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1. Introduction
We consider the optimal control problem for a discrete time stochastic system

yi+1 = f(ξ, yi, ui) + σ(ξ, yi)wi+1,

where ui are controls, wi are the system disturbances, and ξ represents the
unknown parameters of the system. The control actions ui at time i can only
base on observing the previous states of the system, i.e. y1, . . . , yi, and on the
knowledge of the a priori distributions P (dy0) and P (dξ). However, controlling
and observing the states of the system can increase information about the para-
meters ξ. The a posteriori distribution at time i, characterizing the knowledge
about ξ obtained from the observations y1, . . . , yi, depends, however, on control
actions undertaken before time i, i.e. on (u0, . . . , ui−1), because they influence
the states being observed. To fulfill the purpose of control, which is usually to
optimize performance criteria depending on the states of the system and the
controls, an optimal control process must have a dual nature — it should yield
both fast increase of information, and optimization. Balancing these two dis-
tinct but interdependent tasks is the core of adaptive control. However, one
should remember that optimization of the performance criteria is a primary
task, i.e., learning the unknown parameters, even though necessary, is a sec-
ondary task, and it is always dominated by the fundamental goal. In this paper
we harmonize these two goals by introducing a unique one, called self-learning.
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This is done by considering the control problems with the so-called joint system
entropy H (ξ, y0, . . . , yN ), entering explicitly in the performance criteria. The
resulting trajectories say a lot about ξ, and at the same time, their entropy
H (y0, . . . , yN ) is of moderate size.

Application of the entropy concept in stochastic control is not new. The
most known are the studies of Saridis and his followers (see Saridis, 1988, 1995,
and the included literature). They consider systems with known dynamics but
control affected by noise. This introduces uncertainty in system behavior. No-
tion of entropy is used to state the game optimization problem which allows
to identify the ”worst” noise and optimal control in the minmax sense. Gener-
ally, problems of this kind are not the self-learning problems considered in this
paper. Stochastic systems with unknown parameters, which we are forced to
learn can be evaluated by many and very different criteria. For instance, in fi-
nancial stochastic models appearing in Banek and Kulikowski (2003) the Fisher
measure of information was used. The choice of entropy, which was done in
this paper, has some advantages. For technical systems such formulation of the
problem is very natural and follows from the security requirements for instance,
i.e., predictability of their behavior is just as important as the learning process
itself. We show that this problem and its generalization can be treated as an
optimal adaptive control problem, and solved by using Rishel’s approach (see
Harris, Rishel, 1986; Rishel, 1985, 1986). This approach incudes the following
steps: first - Gatoux’s differentiations combined with conditional expectation
properties lead to necessary conditions for optimality, second - application of
backward inductions to the necessary conditions leads to the Rishel’s algorithm.
In Section 2 we extend Rishel approach in two aspects: in the state equation
σ(ξ, yi) is not necessarily equal to the identity matrix and the loss functional∑

g (ξ, yi, yi+1, ui) is allowed to depend additionally on ξ, yi+1. This is neces-
sary for our purpose. Indeed, in Section 3 it turns out that a required expression
for the joint entropy includes these variables. In Section 4 we pose the problem
and obtain necessary conditions of optimality by using the results of Section 2.
It turns out that the resulting expression for the joint entropy is not necessar-
ily a quadratic function of the trajectory, unless the system is linear. Thus,
minimum error energy formulation (often combined with entropy concept) is
generally not possible. At this point the reader is referred to papers by Saridis
(1988) and others that follow his work. In Section 5 an algorithm for computing
extremal controls is presented. We use here an idea of Rishel, which consists
in application of backward induction to the necessary conditions. This is done
in several steps, the most important being the introduction of a value function
(which is not the Bellman function !) and using it in the manner similar as
in dynamic programming. At the present time we test the algorithm on simple
examples. In Section 6 we show such an example. More details will be presented
in the next paper.

