
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evolutionary approach  

to obtain graph covering by 

densely connected subgraphs 
 

 

 

J. Stańczak, H. Potrzebowski, 

K. Sęp 

Instytut Badań Systemowych 
Polska Akademia Nauk 
 

Systems Research Institute 
Polish Academy of Sciences 

 

Raport Badawczy 

Research Report 

RB/79/2011 



Control and Cybernetics

vol. 41 (2011) No. 3

Evolutionary approach to obtain graph covering by

densely connected subgraphs∗

by

Jarosław Stańczak, Henryk Potrzebowski and Krzysztof Sęp

Systems Research Institute Polish Academy of Science,
Newelska 6, Warsaw 01-447, Poland

e-mail: {stanczak, potrzeb, sep}@ibspan.waw.pl

Abstract: This article describes two evolutionary methods for
dividing a graph into densely connected structures. The first method
deals with the clustering problem, where the element order plays an
important role. This formulation is very useful for a wide range of
Decision Support System (DSS) applications. The proposed clus-
tering method consists of two stages. The first is the stage of data
matrix reorganization, using a specialized evolutionary algorithm.
The second stage is the final clustering step and is performed using
a simple clustering method (SCM).

The second described method deals with a completely new parti-
tioning algorithm, based on the subgraph structure we call α-clique.
The α-clique is a generalization of the clique concept with the intro-
duction of parameter α, which imposes for all vertices of the sub-
graph the minimal percentage (α∗100%) of vertices of this subgraph
that must be connected with vertices of this α-clique. Traditional
clique is an instance of α-clique with α = 1. Application of this
parameter makes it possible to control the degree (or strength) of
connections among vertices (nodes) of this subgraph structure. The
evolutionary approach is proposed as a method that enables finding
separate α-cliques that cover the set of graph vertices.

Keywords: graph, clique, graph clustering, evolutionary algo-
rithms.

1. Introduction

Optimization of public communication or transportation systems, designing of
nets and systems are only instances of a variety of possible applications of ideas
described in this article. This domain is closely connected with detecting densely
connected structures in graphs and can be called also graph clustering. Gener-
ally, graph clustering is a very wide domain with very rich literature for standard
approaches (Falkner, Rendl and Wolkowicz, 1994; Jain and Dubes, 1988). The

∗Submitted: July 2009; Accepted: June 2011.



850 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

methods of graph clustering, described in this article, are problem specific and
rather prepared specially for problems depicted above, although they may be
probably used in different domains.

A Design Structure Matrix (DSM, sometimes also Dependency Structure
Method, Dependency Structure Matrix, Problem Solving Matrix (PSM), adja-
cency matrix, N-square matrix or Design Precedence Matrix) is a simple and
compact representation of complex systems or projects, which can be decom-
posed and reorganized using some tools and methods. A DSM cell represents
some process or processing unit and its interactions with other similar units.
It is possible to track the information or goods flow by presentation of system
relations analyzing the content of this matrix. This enables easy application of
matrix-based methods that can improve the performance of considered systems.

This article presents a specialized evolutionary algorithm (EA) based method
that helps to reorganize and detect strongly connected elements in the system
structure, stored as a DSM. The EA changes the structure of the DSM chang-
ing the order of its rows and columns (permutations of rows and/or columns)
to maximize a quality function, which is an equivalent of grouping strongly con-
nected units. After the EA aided transformation of DSM, applying a simple
clustering method enables extracting clusters of strongly connected units and
finding a better structure of the system, taking into account the strength of
connections among the elements of the projected/optimized system.

The second part of this article deals with the graph representation of optimized
systems. The graph representation can be treated as a specific instance of DSM,
but it has some additional features, which can be used for optimization purposes.
In order to extract clusters of densely connected vertices in a graph one might
cover it with separate cliques (disjoint complete subgraphs). But the classical
clique seems to be in many cases a too strongly connected unit. In practical cases
they may be very small and are difficult to tune to the requirements of a problem.
Thus, we propose an extension of the clique notion, called α-clique. Introduction
of parameter α∈ (0, 1] enables to control the parameters of the clique, being the
minimumproportion of vertices thatmust have connectionswith each otherwithin
their α-clique. So, tuning the parameter α gives the possibility to obtain different
number and size of α-cliques or clusters that the whole graph is divided into.

The outline of this article is as follows. Some terms and symbols used in
this article are defined in Section 2. In Section 3 evolutionary methods of graph
partitioning are presented. Part 4 presents some computational results obtained
using the described methods.

2. Basic concepts

2.1. The Design Structure Matrix (DSM)

Many decision problems deal with the task of appropriate design of a system
structure, taking into account many interactions among its elements. The De-



Evolutionary approach to obtain graph coveringby densely connected subgraphs 851

sign Structure Matrix (DSM) is a good tool for representing and solving such
problems (Browning, 2001).

The DSM contains elements aij (where i ∈ {1..|R|}, j ∈ {1..|S|}, |.| denotes
here the cardinality of a set, R and S are sets of elements of the system). The
element aij is a measure of the relationship strength between elements of sets
R and S. It can show some kind of connection between units (data or goods
flow, communication connections, etc.). By proper permuting of rows and/or
columns of such array it is possible to obtain groups, which are subsets of R
strongly related to the corresponding subsets of S. The widely used method of
DSM clustering is to maximize interactions among elements of the cluster while
minimizing interactions among clusters (Lenstra, 1977).

