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Abstract: Increased competition on the global market forces
producers to follow policies leading to finite production runs. This
situation requires implementation of a new type of inspection proce-
dures with the aim to improve or sustain production quality levels.
One of the most important aspects in the design of inspection pro-
cesses is the specification of inspection intervals. This paper provides
a simple procedure to determine an approximate optimal inspection
interval h for a given inspection plan, characterized by its probabil-
ity of type-I error α and probability of type-II error β, for processes
with finite run length.

Keywords: inspection plan, inspection interval, just-in-time
production, finite run length.

1. Introduction

Quality is the most important decision factor, however, the occurrence of as-
signable or random causes results in variation of the quality characteristics of
interest. Thus, it is desirable to inspect the output at different stages of a
production process in order to correct it and/or to assure its quality. The
inspection is usually done by periodically drawing random samples from the
process. However, other type of inspections could also be applied.

The process of designing an inspection procedure consists, mainly, of two
stages:

1) specification of the inspection (sampling) plan to be performed at the end
of a given inspection interval, and

2) determination of the inspection (sampling) interval for a given inspection
plan.

∗Submitted January 2005; Accepted: January 2008
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In this paper we focus on the second stage of this process. There are many
approaches to determination of the inspection interval. However, the economic
approach has attracted many researchers, who proposed many models and al-
gorithms to determine optimal inspection intervals. Further information on this
subject can be found in Bather (1963), Chiu and Wetherill (1975), Duncan
(1956, 1978), Gibra (1970), Ladany (1973), Lorenzen and Vance (1986), Mont-
gomery et al. (1975), Montgomery (1980, 1982), Panagos et al. (1985), Saniga
(1989). The general economic model for the optimization of statistical process
control can be found in Keats et al. (1997). The most recent review of the
problems of the optimal design of control charts is given in Ho and Case (1994).

Nowadays, industry faces rapid changes in user requirements, which force
firms to follow the “just-in-time” policy that allows them to produce a smaller
number of items in response to customers’ immediate request. This environ-
ment leads to frequent setups of the process, causing shorter (finite) production
runs. The new circumstances require methods to determine inspection intervals
different from those for infinite production runs. Some research has been done
to solve this problem, and the most interesting results have been presented in
the paper by Del Castillo et al. (1996). The problem was also considered in the
papers by Quesenberry (1991), Crowder (1992), Del Castillo and Montgomery
(1994, 1995), who discussed methods for the calculation of a sampling interval
in the context of the design of control charts. Unfortunately, most of the pro-
posed algorithms are too complicated to be used at a production line. In this
paper we present an easy to compute procedure that solves the problem of the
determination of the optimal economic inspection interval, h, for a process of
finite length. Our approach is based on the results presented in a seminal work
of von Collani (1986, 1989). As the objective function we propose the loss per
unit produced. The calculation of this characteristic requires detailed informa-
tion about the process behavior and knowledge of statistical properties of the
inspection procedure. Moreover, we assume that some economic quantities, like
the gain from the correctly operating process and some other cost parameters
are also known.

The paper is organized as follows: In the second section we introduce the
mathematical model of the inspection process when the production period is
finite, i.e. in the situation of finite production runs. In the third section we
present an economic model that describes the consequences of the implementa-
tion of the inspection procedures. This model is used in the fourth section for
the optimization of the inspection interval. Finally, in Section 5, we discuss the
results obtained and present their possible generalizations.

2. The mathematical model of the process

The process under investigation is assumed to have a finite length of t items, and
constant production rate of ν items per hour. When the process is described
by a real-valued variable we assume that the process starts in a stable state of
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control (in-control State I) centered at the target value µ0. We also assume that
its variability is known, and described by the standard deviation σ. Moreover,
let us assume that the process can go out of control, and its deterioration takes
the form of a shift of a known magnitude (±δσ) in the process mean. The
deterioration shifts the process from the in-control State I to the out-of-control
State II, characterized by its mean value, either µ1 = µ0 − δσ with probability
P (µ = µ1) or µ2 = µ0 + δσ with probability P (µ = µ2), where δ > 0 is the
shift size, while the variance remains unchanged. In a general case, we assume
that there exists a precise description of both states of the process, and the
out-of-control state is unique.