The Gaussian noise assumption looks very restrictive. In fact, the neces-
sary conditions for optimality in the spirit of Rishel’s can be obtained for any
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non-Gaussian noises. However, the resulting algorithms will depend on the en-
tropy expressions for the noises and generally they can be obtained if these
expressions are explicit. For instance, noises with distribution functions; bino-
mial prob (ξ = a) = 1 − prob (ξ = b) = θ, for any a, b in appropriate space, and
θ ∈ [0, 1] are the cases. The reader is also referred to the interesting paper
by Porosiński, Szajowski, Trybuła (1985) where non-Gaussian noise and ran-
dom horizon are taken into account in stochastic control with unknown noise
parameters.

Due to its importance for applications, adaptive control problems have at-
tracted attention for a long time. The first publications appeared half a century
ago and are connected with the names of Wiener (1948), Feldbaum (1960, 1961,
1965), Bellman (1961), Kulikowski (1965), Aoki (1967), Rishel (1986), Beneš
and Karatzas (1991). The relevant literature is very extensive (see e.g. Liptser,
Runggaldier and Taksar, 1996; Zabczyk, 1996; Dai Pra, Rudari and Runggaldier
1997; Saridis, 1995). The practical aspects are described in hundreds of books
and articles; some of them are listed by Runggaldier and Zaccaria (2000).

2. Adaptive control

Let (Ω,F , P) be a complete probability space. Let w1, . . . , wN be a sequence
of independent m-dimensional random vectors on Ω with normal distribution
N(0, Im), let ξ be k-dimensional random vector with a priori distribution P (dξ),
and let y0 be an initial state with distribution P (dy0). All these objects
are assumed to be stochastically independent. Define Fk

�
= σ (y0) ∨ σ (ξ) ∨

σ {wi : i = 1, 2, . . . , k} and set F = FN .
We will consider the adaptive control problem for the system with state

equation

yi+1 = f(ξ, yi, ui) + σ(ξ, yi)wi+1, (1)

where i = 0, . . . , N − 1, yi ∈ R
n, f : R

k × R
n × R

l −→ R
n and σ : R

k × R
n −→

M (n, m), where M (n, m) is the set of n × m matrices. The functionsf, σ are
assumed to be continuous in all their variables.

On (Ω,F , P) we define a family of σ-subfields Yj = σ {yi : i = 0, 1, . . . , j}.
A vector uj ∈ R

l measurable with respect to Yj is called a control action, and
u = (u0, u1, . . . , uN−1) an admissible control. The class of admissible controls
is denoted by U .

To specify the aim of control, we introduce loss functions gi, i=0, 1, . . . , N−1.
We assume that gi : R

k × R
n × R

n × R
l −→ R are continuous and bounded.

The task is to find

inf
u∈U

J (u) , (2)
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where

J (u) = E

[
N−1∑
i=0

gi (ξ, yi, yi+1, ui)

]
. (3)

Theorem 2.1 Suppose that the functions gj, j = 0, 1, . . . , N−1, are continuous
and bounded, f and gj, j = 0, 1, . . . , N − 1, are continuously differentiable in u,
and detΣ(ξ, y) �= 0 for (ξ, y) ∈ R

k × R
n, where Σ(ξ, y) = σ(ξ, y)σT (ξ, y). If u∗

is an optimal control, then

E

{
∇ugj(ξ, yj , yj+1, u

∗
j) + (4)

( N−1∑
i=j

gi(ξ, yi, yi+1, u
∗
i )

) (
yj+1−f(ξ, yj, u

∗
j )

)T Σ−1(ξ, yi)∇uf(ξ, yj , u
∗
j)

∣∣∣∣Yj

}
=0

for all j ∈ {0, 1, . . . , N − 1}.
Proof. From the properties of conditional expectation it follows that for every
j ∈ {0, 1, . . . , N − 1} the functional (3) can be represented as

