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Abstract: The statistical procedure for determination of the
type of relation – equivalence or tolerance – in a finite set of ele-
ments, estimated on the basis of pairwise comparisons with random
errors, is presented. The procedure consists of two tests based on
Chebyshev’s inequality for variance of a random variable; the test
statistic is a mixture of some random variables. An example of ap-
plication of the procedure – determination of relation type in the
set of functions expressing profitability of treasury securities sold at
auctions in Poland – is presented, too.

Keywords: tests for relation type, pairwise comparisons, near-
est adjoining order method.

1. Introduction

The equivalence relation divides a set of elements into family of subsets with
empty intersections, i.e. the relation is reflexive, symmetric and transitive. The
tolerance relation also divides the set of elements into a family of subsets, but
at least one nonempty intersection exists – the relation is not transitive. The
methods of estimation of both relations, which rest on pairwise comparisons
with random errors, are presented in Klukowski (1990, 2002). These methods
are based on the idea of the nearest adjoining order (see Slater, 1961; David,
1988; and Klukowski, 1994, 2000). The methods of relation estimation presented
in Klukowski (1990, 2002) are based on the assumption that the type of rela-
tion is known. In practice this may be often not true; therefore the method of
determination of relation type is necessary in this case. A statistical procedure
for this purpose is proposed in the paper (Section 3). The procedure is based
on two statistical tests, which rest on Chebyshev’s inequality for variance. The

1The investigations presented in the paper were partly sponsored by the Project MNiI no
H02B 03828.
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test statistic is a mixture of some random variables; two parameters of one com-
ponent (random variable) of the mixture are determined: expected value and
variance evaluation. The procedure may be effectively applied, if probability of
error in each (pairwise) comparison is close to zero (it is assumed that compar-
ison errors satisfy the assumptions formulated in Klukowski, 1990, 2002). The
procedure is applied for examination of the “homogeneity” (similarity) of shapes
of some functions (Section 4). Homogeneity of their shapes is verified with the
use of three well-known statistical tests. The result of such examination can be
used for forecasting purposes.

2. Basic definitions and notation

It is assumed that there exists (unknown) equivalence or tolerance relation in
the finite set X = {x1, . . . , xm} (m � 3).

The equivalence relation (reflexive, symmetric, transitive) divides the set X
into nR (nR � 2) subsets χ∗R

r (r = 1, . . . , nR) with empty intersections, i.e.:

X =
nR⋃
r=1

χ∗R
r , χ∗R

r ∩ χ∗R
s = {0}, for r �= s (1)

where: {0} – empty set.
The tolerance relation is defined in similar way, but is not transitive, i.e. it

satisfies the conditions:

X =
nT⋃
r=1

χ∗T
r (nT � 2) and there exists at least one pair of subsets χ∗T

r , χ∗T
s

(r �= s) with nonempty intersection: χ∗T
r ∩ χ∗T

s �= {0}.
The equivalence relation can be characterized with the use of the function

T1 : X × X → D, D = {0, 1}, defined as follows:

T1(xi, xj) =

⎧⎪⎨
⎪⎩

0 if there exists q satisfying the condition
(xi, xj) ∈ χ∗R

q , i �= j;
1 otherwise.

(2)

The tolerance relation can be characterized with use of the function T2 :
X × X → D, D = {0, 1}, defined as follows:

T2(xi, xj) =

⎧⎪⎨
⎪⎩

0 if there exists q and s (q = s is not excluded) such
that (xi, xj) ∈ χ∗T

q ∩ χ∗T
s , i �= j;

1 otherwise.
(3)

It is assumed that the function T2(·) characterizes completely the tolerance
relation, i.e. there exists one-to-one relationship between the relation form and
the set of values T2(xi, xj) for (xi, xj) ∈ X×X (for example the relation in which
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each subset χ∗T
q (q = 1, . . . , nT ) includes an element xi, that is not included in

any other subset (xi ∈ χ∗T
q and xi /∈ χ∗T

s for s �= q satisfies this condition).
It is assumed in the paper that the type and form of the relation (equivalence

or tolerance) in the set X (i.e. the function T1(·) or T2(·)) are not known and they
have to be estimated on the basis of pairwise comparisons g(xi, xj), (xi, xj ∈
X×X), with random errors. The result of comparison g(xi, xj) is the function:

g : X × X → D, D = {0, 1}, (4)

which estimates the “true” value T1(xi, xj) or T2(xi, xj). In the case of the
equivalence relation, g(xi, xj) = 0 (i �= j) if comparison indicates that there
exist q, which satisfy: xi, xj ∈ χ∗R

q and g(xi, xj) = 1 if comparison indicates an
opposite result. In the case of the tolerance relation, g(xi, xj) = 0 if comparison
indicates that there exist q, s (the case q = s is not excluded) such, that xi, xj ∈
χ∗T

q ∩ χ∗T
s and g(xi, xj) = 1 if comparison indicates an opposite result. The

comparisons g(xi, xj) do not determine directly the type of the relation; they
are only the basis for inference.

