ex-ante selected ranking algorithm. This, in turn, requires that
appropriate (multiple criteria) model selection must be also a part of the ranking
algorithm selection process.

The outline of the paper is as follows. In Section 2 we place our research in
the context of other related works on the subject. In Section 3 we present the
proposed methodology for supporting the DM in selecting a ranking algorithm.
In Section 4 we give an illustrative numerical example based on a real problem
of annual commune rankings to monitor their development dynamics. Section 5
concludes.

The notation and notions used in this paper are standard ones and therefore
we abstain from presenting them at the beginning of the paper. However, to
make the paper self-contained and to avoid any ambiguity, they all are collected
in Appendix A.

2. Supporting the ranking process

In general, the ranking process consists of providing a linear order of objects,
whereas in general DM’s preferences provide for at most an order (also called
partial order). Orders result from DM’s preferences expressed with respect to
objects directly, from DM’s preferences expressed with respect to a set of crite-
ria used to evaluate objects, or from DM’s preferences expressed with respect
to objects indirectly via outcomes (vectors of object attributes). Given DM
preferences in the form of an order, the ranking process is enabled by asking
the DM to supply additional information, which, when fed into by some formal
constructs, yields eventually a ranking.

There are two basic approaches to ranking. The first (”the mechanics goes
first”) is to establish a formal construct (function or procedure) which yields a
ranking of objects and then to make the DM supply all the necessary information
(parameters) to make this work (see, e.g. Roy, 1990; Brans et al., 1986).

The second approach (”the DM goes first”) is to let the DM express preferen-
ces in a holistic manner (reference ranking(s), reference sets, reference point(s)),
and from them to derive a ranking yielding construct (see, e.g. Jacquet-Lagrèze,
Siskos, 1982; Skulimowski, 1996; Wierzbicki, 1999; Greco et al., 2007).

Both approaches assume usually that the problem of criteria selection is
exogenous to ranking. In this work we take the opposite stance. In accordance

1Even if the DM is guided by an algorithm, in the real world he is not constrained by it in
arriving at what he regards as the most preferred ranking.
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with Simon’s aforementioned four-phased decision making model, we include
criteria selection into the ranking process. We do that in a flexible manner,
claiming only that

either the set of criteria selected (and hence the preference model with respect
to criteria values) has to be consistent with preferences expressed prior to criteria
selecting,

or preferences expressed prior to criteria selecting have to be modified to be
consistent with the set of criteria selected.

3. The methodology

In what follows we propose to combine the two basic approaches to ranking
mentioned in the previous section into one and to use the resulting methodol-
ogy repetitively to account for DM’s learning curve (see, e.g. Zangwill, Kantor,
1998). By this token we endow the DM with the chance to express his pref-
erences in the form which he, at a given stage of a ranking process, considers
appropriate and convenient. The resulting approach is applicable to decision
processes with any spectrum of information about objects in DM’s possession,
including the case of frozen processes where information is extremely limited
(compare the previous section).

3.1. Problem formulation

Consider a finite set X0 of objects x, X0 ⊆ X . 2 We assume that each object is
characterized by the set L, |L| = l, l ≥ 2, of attributes with values defined by
criteria

fi : X → R, i = 1, . . . , l,

i.e. fi(x) is the value of i-th attribute of x (see Appendix A (12)). We assume
also that in X0 as well as in f(X0), where f = (f1, . . . , fl), a partial information
on DM’s preferences is available and this information has the form of (partial)
orders (see Appendix A).

What we aim at is to propose a rational methodology for ranking X0 by
selecting an appropriate ranking algorithm.

3.2. An interactive scheme for object ranking

The motivation of the proposed scheme is twofold.

2 The approach we propose covers the case where set X0 is given implicitly by a set
of conditions as well as the case where sets X0 and f(X0) are explicitly given and thus
specifications of set X and functions fi are irrelevant. The first case covers customarily
the Multiple Criteria Decision Making framework, whereas the second the Multi Attribute
Decision Making one.
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First, it has been regarded desirable to allow the DM to express preferences
with respect to objects and with respect to their attributes (outcomes) in a
flexible way.

Second, it has been found that the existing methods of object ranking do
not satisfactorily address the issue of the modeling phase of the decision making
process, as framed by Simon, though the importance of the phase is widely
acknowledged. Therefore, it is of utmost importance to provide guidelines for
the DM for criteria selecting (multiple criteria model building) in a disciplined
manner.

To ease the DM of the burden to provide a vast range of preference infor-
mation at once, the proposed scheme follows the interactive decision making
principle.

SCHEME

Preference elicitation with respect to objects.

Step 1. By pairwise comparisons of selected objects x ∈ A, A ⊆ X0, the DM
defines an order ≫A in A.

Remark. Order ≫A reflects DM’s preferences expressed with respect to
pairs of objects (x, x′), x, x′ ∈ A, i.e. if x is preferred to x′, then x ≫A x′.

Step 2. The DM is presented for analysis with feasible rankings which at this
step are rankings consistent with order ≫A in X0 (for the definition of
order consistency refer to Appendix A).

Remark. By order consistency we now have
≫A ⊆ κ ,

where κ is a feasible ranking of X0 .

Depending on the results of the analysis, the DM can modify his pref-
erences with respect to objects (modification of ≫A, modification of A

– moving to Step 1) or resort to preference expression with respect to
criteria selection (Step 3).

Preference elicitation with respect to criteria selection.

Step 3. From the given set of criteria L, a subset K ⊆ L, |K| = k, k ≤
l, is selected (without loss of generality we assume that criteria in K

are numbered 1 to k) such that order ≫X0
induced in X0 by dominance

relation ≫ (for the definition of the dominance relation refer to Appendix
A) defined on set of outcomes Z = f(X0), where f = (f1, . . . , fk), is
consistent with order ≫A (i.e. ≫A ⊆ ≫X0

).