J(u) = E

[ j−1∑
i=0

gi(ξ, yi, yi+1, ui) + E

( N−1∑
i=j

gi(ξ, yi, yi+1, ui)
∣∣∣∣Fj

)]
(5)

=
∫ ( j−1∑

i=0

gi(ξ, yi, yi+1, ui)
)

P (dξ, dy0, . . . , dyj)

+
∫ ( ∫ [ N−1∑

i=j

gi(ξ, yi, yi+1, ui)
]
Pj+1,N (dyj+1, . . . , dyN )

)
P (dξ, dy0, . . . , dyj),

where

Pji (dyj , . . . , dyi) =
i∏

k=j

P (dyk| Fk−1) , (6)

P (dξ, dy0, . . . , dyj) = P (dξ) P (dy0)P1j (dy1, . . . , dyj) , (7)

for 0 ≤ j < i ≤ N . Note that P (dyk| Fk−1) is the transition probability for the
process {yi; 0 ≤ i ≤ N} defined by (1); we write it in the form

P (dyk| Fk−1) = puk−1 (k − 1, yk−1; k, yk) dyk. (8)

Here pu (s, x; t, y) is the probability of transition from state x at time s to state
y at time t under control u. Note that

puk−1 (k − 1, yk−1; k, yk) = γ (yk − f(ξ, yk−1, uk−1), Σ(ξ, yk−1)) , (9)
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where

γ(x − m, Q) =
1√

(2π)n |Q| exp
(
−1

2
[x − m]T Q−1 [x − m]

)

is the density of the normal distribution. We see that the control uk−1 affects
directly the transition from state yk−1 to state yk, and indirectly the transition
to the later states yk+1, . . . , yN .

Fix j ∈ {0, . . . , N − 1}. Let u = u∗+εv, where u∗ is an optimal control and ε
a scalar, and let v : R

n×(j+1) −→ R
l×N , v =

(
0̃, ..., 0̃, ṽj , 0̃, ..., 0̃

)
, 0̃ = col (0, ..., 0)

where ṽj : R
n×(j+1) −→ R

l, ṽj = col (vj , ..., vj) , and vj = vj (y0, ..., yj) is any
Borel function. From (5) we compute

∂

∂ε
J(u∗ + εv) =

∫ [ ∫
∇ugj(ξ, yj , yj+1, u

∗
j )Pj+1,N (dyj+1, . . . , dyN ) +

∫ ( N−1∑
i=j

gi(ξ, yi, yi+1, u
∗
i )

)
∇uPj+1,N (dyj+1, . . . , dyN )

]
vjP (dξ, dy0, . . . , dyj).

(10)

From (6), (8), (9) we have

∇uPj+1,N =

(yj+1 − f(ξ, yj , uj)) Σ−1(ξ, yj)∇uf(ξ, yj , uj)Pj+1,N (dyj+1, . . . , dyN ) .
(11)

Substituting (11) to (10) and equating to zero we obtain∫ [ ∫ {
∇ugj(ξ, yj , yj+1, u

∗
j )

+
( N−1∑

i=j

gi(ξ, yi, yi+1, u
∗
i )

)
(yj+1 − f(ξ, yj , u

∗
j ))Σ

−1(ξ, yj)∇uf(ξ, yj , u
∗
j)

}

×
N−1∏
i=j

pu∗
i (i, yi; i + 1, yi+1) dyj+1...dyN

]
vjP (dξ, dy0, . . . , dyj) = 0, (12)

which proves the assertion, because condition (12) has to be satisfied by any
Yj-measurable Borel function.