It is assumed (see Klukowski, 1990, 2002), that probability of each compar-
ison correctness satisfies the conditions:

P (g(xixj) = Tf (xi, xj)) � 1 − δ, δ ∈
(

0,
1
2

)
(5)

where f equals 1 or 2 – according to the actual relation in the set X.
The comparisons, which satisfy the conditions (5) can be obtained as the

result of application of the (two samples) statistical tests. If the result of test
application indicates that both samples (namely xi and xj) are realizations
of the random variables with the same type of distribution (e.g. exponential
or symmetric), then g(xi, xj) = 0; in the opposite case g(xi, xj) = 1. The
probabilities of errors in the tests have to satisfy the conditions (5).

Let us notice that any comparison g(xi, xj), which satisfies the conditions
(5), may be equal to Tf(xi, xj) (f=1 or 2) or not, as a result of random error.
In particular, the comparisons obtained for the equivalence relation may be
not transitive (e.g.: g(xi, xj) = 0, g(xj , xk) = 0 and g(xi, xk) = 1), while
comparisons for the tolerance relation may be transitive. Therefore, the type of
actual relation is not directly indicated by the results of comparisons.

Under the assumption that the type of relation is known, the estimated form
of the equivalence relation can be obtained as the optimal solution of the discrete
mathematical programming problem (see Klukowski, 1990):

min
χR

1 ,...,χR
v

⎡
⎣ ∑
〈i,j〉∈I(χR

1 ,...,χR
v )

g(xi, xj) +
∑

〈i,j〉∈J(χR
1 ,...,χR

v )

(1 − g(xi, xj))

⎤
⎦ , (6)

where:
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– χR
1 , . . . , χR

v – an element of feasible set (any form of the equivalence relation
in the set X),

– I(χR
1 , . . . , χR

v ) – the set of all index pairs 〈i, j〉 satisfying the conditions:

i, j ∈ {1, . . . , m}, j > i;

〈i, j〉 ∈ I(χR
1 , . . . , χR

v ) ⇔ ∃ q such, that:(xi, xj) ∈ χR
q ,

– J(χR
1 , . . . , χR

v ) – the set of all index pairs 〈i, j〉 satisfying the conditions:

i, j ∈ {1, . . . , m}, j > i;

〈i, j〉 ∈ J(χR
1 , . . . , χR

v ) ⇔ there does not exist q such, that:

(xi, xj) ∈ χR
q .

The optimal solution of the task with the criterion function (6) (estimated
form of the equivalence relation) will be denoted with the symbols χ̂R

1 , . . . , χ̂R
n̂R

.
The solution can be characterized with the function:

t̂1(xi, xj) =

⎧⎪⎨
⎪⎩

0 if there exists in (estimated) relation such q that
(xi, xj) ∈ χ̂R

q , i �= j;
1 otherwise.

(7)

It should be noticed that the estimated form of the relation may be not unique,
because the number of optimal solutions of discrete problem can exceed one.
The minimal value of the function (6) equals zero; it is assumed in the case
g(xi, xj) = t̂1(xi, xj) for each (xi, xj) ∈ X × X.

In case of the tolerance relation the optimization problem assumes the form:

min
χT

1 ,...,χT
v

⎡
⎣ ∑
〈i,j〉∈I(χT

1 ,...,χT
v )

g(xi, xj) +
∑

〈i,j〉∈J(χT
1 ,...,χT

v )

(1 − g(xi, xj))

⎤
⎦ , (8)

where:
– χT

1 , . . . , χT
v – an element of feasible set (any form of the tolerance relation in

the set X),
– I(χT

1 , . . . , χT
v ) – the set of all index pairs 〈i, j〉 satisfying the conditions:

i, j ∈ {1, . . . , m}, j > i;

