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1. Introduction 

Stability analysis of scalar optimization problems has attained the stage of de­
velopment permitting the syntheses in the form of monographs or books, see 
Bonnans and Shapiro (2000), Malanowski (2001). For vector optimization prob­
lems formulated in partially ordered spaces, stability analysis is not so advanced. 
The results obtained thus far depend heavily on properties of cones, which gen­
erate order structures of spaces. In investigation of upper types of continuity 
(Hausdorff, Lipschitzian, Holder) of efficient points of a given set A(u) depend­
ing upon a parameter u, one of the crucial requirements is that the ordering 
cone K have nonempty interior (see e.g. Bednarczuk, 2002a, 2002b). 

We define order-Lipschitzian properties of set-valued mappings. Our ap­
proach is inspired by that ofPapageorgiou (1983) who introduced order-Lipschitz 
continuity for functions with values in Banach lattices. For other concepts of or­
der continuities of set-valued mappings and functions see e.g. Nikodem (1986), 
Papageorgiou (1983, 1986), Ke (1996), Sterna-Karwat (1989), Penot and Thera 
(1982). The definitions we introduce allow us to investigate stability of efficient 
points without t he requirement that the ordering cone K has a nonempty inte­
rior . In Theorems 4.1, 4.2 we prove sufficient conditions for local upper order­
Lipschitzness and order-calmness of efficient points of the set A(u) as functions 
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of u. Other order type continuities of efficient points have been investigated, 
e.g., in Sterna-Krawat (1989), Penot and Sterna-Krawat (1989). 

Throughout the paper U and Y are normed vector spaces with open unit 
balls, Bu, and By , respectively. The space Y is partially ordered by an order 
~generated by a closed convex pointed cone KC Y in the usual way, i.e., u~v 
if and only if v - u E K. A convex set 8 C Y is a base of K if 0 tf_ clG and 
K = U{AGI.A :2: 0} closed convex cone K is normal for a given topology of Y if 
there exists a base V of 0-neighbourhoods in Y consisting of saturated (or full) 
sets V, ie, 

V = [V] = (V + K) n (V - K) = U{[x, y] I x E V, y E V} , 

where [x, y] denotes the order interval with the end-point x, y, 

[x, y] = (x + K) n (y- K), 

(see Peressini, 1967, Schaefer, 1971) . By Proposition 1.4 of Peressini (1967), 
if cone K is normal, then every order interval is topologically bounded. The 
converse, however, is not true. In topological vector spaces with normal cones, 
there exist topologically bounded sets which are not order bounded. In a normed 
space (Y, 11 · 11) the following are equivalent (see Proposition 1. 7 of Peressini, 
1967) : 

(i) K is normal, 

(ii) there exists a constant 1 > 0 such that ~x~y implies lllxii~IIYII, 

(iii) there exists a constant 1 > 0 such that llx + Yl l :2: lmax{llx ll , IIYII}. 

2. Order-Lipschitzian properties of set-valued mappings 

Let KC Y be a closed convex pointed cone in (Y, 11 · 11), K = {yE Y I y :2: 0} . 
Let r: U=t Y be a set-valued mapping defined on (U, 11 · 11) and taking values 
in (Y, 11 · 11) . 

DEFINITION 2.1 r is: 

(i) locally upper order-Lipschitz, or shortly l.u.o-Lipschitz, at uo if there exist 
a constant r > 0 and £ E K such that 

r(u) c r(uo) + [-RIIu- uoii,RIIu- uolll for llu- uoll~r (1) 

(ii) locally lower order-Lipschitz, or shortly l.l.o-Lipschitz at uo if there exist a 
constant r > 0 and £ E K such that 

r(uo)cr(u)+[-RIIu-uoii,RIIu-uolll for llu-uoll~r. (2) 

(iii) order-calm at ( uo, Yo), Yo E r( uo), if there exist a neighbourhood V of Yo , 
a constant r > 0 and £ E K such that 

r(u)nvcr(uo)+[-£11u-uoll,£11u-uolll for llu-uoll~r. (3) 
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If intJC =/=- 0, order continuities defined above reduce, respectively, to up­
per local Lipschitzness, lower local Lipschitzness, and calmness, as defined in 
e.g. Robinsons (1976), Klatte and Kummer (to appear), Henrion and Out­
rata (2001). If JC is normal for the topology generated by the norm 11 · 11, then 
[-£11u- uoll, £11u- uoll] C ll£1111u- uoiiBy, and consequently, order continuities 
defined above are stronger than their topological counterparts (see e.g. Bednar­
czuk, 2002b). 