The DSM clustering problem can be formulated as a well-known symmet-
ric TSP (Traveling Salesman Problem) problem and the symmetric TSP prob-
lem can be formulated as a DSM clustering problem (Lenstra, 1977), which
proves that it is a computationally hard problem and in practical cases only
approximate methods can be used to solve it, for example: greedy, 2-opt, 3-
opt (Lenstra, 1977; Sysło, Deo and Kowalik, 1983) or BEA, Bounded Energy
Algorithm (McCormick, Schweitzer and White, 1972) or heuristic methods -
genetic algorithms (Altus, Kroo and Gage, 1996; McCormick, Schweitzer and
White, 1972; Potrzebowski, Stańczak and Sęp, 2004; Rogers, 1997; Yu, Gold-
berg, Yassine and Yassine, 2003; McCulley, Bloebaum, 1996). In our approach
an adjusted evolutionary algorithm has been used to solve the clustering prob-
lem with the aid of a simple clustering method described in Section 3.2.

The adjustment of the genetic algorithm to the solved problem requires a
proper encoding of individuals, inventing of specialized genetic operators and
designing a fitness function to be optimized by the algorithm. The respective
quality function is closely connected with the fitness function that values the
members of the population. The classification problem is not a typical opti-
mization task and its quality function is some artificial formula tuned to the
problem. There are probably many possible fitness functions that can be used
there.

The accepted solution (population member) encoding method requires spe-
cialized genetic operators, which modify the population of solutions. Simple
random operators are similar to the widely used mutation and crossover (or
exchange of parts of solutions). Also a set of heuristic operators was worked out
and successfully tested: 2-opt and intelligent exchange.

The evolutionary method with the simple clustering algorithm and obtained
results are discussed in the following sections.

2.2. Graphs

Notions described below are based on Wilson (1996).
A graph is a pair G = (V,E), where V is a non-empty set of vertices and

E is a set of edges. Each edge is a pair of vertices {v1, v2} with v1 6= v2 .



852 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

Figure 1. An example of a graph

In the graph from Fig. 1, V = {v1, v2, v3, v4, v5, v6} and
E = {{v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v3, v5},
{v3, v6}{v4, v5}, {v4, v6}, {v5, v6}}.

Two vertices in the graph G = (V,E) are called adjacent if for vi, vj ∈ V
there is {vi, vj} ∈ E.

For example: in graph from Fig. 1 vertices v1 and v3 are adjacent but
vertices v1 and v2 are not adjacent

A subgraph of graph G = (V,E) is a graph G′ = (V ′, E′), where V ′ ⊆ V
and E′ ⊆ E such that for all e ∈ E and e = v1, v2, if v1, v2 ∈ V ′ then e ∈ E′ .

A path in graph G = (V,E) from vertex v1 to vertex vn is a sequence of
vertices {v1, ..., vn} such that {vi, vi+1} ∈ E for i = 1, 2, ..., n− 1 and for all vi,
vj belonging to the path, if i 6= j then vi 6= vj .

A degree of a vertex is the number of edges to which this vertex belongs.
There are following degrees of vertices in graph from Fig. 1 :

deg(v1) = 3, deg(v2) = 3, deg(v3) = 5, deg(v4) = 5, deg(v5) = 5, deg(v6) = 3.
Graph G = (V,E) is a connected graph, if for each pair of vertices there

is a path between them.
Graph G = (V,E) is a complete graph, if for each pair of vertices there is

an edge e ∈ E between them, like in Fig. 2.
A clique (a complete subgraph) Q = (Vq, Eq) in graph G = (V,E) is a graph

such that Vq ⊆ V and Eq ⊆ E and Card(Vq) > 1 or each pair of vertices
v1, v2 ∈ Vq fulfills the condition {v1, v2} ∈ Eq. If Card(Vq) = 1, Q is a clique.

For example: the graph in Fig. 2 is a clique. Each nonempty subgraph of a
clique is a clique.

A maximum clique QM = (Vq, Eq) in graph G = (V,E) is a clique, for
which there exists no vertex v ∈ V and v /∈ Vq such that Q′ = (V ′, E′) is a
clique, where V ′ = V ∪ {v} and E′ ⊆ E and each pair v1, v2 ∈ V ′ of vertices
fulfills the condition {v1, v2} ∈ E′.

For example the entire graph presented in Fig. 2 constitutes the maximum
clique but the graph shown in Fig. 1 does not. A maximum clique in graph from
Fig. 1 compose the vertices v3, v4, v5, v6 with relevant edges.



Evolutionary approach to obtain graph coveringby densely connected subgraphs 853

Figure 2. A complete graph

2.3. An ααα-clique

Let A = (V ′, E′) be a subgraph of graph G = (V,E), V ′ ⊆ V , E′ ⊆ E,
k = Card(V ′) and let ki be a number of vertices vj ∈ V ′ such that {vi, vj} ∈ E′.

1. For k = 1 the subgraph A of graph G is an α-clique (α).
2. For k > 1 the subgraph A of graph G is an α-clique (α) if all vertices

vi ∈ V ′ fulfill the condition α ≤ ki+1
k

, where α ∈ (0, 1].
Further on we will use the notion of α-clique in the sense of α-clique(α) for

an earlier established α.
As it can be seen in Figs. 3 and 4, a subgraph of an α-clique(0.8) is not an

α-clique(0.8), thus the property of being α-clique(α) may not be preserved by
the sub-graphs of an α-clique.

Let α-clique A = (V,E) be a graph with α > 1
2 , thus, for all vertices vi

belonging to α-clique(α) ki + 1 > 1
2k.

The set theory implies the fact that for each pair of vertices, the sets of
vertices adjacent to them have a non-empty intersection, so the α-clique(α)
with α > 1

2 constitutes a connected graph.
If α > 1

2 , the obtained subgraph may be disconnected - an example of such
a situation is shown in Fig. 5.