〈i, j〉 ∈ I(χT
1 , . . . , χT

v ) ⇔ ∃ q, s such, that: (xi, xj) ∈ χT
q ∩ χT

s ,

there exists at least one nonempty intersection, i.e. χT
q ∩ χT

s (q �= s);

– J(χT
1 , . . . , χT

v ) – the set of all index pairs 〈i, j〉 satisfying the conditions:

i, j ∈ {1, . . . , m}, j > i;

〈i, j〉 ∈ J(χT
1 , . . . , χT

v ) ⇔ it does not exist such q that: (xi, xj) ∈ χT
q .
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Optimal solution of the task corresponding to the tolerance relation will be
denoted χ̂T

1 , . . . , χ̂T
n̂T

. The solution can be characterized with the use of the
function t̂2(xi, xj) defined as follows:

t̂2(xi, xj) =

⎧⎪⎨
⎪⎩

0 if there exist q and s (q = s not excluded) such,
that (xi, xj) ∈ χT∗

q ∩ χT∗
s , i �= j;

1 otherwise.
(9)

The properties of the task (8) are similar to properties of the task (6).

3. Procedure of relation type testing

As it was mentioned above, both types of relation can be estimated on the basis
of the same pairwise comparisons g(xi, xj). In the case of unknown relation
type the question arises which one is true. The statistical procedure proposed
below allows to decide in this case.

The procedure rests on the differences between the estimated form of equiv-
alence and tolerance relation, obtained as solutions of the optimization tasks
with the criterion functions (6) and (8) – respectively. The procedure consists
of two statistical tests; the test statistics is a function of inconsistencies between
comparisons g(xi, xj) and functions t̂1(xi, xj) or t̂2(xi, xj) for the pairs (xi, xj),
which satisfy the condition t̂1(xi, xj) �= t̂2(xi, xj).

The basis for the tests proposed are the random variables Sij , defined as
follows:

Sij =
∣∣t̂1(xi, xj) − g(xi, xj)

∣∣ − ∣∣t̂2(xi, xj) − g(xi, xj)
∣∣ , 〈i, j〉 ∈ Iw (10)

where:
Iw – the set of all pairs of indices 〈i, j〉, which satisfy the conditions:

t̂1(xi, xj) �= t̂2(xi, xj);

(t̂1(xi, xj) and t̂2(xi, xj) defined – respectively – in (7) and (9)).

The conditions, which define the set Iw, mean that:
• in the estimated form of the tolerance relation the elements xi and xj are

included in an intersection of two subsets χ̂T
q ∩ χ̂T

s (q = s not excluded),
while in the (estimated) equivalence relation they are included in different
subsets

or
• in the estimated form of the tolerance relation the elements xi and xj are

not included in any intersection of subsets (also in the same subset), while
in (estimated) equivalence relation they are included in the same subset.
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The test statistic is the sum of random variables Sij (〈i, j〉 ∈ Iw) divided by
the number of elements of the set Iw :

S =
1

||Iw||
∑

〈i,j〉∈Iw

Sij , (11)

where: ||Iw || – number of elements of the set Iw.
The properties of the statistics S depend on the “true” form of the relation

in the set X under consideration. Let us consider first the case of the tolerance
relation; the expected value and the evaluation of variance of the variable S are
determined below.

For simplification it is assumed that probability of error in each comparison
g(xi, xj) (j �= i) is equal to δ (see (5)). In the case, when some probabilities are
less than δ the properties of the procedure proposed are not worse.

In the case when tolerance relation exists in the set X, the estimated form
of the relation is equivalent to the actual (errorless result of estimation), i.e.
χ̂T

1 , . . . , χ̂T
n̂T ≡ χ∗T

1 , . . . , χ∗T
n , with probability equal to or greater than 1 − 2δ

(see Klukowski, 2002). In this case the equalities t̂2(xi, xi) = T2(xi, xi), 〈i, j〉 ∈
Iw, are valid. Moreover, each expression

∣∣t̂1(xi, xj) − g(xi, xj)
∣∣ and

∣∣t̂2(xi, xj)
−g(xi, xj)|, 〈i, j〉 ∈ Iw, is zero-one random variable; their distributions can be
determined on the basis of the properties of the random variable (comparison)
g(xi, xi).

