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Abstract: We derive conditions for Holder calmness of minimal 
points of a given set, as a function of a parameter appearing in the 
description of the set. Different criteria are proved depending on 
whether the ordering cone has a nonempty interior or not. 
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1. Introduction. 

We investigate Holder-like properties of minimal points of a set depending upon 
a parameter. The goal is to provide a general framework for stability anal
ysis of parametric vector optimization problems. From the results obtained 
one can easily derive the conditions for stability of minimal points in paramet
ric vector optimization problems. These conditions, in turn, can be viewed as 
vector counterparts of conditions for stability of the optimal value function in 
scalar parametric optimization problems. Our results depend essentially on the 
behaviour of the containment and the weak containment rate functions, intro
duced in the present paper. These functions are specific for stability analysis in 
vector case. Their appearance is caused by the fact that in vector optimization 
we work with partial orders only. 

Lipschitz-like properties of multifunctions were investigated by many au
thors, e.g. by Robinson (1981, 1976), Aubin (1984, 1985), Clarke (1983). They 
play an important role in stability of nonlinear programming problems, see e.g. 
Henrion and Outrata (2001), Klatte and Kurnmer (2001). We define Holder 
counterparts of these notions with orders other than 1 (and not necessarily 
smaller than 1). This allows us to investigate the influence of the order of 
change of a given rnultifunction, and of the speed of growth of the containment 
and the weak containment rate functions, upon the order of change of minimal 
point multifunction. 
In Theorem 3.1 we give conditions for Holder calmness of minimal points. It is 
worth noticing that, as a consequence of assumptions, we obtain that int K f:; 0. 
The case int K = 0, which is important for applications, has to be treated 
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separately and requires other techniques. We propose dual approach. We exploit 
the quasi-interior of a cone and the description of a cone by its dual. The main 
result related to the case int K = 0 is given in Theorem 5.1. 

Let Y and U be nonned spaces and let By denote the open unit ball in Y. 
We say that a multivalued mapping r : U =i Y, is 

(Hl) ·upper pse'Udo-Holder or Holder calm at ('Uo, yo), Yo E f(·uo), if, for a 
neighbourhood V of Yo and a neighbourhood U0 of ·u0 , there are positive 
L and q such that 

f('U) n VC f(·uo) + Lll·u- uollqBy, ·u E Ua. 
(H2) lo'Wer pse·udo-Holder at ('Uo, yo), Yo E f('uo), if, for a neighbourhood V of 

y0 and a neighbourhood U0 of ·u0 , there are positive L and q such that 
f(·uo) n VC f(u) + Lll·u- ·uallqBy, ·u E Ua. 

For q = 1, (H1) reduces to calmness (see Henrion, Outrata, 2001, Klatte , Kum
mer, 2002). Criteria for calmness of different multifunctions can be found eg., 
in Henrion and Outrata (2001). For instance, if S(y) = [-s(y) , s(y)], where 
s(y) = 1 + v'TYT, yE R, then S is not calm at (0, 1) (see Klatte and Kurnrner, 
2001), but it is Holder calm at (0, 1) with order 1/2. 

Let A C Y be a subset of Y and let K C Y be a closed convex pointed coue 
in Y, K n ( -K) = {0}. We say that y0 EA is 
(Ml) rnin·imal point, Yo E MinA, if An (Yo- K) = {yo}, 
(M2) local rnin·imal point, if yo E MinAnv, where V is a neighbourhood of y0 . 

When A C Y is a convex subset of Y, 

(1) 

To see this , suppose that Yo tf. M·inA, i.e., there exists Y1 E A such that Yl -
Yo E -K. By convexity, >.yo + (1- >.)yl C An (yo- K), 0 ::; ).. ::; 1, and 
Ayo + (1- A)yl E V, for 0::;)...::; X::; 1. Hence, Yo tf. MinAnV· 

2. Containment property and its characterizing functions 

Let K C Y be a closed convex pointed cone in Y. For any subset C C Y the 
point to set distance d(x, C) is given as d(x, C) = inf{l l:c - ell I c E C}, and 
the E neighbourhood of the set C is given as B( C, E) = {y E Y I d(y, C) < E }. 