3. Entropy
Consider the following situation. We wish to control an object and simultane-
ously learn its properties as precisely as possible. We are allowed to make N
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tests. The problem of active learning is to find a control u∗ =
(
u∗

0, . . . , u
∗
N−1

)
with the smallest possible entropy H (ξ, y0, . . . , yN), that is, one that minimizes
the uncertainty concerning the object being controlled. Accordingly, the task is
to minimize the joint entropy, i.e., to find

inf
u∈U

H (ξ, y0, . . . , yN ) . (13)

Let p (·) and p0 (·) be the a priori distributions of the random vector ξ and the
state vector y0 respectively, and suppose that the density of the joint distribution
of (ξ, y0) is

μ0(ξ, y0) = p(ξ)p0(y0).

By induction it is easy to obtain (see, e.g., Banek, Kozłowski, 2004) the following
recurrence formula for the density of the joint distribution of μi(ξ, y0, y1, . . . , yi):

μi(ξ, y0, y1, . . . , yi) =
= μi−1(ξ, y0, y1, . . . , yi−1)γ (yj − f(ξ, yj−1, uj−1), Σ(ξ, yj−1)) ,

where

Σ(ξ, y) = σ(ξ, y)σT (ξ, y)

and

μN (ξ, y0, y1, . . . , yN) = p(ξ)p0(y0)
N−1∏
j=0

γ (yj+1 − f(ξ, yj, uj), Σ(ξ, yj)) . (14)

Hence the entropy of the entire system is

H (ξ, y0, . . . , yN ) = E [− lnμN (ξ, y0, y1, . . . , yN)] (15)

= E

[
1
2

N−1∑
j=0

(
[yj+1 − f(ξ, yj, uj)]

T Σ−1(ξ, yj) [yj+1 − f(ξ, yj, uj)]

+n ln 2π + ln |detΣ(ξ, yj)|) − ln p(ξ) − ln p0(y0)
]
.

We introduce the following notation:

h (ξ, x, y, u) = [y − f(ξ, x, u)]T Σ−1(ξ, x) [y − f(ξ, x, u)] + ln |det Σ(ξ, x)| .
(16)

Hence (15) can be rewritten in the form

H(ξ, y0, . . . , yN ) =
1
2
E

[ N−1∑
j=0

h (ξ, yi, yi+1, ui)
]

+ H (ξ) + H (y0) +
nN

2
ln 2π.

(17)
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4. Minimal cost control
Problem (13) concerns optimal control of active learning, but with no costs
taken into account. However, every learning process involves some costs. To
find some characteristics of an object, or identify it, we have to find a control
minimizing not only the uncertainty after N tests, but also the costs incurred.
Therefore the problem may be stated as

inf
u∈U

E

[
N−1∑
i=0

gi (ξ, yi, yi+1, ui)

]
, (18)

where

gi (ξ, yi, yi+1, ui) = g (h (ξ, yi, yi+1, ui) , yi, ui)

for some continuous function g : R
n × R

n × R
n
R

l −→ R, where g (h, x, y, u) is
the cost of obtaining an a posteriori distribution with the given entropy h (·) in
state x under control u. By the chain rule, we have

∇ugi (ξ, x, y, u) = ∇hg (h (ξ, x, y, u) , x, u)∇uh (ξ, x, y, u)
+∇ug (h (ξ, x, y, u) , x, u) ,

so (16) yields

∇ugi (ξ, x, y, u) =

−2∇hg (h (ξ, x, y, u) , x, u) [y − f(ξ, x, u)]T Σ−1(ξ, x)∇uf(ξ, x, u)
+∇ug (h (ξ, x, y, u) , x, u) .

Corollary 4.1 If u∗ is an optimal control, then

E

{
∇ug

(
h

(
ξ, yj, yj+1, u

∗
j

)
, yj, u

∗
j

)

+
( N−1∑

i=j

gi(ξ, yi, yi+1, u
∗
i ) − 2∇hg

(
h

(
ξ, yj , yj+1, u

∗
j

)
, yj , u

∗
j

) )

× (
yj+1 − f(ξ, yj , u

∗
j )

)T Σ−1(ξ, yi)∇uf(ξ, yj, u
∗
j )

∣∣∣∣Yj

}
= 0 (19)

for all j ∈ {0, 1, . . . , N − 1}.