The probability function of each random variable
∣∣t̂2(xi, xj) − g(xi, xj)

∣∣,
〈i, j〉 ∈ Iw, is determined as follows (assuming equality in (5)):

P ( |t̂2(xi, xj) − g(xi, xj)| = 0 |t̂2(·) = T2(·))
= P (g(xi, xj) = t̂2(xi, xj) | t̂2(·) = T2(·)) = 1 − δ,

P ( | t̂2(xi, xj) − g(xi, xj)| = 1|t̂2(·) = T2(·))
= P (g(xi, xj) �= t̂2(xi, xj)|t̂2(·) = T2(·)) = δ.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭ (12)

Under the assumption t̂1(xi, xj) �= t̂2(xi, xj) (see (10)), the probability func-
tion of the random variable |t̂1(xi, xj) − g(xi, xj)| assumes the form:

P (|t̂1(xi, xj) − g(xi, xj)| = 0|t̂2(·) = T2(·))
= P (g(xi, xj) �= t̂2(xi, xj)|t̂2(·) = T2(·)) = δ,

P (|t̂1(xi, xj) − g(xi, xj)| = 1|t̂2(·) = T2(·))
= P (g(xi, xj) = t̂2(xi, xj)|t̂2(·) = T2(·)) = 1 − δ.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭ (13)

The probabilities (13) result from the fact that for 〈i, j〉 ∈ Iw inequalities
t̂1(·) �= t̂2(·) and implications: g(·) = t̂1(·) ⇒ g(·) �= t̂2(·) and g(·) �= t̂1(·) ⇒
g(·) = t̂2(·) hold.
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The equalities (12) and (13) indicate:

P (Sij = −1|t̂2(·) = T2(·)) =

P [(|t̂1(xi, xj) − g(xi, xj)| = 0)

∩(|t̂2(xi, xj) − g(xi, xj)| = 1)|t̂2(·) = T2(·)] = δ (14)

P (Sij = 1|t̂2(·) = T2(·)) =

P [(|t̂1(xi, xj) − g(xi, xj)| = 1)

∩(|t̂2(xi, xj) − g(xi, xj)| = 0)|t̂2(·) = T2(·)] = 1 − δ (15)

It follows from (14) and (15), that in the case of tolerance relation the
expected value E2(Sij) and variance Var2(Sij) of each random variable Sij ,
〈i, j〉 ∈ Iw, assume the form – respectively:

E2(Sij) = −δ + 1 − δ = 1 − 2δ (16)

Var2(Sij) = (−1 − (1 − 2δ))2δ + (1 − (1 − 2δ))2(1 − δ) = 4δ(1 − δ). (17)

The random variable S is the sum of ||Iw|| random variables Sij ; the expected
value of each variable Sij in the sum (11) is equal to 1 − 2δ divided by ||Iw||.
Therefore, the expected value of the variable S equals:

E2(S) = 1 − 2δ. (18)

The variance Var(S) of the random variable S (see (11)) is evaluated un-
der the assumption that any random variables Sij andSkl, which satisfy the
conditions i �= k, l and j �= k, l, are independent (i.e. their covariance equals
to zero), while the remaining variables may be dependent. The number of co-
variances equal to zero is denoted L(Iw); if the assumption does not hold, then
L(Iw) = 0. The evaluation of variance of the variable S is based on the following
facts: each variance of Sij is equal to 4δ(1 − δ) and each non-zero covariance
C(Sij , Skl) is not greater than 4δ(1 − δ). Moreover, the number of variances
Var(Sij) (〈i, j〉 ∈ Iw) is equal to ||Iw|| and the number of covariances (in the set
Iw) is equal to 2 ∗ (||Iw|| ∗ (||Iw || − 1)/2 − L(Iw)). As a result, Var(S) satisfies
the condition:

Var(S) ≤ (1/||Iw||2)(||Iw ||2 − 2L(Iw))4δ(1 − δ),

equivalent to:

Var(S) ≤ 4(1 − 2L(Iw)/||Iw||2)δ(1 − δ). (19)

The right-hand side of the inequality (19) can significantly exceed the actual
variance Var(S), because covariances C(Sij , Skl) may be less than Var(Sij),
in particular – negative. More precise evaluation of the variance requires some
additional knowledge about covariances C(Sij , Skl). Sometimes their values can
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be evaluated, e.g. when the comparisons g(xi, xj) are obtained from statistical
test and covariance of test statistics is known. In the case, when test statistics
is a function of difference of some random variables, namely X , Y , Z, with
expected values μX , μY , μZ respectively, the variance of the variable S can be
significantly less than (19). It is so, because:

C[(X − Y ), (Y − Z)] = E[(X − Y ) − (μx − μy)][(Y − Z) − (μy − μz)] =
C(X, Y ) + C(Y, Z) − Var(Y ) − C(X, Z). (20)

If values of covariances in (20) are similar, then covariance C[(X −Y ), (Y −
Z)] is close to zero (or less). In such case the evaluation (19) can be replaced
with the less restrictive formula:

Var(X + Y ) ≈ Var(X) + Var(Y ) + max{Var(X) + Var(Y )}, (21)

which indicates:

Var(S) � 4(1/2 + 1/(2||Iw||) − L(Iw)/||Iw||2)δ(1 − δ). (22)

The properties (18) and (19) of the random variable S are valid in the
case of errorless estimation result of the tolerance relation (χ̂T

1 , . . . , χ̂T
n̂T

≡
χ∗T

1 , . . . , χ∗T
n ). If it is not true, then the properties mentioned do not hold.

Moreover, it seems impossible to determine the probability of any non-errorless
estimation result in an analytic way (the number of such results is quite large).
Therefore, the realizations of the variable S obtained for any estimation result
(errorless or not) can be treated as realizations of some mixture of distributions.
However, the properties (expected value, evaluation of variance and probability
of occurrence) of only one random variable from the mixture - corresponding to
errorless estimation result - can be determined without difficulties. If the proba-
bility of comparison errors δ is close to zero, then the probability of this variable
occurrence (equal to 1 − 2δ) is close to one. In other words, the realizations of
the mixture is dominated by this component.

In the case, when the equivalence relation exists in the set X and the result
of estimation is errorless (the probability of the event is equal or greater than
1− 2δ, see Klukowski, 1990) the distribution of the random variable S (defined
in (11)) can be obtained in a similar way. The distribution of each random
variable Sij (〈i, j〉 ∈ Iw) is the function of comparison results g(xi, xj) (because
t̂1(·) = T1(·) and t̂1(·) �= t̂2(·)). Therefore, the distributions of the random
variables |t̂1(xi, xj) − g(xi, xj)| and |t̂2(xi, xj) − g(xi, xj)| (〈i, j〉 ∈ Iw) are as
follows (assuming equality in (5)):

P (|t̂1(xi, xj) − g(xi, xj)| = 0|t̂1(·) = T1(·))
= P (g(xi, xj) = t̂1(xi, xj)|t̂1(·) = T1(·)) = 1 − δ,

P (|t̂1(xi, xj) − g(xi, xj)| = 1|t̂1(·) = T1(·))
= P (g(xi, xj) �= t̂1(xi, xj)|t̂1(·) = T1(·)) = δ, (23)
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and:

P (|t̂2(xi, xj) − g(xi, xj)| = 0|t̂1(·) = T1(·))
= P (g(xi, xj) = t̂2(xi, xj)|t̂1(·) = T1(·)) = δ,

P (|t̂2(xi, xj) − g(xi, xj)| = 1|t̂1(·) = T1(·))
= P (g(xi, xj) �= t̂2(xi, xj)|t̂1(·) = T1(·)) = 1 − δ. (24)

From (23) and (24) it follows that:

P (Sij = −1|t̂1(x,xj) = T1(xi, xj)) =

P [(|t̂1(xi, xj) − g(xi, xj)| = 0) ∩ (|t̂2(xi, xj) − g(xi, xj)| = 1)|
t̂1(xi, xj) = T1(xi, xj)] = 1 − δ (25)

P (Sij = 1|t̂1(xi, xj) = T1(xi, xj)) =

P [(|t̂1(xi, xj) − g(xi, xj)| = 1) ∩ (|t̂2(xi, xj) − g(xi, xj)| = 0)|
t̂1(xi, xj) = T1(xi, xj)] = δ . (26)

The formulas (25) and (26) are the basis for determination of the expected
value and variance of each random variable Sij :

E1(Sij) = −1 + δ + δ = 2δ − 1, (27)
Var1(Sij) = 4δ(1 − δ). (28)

The form of the above parameters allows to determine the expected value and
evaluation of variance of the random variable S, when the equivalence relation
exists in the set X. The expected value can be expressed in the form:

E1(S) = 2δ − 1, (29)

while the variance satisfies the condition:

Var(S) ≤ 4(1 − 2L(Iw)/||Iw||2)δ(1 − δ), (30)

the same as condition (19). The evaluations (20) and (22) can be also valid in
case of the equivalence relation.