Figure 3. An example of α-clique(0.8)



854 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

Figure 4. A subgraph of graph from Fig. 3 which is not an α-clique(0.8)

Figure 5. An example of a not connected graph for α > 1
2

It is useful to introduce the notion of boundary αb:

αb = min
i

(

ki + 1

k

)

.

There is another fact which should be emphasized. If a graph A is an α-
clique(α1) and α1 ≥ α2, then A is also an α-clique(α2). It means that A is an
α-clique for every value of α less or equal αb.

Generally, it seems handy to compute the value of αb for each graph consid-
ered as an α-clique to know the maximum admissible value of α.

2.4. ααα-clique as a generalization of the notion of clique

As it has been mentioned, α-clique is a generalization of clique. Thus, it is
expected that the maximum α-clique problem is more difficult that the maxi-
mum clique problem which is NPH (Aho, Hopcroft and Ullman, 1974; Bagirov
and Yearwood, 2006; Benson and Ye, 2000; Aussiello et al., 1999; Cowen, 1998;
Hansen, Mladenovic and Urosevic, 2004; Hassin and Khuller, 1986; Hochbaum,
1997; Hromkovic, 2001; Jukna, 2001; Korte and Vygen, 2000; Kumlander, 2007;
Protasi, 2001). The maximum α-clique problem as a generalization of the maxi-
mum clique problem is NPH as well. This difficulty of finding α-cliques can be



Evolutionary approach to obtain graph coveringby densely connected subgraphs 855

observed taking into account the fact that each non-empty subset of a clique is
also a clique, but this is not true in the case of α-clique. For an established value
of α it is possible to find an α-clique(α) such that some of its subsets are not
α-cliques(α) (Figs. 3 and 4). Thus, it is difficult to find almost maximal α-clique
using simple greedy algorithms, which expand smaller ones by attaching new
vertices to so far obtained solutions. Our method does not try to find maximal
α-cliques, but optimizing the quality function (3) in exceptional circumstances
can tend to this case and the algorithm that solves our problem must overcome
similar difficulties like in the case of finding the maximal α-clique. Thus, we use
the evolutionary algorithm to solve the problem, because this method can do it
efficiently.

The exact algorithm

The exact algorithm bases on generating all nonempty subsets of the set of
vertices. We propose lexicographical backtracking algorithm for obtaining the
family of non-empty subsets(see an illustration in Fig. 6).

Figure 6. Backtracking tree for five vertices

Algorithm 1 - The exact algorithm

Input:

C set of elements
Output:

Z - set of family of all nonempty subsets of set C
Z=⊘;
Let A be a progression of all elements belonging to C.
Require: ai - the first element to be removed from A, in the beginning i = 0
for all aj ∈ A such that j ≥ i do

begin

Z = Z ∪A

Call the procedure recursively with parameters A := A− {aj}, i := j;
end;

This algorithm generates all non-empty subsets, thus for the n-element set
the pessimistic complexity is O(2n).



856 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

3. Evolutionary algorithms to solve the graph clustering

problem

3.1. Standard evolutionary algorithm

The standard evolutionary algorithm works in the manner shown in Algorithm 2,
but this simple scheme requires many problem specific improvements to work
efficiently (Michalewicz, 1996).

The adjustment of the genetic algorithm to the solved problem requires
proper encoding of solutions, invention of specialized genetic operators proper
for the accepted data structure and a fitness function to be optimized by the
algorithm.

Algorithm 2 - The standard evolutionary algorithm

Input:

G(V, E) input graph
Output:

Q set of Qi(Vi, Ei) - α-cliques of G such that V = ∪iVi and
Vi ∩ Vj = ⊘ for i 6= j

begin

Random initialization of the population of solutions.
while stop condition is not satisfied do

begin

Reproduction and modification of solutions using genetic operators
Valuation of obtained solutions
Selection of individuals for the next generation

end;

end;

Evolutionary algorithms are often used to solve difficult graph problems
such as graph coloring, TSP, graph partitioning, maximum clique searching,
etc. (Chen, Wang and Okazaki, 2008; Talbi and Bessiere, 1991; Marchiori,
1998), thus, it seems fully justified to use the evolutionary algorithm in graph
clustering problem.

3.2. A DSM matrix method of clustering using an evolutionary
algorithm and the simple clustering algorithm

3.2.1. Solution encoding in evolutionary algorithm

The whole information about the problem is stored the DSM matrix. There is
only one global data table in the described approach. Members of the population
(Fig. 7) contain their own solutions of the problem as vectors of row indices
(symmetric case) or of rows and columns in the non-symmetric case. Vectors of
indices are permutations of rows or columns of the single global data array. This
method of encoding saves memory and reduces the computational complexity
of the genetic operators, especially for big data arrays, compared to the easier



Evolutionary approach to obtain graph coveringby densely connected subgraphs 857

Figure 7. A structure of a population member (symmetric case)

method with separate DSM matrices stored in each population member. This
approach complicates fitness function calculation, but the overall performance
of this method is better.

Besides, a member of the population contains more data including: a vector
of real numbers, which describes its knowledge about genetic operators, and the
number of the chosen operator for the current iteration - more details about
this data will be given later.

3.2.2. Fitness function

The quality function is closely connected with the fitness function, which eval-
uates the members of the population. In the problem of data clustering, the
fitness function is almost identical with the problem quality function (1), only
scaled to the interval (0,1),

Q =
1

2

n
∑

i=j

m
∑

j=1

aij(ai,j−1+ai,j+1+ai−1,j+ai+1,j) =
n
∑

i=j

m
∑

j=1

aij(ai,j+1+ai+1,j) (1)

where:
n,m – numbers of rows and columns, for symmetric case n = m; it is assumed
that elements a0,j , ai,0, an+1,j , ai,m+1 equal 0.
aij – element of the data array.