5. Determining the control
We present a procedure for finding an optimal control

{
u∗

0, u
∗
1, . . . , u

∗
N−1

}
for

the stochastic system (1), applying the condition (19), based on the idea of
dynamic programming. Set

VN (ξ, y0, . . . , yN) = 0
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and

Vj (ξ, y0, . . . , yj) = E

[ N−1∑
i=j

gi(ξ, yi, yi+1, ui)
∣∣∣∣Fj

]

= E

[
gj(ξ, yj , yj+1, uj) + E

[ N−1∑
i=j+1

gi(ξ, yi, yi+1, ui)
∣∣∣∣Fj+1

]∣∣∣∣Fj

]

= E [gj(ξ, yj , yj+1, uj) + Vj+1 (ξ, y0, . . . , yj+1)| Fj] .

By the properties of conditional expectation and the definition of Vj (ξ, y0, . . . , yj),
the left hand side (LHS) of (19) can be represented as follows:

LHS (19) = E
{

E
{
∇ug (h (ξ, yj, f(ξ, yj , uj) + σ(ξ, yj)wj+1, uj) , yj, uj)

+ [gj(ξ, yj , f(ξ, yj, uj) + σ(ξ, yj)wj+1, uj)
+Vj+1(ξ, y0, . . . , yj, f(ξ, yj , uj) + σ(ξ, yj)wj+1)
−2∇hg (h (ξ, yj, f(ξ, yj , uj) + σ(ξ, yj)wj+1, uj) , yj, uj)] ·
· (σ(ξ, yj)wj+1)

T Σ−1(ξ, yj)∇uf(ξ, yj , uj)
∣∣∣Fj

}∣∣∣ Yj

}
=∫ [

∇ug (h (ξ, yj , f(ξ, yj, uj) + σ(ξ, yj)x, uj) , yj , uj)

+ [gj(ξ, yj , f(ξ, yj, uj) + σ(ξ, yj)x, uj)
+Vj+1(ξ, y0, . . . , yj, f(ξ, yj , uj) + σ(ξ, yj)x)
−2∇hg (h (ξ, yj, f(ξ, yj , uj) + σ(ξ, yj)x, uj) , yj, uj)] ·
· xT σT (ξ, yj)Σ−1(ξ, yj)∇uf(ξ, yj , uj)

]
γ (x, Im) P (dξ |Yj ) dx,

where the conditional distribution P (dξ |Yj ) is determined from the Bayes for-
mula:

P (dξ |Yj ) =
μj(ξ, y0, y1, . . . , yj)∫
μj(x, y0, y1, . . . , yj)dx

and μj(ξ, y0, y1, . . . , yj) is given by (14).

5.1. Algorithm for determining u∗

1. Define VN (ξ, y0, . . . , yN ) = 0 and set j = N.
2. Set j = j − 1.
3. Define

Ṽj+1(ξ, y0, . . . , yj , uj, wj+1) = Vj+1(ξ, y0, . . . , yj, f(ξ, yj , uj)+σ(ξ, yj)wj+1).



Adaptive control of system entropy 287

4. Compute

Zj(y0, . . . , yj, uj)
�
=∫ [

∇ug (h (ξ, yj , f(ξ, yj , uj) + σ(ξ, yj)x, uj) , yj, uj)

+
[
gj(ξ, yj , f(ξ, yj, uj) + σ(ξ, yj)x, uj) + Ṽj+1(ξ, y0, . . . , yj, uj , x)

− 2∇hg (h (ξ, yj , f(ξ, yj, uj) + σ(ξ, yj)x, uj) , yj , uj)
]
·

· xT σT (ξ, yj)Σ−1(ξ, yj)∇uf(ξ, yj, uj)
]
γ (x, Im)P (dξ |Yj ) dx.