Let us formulate some further assumptions.

1) The states of the process are recognized by inspection only.

2) The process is not self-correcting, that is, once a transition to State II
has occurred, the process remains there until some corrective actions are
taken in order to return the process to State I.

3) The duration of State I is a random variable, T ∗, which is exponentially
distributed with a known parameter λ.

The inspection procedure consists in the determination of the state of the pro-
cess, e.g. by drawing periodically samples of known size at intervals of h hours.
According to the inspection results, appropriate actions should be taken in order
to bring the process back to State I in case of its deterioration. However, due
to the randomness of the results of the process inspections there is a possibility
for two erroneous signals:

a) a false alarm which occurs with known probability α when the inspection
gives a signal that the process is in state II when it is not (type-I error);

b) a non-detection of an existing shift, which occurs with a known probabi-
lity β, i.e. indication that the process is in state I whereas it is in state II
(type-II error).

Now, let us introduce several random variables that will be used for the
formulation of the objective function. Let Uj be the number of inspections
performed during state I of the jth cycle. A random event {Uj = i} means that
during the jth cycle the transition from the in-control State I to the out-of-
control State II occurs in the time interval (ih, (i + 1)h), and is equivalent to
a random event {ih < T ∗ < (i + 1)h}. The probability mass function of Uj for
the exponentially distributed time T ∗ is given by

P (Uj = i) = (1 − e−λh)(e−λh)i, i = 0, 1, 2, . . . j = 1, 2, . . . (1)

It is easy to show that Uj has the expectation

E(Uj) = µU =
1 − (1 − e−λh)

1 − e−λh
=

e−λh

1 − e−λh
=

1

eλh − 1
(2)
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and the variance

σ2
U =

1 − (1 − e−λh)

(1 − e−λh)2
=

e−λh

(1 − e−λh)2
=

eλh

(eλh − 1)2
. (3)

Now, let us introduce a random variable Vj that describes the number of
inspections in the jth cycle drawn during the out-of-control State II. The random
event {Vj = k} means that the shift is detected after the kth inspection, i.e. that
k inspections are required to detect a shift which had occurred during the jth

cycle. Since the probability of not detecting the existing shift is equal to β,
the probability of its detection is equal to 1 − β. Thus, the probability mass
function of Vj is given by the following formula

P (Vj = k) = (1 − β)βk−1, k = 1, 2, . . . ; j = 1, 2, . . . (4)

Hence, the expectation and the variance of the number of inspections performed
in State II of each cycle are given by

E(Vj) = µV =
1

1 − β
, (5)

and

σ2
V =

β

(1 − β)2
, (6)

respectively. Now, let us denote by Fj the number of false alarms during the jth

cycle. Since false alarms occur only as the result of inspections in state I, and
since each inspection in this state triggers a false alarm with probability α, the
number of false alarms is described by the binomial distribution with parameters
(Uj , α), where Uj is a random variable described previously. Since the U

′

js
are i.i.d. we can easily find that the expectation of the conditional random
variable Fj |Uj is equal to E(Fj |Uj) = E(F |U) = αU , and its variance is equal
to V (Fj |Uj) = V (F |U) = α(1−α)U . Consequently, the unconditional expected
number of false alarms observed in each cycle is given by

E(Fj) = µF =
α

eλh − 1
, j = 1, 2, . . . , (7)

and its variance is given by

σ2
F = V (Fj) = V (F ) = V [E(F |U)] + E[V (F |U)] = V (αU) + E[α(1 − α)U ] =

= α2σ2
U + α(1 − α)µU =

α2eλh

(eλh − 1)2
+

α(1 − α)

eλh − 1
(8)

The next random variable Wj , j = 1, 2, . . . represents the number of inspections
of the process during its jth cycle. It is easy to notice that Wj = Uj + Vj for all
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j = 1, 2, . . .. Assuming the independence of Uj and Vj for all j = 1, 2, . . ., the
sequence of random variables {Wj}