Denote C(c) = {c E C I d(c,M·inc) 2: c}. 
We say that the containment pmperty ( C P) (Bednarczuk, 2002) holds for a 

subset C C Y if for any E > 0 there exists 15 > 0 such that 

C(c) + !5By c M·inc + K. 

We define the cone containment funct ·ion, cunt : K -> R+, as follows 

cont(k) = sup{T 2: 0 I k + rBy C K}. 

If int K = 0, then cunt = 0. Since K is closed, the supremurn is always 
attained, i.e., k + cont(k)By C K. The cone containment function is posi
tively homogeneous. Indeed, for any ).. 2: 0 and k E K we have cunt().. · k) > 
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A · cont( k). If there were cont( A · k) = (3 > A · cont( k) for some A > 0, it 
would be k + ~By C JC, contradictory to the definition of cont( k). Moreover, 
cont(k1 +k2 ) 2: cont(kl)+cont(k2 ). In consequence, cant(-) is a concave function 
and 

dom cant= {k E JC I cont(k) > - CXJ} = JC. 

For k E K, cont(k) = -SK(k), where SK(k) = infyEK Ilk- Yll- infyEY\K Ilk
vll· The function SK was introduced by Hiriart-Urruty (1979a,b), see also 
Gorokhovik (1990). The function !Le : M'ine + JC-+ R+ defined as 

f.Le (y) = sup{ cont(y - TJv) I 77v E Mine n (y - K)}, 

is the mte of containment of an element y E Y (Bednarczuk, 2002) with respect 
to C and JC. The function 8e : R+ -+ R = R U { ± oo}, given as 

8c(c) = inf{f.Le(y) I yE C(c)} 

is the mte of conta'inment of a set C (Bednarczuk, 2002) with respect to JC. 

REMARK 2.1 If int JC = 0, then JLe = 0, and 8e = 0. On the otheT hand, 
f.Le(Y) = 0, 'impl'ies that y l'ies on the bo'undaTy of Mine+ JC , y E a(M·ine + JC). 

REMARK 2. 2 The conta·inment vrope7'ty ( C P) can be chamcter'ized by the con
ta·inrnent mte fmtci'ion 8 as follo·ws . ( C P) holds for a s·ubset C C Y 4 and only 
'if 8e (c) > 0 for · any c; > 0. We say that the dom·ination pmpeTty ( D P) holds 
joT C if C C M ·ine + JC. (DP) holds for C 4 and only 4 8e(c:) 2: 0 for any 
c > 0. 

Below, we give conditions uuder which the suprernum in the definition of the 
function 11 is attained. Recall that a convex subset 8 of a cone JC is a base of JC 
if 0 rf. cl8, JC = upe I A :::=: 0}. Following Borwein and Zhuang (1993) we say 
that Ra (C) is the generalized weak recession cone of a set C if 

Ra (C) = {v E Y I there exis t An > 0 An ---> 0 Cn E C such that 

AnCn tends weakly to v }. 

A set Cc Y is JC-lower bounded if there is a constant M> 0 such that 

Cc MBy +K. 

If C is JC-lower bounded, then Ra (C) C JC, see Borwein and Zhuang (1993). 

PROPOSITION 2.1 Let Y = (Y, 11 · 11) be a TWT"rned space. Let JC C Y be a closed 
convex pointed cone ·in Y and let C C Y be a s·ubset of Y. Let V C Y be an 
open s·ubset of Y and let y E M'inenv + JC. If either of the conditions holds: 

(i) Minenv ·is weakly compact, 
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(ii) Mincnv is K- lower bounded and weakly closed and K has a weakly 
compact base, 

then y = 'T/y + ky, with 'T/v E Mincnv, and kv + J.Lcnv(y)By C K . 