3.2.3. Specialized operators

The described data structure requires specialized genetic operators, which mod-
ify the population of solutions. Only operators permuting indices of rows and/or



858 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

columns are allowed in that problem:

• mutation: an exchange of randomly chosen subset of indices;
• multiple mutation: the mutation operator performed several times;
• intelligent exchange: one randomly selected index is exchanged with some

others, solution with the best value of quality function is an effect of this
operator;

• a multiple version of intelligent exchange is also applied;
• 2-opt operator: indices are exchanged in pairs, best found modification is

stored as a new solution.

The difference between symmetric and non-symmetric case is that for the
symmetric case operators work only on one vector of indices (indices of rows
and columns are the same). In the non-symmetric case they work separately on
the vector of indices to rows and on the vector of indices to columns.

3.2.4. Simple clustering method

After EA-aided preprocessing of DSM the following method is performed to
obtain the final clustering. Let P be a value function for each row. For j =
1, 2, . . . , determine

Pj =

n
∑

i=j

aij(ai,j−1 + ai,j+1 + ai−1,j + ai+1,j) (2)

A simple algorithm to explicitly divide a given order of units into clusters
has the form of Algorithm 3.

This method produces some kind of histogram of the data matrix and enables
detecting borders between highly connected areas. Especially good results can
be obtained, when this method is used for final clustering after evolutionary
preprocessing of data. This fact is illustrated in Fig. 8.

Figure 8. Results of clustering without (left, 12 clusters) and with EA prepro-
cessing (right, 10 clusters)



Evolutionary approach to obtain graph coveringby densely connected subgraphs 859

Algorithm 3 - The SCM algorithm

Input:

B- DSM matrix preprocessed by EA
r - number of rows in the DSM matrix

Output:

Q-Set of clusters
begin

T: array [1 .. r+1];
Q=⊘;
for i :=1 to r do

T[i] : =P(B[i]);
T[r+1] := ∞ ;
j :=1;
i := 2;
while i <= r do

begin

if T[i-1] = T[i] do

begin

while T[i-1] = T[i] do

i := i+1;
if T[i-1] < T[i] do

begin

Q := Q ∪ j, i-1;
j := i;

end

end

if T[i-1] > T[i] and T[i] < T[i+1] do

begin

Q := Q ∪ j, i-1;
j := i;

end

i := i+1;
end;

end;

3.3. The evolutionary approach to finding ααα-cliques

3.3.1. Representation of individuals

The whole information about the problem is stored in a square array of data
describing all data connections. This array can be binary (adjacency matrix
of undirected graph: 0 no connection, 1 presence of connection), non-negative
(undirected graph) real-valued and in this case the stored value denotes the
strength of the connection in a matrix with negative values (directed graph).
This matrix can be also treated as an instance of DSM, but note that only
square matrices can be used in this approach.



860 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

Figure 9. Structure of a population member

Members of the population (Fig. 9) contain their own solutions of the prob-
lem as a dynamic table of derived α-cliques (their number may change during
computations). Each element of this table (α-clique) has a list of nodes attached
to this α-clique and each node is considered only once in one solution (popu-
lation member). Unattached nodes are also included, they constitute small,
one-element α-cliques (one node is also an α-clique with α=1). Thus, each so-
lution contains all nodes from a graph described by the adjacency matrix. But
the solution with many small α-cliques is rather not advantageous, and it is the
role of the evolutionary algorithm to find bigger ones. Besides it, a member of
the population contains more data including: a vector of real numbers, which
describe its knowledge about genetic operators and the number of the operator
chosen to modify the solution in the current iteration. More details abut genetic
operators and the method of their valuation will be given later on.

3.3.2. Fitness function

The quality function of the problem is closely connected with the fitness func-
tion, which evaluates the members of the population. In the solved problem
several quality functions may be considered, depending on input data (binary,
integer or real) or what kind of α-cliques one wants to obtain (equal size or max-
imal size etc.). The fitness function does not have to possess any penalty part for
an α-clique constraint violation, because forbidden solutions are not produced



Evolutionary approach to obtain graph coveringby densely connected subgraphs 861

by population initializing function or genetic operators. Thus, all population
members contain only valid α-cliques with their local values of α computed for
all vertices of a subgraph not less than the global value imposed on the solved
problem. For computer simulations we used the fitness function as follows:

maxQ =
1

n

n
∑

i=1

li
∑

j=1

j
∑

k=1

D[tik, tij ] (3)

where:
n numbers of α-cliques in the solution;
li number of vertices in the i-th α-clique;
D the data array (adjacency matrix);
tij , tik vertices of the i-th α-clique.

The fitness function (3) promotes α-cliques of medium size and this version
was used to solve the benchmark problems, but it is possible to propose different
fitness functions (Potrzebowski, Stańczak and Sęp, 2006) with various properties
of sizes of generated α-cliques, for example:

maxQ =
1

n

n
∑

i=1

li
∑

j=1

j
∑

k=1

D[tik, tij ]−

n
∑

i=1

|li −
l

n
| (4)

where:
l number of all vertices in the considered graph;
all other symbols like in the formula (3);
this function promoting possibly equal-sized α-cliques.

3.3.3. Specialized operators

The described data structure requires specialized genetic operators, which mod-
ify the population of solutions. Each operator is designed in such a manner
that it preserves the property of being an α-clique(α) for the modified parts of
solutions. If a modified solution violates the limitation of being an α-clique(α),
the operation is canceled and no modification of the solution is performed. This
makes it more difficult for the evolutionary algorithm to find satisfying solu-
tions, due to possible bigger problems with local maximums, than the method
with penalty function, but it gives the certainty that the computed solutions
are feasible.