∞

j=1
are i.i.d. with the expectation

µW = µU +µV =
1

eλh − 1
+

1

1 − β
=

eλh − β

(1 − β)(eλh − 1)
=

1 + B(eλh − 1)

eλh − 1
, (9)

and variance

σ2
W = σ2

U + σ2
V =

eλh

(eλh − 1)2
+

β

(1 − β)2
=

eλh

(eλh − 1)2
+ B(B − 1), (10)

where

B =
1

1 − β
. (11)

Let Sk be the number of inspections of the process up to its kth renewal, i.e., Sk

gives the time of the kth renewal in terms of the number of inspections. Hence,

Sk =
k

∑

j=1

Wj , k = 1, 2, . . . . (12)

Since {Wj}
∞

j=1
are i.i.d., then the above sequence of random variables defines

an ordinary renewal process.
Further, as we have assumed that inspections are performed every h hours,

then for a process with a run of t consecutive items at the production rate of
ν items per hour, the expected number of inspection performed during the run
is t/υh samples. Now, let Nt denote the number of renewal cycles completed
within a production run of t items (or t/υh samples). To analyze this random
variable let us use the approach proposed by Blackwell (1977) and Yang (1983)
who utilized the basic results of Cox (1962). Cox (1962) has shown that the
approximate expected value of the number of renewals Nt′ in the time interval
(0, t′) can be found from the following expression

E(Nt′) =
t′

µ
+

σ2 − µ2

2µ2
+ o(1). (13)

Using (13) along with the previous results we arrive at the following approx-
imation for the expected number of the renewal cycles completed during the
production run of length t:

E(Nt) ≈
t

υhµW

+
σ2

W − µ2
W

2µ2
W

. (14)

Let Ft be a random variable representing the number of false alarms observed
during the production run of length t. It is defined by

Ft =

Nt
∑

j=1

Fj . (15)
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Thus, from the well known Wald’s equation we find the expected number of
false alarms for the whole production run from the following formula

E(Ft) = E





Nt
∑

j=1

Fj



 = E(Fj)E(Nt) ≈ µF

(

t

υhµW

+
σ2

W − µ2
W

2µ2
W

)

. (16)

This result will be used for the evaluation of economic consequences of the
inspection procedure.

3. The economic consequences (costs and profits) of the
inspection procedure

It is rather obvious that an item produced during the in-control State I of
production process is on average more profitable than that produced in the out-
of-control State II. Thus, it is better to have the process run in state I, and
whenever an alarm is observed, some investigations should be conducted and
upon their results the appropriate corrective actions must be taken to put the
process in the state of control again. The production process can be considered
as a series of renewal cycles, each cycle consisting of the in-control State I period,
the out-of-control State II period, and the idle time period necessary for taking
renewal actions. In any renewal cycle there are two types of actions associated
with the application of an inspection procedure, namely, the inspection actions
and the renewal actions.

The inspection actions consist of all actions that are responsible for de-
tecting a shift. They consist of periodical inspection and testing, as well as
investigations of false alarms. The economic consequences of these actions are
represented by their respective costs. Let a∗

1 be the cost of a single inspection.
Thus, the expected cost of inspections for the whole run is

St = a∗

1

t

υh
. (17)

Let a∗

2 be the cost of investigating a false alarm (which might include the cost
of stopping the process during its investigation). Hence, the expected cost for
false alarms for the whole run is given by

At = a∗

2E(Ft) = a∗

2µF

(

t

υhµW

+
σ2

W − µ2
W

2µ2
W

)

. (18)

The renewal actions consist of all duties undertaken in order to bring the process
from State II to State I. The economic consequences of these actions are two-
fold:

– negative ones, that are represented by the costs of the renewal actions,
a∗

3, which might include the cost of the possible shutdown of the process
while repairing, and
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– positive ones, that are represented by the benefit from the transition to
the in-control State I.