Proof. Let y E M·incnv + K. For each n > 0, there exists a representation 
y = 'Tin+ kn, 'TinE Mincnv n (y - K), kn + cont(kn)By c K, and 

1 
cont(kn) ~ J.Lcnv(y) and cont(kn) > J.Lcnv(y) - -. 

n 

We claim that under either ('i) or ('i·i) the sequences {'Tin} and { kn} converge to 
'T/o, and k0 , respectively, and 

y = rJo + ko. (2) 

If ('i) holds, the sequence {'Tin} contains a weakly convergent subsequence. With
out loss of generality we can assume that {rJn} weakly converges to an 'f)o E 
Mincnv n (y- K). By this, the sequence {kn} weakly converges to k0 E K and 
we get (2). 

If (·ii) holds , and 8 c K is a weakly compact base of K, then kn = AnBn , 
An 2:: 0, and {Bn} C 8 contains a weakly convergent subsequence. Again, we 
can assume that { Bn} weakly converges to Bo E 8. If there were An ---+ +oo, 
then 

1 'W 

An ('Tin-y)---+ -Bo 

and - Bo E Ra-(C) n ( -K), contradictory to K-lower boundedness of C. Hence, 
An ---+ Ao < +oo. Consequently, { kn} weakly converges to ko E K, and {'Tin} 
weakly converges to 'T/o = y-ko. Since M ·incnv is weakly closed, 'T/o E Mincnv, 
and (2) follows. 

To complete the proof we need to show that k0 + J.Lcnv(y)By C K. On 
the contrary, if we have ko + J.Lcnv (y )bo rf. K, bo E By, then, by separation 
arguments, there exists a linear continuous functional f such that 

f(ko + J.Lcnv(y)bo) < 0 ~ f(k) fork E K. 

Consequently, there would be 

f(ko: + cont(ka)bo) 

= f(ko + J.Lcnv(y)bo) + f(ka - ko) + f([cont(ka)- J.Lcnv(y)]bo) < 0, 

contradictory to the fact that ka + cont(ko:)By C K. • 
Based on Proposition 2.1 we prove continuity of the rate of containment /LC· 

THEOREM 2.1 Let (Y, 11 · 11) be a nonned space. Let K C Y be a closed convex 
pointed cone in Y and let C C Y be a subset of Y. Let Yo E int(M·inc + K). 

Under- one of the following conditions: 
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(i) Mine is weakly compact, 
(ii) M·ine is JC-lower bounded and weakly closed and JC has a weakly compact 

base, 
the function ;.te is continuous at Yo. 

Proof Let y0 E int(Mine +!C). We start by proving the lower semicontinuity 
of ;.te at YO· By Proposition 2.1, 

Yo = 'T)o + ko, 'T)o E Mine, ko + ;.te(Yo)By C !C. 

Take any E > 0 and v E 8By , where 8 = min{E, ;.te(Yo)/2}. By (3) , 

Yo+v=rJo+ko+v, 'T]oEMine, ko+vE!C. 

Moreover, since v + (;.te(Yo)- llvii)By C p,c(yo)By, we get 

p,c(yo + v) 2: ;.te(Yo)- llvll > p,c(yo)- E, 

which proves the lower semicontinuity of ;.te at YO· 

(3) 

To show the upper semicontinuity of ;.te at Yo suppose, on the contrary, that 
for a certain "E > 0 and each 8 > 0 there would be v15 E min { 8, ;.te (y0 )} By such 
that ;.te(Yo + v15) 2: ;.te(Yo) +"E. This would mean that for each V15 there would 
be a representation 

Yo + V15 = k + 77, k E !C, 77 E Mine , 

where y0 = k + 77, k + p,c(yo)By C JC, such that 

cont(k) > ;.te(Yo) + "E, i.e. k + [tte(yo) + "E]By C !C . 