Genetic operators used are as follows:
1. mutation: an exchange of randomly chosen nodes in different α-cliques;
2. movement of randomly chosen node to a different α-clique;
3. intelligent movement performed only if this modification gives better value

of fitness function;
4. concatenation: this operator tries to concatenate (mainly small) α-cliques;
5. also multiple versions of operators are applied.



862 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

3.4. Evolutionary algorithm used to solve the problem

The use of specialized genetic operators requires applying a selection method
to execute them in all iterations of the algorithm. The traditional method
with a small probability of mutation and a high probability of crossover is not
applicable in this case, because there are more operators than two and their
properties cannot be easily described as exploration or exploitation. In the used
approach (Stańczak, 2003) it is assumed that an operator that generates good
results should have higher probability and more frequently affect the population.
But it is very likely that the operator, that is proper for one individual, gives
worse effects for another, for instance because of its location in the domain of
possible solutions. Thus, every individual may have its own preferences. Every
individual has a vector of floating point numbers, besides the encoded solution.
Each number corresponds to one genetic operation. It is a measure of quality
of the genetic operator (a quality factor). The higher the factor, the higher the
probability of using the operator. The ranking of qualities becomes a base to
compute the probabilities of appearance and execution of the genetic operators.
Simple normalization of the vector of quality coefficients turns it into a vector
of operator execution probability (5). This set of probabilities can be treated
as a base of experience of every individual and according to it, an operator is
chosen in each epoch of the algorithm. Due to this experience one can maximize
the chances of its offspring to survive,

pij(t) =
qij(t)

L(t)
∑

i=1

qij(t)

(5)

where:
pij - represents probability of execution of the genetic operator,
qij - represents a quality factor of the genetic operator,
L(t) - represents the number of genetic operators (in some evolutionary algo-
rithms this number may vary during computations),
t - represents current time.

The method to compute the quality factors is based on reinforcement learn-
ing (Cichosz, 2000). An individual is treated as an agent whose role is to select
and call one of the evolutionary operators. When the selected i-th operator is
applied it can be regarded as an agent action ai leading to a new state si, which,
in this case, is a new solution. The agent receives reward or penalty respective
to the quality of the new state (solution). The aim of the agent is to perform
the actions which give the highest long term discounted cumulative reward V ∗:

V π = Eπ

∞
∑

k=0

γkrt+k+1 (6)

V ∗ = max
π

(V π) (7)



Evolutionary approach to obtain graph coveringby densely connected subgraphs 863

where:
Π – is a strategy of the agent,
V π – is a discounted cumulative reward obtained using strategy Π,
E – is an expected value,
γ – is a discount factor,
k – is a consecutive time steps,
t – is current time.

The following formula can be derived from (3) and (4) and is used for the
evaluation purposes:

V (st+1) = V (st) + α(rt+1 + γV ∗(st+1)− V (st)) (8)

where:
V (st) – a quality factor or discounted cumulative reward,
V ∗(st+1) – estimated value of the best quality factor (in our experiments we
take the value gained by the best operator),
α – a learning factor,
γ – a discount factor,
rt+1 – the reward for the best action, which is equal to the improvement of the
quality of a solution after execution of the evolutionary operator,
t – current moment in time.

In the presented experiments the values of α and γ were set to 0.1 and 0.2,
respectively.

Likewise, the applied method of selecting individuals to the new parent pop-
ulation (the selection method) has an important influence on the process of
evolutionary computation. Commonly used methods, like proportional selec-
tion and tournament selection are often not the best choices. The applied se-
lection method is an instance of controlled selection. That is, it can change
its parameters according to the needs of the process. To obtain this, a mixed
selection method was applied, composed of two methods with different selec-
tion properties: histogram selection (increases the diversity of the population)
and deterministic proportional selection (strongly promotes best individuals)
(Mulawka, Stańczak, 1999), chosen randomly during the execution of the evo-
lutionary algorithm.

phis(t+1)=







phis(t) · (1−a) for R(t) > 3 · σ(F(t))
phis(t) · (1−a)+0.5 · a for R(t)∈ [0.5 · σ(F(t)), 3 · σ(F(t))]
phis(t) · (1−a)+a for R(t) < 0.5σ(F(t))

(9)

R(t) = max(Fav(t)− Fmin(t), Fmax(t)− Fav(t))

where:
phis(t) – probability of histogram selection appearance in following iterations
(1− phis(t) is probability of deterministic roulette method pdet(t));
Fav(t), Fmin(t), Fmax(t) – average, minimal and maximal values of fitness func-
tion in the population;



864 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

σ(F (t)) – standard deviation of fitness function (F (t)) in the population of so-
lutions;
a – a small value to change probability phis(t), in simulations a = 0.05.

If individuals in the population feature a too small standarddeviation of the fit-
ness function (σ(F (t))) with respect to the extent of this function (max(Fav(t)−
Fmin(t), Fmax(t)−Fav(t))), then it is desirable to increase the probability of the
histogram selection. In the opposite case the probability of the deterministic
roulette selection is increased. When parameters of the population are located
in some range considered appropriate we may keep approximately the same
probabilities of appearance for both methods of selection. It is important that
always phis(t) + pdet(t) = 1, which means that some method of selection must
be executed.

4. Computer simulation results

4.1. The data used in simulations

4.1.1. Import-export connections of regions of Indonesia

The testing data set describes a square 50x50 problem with a non-symmetric
matrix (data array), where 50 data attributes are considered. This problem is
called "Import-export" example and has been taken from Benson, Ye (2000). It
describes economical connections among 50 regions of Indonesia. In the source
data aij = 1 if in 1971 a quantity of at least 50 tons of rice was transported from
region i to region j, and aij = 0 otherwise. In the conducted simulations, beside
the original data, we also considered a matrix converted to the symmetric ver-
sion, where the direction of good flows was discarded and only the fact of trade
was important (see Fig. 10). This was due to the fact that the source matrix is
very sparse∗ and it is difficult to obtain results showing real trade connections,
when only one direction is considered. But, of course, the presented methods
are not limited to the symmetric cases and thus we present also clustering of
the non-symmetric source data.