Suppose that g1 and g2 are the expected profits from an item produced in
State I and State II, respectively. Thus, g1 − g2 (> 0) is the gain per unit
from the transition from the out-of-control State II to the in-control State I.
Since the expected duration of State I is 1/λ hours, and the production rate is
υ items per hour, then the expected gain per cycle due to inspection is equal to
υ(g1 − g2)/λ. Let b∗ be the expected net benefit per renewal, i.e., the difference
between the expected gain and the expected renewal cost per cycle. Thus, we
have

b∗ =
g1 − g2

λ
υ − a∗

3, (19)

and the expected gain from the transitions to state I is given by

Gt = b∗E(Nt) ≈ b∗
(

t

υhµW

+
σ2

W − µ2
W

2µ2
W

)

. (20)

However, if we do not use any inspection procedure the process remains in State
II until the end of the production run. Thus, the expected gain from producing
in State II for the whole run is tg2. The economic consequences of the inspection
procedures are used in the next section for finding an optimal inspection interval.

4. Optimization of the inspection interval

Let L(t) be the expected loss incurred in the run. From the considerations
presented in the previous sections we can find that L(t) is given by the following
formula

L(t) = a∗

1

t

υh
+ a∗

2µF E (Nt) − b∗E (Nt) − tg2 . (21)

The expected loss per unit produced, expressed as a function of h for a given
production run t, is given now by

L(h|t) =
L(t)

t
=

1

t

{

a∗

1

t

υh
+ a∗

2µF ENt − b∗ENt − tg2

}

=

=
a∗

1

υh
−

b∗ − a∗

2µF

υhµW

−
1

2t

(

b∗ − a∗

2µF

µW

) (

σ2
W − µ2

W

µW

)

− g2 . (22)

This function has to be minimized in order to determine the optimal inspection
interval h for a process with a finite run t.

To reduce the number of the input parameters of the objective function we
can follow von Collani (1986, 1989). The following expression gives the time-
standardized loss function

S(y|r) =
(

L
(y

λ
|t =

rυ

λ

)

+ g2

) υ

a∗

2λ
. (23)
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Let a1 =
a∗

1

a∗

2

, b =
b∗

a∗

2

, y = λh, r = λt
υ

, A =
1

α
, and B =

1

1 − β
.

Hence,

S(y|r) =
1

y

{

a1 −
b(ey−1) − α

ey−b
(1−β)

}

+
1

2r

[

b(ey−1) − α

ey − β
(1−β)

] [

ey+β

ey−β

]

,

(24)

or, equivalently.

S(y|r) =
1

y

{

a1 −
b(ey − 1) − 1

A

1 + B(ey − 1)

}

+
1

2r

[

b(ey − 1) − 1
A

1 + B(ey − 1)

] [

1 − B(ey + 1)

1 − B(ey − 1)

]

.

(25)

The transformation of the objective function (22) to the form of (23) has reduced
the complexity of the optimization problem because of the following reasons:

(1) the transformed objective function S(y|r) depends only on two cost pa-
rameters, namely, a1 and b, instead of four parameters in the original
objective function L(h|t) given by (22);

(2) the time-standardized objective function S (y|r) depends on the process
parameters 1

λ
, υ, and t only through a new variable r.

The loss function L(h|t) attains its minimum at h∗ iff the time-standardized
loss function S(y|r) attains its minimum at y∗ = λh∗. Thus, it is sufficient to
optimize the time-standardized loss function S(y|r) given by (25) in order to
determine the optimal standardized inspection interval y∗, and thus the optimal
inspection interval h∗.

The optimal standardized inspection interval y∗ can be found by solving the
following equation

d

dy
S(y|r) = 0. (26)

After some calculations we present (26) in the following form

−

{

a1 −
b(ey − 1) − 1

A

1 + B(ey − 1)

}

1

y2
−

(

b + B
A

)

ey

[1 + B(ey − 1)]
2

1

y
−−

1

2r

{ 2b(B − 1)ey

[1 + B(ey − 1)]
2

−
2(B − 1)

(

b + B
A

)

ey

[1 + B(ey − 1)]3
+

(

b +
B

A

)

[1 − B(ey + 1)] ey

[1 + B(ey − 1)]3

}

= 0 (27)

Let us introduce the following notation

C =
b − Ba1

b + B
A

, (28)

D =
1

r

[

bB(B − 1)

b + B
A

]

, (29)

E =
B

2r
. (30)
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After some mathematical transformations we obtain the following compact ver-
sion of (27):

{1 + B [ey(1 + y) − 1]} [1 + B(ey − 1)] − C [1 + B(ey − 1)]3 +

+D [1 + B(ey − 1)] y2ey + E (3 − 3B − Bey) y2ey = 0 (31)

or, equivalently,

1 + B [ey(1 + y) − 1]