Step 4. The DM is presented with feasible rankings, which, at this step, are
rankings of X0 consistent with order ≫X0

induced in X0 by dominance
relation ≫ , with ≫ and Z as in Step 3.

Remark. The presented rankings are in general quasi-rankings of X0, i.e.
≫X0

is a linear quasi-order (see Lemma A.2).
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By order consistency we now have
≫A ⊆ ≫X0

⊆ κ′ ,

where κ′ is a feasible ranking of X0.
Depending on the results of the analysis, the DM can modify his prefer-
ences with respect to objects (modification of ≫A, modification of A –
moving to Step 1) or modify criteria selection (modification of K – mov-
ing to Step 3) or resort to preference expression with respect to outcomes
(Step 5).

Preference elicitation with respect to outcomes.

Step 5. By pairwise comparisons of selected outcomes of T , T ⊆ Z, with Z as
in Step 3, the DM defines order ≫T consistent with dominance relation ≫
(i.e. ≫ ⊆ ≫T ). In this step, as explained in Subsection 3.4, order ≫T is
associated to a family of functions, each function of this family represents
a feasible ranking, and thus constitutes a ranking algorithm (”rank by the
function value”) which yields this ranking.

Remark. Order ≫T reflects DM’s preferences revealed with respect to
pairs of outcomes (y, y′), y, y′ ∈ T , i.e. if y is preferred y′, then y ≫T y′.

Step 6. The DM is presented for analysis with feasible rankings which at this
step are rankings consistent with order ≫TX0

induced in X0 by order ≫T

of X0.

Remark. The presented rankings are in general quasi-rankings of X0.

By order consistency we now have
≫A ⊆ ≫X0

⊆ ≫TX0
⊆ κ′′ ,

where κ′′ is a feasible ranking of X0.
Depending on the results of the analysis the DM can modify his preferences
with respect to objects (modification of ≫A, modification of A – moving
to Step 1) or modify criteria selection (modification of K – moving to
Step 3) or modify his preferences with respect to outcomes (modification
of ≫T , modification of T – moving to Step 5).

END OF SCHEME

SCHEME terminates when the cardinality of feasible rankings equals 1 or
the DM wishes to terminate.

SCHEME lets the DM reveal his preferences with respect to objects in three
ways: directly and indirectly by criteria selection, and indirectly via outcomes.
Only after the DM reveals a range of his preferences, SCHEME attempts to
support him by providing the following information

— the actual number or at least an upper bound on the number of feasible
rankings,

— all feasible rankings or at least a subset of them.
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Figure 3 Flow diagram of SCHEME
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A too large number of feasible rankings to enable their explicit inspection by
the DM does not stop the decision process. On the opposite, such information
can stimulate the DM to make efforts to reveal his preferences further.

Clearly, SCHEME ends up with a single ranking only if the DM reveals
enough preference information to make the set of feasible rankings a singleton.
Otherwise, upon termination, the SCHEME ends up with a multitude of feasible
rankings, all equivalent with respect to preference information revealed by the
DM.

The outline of the SCHEME presented here is purely conceptual and ignores
such technicalities like which or how many feasible rankings are presented to
the DM. We consider these questions later on and we show how they can be
operationalized by an illustrative example in Section 4.

SCHEME can be justified step by step by the following arguments.

Step 1. In Step 1 the SCHEME offers the DM a possibility to reveal his pref-
erence with respect to objects by pairwise comparisons to the extent the DM
regards appropriate.

We consciously depart from the assumption, very often adopted in the liter-
ature, on completness of preferences with respect to pairs of objects (see, e.g.,
works related to the AHP method, Saaty, 1980) because, whether in practice or
laboratory experiments, even with a few objects this assumption is unrealistic.
Similarly, we consciously abstain from adopting any, always to some extent arbi-
trary, method to fill lacking preferences, either with or without the controversial
and contested assumption about the so called pairwise preference consistency
(see, e.g. Fedrizzi, Giove, 2007). In consequence, after Step 1 the number of fea-
sible rankings can be prohibitively large for explicit presentation and analysis.
This is the price to be paid at an early stage of interacting with the SCHEME
for the lack of any arbitrary assumption, which could result in fast, but often
premature (from the point of view of DM’s learning curve), reduction of the
number of feasible rankings.

Step 2. The number of feasible rankings can be too large to be presented to the
DM. In that case only a (reasonably limited) subset of rankings is presented,
together with the number of feasible rankings or at least an upper bound on that
number. Some results for calculating upper bounds on the number of rankings
in a set with an order are presented in Appendix B.

The information that the number of feasible rankings is still large can be
an incentive for the DM to engage further in preference revealing with respect
to objects. The DM can do this by any number of moves from Step 2 back to
Step 1 or to Step 3.

Step 3. Selecting criteria by the DM is always a subjective process. However,
when selecting criteria, the preferences expressed by the DM with respect to
objects before criteria selection should be taken into account to guarantee pref-
erence consistency.
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To assist the DM in consistent criteria selection, which can necessitate mod-
ification of DM’s preferences expressed with respect to objects, the concept of
discordance matrices has been elaborated (see Appendix E).

Establishing consistency between preferences revealed by pairwise compar-
isons of objects and preferences implied by the selected criteria (the dominance
relation) is an important step in building a consistent DM’s preference struc-
ture. This process should be carried out till consistency is achieved (i.e. till
inclusion ≫A ⊆ ≫X0

is fulfilled) via modification of relation ≫A, change of
the set A, modification of criteria selection or any combination of those actions.
The proposed SCHEME enables such actions in this very step or in Step 1.