4.1.2. The problem of airport design

The data describe the problem of airport design. The data matrix contains
27x27 elements, which describe the strength of connections among the airport
units. The data matrix A is symmetric, with weights ranging from 0 to 3. The
shades of the entries in Fig. 11 denote the strength of connections between con-
sidered nodes (black-high strength of connection, white - no connection). The
main aim of this task is to group elements in the matrix into highly connected
areas which should be located closely to each other in the designed airport to

∗Several vertices of this graph are isolated, thus in obtained results (Figs. 12 and 14) there
are small clusters with only one vertex.



Evolutionary approach to obtain graph coveringby densely connected subgraphs 865

Figure 10. The source data for the import-export problem: before symmetriza-
tion (left) and after symmetrization (right)

Figure 11. The source data for the airport design problem

obtain high flow capacity among them. The source data has been taken from
(Browning, 2001; Lenstra, 1977).

4.1.3. Examples of large graphs used for testing the α-clique graph
covering

The testing examples were taken from BHOSLIB: Benchmarks with Hidden
Optimum Solutions for Graph Problems (Maximum Clique, Maximum Indepen-
dent Set, Minimum Vertex Cover and Vertex Coloring) Hiding Exact Solutions
in Random Graphs



866 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/graph-benchmarks.htm.

The first task was a rather large graph with 4000 vertices and 7 425 226
edges (file: frb100-40.clq.gz), the second problem was a smaller graph with 4000
vertices and 572 774 edges (file: frb100-40mis.gz).

4.2. Results of simulations

4.2.1. The import-export example of Indonesian regions

The aim of the analysis is to find trade connections among different regions of
Indonesia. Solving this problem can help to find better model of connections
among regions and to develop them into larger areas. The best solutions of the
problem with explicit clustering are given in the following figures.

The DSM matrix method maximizes the quality criterion (1), aimed at con-
centrating the non-zero elements near a diagonal of the data array, to simplify
proper clustering of data performed by SCM.

The α-clique method maximizes the quality criterion (2) and gives final
clustering as a result of the specialized EA.

The obtained results for the symmetrized data are presented in Figs. 12
and 13; data clustering and its interpretation on the maps of Indonesia (Figs. 14
and 15), while results for the non-symmetric data are presented in Figs. 14
and 15.

Generally, both used methods give satisfying results, but the method based
on α-cliques is much more flexible and the obtained clusters are homogeneous

Figure 12. The import-export solutions obtained for symmetrized data using
the α-clique method with α = 0.7 (left) and α = 1 (right)



Evolutionary approach to obtain graph coveringby densely connected subgraphs 867

Figure 13. The import-export solution obtained with a DSM matrix method of
clustering for symmetrized data using evolutionary algorithm (EA) and simple
clustering method (SCM)

Figure 14. The import-export solution obtained for non-symmetric data using
the α-clique method with α = 0.51 (left) and α = 0.7 (right)

and with more equal size, with a guaranteed level of inner connections. The
DSM matrix method gives one result, with small possibilities to tune it - as a
result of the EA a population of several solutions is obtained, thus it is possible
to take into account other, rather worse solutions, but in the α-clique-based
method we can do this as well, beside tuning the parameter α. The parameters
of the detected clusters are rather unstable. As it can be seen in Fig. 15, there
are very dense and very sparse clusters, thus the level of connections among their



868 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

Figure 15. The import-export solution obtained with a DSM matrix method
of clustering for non-symmetric data using evolutionary algorithm (EA) and
simple clustering method (SCM)

elements is not guaranteed. Also the DSM matrix method is more complicated
(computations last longer for the same problem), contains two stages, while the
α-clique-based method gives the final results. Of course, the α-clique method
requires tuning the α parameter to obtain satisfying results.

4.2.2. The problem of airport design

Here, nodes are essential airport units, edges among them are flows of passen-
gers, cargo, luggage etc. Figs. 18 and 19 show the results obtained using the
initial data presented in Fig. 11. Fig. 19 presents the results obtained using EA
as a preprocessing tool and extracting clusters using SCM. SCM detects deep
minimums in the histogram of data from preprocessed matrix and according
to this, generates clusters. Fig. 18 presents results generated by the α-clique
based method. The number of extracted clusters is equal to that obtained by
the SCM method, but computations are easier and faster. The complete clus-
tering is a result of execution of one evolutionary method. Additional benefit of
this method is that by changing parameters of the fitness function (for instance
using (2) or (3) or similar) or α we can change the number of clusters and their
sizes.

4.2.3. An example of the influence of parameter α on α-clique graph
covering

As the first step of the α-clique application to graph covering, we tested the
influence of α value on parameters of obtained clusters. The results for two quite



Evolutionary approach to obtain graph coveringby densely connected subgraphs 869

Figure 16. The map of Indonesian regions

Figure 17. The map of trade connections among Indonesian regions

Figure 18. The airport design solution obtained using the α-clique method with
α = 0.8



870 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

Figure 19. The airport design solution obtained with a DSM matrix method of
clustering using evolutionary algorithm (EA) and the simple clustering method
(SCM)

large graphs of 4 000 vertices and different numbers of edges (7 425 226 and
572 774) are presented in Tables 1 and 2. To give the possibility of comparing
the obtained data with more conventional method of finding α-cliques, we also
present similar results calculated by a greedy algorithm. The applied greedy
algorithm (Algorithm 4) is a very simple method, starting from the randomly
selected vertex. The first vertex constitutes the first α-clique. The subsequent
vertices are also selected randomly and the algorithm tries to attach them to
the previously selected α-cliques. If this fails, it creates a new α-clique. This
procedure is repeated until all vertices are attached to α-cliques.