[1 + B(ey − 1)]
2

+
Dy2ey

[1 + B(ey − 1)]
2

+
E(3 − 3B − Bey)y2ey

[1 + B(ey − 1)]
3

= C. (32)

The solution of any of the above equations determines the optimal standardized
inspection interval y∗ for monitoring a process with a finite production run.
The solution of these equations requires a numerical procedure. Moreover, the
impact of the input parameters on the optimal length of the sampling interval is
not visible. Therefore, there is a practical need to obtain an approximate closed
formula for the optimal inspection interval.

To find the approximately optimal inspection interval ŷ we expand the left
hand side of the equation (32) around y = 0, and neglect all terms of order higher
than two. This expansion seems to be reasonable if the length of the inspection
interval h is small in comparison to the expected time to deterioration 1/λ.
After some transformations we arrive at the following equation:

1 +
1

2
{B(1 − 2B) + 2 [D + (3 − 4B)E]} y2 ≈ C. (33)

Hence, the approximately optimal standardized inspection interval is given by
the following simple formula

ŷ ≈

√

2(C−1)

(1−2B)B + 2D + 2(3−4B)E)
=

√

2r(1−β)2(a1 + α)

(1 + r)(1 + β) [b(1−β) + α] + 2αβ
.

(34)

Once the approximately optimal standardized inspection interval ŷ is obtained,
the approximately optimal inspection interval ĥ is given by

ĥ =
ŷ

λ
=

1

λ

√

2r(1 − β)2(a1 + α)

(1 + r)(1 + β) [b(1 − β) + α] + 2αβ
. (35)

5. Discussion

The approximate inspection interval ŷ depends on a, β, a1, b, and r. Thus, it is
desirable to investigate the effects of these parameters on ŷ, and on its accuracy
as well. The exact optimal standardized inspection interval y∗ has been com-
puted by the minimization of the objective function S(y|r) given by (25) with
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Table 1.
α β a1 b r y∗ ŷ S(y∗|r) S (ŷ|r)

0.01 0.01 0.1 10 10 0.1475 0.1399 -8.479 -8.477
50 0.1533 0.1453 -8.5354 -8.5334
500 0.1546 0.1466 -8.5483 -8.5464

50 10 0.0642 0.0626 -46.537 -46.5361
50 0.0667 0.0650 -46.6653 -46.6644
500 0.0672 0.0656 -46.6948 -46.694

500 10 0.02 0.0198 -488.94 -488.94
50 0.0208 0.0206 -489.35 -489.35
500 0.0209 0.0207 -489.444 -489.444

1 10 10 0.5071 0.4240 -5.6284 -5.5741
50 0.5268 0.4404 -5.7909 -5.7384
500 0.5314 0.4443 -5.8281 -5.7761

50 10 0.2041 0.1897 -39.7362 -39.7114
50 0.212 0.1970 -40.1169 -40.0929
500 0.2138 0.1988 -40.2043 -40.1806

500 10 0.0613 0.0600 -466.713 -466.705
50 0.0638 0.0623 -467.946 -467.939
500 0.0643 0.0629 -468.23 -468.223

5 10 10 1 0.9444 -0.9613 -0.8267
50 1 0.9808 -1.2142 -1.168
500 1 0.9895 -1.2711 -1.246

50 10 0.5048 0.4225 -28.1884 -27.9199
50 0.5244 0.4388 -28.9989 -28.7396
500 0.5292 0.4427 -29.1845 -28.9277

500 10 0.1407 0.1336 -426.869 -426.782
50 0.146 0.1388 -429.58 -429.496
500 0.1472 0.1400 -430.204 -430.12

respect to y using a standard minimization routine. The approximately optimal
standardized inspection interval ŷ has been computed from (32). Typical re-
sults the comparison of the exact and approximate solutions for various values
of α, β, a1 and r based on extensive computations are presented in Deeb and
Hryniewicz (2004). Tables 1 and 2 contain typical results of those comparisons.
Note, that in order to compare the exact and the approximate solutions, we
present not only their values, but the values of the objective function of the
respective cases as well.