The selected criteria enable the DM to further reveal his preferences (see
Steps 3 and 5 of the SCHEME ).

Step 4. Comments to Step 2 apply also here. This time, the calculations of upper
bounds on the number of feasible rankings can be refined by the results presented
in Appendix C, which exploit the dominance structure among outcomes derived
in Step 3.

Step 5. In Step 5 the SCHEME offers the DM the possibility to reveal his
preference with respect to objects by pairwise comparisons of outcomes to the
extent the DM regards appropriate.

Establishing consistency between preferences expressed by pairwise compar-
isons of objects, preferences resulting from the selected criteria and the thus
defined dominance relation, and preference expressed by pairwise comparisons
of outcomes, is another important step to building a consistent DM’s preference
structure. This process should be carried out till full consistency is achieved
(i.e. till inclusions ≫A ⊆ ≫X0

⊆ ≫TX0
are fulfilled) via modifications of rela-

tion ≫A, change of the set A, modification of criteria selection, modification of
relation ≫T , or by any combination of these actions. The proposed SCHEME
enables such actions in this very step or in Step 1 or Step 3.

An important part of this step is the association of order ≫T to a family of
functions, elements of which constitute ranking algorithms. This is explained
in detail below in Subsection 3.4 and illustrated in Section 4.

Step 6. Comments to Step 4 apply also here. The same results as in Step 4 can
be used to calculate an upper bound on the number of feasible rankings.

The SCHEME could be presented without distinguishing the subsets A and
T , and the DM would work then with the whole sets X0 and Z, respectively. In
practice, however, the DM tends to focus on a subset of objects or outcomes of
limited cardinality, and preferences expressed with respect to elements of such
sets are next applied to the whole set of objects.



Multiple criteria ranking decision support 1171

3.3. Discussion

The assumption that the DM is at any time fully conscious of his preferences
is widely questioned. Moreover, this assumption almost never holds in practice.
It is expedient then to assume just the opposite, namely that at the beginning
of the decision process DM’s preferences are vague. The aim of the decision
process is then to make those preferences gradually precise, along DM’s learning
curve, by confronting preferences revealed in the course of the process with the
consequences represented by feasible rankings. In the case of frozen processes,
proceeding in this fashion is of particular importance.

It is worth observing that the SCHEME applies to processes with any range
of autonomy, from autonomous to frozen processes as the extremes.

It should be stressed here that because the assumed decisive role of the
DM in ranking, in nonautonomous ranking processes there is no mechanism
to guarantee confinement of actual regret. This is also not guaranteed by the
use of the SCHEME but it provides for actual regret confinement. Indeed,
by interacting with the SCHEME in what in fact is the Simon’s learning loop
(see Figs. 1 and 3), the DM expands his understanding of the ranking problem.
This process is accompanied by more or less conscious accounting for expected
regret. On the grounds of psychological findings mentioned in Introduction, it
can be rationally expected that accounting for expected regret during the DM
– SCHEME interactions can result in reduction of actual regret.

Adopting a framework in which the DM has a possibility (but no necessity)
to act in two spaces to reveal his preferences – in the space of objects and in
the space of outcomes – is in our opinion a novel approach. Besides evaluating
objects via criteria (attributes), i.e. in atomistic manner, the DM can also eval-
uate objects in holistic (without paying regard to attributes) manner. In this
approach criteria selection is the necessary step to resolve any inconsistencies
between preferences expressed in these two spaces.

Up to now we have proposed how to support ranking processes in an inter-
active manner. Below we are concerned with how to select a ranking algorithm,
which preserves DM’s preferences expressed during the ranking process.

3.4. Establishing a ranking algorithm

To enable establishing ranking algorithms we extend Step 5 of the SCHEME
and make use there of some interactive MCDM methodologies. We follow the
approach to searching for the most preferred object as proposed in the Zionts-
Wallenius method (Zionts, Wallenius, 1983) and its generalization, the Dell-
Karwan method (Dell, Karwan, 1990).

We assume that the DM has implicit value function v(·), i.e. a function the
form of which is unknown, or at least not revealed. The DM compares outcomes
pairwise and consistently with his implicit value function decides whether he
prefers one outcome over another. The mechanism employed to frame the pre-
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ferences expressed by the DM is constituted by the parameters of some functions
used as proxy to the implicit value function.

We assume the implicit value function to be strongly monotone (i.e. strongly
decreasing or strongly increasing) on T , which is quite intuitive. Hence, the
following relation holds

y ≫T y′, y 6= y′, ⇒ v(y) > v(y′), (1)

for strongly increasing functions, and

y ≫T y′, y 6= y′, ⇒ v(y) < v(y′), (2)

for strongly decreasing functions. Each of these relations establishes a condition
for an implicit value function.

With the assumption of the implicit value function monotonicity and DM’s
preference consistency with that function there is no need to compare pairs of
outcomes where one is dominated by another. In such a case DM’s preference
results directly from the property of monotonicity.

To represent implicit value functions we make use of explicit proxy value
functions g(·). Consistently with (1) and (2), we assume that functions g(·) are
strongly increasing or strongly decreasing, i.e.

y ≫T y′, y 6= y′ ⇒ g(y) > g(y′), y, y′ ∈ T, T ⊆ Z, (3)

or

y ≫T y′, y 6= y′ ⇒ g(y) < g(y′), y, y′ ∈ T, T ⊆ Z, (4)

respectively.
Values of functions v(·) and g(·) provide rankings of the outcome set Z, and

therefore also quasi-rankings of the set X0.
In particular, we make use of two families of strongly monotone proxy func-

tions g(·) parameterized by the weight vector λ, λi > 0, i = 1, . . . , k, widely
used in MCDM, namely

— a family of linear functions (strongly increasing)

g(y) =

k∑

i=1

λiyi , (5)

— a family of regularized Tchebycheff functions (strongly decreasing for yi ≤
y∗i , i = 1, . . . , k)

g(y) = max
i

λi((y
∗

i − yi) + ρek(y∗ − y)) , (6)

where ρ > 0, ek is k-dimensional vector (1, ..., 1), and element y∗ is a
perturbation of utopia point (see Appendix A, (14)).