The results obtained using the greedy method are also presented in Tables 1
and 2. The greedy algorithm is rather fast, thus to obtain better solutions we
have chosen the best result out of 50 simulations.

As it can be noticed, the first example graph (Table 1) is rather large, dense
and almost complete, thus only values higher than α=0.8 are practically ap-
plicable. One simulation of the EA method with 10 000 epochs (iterations)
and α=0.95 lasts abut 15.5 hours on a computer with processor AMD Athlon
64 4800+ (2500MHz) under LINUX operating system, but results remain al-
most unchanged during last 5000 iterations. The greedy method is faster, one
simulation lasts about 5 minutes, but obtained results are significantly worse.



Evolutionary approach to obtain graph coveringby densely connected subgraphs 871

Table 1. Results obtained for a test graph with 4000 vertices and 7 425 226
edges.

α Min
α-

clique

Max
α-

clique

Number
of
α-

cliques

Average
size of
α-

clique

Min
α-

clique

Max
α-

clique

Number
of
α-

cliques

Average
size of
α-

clique

EA method Greedy method

0.80 4000 4000 1 4000 2 1572 18 66

0.90 41 607 15 267 2 504 31 47

0.95 1 277 39 103 2 156 51 73

0.97 8 131 56 71 2 106 67 63

0.99 5 74 78 51 2 70 83 56

1.00 10 73 76 53 2 70 84 54

Table 2. Results obtained for a test graph with 4000 vertices and 572 774 edges.

α Min
α-

clique

Max
α-

clique

Number
of
α-

cliques

Average
size of
α-

clique

Min
α-

clique

Max
α-

clique

Number
of
α-

cliques

Average
size of
α-

clique

EA method Greedy method

0.51 40 119 50 80 1 70 352 11

0.60 6 111 67 60 1 70 428 8

0.70 2 80 94 43 1 41 411 8

0.80 40 40 100 40 1 40 440 8

0.90 40 40 100 40 1 40 470 7

0.95 40 40 100 40 1 40 470 7

The second considered graph is also rather large, but very sparse and only
application of values below 0.8 has an influence on the results. Generally, the
number of obtained α-cliques increases and their size decreases in α. Thus, by
modifying the value of α it is possible to change the sizes of the obtained sep-
arate α-cliques used for graph covering and tune the parameters of clustering
to actual needs. One simulation for the second graph, performed with identical
conditions as for the first one, lasts about 12 hours, but after less than 1000
epochs (or less than one hour) probably optimal graph clustering is obtained
with 100 identical 40-element clusters. As it can be noticed, the problem com-
plexity is connected mainly with the number of edges, the number of graph
vertices has lower influence on computation time. The greedy method in the
case of sparse graph gives even worse results than in the case of the dense one.
Memory requirements for the data processed by the algorithm are similar for
both examples (data are stored in the adjacency matrix; its size depends only



872 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

on the number of vertices) and can be expressed as:

M = (l2 +m ∗ l) ∗ 4 [B] (10)

where:
l – the number of all vertices in the considered graph (4000);
m – the number of all individuals in the EA (500);
which gives about 68.7 MB (data stored as 4-byte numbers).

Algorithm 4 - The greedy algorithm

Input:

G(V,E) input graph
Output:

Q set of Qi(Vi, Ei) - α-cliques of G such that V =
⋃

i

Vi and Vi ∩ Vj = ⊘

for i 6= j

Q = ⊘;
Qi(Vi, Ei) : Vi = ⊘andEi = ⊘;
V p = V

i = 1
while (V p 6= ⊘)

begin

Vi = ⊘;
Ei = ⊘;
pick vj ∈ Vp;
if (χ(Gi, v) constitute α-cliques)

begin

χ(Gi, v);
κ(G, v);

end

else

begin

Q = Q ∪Q

i := i+ 1
end;

end;

G1(V1, E1) is a subgraph of G(V, E)
χ(G1, v) is a function adding vertex v ∈ V \V1 to V1 and relevant edges existing
in the new G1

κ(G, v) is a function removing vertex v from V and every edge e ∈ E such as v ∈ e.

5. Conclusions

In this paper we proposed two methods for solving problems connected with
clustering in graphs, where the main aim is to detect groups of densely connected
vertices. We also presented results of computational experiments that illustrate
the properties of the proposed methods.



Evolutionary approach to obtain graph coveringby densely connected subgraphs 873

The first presented method is an extension of a method proposed by Lenstra
(Lenstra, 1977). We added an evolutionary-based method to find the desired
structure of the data matrix and then a simple algorithm to divide it into clus-
ters.

The second presented method is based on our new concept of α-clique. The
concept of α-clique gives new possibilities of separating hardwired structures
from considered data, but determining α-cliques is a problem of large-scale of
complexity. Thus, it seems justified to apply evolutionary algorithm to solve it.
Experimental results confirm that applying α-cliques to detect concentrations
of connections among objects yields acceptable solutions and using a specialized
evolutionary algorithm makes it possible to obtain solution in reasonable time.

The results of the series of conducted experiments are rather encouraging,
the parameter α introduced to modify the traditional notion of a clique gives a
flexible tool that enables solving of the graph clustering problem.

References

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974) The Design and Ana-
lysis of Computer Algorithms. Addison-Wesley.

Altus, S.S., Kroo, I.M. and Gage, P.J. (1996) A Genetic Algorithm for
Scheduling and Decomposition of Multidisciplinary Design Problems. J.
of Mechanical Design, 118(4), 486–489.