(4) 

By (4), Yo = 77 + k1, where k1 = k- V15 . Since V15 + [;.te(yo) + 1/2"E]By C 

[tte(yo) + "E]By for 8 < 1/2"E, we would get 

k1 + [;.te(Yo) + 1/2"E]By C k + [p,c(yo) + "E]By C JC, 

contradictory to the definition of ;.te (yo). • 
PROPOSITION 2.2 Let Y = (Y, 11 · 11) be a normed space. Let JC C Y be a closed 
convex pointed cone in Y and let G C Y be a s'Ubset of Y. Let V C Y be an open 
s·ubset ofY . S·uppose that (GP) holds for G n V. If, for any yE Minenv + JC, 
either of the condit·ions holds: 

(i) M inenv is weakly compact, 
(ii) Minenv is JC-lower bo·unded and weakly closed and JC has a weakly com

pact base, 
then, for any E > 0 

(G n V)( E)+ 8env(E)By C Minenv +!C. 

Proof Let E > 0. By (GP) , (G n V)(E) C Minenv +!C. By Proposition 2.1 , for 
any yE (GnV)(E) we have y = 'T)y+ky, where f/y E M·inenv , ky+;.tenv(y)By C 

!C. Consequently, y + 8env(E)By C Minenv +!C. • 
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3. Holderian calmness of minimal points for cones with 
nonempty interior 

Let f : U =t Y be a set-valued mapping. The set-valued mapping M : U =t Y, 
defined as 

M(u) = M·inr(u) 

is called the minimal point multifunction. Here we formulate conditions for 
Holder calmness of M. 

THEOREM 3.1 Let Y = (Y, 11 · 11) and U = (U, 11 · 11) be nonned spaces. Let 
iC C Y be a closed convex pointed cone ·in Y. Let r : U =t Y be a set-val·ued 
mapving ·with f( ·uo) convex. Let, for a ne ·ighbourhood V of Yo E M(uo) , r 
be upper pse·udo-Holder at (uo , Yo) 'Wdh order q1 and constant L 1, and lo'WeT 
pse·udo-HoldeT at (u0 ,y0 ) 'Wdh order qz and constant Lz . S ·uppose that one of 
the follo'W·ing conditions holds: 

(i) M·inr(uo)nv is 'Weakly compact, 
(ii) Minr(uo)nv is K - lo'Wer bo·unded and 'Weakly closed and iC has a ·weakly 

compact base. 
If 
(Al) br(uo)nv(E) 2: c · EP, c > 0, forE< Eo , Eo> 0, 
then M ·is ·uppeT pseudo-Holder at u 0 , i.e., 

1 

( (
Ll+Lz)P) · { m;n{n .qo)} M(u) n V c M(uo)+ L1 + c llu - ·uollmm q,, P - ·By 

joT all ·u in some neighbo·urhood of ·uo. 

Pmof. By assumptions, there is a positive ,., such that 
f( ·uo) n VC f(u) + Lzll ·u - uol lq2 By , and 
f( ·u) n V c f( ·uo) + L1ii·u- ·uollq 1 ·By 

C [ Minr(uo)nv + L1 · ll ·u- 'uollq' · By 
1 

+ ·ll·a- ·uoll P ·By (
Ll+Lz)P m;n{q 1 ,n) ] 

c 

u[ (f(·uo) \ ( M·inqu
0
)nv + ( L1 :Lz) f;ll·u- ·uollm;n{~,, •. ,) ·By)) 

+L1 · ll·u- ·uollq' ·By] , [-2pt] 

whenever llu- ·uoll < K-. We claim that 

M(u) n V n [ (r('uo) \ ( M·inqu 0 )nv 

+ ( L1 : Lz) f; ll ·u- ·u0 (;,,{~1 
·•" 

1 ·By)) + L1ll ·u- ·uo llq' ·By] = 0, ( *) 
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for llu- uol l < K , or equivalently 

M(u) n V n [ (r(uo) n V\ ( M ·inr(uo)nv 

+ ( L1: Lz) ~ ll·u- ·uoll min{~/ ·•"l . By)) + L111·u - ·uollq' . By] = 0. 

Let us take any yE f(u) n V, such that y = 1 + h, where 

( (L1+Lz )~ min{O) ,qo} ) 1 E r(·uo) n V\ M ·inquo)nv + c ll·u - 'ttoll v ·By , 

and hE L1ll'lt- ·uollq' ·By. By Proposition 2.2, 

I= ''h + k-y, 'lh E Minr('uo)nv, 

(( L1+Lz)~ min{q,,q .,) ) 

k-y + Dr(u 0 )nV c ll ·u - ·uoll " ·By C JC. 