As no a priori specification of DM’s implicit value function is made here,
it is left to the DM to select the family he likes to work with or he can work
simultaneously with both families (see the numerical example in Section 4).



Multiple criteria ranking decision support 1173

Functions of both families are scalarizing functions (see Wierzbicki, 1999,
also Miettinen, 1999; Ehrgott, 2005; Kaliszewski, 2006), i.e. ȳ is an efficient
outcome if

ȳ = argmax
y∈Z

g(y), (7)

for linear functions, and

ȳ = argmin
y∈Z

g(y), (8)

for regularized Tchebycheff functions.
The system of inequalities (3) or (4) imposes conditions on the proxy function

g(·), which in the case of linear functions and regularized Tchebycheff functions
reduces to conditions on their parameters λi .

With s pairwise comparisons of outcomes we get a system of at most s

inequalities in the form

g(yt) > g(y
′t), t = 1, ..., s, (9)

for strongly increasing functions, and

g(yt) < g(y
′t), t = 1, ..., s, (10)

for strongly decreasing functions, where yt and y
′t are elements of pair t of

compared outcomes.
For the family of linear proxy functions conditions (9) take the form of a

system of constraints on vectors λ, namely

k∑

i=1

λiy
t
i >

k∑

i=1

λiy
′t
i , t = 1, ..., s. (11)

Every vector λ ∈ Λ, where Λ = {λ |λi > 0, i = 1, ..., l}, satisfying (11),
defines function

∑k

i=1
λiyi , values of which yield a ranking X0 consistent with

preferences yt ≫T y′t, t = 1, ..., s. The set of all such vectors, denoted Λ̄, rep-
resents the extent of DM’s flexibility (but also his arbitrariness) when selecting
a ranking algorithm.

In an analogous way we specify the set Λ̄ for the family of regularized Tcheby-
cheff functions.

Without loss of generality we assume that vectors of Λ satisfy an additional
condition

∑k
i=1

λi = 1.
The idea of selecting a ranking algorithm in Step 5 of the SCHEME reduces

to selecting an element λ from the set Λ̄ defined above. In this case a ranking
algorithm has the form of a function from one of the considered families.

One option is to select λ as the middlemost element of Λ̄. 3

3 With the Tchebycheff functions the set Λ̄ can be a union of disjoint sets (see Dell, Karwan,
1990; Chmielewski, 2008; Chmielewski, Kaliszewski, 2009) and then the selection of λ gets
more involved.
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The case Λ̄ = ∅ signals inconsistency between DM’s preferences specified and
the monotonicity of the selected proxy functions. To restore consistency some
of DM’s evaluations are to be revoked.

4. An illustrative example

To illustrate the versatility of SCHEME we use data from the year 2004 for 177
municipalities of the Province of Łódź with 12 selected (out of several more)
attributes used as criteria 4 (see Table 1). For the examplary ranking problem
presented here we use data for the first 10 (alphabetic order) communes (mu-
nicipalities). Original values of attributes were mapped into a numerical scale
(points), as shown in Table 2 5.

To proceed according to a credible decision making scenario, the ranking
represented in Table 3 – Ranking 2004 – was used as a reference 6. In the
scenario assumed below for this example all preferences are consistent with
Ranking 2004.

Below we present one pass of the SCHEME for the considered problem.

SCHEME

Step 1. According to the assumed scenario the DM defines the following pref-
erences: Bełchatów-town is preferred to all remaining communes except
Brzeziny-town, and Brzeziny-town is preferred to all remaining communes
except Bełchatów-town.

Step 2. Feasible rankings are identified by enumeration. Enumeration is
stopped whenever the number of identified feasible rankings reaches an
adjustable threshold value, for a schematic description of the enumeration
algorithm see Appendix D. Here the threshold value was set to 300 for all
respective steps: Step 2, Step 4, and Step 6.

In this case the number of enumerated feasible rankings reached 300 and
the enumeration algorithm stopped 7

By Lemma B.2 the maximal number of feasible rankings is 907,200, hence
the number of feasible rankings is between 300 and 907,200. To calculate
this number some subsets of A (in this scenario A = X0) have been selected
such that in each subset the order ≫A is a ranking, and then the formula
from Lemma B.2 has been used.

4 All data used here come from a research conducted at the the Faculty of Administration
and Social Sciences of the Technical University of Warsaw. The Authors are grateful to
Professor Eugeniusz Sobczak from the Faculty for his kind assistance.

5 ”Złoty” is the Polish currency unit.
6 This ranking was derived during the research mentioned in Footnote 4 before.
7 In an implementation this algorithm can run in the background updating in real-time

the lower bound on the number of feasible ranking.