From the analysis of Tables 1–2, and other comparisons given in Deeb and
Hryniewicz (2004) we arrive at the following conclusions

a) The approximately optimal inspection interval ŷ is always shorter than
the optimal inspection interval y∗ for all considered values of α, β, a1, b,
and r.

b) The smaller the value of the inspection cost a1, the better the approxima-
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Table 2.
α β a1 b r y∗ ŷ S(y∗|r) S(ŷ|r)

0.05 0.1 0.1 10 10 0.1612 0.149 -8.1209 -8.1155
50 0.1674 0.1547 -8.1895 -8.1844
500 0.1687 0.1561 -8.2053 -8.2003

50 10 0.0691 0.0668 -45.6414 -45.6389
50 0.0717 0.0693 -45.8018 -45.7995
500 0.0724 0.07 -45.8387 -45.8364

500 10 0.0213 0.0211 -485.933 -485.932
50 0.0222 0.0219 -486.453 -486.452
500 0.0223 0.0221 -486.573 -486.572

1 10 10 0.4959 0.3941 -5.2706 -5.1781
50 0.5136 0.4093 -5.4406 -5.353
500 0.5179 0.4129 -5.4794 -5.3931

50 10 0.1942 0.1766 -38.7051 -38.6607
50 0.2013 0.1834 -39.118 -39.0761
500 0.2032 0.1851 -39.2127 -39.1714

500 10 0.0575 0.0559 -463.016 -463.002
50 0.0597 0.058 -464.381 -464.367
500 0.0602 0.0586 -464.695 -464.681

5 10 10 1 0.8643 -0.5722 -0.188
50 1 0.8976 -0.8258 -0.5409
500 1 0.9056 -0.8828 -0.6215

50 10 0.4852 0.3874 -26.5856 -26.1475
50 0.5027 0.4023 -27.4284 -27.0137
500 0.5068 0.4059 -27.6209 -27.212

500 10 0.1306 0.1226 -420.221 -420.07
50 0.1357 0.1273 -423.15 -423.008
500 0.1369 0.1284 -423.823 -423.683

tion.

c) The value of r has almost no effect on the accuracy of the approximation.

d) The benefit per cycle b has a dominant effect on the accuracy of the
approximation procedure. The larger the value of b, the better the ap-
proximation.

e) The probabilities of false decisions α and β have a minor effect on the
accuracy of the approximation. However, by increasing their values we
obtain a slight improvement of the approximation.

Further analysis reveals that from a practical point of view there is no dif-
ference between the approximate and the exact values of the standardized in-
spection interval. Moreover, even if such a difference exists then the difference
between the corresponding losses is negligible.

The existence of the closed formula for the approximately optimal inspection
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interval allows us to formulate some practical observations:

a) Longer inspection intervals correspond to smaller expected shifts of the
process mean.

b) Any change in the inspection cost produces a change in the same direction
for the optimal inspection interval.

c) The benefit from the inspection affects the interval between inspections in
such a way that any change of the benefit b results in the change of the
optimal inspection interval in the opposite direction.

d) Any change in the probability of false alarms α produces the change of
the optimal inspection interval in the same direction.

e) Changes in β produce changes in the optimal inspection interval in the
opposite direction.

f) Increase of the cost of a false alarm results in an increase of the inspection
interval.

g) Changing the renewal cost changes the interval between inspections in the
same direction.

h) Small values of the ratio of the production run length to the length of the
in-control period, r, have minor effect on the optimal inspection interval.

i) Changes of the mean number of occurrences of the assignable cause in a
time unit changes the inspection interval in the same direction. The same
conclusion holds for the production run length.

j) Changing the production rate changes the inspection interval in the op-
posite direction.

In the model considered we have assumed that the time between consecutive
disorders of the process is described by the exponentially distributed random
variable. A possible generalization of the model can be obtained using the ap-
proach proposed by Hryniewicz (1992). Another generalization can be obtained
when we assume that the search for the assignable cause may not be perfect,
as it was proposed in Hryniewicz (1996). When the inspection procedures, e.g.
particular control charts, are specified, there is also a possibility to look for the
optimal values of their parameters.
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