Recall that an ordered vector space Z with order :::; is a vector lattice if 
xVy := sup{x,y} and xAy := inf{x,y} exist. For any z E Z, the modulus 
of z, lzl is defined as lzl = sup{ z, 0} . A subset A C Z of a vector lattice Z is 
solid if x E A, y E Z and IYI:::;Ixl implies y E A. A topological vector lattice 
Z is a vector lattice and a Hausdorff topological vector space (over R) which 
possesses a base of solid a-neighbourhoods. A Banach lattice Z is a normed 
vector lattice (Z, 11 · 11) which is norm complete. For any lattice norm, lxl:::;lyl 
implies llxii:::;IIYII . The classical examples of Banach lattices are the spaces of 
p - th integrable functions, LP(0.) , and sequence spaces £P, with order defined 
by cones of nonnegative elements. If Y is a topological vector lattice, the positive 
cone JC = {y E Y I y 2: 0}, is normal. The converse, however, is not true, and 
a normal cone does not necessarily generate the lattice structure. For instance, 
in R2 equipped with the norm ll·llo the cone JC = {(x,y) I x 2: 0 y = 0} is 
normal but does not generate the lattice structure. 

If Y is a Banach lattice, Definition 2.1 can be rephrased as follows. r is 
l.u.o-Lipschitz, at uo if there exist a constant r > 0 and £ E }( such that for 
each yE f(u), llu- uoll:::;r, there exists Yo E f(uo) such that , 

IY- Yol:::;£11u- uoll· (4) 

r is l.l.o-Lipschitz at u0 if there exist a constant r > 0 and £ E }( such that 
for each Yo E f(uo), there exists yE f(u), llu- uo ll:::;r, such that 

IY- Yol:::;£11u- uoll· (5) 

r is order-calm at (uo, Yo), Yo E f(uo), if there exist a neighbourhood V of 
Yo, a constant r > 0 and£ E JC such that for each yE f(u) n V, llu- uoll:::;r, 
there exists Yo E f ( uo) satisfying 

IY- Yol:::;£11u- uoll· (6) 

Some elementary examples illustrating the notions introduced above will 
now be given. 

EXAMPLE 2.1 Let}( c R 3 be given as 

JC = {(x,y,z) I z = 0 x,y 2: 0}. 

The set-valued mapping r : R=!. R 3 defined as 

reo)= {(x, y, z) 1 z = o o:::;x:::;1 o:::;y::;1}, r(u) = r(o) u {(1, 1,1 + u)}, 
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is locally upper Lipschitz at 0 in the usual sense but not locally upper order­
Lipschitz. 

EXAMPLE 2.2 Let K c R2 be given as 

K = {(x,y) I x = y x :::0: 0}. 

The set-valued mapping r : R~ R2 defined as 

r(o) = {(x,y) 1 O$.x::;1 O$_y::=;) y::::: -x+ 1} , 

r(u) = r(o) \ co{(O,O), (1, 1)} u {(1, 1)}, 

where co stands for the convex hull, is locally lower Lipschitz at 0 in the usual 
sense but not locally lower order-Lipschitz. 

PROPOSITION 2.1 Let Y and U be normed spaces and let K be a closed convex 
pointed cone in Y . 