The properties (29) and (30) are valid for the equivalence relation, when
errorless estimation result occurs. However, with some probability - less than
2δ - the result of estimation is different than the errorless one. Therefore, the
distribution of the random variable S is a mixture of distributions, with similar
properties, as in the case of tolerance relation.

On the basis of expected value and evaluation of variance of the random
variable S, for both relation types, it is possible to determine some tests for
distinction them. The Chebyshev’s inequality can be used as the basis of tests:

P (|X − E(X)| > kσX) < 1/k2,
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where:
X – a random variable with expected value E(X) and variance σX ,
k – a positive constant.

The test for verification the tolerance relation in the set X rests on expected
value (equal to 1 − 2δ) and evaluation (19) of variance of the random variable
S. The null and the alternative hypotheses of the test can be formulated in the
following way:

HT0 : E(S) = 1 − 2δ,

HT1 : E(S) = 2δ − 1,

with the critical region:

ΛT = {S|S < 1 − 2δ − kσS}, (31)

where: σS – square root of the variance Var(S) evaluation, i.e.:

σS = [4(1 − 2L(Iw)/||Iw||2δ(1 − δ)]1/2.

The form of the test for the equivalence relation is “symmetric” :

HR0 : E(S) = 2δ − 1,

HR1 : E(S) = 1 − 2δ,

with the critical region:

ΛR = {S|S > 2δ − 1 + kσS} (32)

(σS – the same, as in the formula (31)).
The tests may be used together or separately (one of them only). In the first

case, their critical regions have to be non-overlapping; the value of parameter k
may be different in each test (leading to different probabilities of errors in the
tests). The evaluations of the probabilities of errors are determined below. In
the case, when 2δ − 1 + kσS < 1 − 2δ − kσS , there exists some non-decision
region of the procedure.

Application of one test only allows to reject the hypothesis HT0 or HR0

(significance test); the alternative hypothesis can assume the form HT1 : E(S) <
1 − 2δ or HR1 : E(S) > 2δ − 1.

Let us notice that if the exact values or evaluations of covariances C(Sij , Skl)
are known, then the critical regions can be determined more precisely, which
would improve the properties of the tests.

The critical regions of both tests are based on Chebyshev inequality. Such
evaluations of probabilities of test errors are not precise - typically overestimated
(e.g. if distribution of test statistics is symmetric, then the expression 1/k2 can
be replaced with the expression 1/2k2). However, it is not easy to examine the
asymmetry (or other “useful” features) of the distribution of S statistics.
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The properties (18), (19), (29), (30) of the statistics S are valid in the case
of errorless estimation result of the relation form, when its type is known. The
probability of the errorless estimation result (optimal solution of the task (6) or
(8)) is equal or greater than 1− 2δ and therefore, the evaluation of the first and
the second type error in the tests (31) and (32) has to be corrected with the
use of this factor. Denoting the significance level of the tests with the symbol α
(its value results from the term 1/k2 in Tshebyshev’s inequality) the corrected
significance level can be expressed in the form:

1 − (1 − α)(1 − 2δ) = α + 2δ(1 − α). (33)

The formula (33) results from the fact that the probability of correct decision
(the event opposite to the first type error) in the test is equal to 1−α, but it is
valid in the case of errorless estimation result (probability of this event is equal
to 1− 2δ). Therefore, the probability of correct result of the test, multiplied by
the factor 1 − 2δ, equals (1 − α)(1 − 2δ) and finally - corrected first type error
equals (33). The corrected significance level is higher than α; the component
2δ(1−α) determines the increase of the probability resulting from the fact that
test statistics is the mixture of distributions and only one component of the
mixture, with known parameters, is taken into account. If δ is close to 1/2,
then the corrected probability of the error is close to one.

The evaluation of the probability of the second type error is obtained under
the assumption that the value of parameter k is the same in both tests. The
probability can be evaluated for both tests in the following way.