Multiple criteria ranking decision support 1175

Table 1 Criteria for municipality ranking
No Criterion

1 Investments per capita

2 Transport and communication investments per capita

3 Share of investments in the commune budget

4 Employment per 1000 inhabitants

5 Unemployment per 1000 inhabitants

6 Migration inflow per year

7 Migration outflow per year

8 High school graduates per 1000 inhabitants per year

9 Percentage of population with access to water-pipe system

10 Percentage of population with access to sever-pipe system

11 Percentage of population with access to sever processing plant

12 The number of registered businesses per 1000 inhabitants

Table 2 Criteria mapping into a point scale
Criterion Mapping

1 +1 point for each 10 złoty

2 +1 point for each 10 złoty

3 +1 point for each percent

4 +1 point for each person

5 -1 point for each person

6 +1 point for each person

7 -1 point for each person

8 +1 point for each person

9 +1 point for each percent

10 +1 point for each percent

11 +1 point for each percent

12 +1 point for each business

Table 3 Ranking 2004
No Commune

1 Bełchatów-town

2 Brzeziny-town

3 Bolesławiec

4 Brójce

5 Andrespol

6 Bolimów

7 Bełchatów

8 Buczek

9 Brzeziny

10 Bra֒szewice
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Step 3. The DM selects with the help of a discordance matrix (see Appendix E)
presented in Table 5 a subset of six criteria: 4, 8, 9, 10, 11 and 12 (ac-
cording to numbering in Table 1).

Step 4. The number of feasible rankings, as determined in Step 2, is over 300.

By Lemma B.2 the maximal number of feasible rankings is 907,200, hence
the number of feasible rankings is between 300 and 907,200. 8

Step 5. According to the assumed scenario, the preferences with respect to
criteria values (outcomes) are defined for 12 pairs of communes. The
SCHEME, accounting for transitivity of relation ≫T , automatically iden-
tifies preferences for 7 other pairs. The list of pairs with preferences is
presented in Table 4. Preferences resulting from transitivity of relation
≫T are indicated in the column Comments.

Step 6. The number of feasible rankings of X0 is 102.

By Lemma B.2 the maximal number of feasible rankings is 25,200.

At the DM request the SCHEME can list out all 102 feasible rankings.
At the DM request the SCHEME can also derive rankings for the mid-
dlemost elements (weights) of the set Λ̄ for the selected proxy function.
Rankings with middlemost weights clearly possess some extent of stabil-
ity with respect to weight perturbations (Chmielewski, 2008). Such rank-
ings (with ρ = 0, 0001 for the class of regularized Tchebycheff functions)
together with the corresponding middlemost weights λ are presented in
Table 6.

END OF SCHEME

On the basis of this example it is worth observing that presenting rankings
to the DM opens way to further supporting him in revealing his preferences.
The DM either accepts a ranking or discards it. Discarding the ranking means
that the DM does not accept precedence of objects as defined by the ranking.
To eliminate this ranking from further considerations it is enough for the DM to
reverse one pairwise preference consistent with this ranking and then proceed
according to the SCHEME. This represents a rather radical change of preferences
since such a move rends infeasible also all other currently feasible rankings.

8 In this example we disregarded preferences introduced by the dominance relation. Had
they been taken into account, they could have produced either the exact number of feasible
rankings (if this number was less or equal 300) or a tighter upper bound.
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Table 4 Pairs of outcomes with preferences

Lp Preferences Comments

1 Andrespol ≫T Bełchatów

2 Bolesławiec ≫T Bolimów

3 Bolesławiec ≫T Buczek

4 Bolesławiec ≫T Bełchatów

5 Bolesławiec ≫T Bra֒szewice

6 Brójce ≫T Brzeziny

7 Brójce ≫T Bełchatów

8 Bolimów ≫T Bełchatów

9 Bolimów ≫T Buczek

10 Bolimów ≫T Brzeziny

11 Buczek ≫T Bra֒szewice

12 Bełchatów ≫T Buczek

13 Bolesławiec ≫T Brzeziny by transitivity of ≫T

14 Bolimów ≫T Bra֒szewice by transitivity of ≫T

15 Andrespol ≫T Buczek by transitivity of ≫T

16 Brójce ≫T Buczek by transitivity of ≫T

17 Bełchatów ≫T Bra֒szewice by transitivity of ≫T

18 Andrespol ≫T Bra֒szewice by transitivity of ≫T

19 Brójce ≫T Bra֒szewice by transitivity of ≫T

Table 5 The discordance matrix
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 DNh