By the lower pseudo-Holder property of f, '1'/-y = 11 + bz, 11 E f('u), bz E 

L2 11·u - ·u0 llq2 · By. In view of the assumpt ions, by chosing "' small enough, we 
1 min{q J .q') } . 

obtain Dqu
0
nv ( ( L, ~L2 );; ll·u- ·uo 11 v ) :::: (L1 + Lz) llu - ·uo 11 mm{q, ,q2 }, and 

consequently 

y - 11 = I + b1 - T/-j + bz = T/-j + /;;'Y + h - T/-y + bz 

C k-y + (L1 + Lz)ll·u- ·uol lmin{q, ,q2 } ·By 

C k-y + Dr(tt
0
)nV ( ( Ll: Lz) ~ll ·u - ·u.a('n{~• ·•?l ) ·By C JC . 

By this, y ~ M(u) n V , and (*) follows . Hence, by (1) 

M(u) n VC Mr (uo)nv + L1 · ll·u- uollq' ·By 
1 

(
Ll + Lz) P min{ q1 ,qo} 

+ ·llu - ·uoll " ·By 
c 

1 

( (
Ll+Lz)P) . { min{q 1 ,q 2 }} cM(·uo)+ L1+ c ll·u -uollmm q,, v ·By, 

for ll·u - ·uo 11 < K, which completes the proof. • 
By Remark 2. 1, the assumption 8(c) :::: eel' implies that int JC 'f 0. The 

convexity of r(·uo) allows us to make use of (1) and can be replaced by any 
other condition ensuring (1); in the case V = Y the convexity of r(·u0 ) is not 
necessary and can be omitted (see Bednarczuk, 2002) . 
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4. Weak containment property and its characterizing 
function 

As we have noted the assumption (A1) of Theorem 3.1 might hold true only when 
int K. of. 0. However, in some important spaces, standard cones of nonnegative 
elements have empty interiors. We propose to treat such cases via dual cones. 

Let Y be a Hausdorff topological vector space with topological dual Y*. Let 
K. C Y be a closed convex cone in Y . The cone K.* C Y*, 

K.* ={fEY* I f(k) 2:: 0 for all k E K.} 

is the dual to K.. The quasi-interior of K.* (see Jahn, 1986) is given as 

K.*i ={fEY* I f(y) > 0 for ally E K. \ {0}}. 

Clearly, K. is based if and only if K.*i of. 0. Necessary and sufficient conditions en
suring K.*i of. 0 are given in Gallagher (1995), Lemma 2.1 and Dauer, Gallagher 
( 1990) , Proposition 2 .1. 

If int K. is nonempty and e E int K., then 0 = {f E K.* I f (e) = 1} is a base 
of K.*. On the other hand, K.*i is always based, and for any y0 E K. \ { 0} , the 
set e•i = {f E K.*i I f(yo) = 1} is a base of K.*i. 

The bidual cone K.**, 

K.** ={yE Y I f(y) 2: 0 for f E K.*}, 

is convex and weakly closed and in locally convex spaces K. = K.** if and only 
if K. is convex and weakly closed (see Theorem 12.C of Holmes, 1975). The 
quasi-interior of K. (see Peressini, 1967, Schaefer, 1971, Krasnoselskii, Lifschitz, 
Sobolev, 1985, Bakhtin, 1985) is given as 

K.i = {k E K. I f(k) > 0 for f E K.* \ {0}}. 

In locally convex space, if int K. of. 0, then int K. = K.i. K.i is nonernpty if and 
only if K.* is based (see Lemma 2.1 of Gallagher, 1995). We refer to any base 
e· of K.* of the form 

0* = {f E K.* I f(yo) = 1}, Yo E K.; (5) 

as a standard base. 