5. Find u∗
j satisfying (19), i.e.,

Zj(y0, . . . , yj, u
∗
j ) = 0.

6. Compute

Vj(ξ, y0, . . . , yj) =
∫ [

gj

(
ξ, yj , f(ξ, yj, u

∗
j ) + σ(ξ, yj)x, u∗

j

)
+Vj+1

(
ξ, y0, . . . , yj, f(ξ, yj , u

∗
j ) + σ(ξ, yj)x

)]
γ (x, Im) dx.

7. If j = 0 then stop; otherwise go to step 2.

6. Example
Consider the optimal control problem for the one-dimensional system

yi+1 = ξ − ui + wi+1 (20)

where the joint entropy of (20) is

H (ξ, y0, . . . , yN ) =
1
2
E

⎡
⎣N−1∑

j=0

(yj+1 − ξ + uj)
2

⎤
⎦ + H (ξ) + H (y0) +

N

2
ln 2π.

(21)

The task is to minimize (21), i.e. to find

inf
u∈U

E

⎡
⎣N−1∑

j=0

(yj+1 − ξ + uj)
2

⎤
⎦ .

For simplicity let N = 3. The necessary conditions for optimality are:
for the control u∗

0

E
{

(y1 − ξ + u∗
0)

×
[
2 − (y1 − ξ + u∗

0)
2 − (y2 − ξ + u∗

1)
2 − (y3 − ξ + u∗

2)
2
]∣∣∣ Y0

}
= 0,
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for the control u∗
1

E
{

(y2 − ξ + u∗
1)

[
2 − (y2 − ξ + u∗

1)
2 − (y3 − ξ + u∗

2)
2
]∣∣∣ Y1

}
= 0,

and for the control u∗
2

E
{

(y3 − ξ + u∗
2)

[
2 − (y3 − ξ + u∗

2)
2
]∣∣∣ Y2

}
= 0.

The algorithm given in the previous section requires about five minutes for
calculation of u∗

0, a few seconds for u∗
1 and u∗

2. It should be stressed however,
that calculations done by the algorithm given in the previous section do not
make use explicit forms of sufficient statistics given by the Kalman - Bucy filter.

7. Conclusion

In this paper, the problem of controlling the joint entropy of a system with
unknown parameters was stated and solved by applying Rishel’s adaptive control
methodology. A formal extension of the results of Rishel (1985) enabled us to
obtain the necessary conditions for optimality and to construct an algorithm
for finding the optimal control. Controlling the joint entropy H (ξ, y0, . . . , yN )
is important from the practical point of view, because it models the situations
where it is desirable that not only the distribution of ξ, but also the joint
distribution of ξ and (y0, . . . , yN ) be concentrated for the system being identified.
This is of importance for technical systems, where a control intensifying the
learning process only, i.e., minimizing the conditional entropy

H (ξ |y0, . . . , yN ) = H (ξ, y0, . . . , yN ) − H (y0, . . . , yN)

could result in trajectories with entropy H (y0, . . . , yN ) too large to be tolerated
by the system. Consider e.g. the process of learning the dynamical properties
(hydrodynamic resistance coefficients) of a ship just launched. It is evident to
any captain that to get as much information as possible one has to manoeuvre
the ship with various speeds and under different weather conditions. However,
the testing process cannot be completely unpredictable to the captain, that is,
H (y0, . . . , yN ) cannot be too large. An experienced captain gets to know the
maneuvering properties of the ship gradually, slightly intensifying the parame-
ters at each step and drawing conclusions from the previous steps. This means
that the conditional entropy is minimized in a long series of experiments which
minimize the joint entropy (then H (y0, . . . , yN ) is also small) rather than the
difference H (ξ, y0, . . . , yN) − H (y0, . . . , yN ). Such experiences are also shared
by happy owners of new cars - or not necessarily new, but during the first
snowfalls.
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