x1
≫A x3 0 0 0 1 0 1 0 1 1 1 1 1 5

x1
≫A x4 0 0 0 1 0 0 1 1 1 1 1 1 5

x1
≫A x5 0 0 0 1 0 0 1 1 1 1 1 1 5

x1
≫A x6 0 1 0 1 0 1 0 1 1 1 1 1 4

x1
≫A x7 0 0 0 1 0 0 1 1 1 1 1 1 5

x1
≫A x8 0 0 0 1 0 0 1 1 1 1 1 1 5

x1
≫A x9 0 0 0 1 0 0 1 1 1 1 1 1 5

x1
≫A x10 0 0 0 1 0 1 1 1 1 1 1 1 4

x2
≫A x3 0 0 0 1 0 0 0 1 1 1 1 1 6

x2
≫A x4 0 0 0 1 0 0 0 1 1 1 1 1 6

x2
≫A x5 0 1 0 1 0 0 0 1 1 1 1 1 5

x2
≫A x6 0 1 0 1 0 0 0 1 1 1 1 1 5

x2
≫A x7 0 0 0 1 0 0 0 1 1 1 1 1 6

x2
≫A x8 0 0 0 1 1 0 0 1 1 1 1 1 5

x2
≫A x9 1 0 0 1 0 0 0 1 1 1 1 1 5

x2
≫A x10 0 0 0 1 0 0 0 1 1 1 1 1 6

DNv 15 13 16 0 15 13 10 0 0 0 0 0



1178 M. CHMIELEWSKI, I. KALISZEWSKI

Table 6 The most stable feasible rankings

Linear function regularized Tchebycheff

ρ = 0, 0001

λ1 = 0, 085526 λ1 = 0, 143722

λ2 = 0, 179831 λ2 = 0, 169977

λ3 = 0, 193864 λ3 = 0, 169977

λ4 = 0, 177339 λ4 = 0, 169977

λ5 = 0, 179818 λ5 = 0, 176360

λ6 = 0, 183622 λ6 = 0, 169977

Rankings

1) Brzeziny-town 1) Brzeziny-town

2) Bełchatów-town 2) Bełchatów-town

3) Andrespol 3) Andrespol

4) Bolesławiec 4) Bolesławiec

5) Bolimów 5) Brójce

6) Brójce 6) Bolimów

7) Bełchatów 7) Buczek

8) Brzeziny 8) Bełchatów

9) Buczek 9) Brzeziny

10) Bra֒szewice 10) Bra֒szewice

5. Concluding remarks

The proposed approach gathers three major components pertaining to rankings,
namely
— holistic assessment and elicitation of DM’s partial preferences by pairwise

comparisons of objects,
— building multicriteria (multiattribute) models of the ranking problems which

preserve DM’s partial preferences to objects,
— assessment and elicitation of DM’s partial preferences by pairwise compar-

isons of objects via criteria values (attributes),
and provides a framework for maintaining consistency between these compo-
nents. In the approach the distinction between Multiple Criteria Decision Mak-
ing and Multiple Attribute Decision Making is not material.

The only underlying assumptions adopted in the approach are monotonicity
of the implicit value function and of the proxy value functions used to repre-
sent DM’s preferences, and consistency of DM’s pairwise evaluations with the
monotonicity assumption. As there is no built-in mechanism in the approach
which, artificially or subjectively, limits the scope of DM’s possible choices from
among feasible rankings or biases him towards some specific feasible rankings,
so we regard this approach as ”preference fair”.

As the result, the DM is confronted with a family of feasible rankings. Any
ranking from that family consistently corresponds to DM preferences expressed
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in the course of the decision making (ranking building) process. At least an
upper bound on the number of feasible rankings is provided.

In consequence, the DM has a clear alternative: either to select a ranking
from the family of feasible rankings (such a selection can be either made at
random or guided by some ”external hint”) or provide some more preferences to
size down the set of feasible rankings to the point he regards appropriate.

As rankings in the approach have the form of functions, in each case such a
function is a basis for a ranking algorithm.

It should be reiterated here that the proposed approach is uniform regarding
problems with any extent of information about objects to be ranked, from the
full extent of information to the total lack of information, and anything in
between.
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A. Appendix – notions, definitions and notation

In the paper we refer to partial orders (orders for short).

Definition A.1 Relation θ defined on X is an order if it satisfies the following
conditions

∀x ∈ X : xθx, (reflexivity)
∀x, y, z ∈ X : (xθy ∧ yθz) ⇒ xθz, (transitivity)
∀x, y ∈ X : (xθy ∧ yθx) ⇒ x = y. (antisymmetry)

A set with an order is called ordered set.
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Definition A.2 Relation θ defined on X is a quasi-order if it satisfies condi-
tions of reflexivity and transitivity.

A set with a quasi-order is called quasi-ordered set.

Definition A.3 Order θ defined on X is a linear order if it satisfies the fol-
lowing condition

∀x, y ∈ X : xθy ∨ yθx. (completeness)

Definition A.4 Quasi-order θ defined on X is a linear quasi-order if it satisfies
the completeness condition.

A set with a linear order is called linearly ordered set and a set with linear
quasi-order is called linearly quasi-ordered set.

A linear order is also referred to as ranking and a linear quasi-order as quasi-
ranking.

In ordered sets maximal elements are distinguished.

Definition A.5 Given set X with a linear order (ranking) θ and elements
x, y ∈ X, x 6= y, element x is said to precede element y if xθy.

Definition A.6 Let θ be an order defined on X. Element xmax ∈ X is called
maximal if

∼ ∃x ∈ X, x 6= xmax : xθxmax.

In linearly ordered set the definition of maximal element is equivalent to the
following definition.

Definition A.7 Let θ be a linear order defined on X. Element xmax ∈ X is
called maximal if

∀x ∈ X : xmaxθx.

An element which is maximal in a linearly ordered set (ranking) is called the
first element.

In a linearly ordered set there exists exactly one first element.

Definition A.8 Let θ be a relation defined on X. We say that θ is consistent
with relation ≻ defined on subset A, A ⊆ X, if for each x, x′ ∈ A, the following
holds

x ≻ x′ ⇒ xθx′,

in other words, ≻ ⊆ θ.
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The Multiple Criteria Decision Making (MCDM) consists in selecting the
most preferred object (element of a set), i.e. an object, which the DM prefers
most, in the presence of multiple criteria.

Let x denote an object, X0 a set of (admissible) objects, and X a space of
objects. The underlying formal model of MCDM is as follows

”vmax”f(x),

x ∈ X0 ⊆ X,

f : X → Rk,

f = (f1, ..., fk),

fi : X → R, i = 1, ..., k, k ≥ 2,

(12)

where fi, i = 1, ..., k, are criteria, ”vmax” denotes the operator of derivation of
all efficient objects (see definition below) of X0, Rk is outcome space. Without
loss of generality we assume that all criteria are of the type ”the more the better”.

We introduce the following notation

y = f(x), Z = f(X0),

and elements of Z we call outcomes.

Definition A.9 Outcome ȳ is called efficient if

yi ≥ ȳj, i = 1, ..., k, y ∈ Z, implies y = ȳ.

In Z the dominance relation is defined.

Definition A.10 Relation ≫ defined in Rk as

y ≫ y′ if yi ≥ y′i for all i, i = 1, ..., k,

and there exists i, 1 ≤ i ≤ k, such that yi > y′i

is called dominance relation.