EXAMPLE 4.1 (see Gallagher, 1995, Krasnoselskii, Lifschitz, Sobolev, 1985, 
Peressini, 1967, Schaefer, 1971) 

1. Let Y = Rm, K. C Y be a closed convex pointed cone. For any convex 
s·ubset A, coT(A) coincides 'With the topolog·ical inte·rior of A. Hence, eg., 
joT the cone K. = {(y1 , Y2) I Yl 2: 0 Yl = Y2} 'We get K.* = { (h , h) I h 2: 
-:!I} and K.i = 0. 
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2. For any p E [1, +oo) consider the seq'Uence space £P, of seq·uences s = {si} 
wdh real terms, 

00 

£P = { s = {si} I L I si lP < +oo}, 
i=l 

with the nat·uml ordering cone 
£~ = {s ={si} E £P I Si 2': 0}. 

The ordering cone £~ has empty topological interior and empty algebraic 
interior, CO'r(£~) = 0. B·ut 

(£~)i = {s ={si} E £PIs;> 0}. 
3. For any p E [1, +oo), cons·ider the space of all p-th Lebesq·ue integrable 

f'Unctions f : D --. R with the nat·uml ordering cone 
L~ = {f E LP I f ( x) 2': 0 almost everywhere on D} . 

The topological interior int(L~) and cor(LP) are both empty b·ut JCi -:f. 0. 
To see this recall that 

(L~)i = {f E LP I L fgdp. > 0 for all gEL~\ {0} }, 

1. + 1. = 1 and p q ! 

(L~)i = {f E LP I f(x) > 0 almost everywhere on D}. 

We have the following Proposition. 

PROPOSITION 4.1 Let Y be a locally convex topological vector space and let 
JC C Y be a closed convex cone with JC*i -:f. 0. Then 

(i) J(i c }( \ {0}, 
(ii) w- * - clJC*i c }(*. 

(iii) JC ={yE Y I f(y) 2': 0 for all f E JC*i}, 
(iv) w- cl{y E Y I f(y) > 0 for all f E JC* \ {0}} C JC. 

Proof (i) follows from the fact that in a locally convex space JC = {y E Y I 
f(y) 2': 0 for all f E JC*}. 

(ii) Since JC*i C JC* and JC* is weakly-*- closed, we get w- *- clJC*i C JC*. 
(iii) If k E JC \ {0}, then f(k) > 0 for any f E JC*i, which proves that 

JC C {y E Y I f(y) 2': Ofor all f E JC*i}. The inclusion {y E Y I f(y) > 
0 for all f E JC*i} C JC is proved in Dauer, Gallagher (1990), Lemma 5.5. 

(iv) Since JC is weakly closed, w - clJCi c JC . • 

Let C C Y be a subset of a normed space (Y, 11 · 11) and let JC* has a base 8*. 

DEFINITION 4.1 The weak containment property (WC P) holds for C with re
spect to 8* if for every c: > 0 there exists 5 > 0 s'Uch that for each y E C( c:) one 
can find 'T/y E Mine satisfy·ing 

B*(y- TJy) > 8 for each B* E 8* . (6) 
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Note t hat if y - 'r/y satisfies (6), then y - T/y E Kf It has been shown by 
Peressini (1967, sec. 4.4) that in the spaces £00

, fP, LP(D.), p ?: 1, the quasi
interior K\ of the positive cone K+ coincides with the set of weak order units 
(see Peressini, 1967, p. 184), i.e., for any Yo E K~ and any yE K+, y-=/= 0, there 
exists z E K+, z -=/= 0, such that z ::; yo and z ::; y. For the general result in 
order complete vector lattices see Schaefer (1971), Th. 7.7. 

In general, (WCP) depends upon base. In the sequel we give a characteri
zation of bases for which (WCP) holds. 

Now we define functions characterizing weak containment property. The 
d·ual cone containment function dconte• : K ---+ R+ is defined as 

dconte• (k) = inf{B*(k) I B* E 8*}. 