1. Iff is locally upper order-Lipschitz at uo, then any y E f(u), llu - uoll::;r, 
can be represented as y = Yo+RIIu-uoll-k~, y = Yo-RIIu-uoll+k~, where 
Yo E r(uo), k~ E K, and k~ E K, with k~::;2RIIu- uoll, k~::;2RIIu- uoll· 

2. If r is locally lower order-Lipschitz at Uo' then any Yo E r(uo) can be 
represented as Yo = y- Rllu- uoll + k~, Yo = y- Rllu - uoll + ky, where 
y E f(u), llu - uoll::;r, k~ E K, and k~ E Y+, with k~::;2R I Iu - uoll, 
k~::;2RIIu - uoll· 

Proof. By definition, 

-RIIu- uoll::;yo - y::;RIIu- uoll, ll·u- uoll::;r, · 

By the left-hand-side inequality, k~ = Yo - y +RIIu - uoll E K, and, by the right­
hand-side inequality, k~::;2RIIu - uoll· Other cases can be treated similarly. • 

3. Order-containment property and its rate 

Let K c Y be a closed convex and pointed cone in Y. Let A c Y be a subset of 
Y. An element y E A is efficient, y E Eff(A), if 

(A-y) n ( - K) = {0} . 

An element y E A is locally efficient, y E Efftoc(A), if there exists a 0-neighbour­
hood V such that 

(An (y +V)- y) n ( -K) = {0}. 

Let R E K , R =f. 0 . Denote 

A(R) = A\ (Eff(A) + [- R,J:']) . 
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DEFINITION 3.1 A set A has an P-order containment property, P- {OCP), with 
PE J( if for each E > 0 there exists 6 > 0 satisfying: 
(C) for each y E A(d) there exists 'f)y E Eff(A) such that 

y - 'f/y - bP E J( . (7) 

Clearly, (7) holds if and only if y- 'f/y - k E /(, for all k E J(, k-:;_SP. 
If J( is normal, and (C) holds for P E /(, then 

A c cl(Eff(A)) + J(. (8) 

Indeed, if yE A\cl(Eff(A)), there exists a> 0 such that (y+aBy )ncl(Eff(A)) = 
0. There exists c; > 0 such that ciiPII<5:.a, and yE A\ (Eff(A) + [-d, d]), since J( 

is normal. By (C), there exists 'f/y E Eff( A) satisfying y - 'f/y E J( , which proves 
(8). 

EXAMPLE 3.1 

1. Let Y be an ordered vector space and let J( C Y be a closed convex pointed 
cone in Y. Let 0 =f. P E /(, and let }(1 C Y be a closed convex cone, }(1 C }(, 

satisfying the following condition: for each c; > 0 there exists 6 > 0 s'uch 
that 

k- bP E J( for all k E K1 \ [-d,d]. (9) 
Any order interval [a, b]I, {with respect to K1), 

[a, bh = (a+ }(I) n (b - }(1), 
a, bE J(, is P- (OCP) . To see this, note that Eff([a, b]I) = {a} . Let c; > 0, 
and yE [a,bh \(a+ [- d,d]). Hence, y- a E /(1 and y- a f/. [-d,d]. 
By ( 9), there exists 6 > 0 such that 

y- a- bP E J(. 

2. Let Y = P2 and J( = P~ . Consider a closed convex cone (P~) 1 C P~ of the 
form 

? 2 1 3 } (P::;.)I = {k = (kn) E P+ I 2n k1 :::; kn:::; 2n k1 

and the order interval with respect to· ( P~ ) 1 , 

A = [a, bh = {y E £2 I a-:;_1y-:;_1 b}. 
Note that (P~h satisfies condition {9) with e.g. i! = (~). 
Let c; > 0 . For any 

1 
yE A( d) = {y E A I Yn - an > E 2n, n = 1, 2, ···} 

the inequality 
y - a - Si! :::0: 0 

holds for 6 = ~ . 

3. Let Y = R 3 and J( ={yE R 3 I Y1, Y2 :::0: 0, Y3 = 0}. Let 
/(1 = {y E J( I Y2'5:.3/2yl Y2 ::::: 1/2yi}. 

For the order interval 
A = [(1, 1, 0), (2, 2, O)h 

the property P- {OCP) holds for any P E /(00 . 
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Let E > 0 . Denote 

A(s) =A\ (Eff(A) + sBy). 