Relation ≫ is not an order (for it is not reflexive, see Definition A.1).
Outcome y′ for which there exists y such that y ≫ y′ is called dominated

and y is called dominating.
By Definition A.10 an outcome y is efficient if there is no outcome y′ such

that y′ ≫ y.
Let ≫T be an order defined on set T , T ⊆ Z.

Definition A.11 Relation ≫TX0
defined as

x ≫TX0
x′ ⇔ y ≫T y′,

where y = f(x), y′ = f(x′), is called induced in X0 by ≫T .
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The relation induced by dominance relation ≫ is denoted by ≫X0
.

The next two lemmas are direct consequences of Definition A.11.

Lemma A.1 The relation induced in X0 by an order defined in T , T ⊆ Z, is a
quasi-order in X0.

Lemma A.2 The relation induced in X0 by a linear order defined in T , T ⊆ Z,
is a linear quasi-order in X0.

Lemma A.3 The relation induced in X0 by dominance relation ≫ is a quasi-
order.

Proof. The proof follows from the fact that the dominance relation is a subset
of the order defined as

y ≫̃ y′ ⇔ yi ≥ y′i, i = 1, ..., k.

Definition A.12 Function u(y) : Rk → R is called strongly increasing on T if

y ≫T y′ and y 6= y′ ⇒ u(y) > u(y′).

Definition A.13 Function u(y) : Rk → R is called strongly decreasing on T

if

y ≫T y′ and y 6= y′ ⇒ u(y) < u(y′).

Element ŷ of Rk defined as

ŷi = max
y∈Z

yi , i = 1, ..., k, (13)

is called utopia point. We assume that ŷ exists. We make use of element y∗ ∈ Rk

defined as

y∗ = ŷ + ǭ, ǭ = {ǫ, ǫ, ..., ǫ}, ǫ > 0. (14)

Definition A.14 Object x is called efficient if outcome y = f(x) is efficient.

B. Appendix – Ordered sets and rankings – cardinality

considerations

Let us observe that the number of rankings of G consistent with an order defined
on its subset H (i.e. feasible rankings of G) depends on the number of rankings of
H consistent with the order (feasible rankings of H). In particular, if a ranking
of H is given, then the number of feasible rankings of G depends only on the
number of rankings of G \H .

Let |G| = g and |H | = h, where H ⊆ G. Assume that a ranking of H is
given.
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Lemma B.1 The number of rankings of G when a ranking defined on H is given
is equal to g!

h!
.

Proof. In g! rankings (permutations) of g elements of G there are h! rankings
(permutations) of h elements of H .

If in g! rankings of G each ranking of H is replaced by a given ranking, then
the number of rankings of G is reduced h! times. Hence, the number of rankings
of G when a ranking of H is given is equal to g!

h!
.

Let H1, ..., Ht be disjoint subsets of G, i.e. Hi∩Hj = ∅, i, j = 1, ..., t, i 6= j,
and |Hi| = hi, i = 1, 2, ..., t. Assume that rankings of Hi, i = 1, ..., t, are given.

Lemma B.2 The number of rankings of G when rankings of H1, ..., Ht are given
is equal to g!

h1!·...·ht!
.

Proof. For t = 1 the prof follows from Lemma B.1.
Assume t = 2. Because ranking of H1 is given, by Lemma B.1 the number

of rankings of G is equal to g!
h1!

.
If in g!

h1!
rankings of G each ranking of H2 is replaced by a given ranking,

then the number of rankings of G is reduced h2! times. Hence, the number of
rankings of G when rankings of H1 and H2 are given is equal to g!

h1!·h2!
.

The argument can be continued for any t.

C. Appendix – Ordered sets and rankings – further car-

dinality considerations

Results of Appendix B do not account for the dominance relation and the fact
that proxy functions g(·) we make use of are strongly increasing or decreasing.
Yet since each such function "preserves order" (see Definitions A.12 and A.13),
a dominated outcome does not precede in a ranking a dominating one, as shown
by the next lemma.

Lemma C.1 In outcome rankings yielded by linear functions or regularized Tche-
bycheff functions, dominated outcomes do not precede their dominating out-
comes.

Proof. Assume that dominated outcome y precedes in a ranking its dominating
outcome y′.

Consider linear functions first. If y precedes in a ranking y′, then there exists
λ, λi > 0, i = 1, ..., k, such that

∑k

i=1
λiyi >

∑k

i=1
λiy

′

i holds. But by the
definition of the dominance relation we have y′i ≥ yi for i = 1, ..., k and y′i > yi

for some i, hence for any λi > 0, i = 1, ..., k, we have
∑k

i=1
λiyi <

∑k
i=1

λiy
′

i,
which is a contradiction.

Consider now regularized Tchebycheff functions. If y precedes y′ in a ranking,
then there exists λ > 0, λi > 0, i = 1, ..., k, such that maxi λi((y

∗

i − y′i) +
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ρ(y∗ − y′)) > maxi λi((y
∗

i − yi) + ρ(y∗ − y)) holds. But by the definition of the
dominance relation we have y′i ≥ yi for i = 1, ..., k, and y′i > yi for some i, hence
(y∗i −y′i)+ρ(y∗−y′) < (y∗i −yi)+ρ(y∗−y), i = 1, ..., k, and for any λ, λi > 0, i =
1, ..., we have maxi λi((y

∗

i − y′i) + ρ(y∗ − y′)) < maxi λi((y
∗

i − yi) + ρ(y∗ − y)),
which is a contradiction.

From Lemma C.1, Lemma C.2 immediately follows.

Lemma C.2 In outcome rankings yielded by linear functions or regularized
Tchebycheff functions a dominated outcome cannot be the first outcome (i.e.
the first element in the linearly ordered set of outcomes).