In the case of the tolerance relation, the second type error occurs, when HT0

is tested and accepted (i.e. S � 1 − 2δ − kσS), while the equivalence relation is
true (i.e. E(S|HR0) = 2δ − 1). The probability of such event can be evaluated
in the following way:

P (S � 1 − 2δ − kσS |HR0) =
P (S − (2δ − 1) � 1 − 2δ − (2δ − 1) − kσS |HR0) =
P (S − (2δ − 1) � 2(1 − 2δ) − kσS |HR0) =

P (S − (2δ − 1) � kR0σS |HR0) � P (|S − (2δ − 1)| � |kR0σS |) � 1/k2
R0,

(34)

where the value of kR0 is determined in the following way (the expression kR0σS

is positive under assumptions made):

2(1 − 2δ) − kσS = kR0σS ⇒ kR0 = (2(1 − 2δ) − kσS)/σS . (35)

The probability of the second type error in the case of the equivalence relation
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(E(S|HT0) = 1 − 2δ) is obtained in a similar way:

P (S ≤ 2δ − 1 + kσS |HT0) =
P (S − (1 − 2δ) ≤ 2δ − 1 − (1 − 2δ) + kσS |HT0) =
P (S − (1 − 2δ) ≤ 2(2δ − 1) + kσS |HT0) =

P (S − (1 − 2δ) ≤ kT0σS |HT0) ≤ P (|S − (1 − 2δ)| ≤ |kR0σS | ≤ 1/k2
T0,

(36)
where:

kT0 = (2(2δ − 1) + kσS)/σS = (kσS − 2(1 − 2δ))/σS . (37)

Let us notice that the values k2
T0 and k2

R0 are equal for the same value of
the parameter k in both tests; therefore the evaluations of the second type error
probabilities are also the same.

Evaluations (34) and (36) correspond to the case of errorless estimation
result, while the realizations of the random variable S are obtained from the
mixture of distributions. Therefore, these evaluations have to be corrected –
similarly as in (33). Denoting the probability of the second type error resulting
from inequalities (34) and (36) with the symbol β, the corrected probability of
this error occurrence can be expressed in the form:

1 − (1 − β)(1 − 2δ) = β + 2δ(1 − β). (38)

Let us notice that if the probability β → 0, then the probability β + 2δ(1 −
β) → 2δ; which means that the tests are not consistent.

As it was mentioned above, the determination of properties of the proposed
procedure (except for evaluations of the probabilities of errors in the tests) is
not easy; simulation approach can be applied for this purpose.

The tests are based on “weak” probabilistic inequality. Therefore the results
of their application can be also of rough type; it is a cost of non-restricted
assumptions about comparison errors. However, such approach provides some
progress in comparison with an arbitrary decision.

4. Example of application of the procedure
The procedure presented above is applied to the problem of determination of
relation type in the set comprising seven elements - some functions with values
from the range (0, 1]. They are approximations of empirical functions, expressing
profitability of treasury securities sold at auctions in Poland. The application of
the procedure is aimed at selecting functions with similar shapes. The compari-
son of shapes was made for each pair with the use of three statistical tests (cor-
relation, regression and goodness-of-fit); the resultant comparison (from three
tests) was determined using the majority rule. The results of comparisons are
presented in Table 1, shapes of functions - in Chart 1. The probability δ (upper
limit of probability of error in pairwise comparisons) equals 0.01.



Tests for relation type - equivalence or tolerance - in finite set of elements 381

The optimal solution of the optimization task for the equivalence relation
indicates the following form of estimated relation χ̂R

1 = {x1, x3, x6}, χ̂R
2 =

{x2, x5, x7}, χ̂R
3 = {x4}; the value of the criterion function (6) equals three.

Optimal solution corresponding to the tolerance relation has multiple variants.
Therefore, the variant with the biggest fraction of elements included in the
intersections of different subsets is assumed as the basis for testing relation type.
The optimal solution of the task for equivalence relation indicates the following
form of relation: χ̂T

1 = {x1, x3, x6, x7}, χ̂T
2 = {x2, x3, x5, x7}, χ̂T

3 = {x4}; the
value of the criterion function (8) equals two.

The set Iw, comprising pairs of elements defined in (10), assumes the form:
Iw = {〈1, 7〉, 〈3, 7〉, 〈6, 7〉, 〈2, 3〉, 〈3, 5〉}. The number of elements of this set is
equal to five; the number of pairs with different indices equals four (〈1, 7〉 and
〈2, 3〉, 〈1, 7〉 and 〈3, 5〉, 〈6, 7〉 and 〈2, 3〉, 〈6, 7〉 and 〈3, 5〉). The test statistic
assumes the form:

S =[(|t1(x1,7) − g(x1,7)| − |t2(x1,7) − g(x1,7)|)+
+ (|t1(x3,7) − g(x3,7)| − |t2(x3,7) − g(x3,7)|)+
+ (|t1(x6,7) − g(x6,7)| − |t2(x6,7) − g(x6,7)|)+
+ (|t1(x2,3) − g(x2,3)| − |t2(2,3)| − g(x2,3)|)+
+ (|t1(x3,5) − g(x3,5)| − |t2(3,5)| − g(x3,5)|)]/5 =

=[|1 − 0| − |0 − 0| + |1 − 0| − |0 − 0| + |1 − 1| − |0 − 1|+
+ |1 − 0| − |0 − 0| + |1 − 1| − |0 − 1|]/5 = 1/5.