The following properties are related to the one introduced in Definition 3.1. 
The containment property ( C P) (Bednarczuk, 2000a) holds for a subset 

A C Y if int K =1- cjJ and for any E > 0 there exists o > 0 such that 

(Cl) for each yE A(s) there exists T/y E Eff(A) satisfying 

y - T/y - oBy E K. (10) 

Let Y* be the topological dual space ofY with the bilinear duality form (·,·). 
Let e be a base of the dual cone K* = {f E Y* I (!, y) ::::: 0 for all y E K}. 
The dual containment property (DCP) (Bednarczuk, 2002) holds for a subset 
A c Y with respect to 8 if for any s > 0 there exists o > 0 such that 

(C2) for each yE A(s) there exists T/y E Eff(A) satisfying 

B(y-TJy)>o forall BE8. (11) 

In the proposition below we investigate the relationships between these prop­
erties and the £- order containment property. 

PROPOSITION 3.1 Let K C Y be a normal cone in Y. For any subset A C Y 
the following relations hold: 
(i) If intK =I- 0, then (C) --> (Cl) , 

(ii) If K* is based, then (C) --> ( C2) . 

Proof. Let E > 0 and y E A(s). For any£ E K, since K is normal, there exists 
s1 > 0 such that y E A( c1 £) . By (C), there exist T/y E Eff( A) and o > 0 such 
that 

y - T/y - 0£ E K . (12) 

(i). Take£ E intK. By (12), there exists 81 > 0 such that y- T/y - o1By c K. 

(ii). Take£ E (K)+ = {k E K I (!, k) > 0 for all f E K* \ {0}}, and the base 
8ofK*,8={BEK* I (B,£)=1}.By(12), 

B(y - T/y - o£) ::::: 0 for all 8 E 8, 
and consequently, 

B(y - T/y) > 5 for all e E 8 , and some 5 > 0 . 
which amounts to (C2). • 
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Let 

dome(A) = {E > 0 I A(d) =/= 0}. 

DEFINITION 3.2 The function b~ : R-> R is the rate of £-order containment 
of a set A c Y if 

o~(E) = inf{v~(y) I yE A(d)}, 

where, for any y E A, 

v~(y) = sup{t-/(y- TJ) I TJ E Eff(A) n (y- K:)}, 

and, for any k E K:, 

t-/(k)=sup{b I k-bfEK:}. 

We put o~', whenever it is clear from the context which set we refer to in b~ . 
The following properties of the function b~ follow directly from the definit!on. 

1. b~ is a non decreasing function of E, 

2. if C1 C C2, then 0~ 1 (E) 2: 0~2 (E). 

PROPOSITION 3.2 The following ar-e equivalent: 
(i) O~(E) > 0 for each E E dome(A) , 

(ii) f- (OCP) holds. 

Proof. (i) -> (ii). Let E > 0. If b1(E) = T > 0, then v~'(y) ::::: T for any 
yE A(d). By definition of v~', there exists T/y E Eff(A) such that p,1(y- TJy) > 
T - .;- > 0 , for some positive .;- . This means that there exists b > T - .;- such that 
y - T/y- Of E K:. (ii)-> (i). Let E > 0, and yE A( d). By (C) , there exist b > 0 
and T/y E Eff( A) such that 

y - TJv - oe E K: . 

Hence, p,~'(y - TJv) 2: b, v~'(y) 2: b, and 

PROPOSITION 3.3 Let K: C Y be a closed convex pointed cone in Y . Let A C Y 
be a subset of Y. Assume that for each y E Eft( A)+ K: the set Eft( A) n (y- K:) 
is weakly compact. If f- ( OC P) holds for A, then for each E > 0 and y E A( d) 
there exists T/y E Eff(A) such that ' 

y - T/y - 0~ (E)£ E K: . 

• 

---- ------------------------------------------------------------
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Proof. Let c > 0, y E A( d). It is enough to show the existence of T/y E Eff(A) 
such that 

~/(y) = f../-(y- T/y). 