Aussiello,G., Crescenzi, P., Gambosi,G., Kann,V., Marchetti-Spac-
camela, A. and Protasi, M. (1999) Complexity and Approximation.
Springer.

Bagirov, A.M. and Yearwood, J. (2006) A new non-smooth optimization
algorithm for minimum sum-of-squares clustering problems. EJOR 170,
578–595.

Benson, S.J. and Ye, Y. (2000) Approximating maximum stable set and
minimum graph coloring problems with the positive semidefinite relax-
ation. In: M. Ferris and J. Pang, eds., Applications and Algorithms of
complementarity. Kluwer Academic Publishers, 1–18.

Beineke, L. and Wilson, R. (1978) Selected Topics in Graph Theory. Aca-
demic Press.

Browning, T.R. (2001) Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions.
IEEE Transactions on Engineering Management, 48(3), 292–306.

Chen, Z.-Q., Wang, R.-L. and Okazaki, K.(2008) An Efficient Genetic Al-
gorithm Based Approach for the Minimum Graph Bisection Problem. IJC-
SNS International Journal of Computer Science and Network Security,
8(6), 118–124.

Cichosz, P. (2000) Systemy uczce się (Learning systems, in Polish). WNT,
Warszawa.

Cowen, L. (1998) Approximation Algorithms. John Hopkins University.



874 J. STAŃCZAK, H. POTRZEBOWSKI, K. SĘP

Falkner, J., Rendl, F. and Wolkowicz, H. (1994) A computational study
of graph partitioning. Mathematical Programming, 66 (2), 211–239.

Hansen, P., Mladenovic, N. and Urosevic, D. (2004) Variable neighbor-
hood search for the maximum clique. The Fourth International Collo-
quium on Graphs and Optimisation (GO-IV), 145 (1), 117–125.

Hassin, R. and Khuller, S. (1986) z-Approximation. Journal of Algorithms,
41 (2), 429–442.

Hochbaum, D.S., ed. (1997) Approximation Algorithms for NP-hard Prob-
lems PWS Publishing Company.

Hromkovic, J. (2001) Algorithmics for Hard Problems. Springer.
Jain, A.K. and Dubes, R.C. (1988) Algorithms for Clustering Data. Eagle-

wood Cliffs, NJ, Prentice-Hall.
Jukna, S. (2001) Extremal Combinatorics. Springer-Verlag, Berlin-Heidelberg.
Korte, B. and Vygen, J. (2000) Combinatorial Optimization, Theory and

Algorithms. Springer.
Kumlander, D. (2007) An Approach for the Maximum Clique Finding Prob-

lem, Test Tool Software Engineering. Software Engineering, Innsbruck,
Austria.

Lenstra, J.K. (1977) Sequencing by enumerative methods. Mathematical
Centre Tracts, Amsterdam.

Marchiori, E. (1998) A Simple Heuristic Based Genetic Algorithm for the
Maximum Clique Problem. Proceedings of the 1998 ACM Symposium on
Applied Computing. ACM, 366–373.

McCulley, C. and Bloebaum, C.A. (1996) Genetic Tool for Optimal De-
sign Sequencing in Complex Engineering Systems. Structural Optimiza-
tion, 12 (2-3), 186–201.

McCormick, W.T., Schweitzer, P.J. and White, T.W. (1972) Problem
decomposition and data reorganization by a clustering technique. Opera-
tions Res. 20, 993–1009.

Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, Berlin-Heidelberg

Mulawka, J. and Stańczak, J. (1999) Genetic Algorithms with Adaptive
Probabilities of Operators Selection. Proceedings of ICCIMA’99, New
Delhi, India. World Scientific, 464–468.

Potrzebowski, H., Stańczak, J. and Sęp, K. (2004) Evolutionary method
in grouping of units with argument reduction. Proceedings of the 15th
International Conference on Systems Science vol. 3. Oficyna Wydawnicza
Politechniki Wrocławskiej, 29-3-6.

Potrzebowski, H., Stańczak, J. and Sęp, K. (2006) Evolutionary Algo-
rithm to Find Graph Covering Subsets Using α-Cliques, In: J. Arabas,
ed., Evolutionary Computation and Global Optimization, Prace Naukowe
Politechniki Warszawskiej, 351–358.

Protasi, M. (2001) Reactive local search for the maximum clique problem.
Algorithmica, 29(4), 610–637.



Evolutionary approach to obtain graph coveringby densely connected subgraphs 875

Rogers, J.L. (1997) Reducing Design Cycle Time and Cost Through Process
Resequencing. International Conference on Engineering Design ICED
1997, Tampere, Finland, Estonian Academy Publishers.

Stańczak, J. (2003) Biologically inspired methods for control of evolutionary
algorithms, Control and Cybernetics. 32(2), 411–433.

Sysło, M.M., Deo, N. and Kowalik, J.S. (1983) Algorithms of Discrete Op-
timization. Prentice-Hall.

Talbi, E.-G. and Bessiere, P. (1991) A parallel genetic algorithm for the
graph partitioning problem. Proc. of the 5th International conference on
Supercomputing. ACM, New York, 312–320.

Williamson, D. (1999) Lecture Notes on Approximation Algorithms. IBM
Research Report RC 21409 02 17.

Wilson, R.J. (1996) Introduction to Graph Theory. Addison Wesley Long-
man.

Yu, T.L., Goldberg, D.E., Yassine, A. and Yassine, C. (2003) A Genetic
Algorithm Design Inspired by Organizational Theory. Genetic and Evolu-
tionary Computation Conference (GECCO) 2003, Chicago, Illinois. Sprin-
ger-Verlag, Heidelberg, LNCS 2724, 1620–1621.





 