The critical region of the tests is based on the variance Var(S) evaluation (see
(19)); the evaluation assumes the form:

Var(S) � 4 ∗ (1 − 2 ∗ (4/25)) ∗ 0.01 ∗ (1 − 0.01) = 0.027;

the square root of its value (σS in (31)) is equal 0.164.
The hypothesis for the tolerance relation is verified first, because the test

statistic is positive. The critical region for the null hypothesis (see (31)), using
k=5, is of the form:

ΛT = {S|S < 1 − 0.02 − 5 ∗ 0.164 = 0.160}.

The value of the test statistics S (equal 0.2) is greater than the critical value
of 0.160 and therefore it is not included in the critical region; the null hy-
pothesis must be accepted. The significance level for k=5 is not greater than
(1/5)2 = 0.04 and corrected significance level (see (33)) is equal or less than
0.04+2*0.01(1-0.04)=0.059.
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The critical region for the equivalence relation test (see (32)) assumes the
form:

ΛR = {S|S > 0.02 − 1 + 5 ∗ 0.164 = −0.160}.

Therefore, the null hypothesis must be rejected; results of both tests are not
contradictory.

Table 1. Results of comparisons g(xi, xj)
x1 x2 x3 x4 x5 x6 x7

x1 × 1 0 1 1 0 0
x2 × 0 1 0 1 0
x3 × 1 1 0 0
x4 × 1 1 1
x5 × 1 0
x6 × 1
x7 ×

Chart 1. The set X – graphs of the functions
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The evaluation of probability of the second type error for the tolerance re-
lation is determined in (36) – (38); it amounts to 1/k2

T0 = 1/k2
R0 = 0.021 and

the corrected probability level is equal or less than 0.040.
The results of the test application are depicted in Chart 2: (a) and (b). Chart

2(a) presents the functions averaged on the basis of (estimated) equivalence re-
lation (i.e. the average of the functions from each subset χ̂R

1 = {x1, x3, x6},
χ̂R

2 = {x2, x5, x7}, χ̂R
3 = {x4}. Chart 2(b) presents the results averaged in the

same way - corresponding to the tolerance relation. It can be noticed that the
shapes of functions averaged on the basis of subsets χ̂R

1 and χ̂R
2 (equivalence
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Chart 2. Results of estimation of the equivalence relation and tolerance
relation

a) the functions averaged according to the equivalence relation

0

1/10

2/10

3/10

4/10

5/10

6/10

7/10

8/10

9/10

1

1 51 101 151 201 251 301 351 401 451

b) the functions averaged according to the tolerance relation
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relation) are more dissimilar, than those averaged on the basis χ̂T
1 and χ̂T

2 (tol-
erance relation). The toleration relation generates more “fuzzy” result, because
the functions denoted with symbols x3 and x7 are included in both sets χ̂T

1 and
χ̂T

2 . The results of the procedure application (both tests) indicate acceptance
of the tolerance relation; it suggests that the set X comprises some functions
(elements: x3 and x7) with non-homogenous features.

The parameters of the procedure, especially k in Tshebyshev’s inequality,
indicate existence of no-decision region – the interval [-0.16; 0.16]. The interval
may be narrowed down; such modification changes the probability of the errors
- increases the probability of the second type error and decreases the probability
of the first type error.
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5. Summary
The procedure presented in the paper is the tool for determination of the rela-
tion type (equivalence or toleration) in a finite set of elements. It is based on
the assumption that both relations are estimated with the use of the idea of the
nearest adjoining order; the basis for estimation are the pairwise comparisons
with random errors. Procedure consists of two tests resting on Chebyshev’s
inequality; the variance of random variable necessary in the inequality is re-
placed with its evaluation. The test statistic is the mixture of distributions; the
expected value and evaluation of variance are determined for one component
of the mixture. Therefore the results of the procedure are of rough type; in
consequence it is effective, when the probabilities of comparison errors are close
to zero. It seems rational to examine the properties of the procedure with the
use of simulation.
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