Indeed, for each rJ E Eff(A) n (y- K) 

,_/-(y- TJ)~/(y)) 

and for each a > 0 there exists TJa E Eff(A) n (y- K) such that 

,./-(y- TJa) > ve(y)- a 

This means that for f3a = p,e (y - TJa) - a we have 

y - TJa = f3af + ka , where ka E K, f3a -t ve (y) , as a -t 0 . 

By assumption, { TJa} contains a weakly convergent sub net with the limit point 
TJo E Eff(A), then 

y - TJo - ve (y )£ = ko E K , 

since K is weakly closed. This ends the proof. 

4. Order-Lipschitz continuity of efficient points 

Let M : U=:t Y be a set-valued mapping defined as 

M(u) = Eff(r(u)). 

• 

The set-valued mapping M is called the minimal point mapping. Order-type 
continuities of M have been investigated in Penot and Sterna-Krawat (1989), 
Sterna-Krawat (1986, 1989). 

THEOREM 4.1 Let (Y, 11 · 11) and (U, 11 · 11) be norrned spaces. Let K C Y be a 
closed convex pointed cone in Y. Assume that 
(i) for any yE Ejj(r(uo)) + K the set Ejj(r(uo)) n (y- K) is weakly compact, 

(ii) r is l.u.o-Lipschitz at uo, and l.l.o-Lipschitz at uo, with constant£ E K, 

(iii) of(uo)(c) ~cc) c > 0. 
The minimal point multifunction M is l.u.o-Lipschitz at u0 . 

Proof. By (ii), for all llu- uoll~.r we have 

r(u) C {Eff(r(uo)) + [-(~ + 1)£11u- uoll, (~ + 1)£11u- uoii]}U 

{r(uo) \ (Eff(r(uo)) + [-~£11u- uoll, ~£11u- uoll])} + [-£11u- uoll,£11u- uoiiJ. 
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We show that if 

yE r(u) n { {f(uo) \ (Eff(f(uo)) + [-~fllu- uoll, ~f llu- uoll])} 

+[-fllu- uoll,fllu- uoll]}, 

499 

for allllu- uollsr, then y (j. Eff(f(u)). Indeed, take any yE f(u), llu- uollsr, 

such that 

yE {f(uo) \ (Eff(r(uo)) + [-~fllu- uoll, ~fllu- uoll])} + [-fllu- uoll, fllu-uol l]. 

Then y = 1 + ~ , where 

1 E r(uo) \ (Eff(f(uo)) + [-~fllu- uoll, ~fllu- uoll]), 

~ E [-fllu- uoii,RIIu- uoll], 

~ = fllu- uoll- k~, kE E K kE::;_2fllu- uoi-

By Proposition 3.3, there exists Ti""Y E Eff(f(uo)) such that 

1- Ti""Y - k E K for all k E K, k::;_of(uo)(~llu- uoll)f (13) 

By the lower order-Lipschitz continuity off at uo there are z E r(u), llu-uollsr, 
kz E K such that 

TJ""Y = z + Rllu- uoll- kz, llu- uoll::;.r, kzS2f llu- uo ll . 

In consequence, 

y - z = 1 - z + Rllu- uoll - kE 

[r- TJ""Y] + fl lu- uo ll - kz + Rllu- uo ll - kE, 

and by (iii}, since kz + kE::;_4fllu - uollsoe(~llu- uoll)£ , 

y- z E K \ {0}. 

This proves that for all llu- uolls r the following inclusion holds 

M(u) C Eff(r(uo)) + [-(~ + 1)fllu- uo ll , (~ + 1)fllu- uol l] . • 

REMARK 1 By examining the proof one can see that we exploited l.l.o-Lipschitz 
property off only partially. Namely, only right-hand-side inequality of {2} from 
Definition 2.1 was used. In the following example we show that, in Theorem 
4.1, the order-Lipschitz continuity off cannot be dropped. 

EXAMPLE 4.1 Let Y, K, and f be as in Example 2.2. Then 

M(O)={(x,y) I x;:::O y;:=:O y=-x+1}, 

and 

M(u) = (M(O) \ (!, ~)) u {(1, 1)} u # 0 . 