Let G be a set of n outcomes, p the number of efficient outcomes in G, pe

the number of efficient outcomes located on the convex hull of G, and ŷmin an
element defined as

ŷmin
i = min

ye∈E
yei , i = 1, . . . , k,

where E is the set of efficient outcomes.
Let G1 = G \ G2, where G2 = {y ∈ G | ŷmin

i > yi, i = 1, . . . , k}, and let
r = |G2|.

All p efficient outcomes can be determined with regularized Tchebycheff
functions with ρ < ρmax, where ρmax is a number specific for each problem
considered. For a method to calculate or assess ρmax see Kaliszewski (1987).

Lemma C.3 The number of rankings of G resulting from regularized Tcheby-
cheff functions with ρ < ρmax is bounded from above by

p
(n− r − 1)!

(n− r − p)!
(n− p)! .

Proof. There are n! = n(n− 1)(n− 2) . . . 1 possible rankings of G. By Lemma
C.2 the first elements in rankings can be only p efficient outcomes and they
all can be determined with regularized Tchebycheff functions with ρ < ρmax.
By Lemma C.1 none of elements on positions 2, . . . , p − 1 in a ranking can be

an outcome dominated by ŷmin. On these positions we have

(
n− 1− r

p− 1

)

possible combinations of elements and each combination corresponds to (p− 1)!
rankings. Hence

(p− 1)!(
n− 1− r

p− 1
) = (p− 1)!

(n− 1− r)!

(p− 1)!(n− 1− r − p+ 1)!
=

(n− r − 1)!

(n− r − p)!

On the remaining (n − p) positions (the positions from p + 1 to n) at most
(n− p)! rankings can be formed.
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Lemma C.4 The number of rankings of G resulting from linear functions is
bounded from above by

pe
(n− r − 1)!

(n− r − pe)!
(n− pe)! .

Proof. The proof is analogous to the proof of Lemma C.3.

In general, determining p, pe and r can be a problem in itself. Lemma C.3
and Lemma C.4 (as well as Lemma C.5 and Lemma C.6) are of practical value
only if those numbers are easily accessible.

Let H11, . . . , H1t be disjoint subsets of G1, i.e. H1i ∩ H1j = ∅, i, j =
1, . . . , t, i 6= j, and |H1i| = h1i, i = 1, 2, . . . , t. Similarly, let H21, . . . , H2u

be disjoint subsets of G2, i.e. H2i ∩ H2j = ∅, i, j = 1, . . . , u, i 6= j, and
|H2i| = h2i, i = 1, 2, . . . , u.

Lemma C.5 The number of rankings of G resulting from regularized Tcheby-
cheff functions with ρ < ρmax is bounded from above by

p ×
(n− r − 1)!

(h11! · . . . · h1t!)(n− r − p)!
×

(n− p)!

(h21! · . . . · h2t!)
.

Proof. The proof follows directly from Lemma C.3 and Lemma B.2.

Lemma C.6 The number of rankings of G resulting from linear functions is
bounded from above by

pe ×
(n− r − 1)!

(h11! · . . . · h1t!)(n− r − pe)!
×

(n− pe)!

(h21! · . . . · h2t!)
.

Proof. The proof follows directly from Lemma C.4 and Lemma B.2.

D. Appendix – Enumeration of feasible rankings

To enumerate feasible rankings a simple algorithm is proposed.
This algorithm makes use of the notion of forests with roots. The idea of the

algorithm is to build all paths from roots to leaves, where each path represents
one feasible ranking of n objects, the first object is the object represented by
the root and the last object is the object represented by a leaf. A path with
m < n nodes can be expanded by the node representing object x′ and by the
edge connecting the last node of the paths and the node representing x′ only if
on this path there is no node corresponding to object x such that x′ ≻ x, where
≻ is a preference relation.

The algorithm starts with the number of roots equal to the number of objects
to be ranked. On successive iterations all different paths are build till leaves are
reached.

In computations for the SCHEME the algorithm stops when a threshold
value for the number of complete (i.e. composed of n − 1 edges) paths repre-
senting feasible rankings is reached.
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Example D.1 Let us consider rankings of a set of four objects. There are 4! =
24 possible rankings. Assume that the DM has defined the following preferences
(order ≻) among objects: a ≻ b, c ≻ a and d ≻ a. Fig. 4 illustrates the working
of the algorithm. The only feasible rankings, consistent with the preferences
(order) are rankings: c, d, a, b and d, c, a, b.

a

b

b

  ❅❅
c

d

d

c

c

  
❍❍❍

a

b

b

d

d

  ❅❅
b a

b

d

  
❍❍❍

a

b

b

c

c

  ❅❅
b a

b

Figure 4 Rooted forest for Example D.1

E. Appendix – Discordance matrices

To assist the DM in criteria selection the concept of discordance matrices has
been elaborated. In a discordance matrix each row corresponds to a pair of
objects with defined preference and each column corresponds to a criterion
fi, i = 1, . . . , l. Element i, j indicates if for i-th pair of objects x, x′ such
that x ≫A x′, the relation fi(x) ≥ fi(x

′) holds (1 – holds, 0 – otherwise).
To satisfy the condition of consistency of induced relation ≫X0

with relation
≫A, only criteria for which the corresponding column contains 1 in each row
can be selected.

Whenever the DM is not able to ensure consistency between relations ≫X0

and ≫A (via modifications of relation ≫A, set A, or selection of k criteria) the
decision process is suspended or terminated.

To ease the process of criteria selection, for each column and each row the
discordance number, i.e. the number of appearances of 0, is calculated.

The discordance matrix for the problem solved in Section 4 is presented in
Table 5.



 