In the theorem below we investigate the order-calmness of M. 
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THEOREM 4.2 Let (Y, 11 · 11) and (U, 11 · 11) be normed spaces. Let K C Y be a 
closed convex pointed normal cone in Y and let f(uo) be convex. Assume that 
Yo E Efftoc(f(uo)), i.e. , Yo E Eff(f(uo) n V1), where V1 is a neighbourhood of Yo 
and 
(i) f is order-calm at (uo,Yo), with constant f_ E K, and neighbourhood V2 of 

Yo) and l.l. 0-Lipschitz at Uo ) with constant e E K ) 

(ii) for any y E Efj(r(u0 ) n V)+ K the set Efj(r(u0 ) n V) n (y- K) is weakly 
compact, where V = V1 n V2 , 

(iii) Jf(uo)nv(c) ?: cc, c > 0. 
The minimal point multifunction M is order-calm at (uo, y0 ). 

Proof. Let V be a a-neighbourhood such that (Yo +V)+ V c V. Without losing 
generality we can assume that r iiRIIBy CV. By (ii), 

f(u) n V c {Eff(f(uo) n V)+[-(~+ 1)£11u- uoll, (~ + 1)£11u- uo ii]}U 

{r(uo) n V\ (Eff(f(uo) n V) + [- ~RIIu- uoll, ~RIIu - uoll]) } 
+ [- RIIu - uoll,i!\lu - uoll]}, 

for llu- uo lls:;.r . We show that if y E r(u) n V n { {f(uo) n V \ (Efj(r(uo) n 
V)+ [-~RIIu- uoll, ~RIIu- uoll])} + [-RIIu- uoii,RIIu- uoll]}, ll1t- uolls:;.r, then 
y rf- Eff(r(u)) n v. 

Indeed, take any y E r(u) n V, llu- uolls:;.r, such that 

yE {r(uo) n V\ (E[J(r(uo) n V)+ [-~RI\u- uo\1, ~i!\lu- uo\1])} (14) 
+ [-i!\lu- uo\l,f\lu- uo\1]. 

Then, y = 1 + ~ , where 

1 E f(uo) n V\ (E[J(r(uo) n V)+ [-~i!\lu- uo\1, ~f\lu - u0 \l]) , 
~ E [- i!\lu - uo\l ,f\lu - uo\1], 

~ = f\lu- u0 \l - kf. , kf. E K, k~;s;_2f\lu- uo\1 . 

By Proposition 3.3, there exists r]'Y E Eff(f(u0 ) n V) such that 

1- r]'Y- k E K for all k E K, ks;_of(uo)nv (~\lu - uo\l)i!. (15) 

By the lower order-Lipschitz continuity off at Uo there are z E r(u)' kz E K 
such that 

Th= z+i!llu -uoll-kz, kzs;_2i!llu-uoll · 

In consequence, 

y -z 1 - z+f\lu - uoll - k f. 

[r - rJ'Y] + f llu - uo ll - kz + f llu - uoll - k f., 
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and by {iii), since kz + k~-:;_4i!JJu- uoJJ-:;_oe(~JJu- uoJJ)£, 

y- z E K \ {0}. 

Since r(uo) is convex, for all u such that JJu- uoJJ-:;_r, 

M(u) n V C Effzoc(r(uo)) + [-(~ + 1)i!JJu- uoJJ , (~ + 1)i!JJu- uoJI] 
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C M(uo) + [-(~ + 1)1!JJu- uoJJ , (~ + 1)1!JJu- uoJJ]. • 

5. Conclusions 

The order-Lipschitz continuity of set-valued mappings introduced here is stronger 
than the usual Lipschitz continuity. In finite-dimensional case, roughly speaking, 
it allows r to vary only in directions parallel to a.f!K . On the other hand, to 
derive sufficient conditions for efficient points to have order-Lipschitz continuity 
of efficient points we need only standard assumptions on K . 

In assumption ( ii) of Theorem 4.1 we require that the order containment 
rate is at least linear for small arguments. If the order containment rate is of 
higher order, then one can prove order-Holder behaviour of the minimal point 
multifunction. 
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