Let CC Y be a subset of Y. The function vc :Mine+ K---+ R+ given as 

vc(y) = sup{dconte·(Y -77y) I 'r/y E M·inc n (y - K)} 

is the mte of ·weak conta·inment of an element y E Y with respect to C and K. 
The function de : R+ ---+ R = R U { ±oo} , given as 

dc(r::) = inf{l/c(y) I yE C(r::)} 

is the mte of weak containment of a set C with respect to K and 8*. 
Let y0 E Ki. Consider the standard base 

8* = {B* E K* I B*(yo) = 1}. 

For any k E K, 

dconte• (k) = inf{B*(k) I B*(yo) = 1, B* E K*}, (7) 

is an infinite-dimensional linear programm·ing pmblem. By duality theory (see 
e.g. Barbu, Precupanu 1986, Ch. 3, par. 3, p. 233), it is the dual to the problem 

sup{r I k- T · Yo E K}, (8) 

where T is a real number , rE R (compare also Barbu, Precupanu, 1986, Ch. 3, 
Th. 3.4., p . 235). Since To = 0 is feasible for (8), by Proposition 2.1, Ch. 3, 
p. 197 of Barbu, Precupanu (1986), we have 

0::; sup{T I k - T · Yo E K}::; inf{B*(k) I B*(yo) = 1, B* E K*}. (9) 

Suppose now that for a given k E K 

inf{B*(k) I B*(yo) = 1, B* E K*} = 'f?: 0. 

Hence, for any B* (yo) = 1, B* E K*, we have B* (k) ?: 'f, which entails that 
k - 'fyo E K and 

'f::; sup{r- I k - T · Yo E K}, 
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which proves that 

sup{'r I k- T · Yo E JC} = inf{B*(k) I B*(yo) = 1, B* E JC*}. (10) 

The function 

q(k) = sup{r > 0 I r- 1k E Yo + JC}, 

has been also considered in other context (see Namioka, 1957). It is superlinear, 
and the graph of q, 

Graph( g)= {(k, r) I q(k) 2: r'} 

is a cone in Y x R. 
Now the question arises when the optimal valuer is nonzero. Clearly, if, for 

any y0 E JCi and any k E JCi, it would be T > 0 such that k - TYo E JCi, then 
JCi C corK>u(-JC')(JCi), i.e., each k E JCi belongs to the core of JCi Telati·ue to 
JCi U ( -JCi). It is easy to point out examples when r = 0. 

EXAMPLE 4.2 Let p > 1, Y = f.P, JC = P.~. As we obseT'ued bejoTe 

(P.~)i ={(si) E f.P Is; > 0 joT each ·i EN}. 

By taking Yo = ( fr), and ko = ( f,), ·we see that for any T > 0 there exists an 
·index I s'Uch that 

1 1 
-:-

3 
- r-:-

2 
< 0 for i > I, 

2 2 

and hence r = 0. 

Now we can rewrite (WCP) property for a set Cas follows: for each E > 0 
there exists 8 > 0 such that for any y E C( E) there exists T/y E M inc such that 

y - rJy E 8 · Yo + JC. (11) 

PROPOSITION 4.2 Let (Y, 11·11) be a nonned space and let A C Y be a s·ubset of 
Y. Let JC C Y be a closed convex pointed cone in Y and let JC* be its d'Ual w-ith 
a base 8*. The following condit-ions are eq·ui·ualent: 

(i) (WCP) holds for A, 
(ii) d(c) > 0 for each E > 0. 

Proof. (i)--+ ('ii). Take any E > 0 and yE A(c). By (WCP), there exist 8 > 0 
and rry E M·inA such that 

dconte• (y - T/y) 2: 8. 

Hence, vA(Y) 2: 8, and d(c) 2: 8 > 0. 
(i·i)--+ (i). Let d(c) =a> 0. For each yE A(c) 

sup{ dconte· (y - TJ) I 7) E M·inA n (y - JC)} 2: a, 
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and consequently, 

in£ B*(y-T)y)>cx./2, 
0*E8• 

for some 7)y E MinA n (y- K), i.e., (WCP) holds. • 
PROPOSITION 4.3 Let (Y, 11·11) be a normed space and let C C Y be a subset of 
Y. Let K C Y be a closed convex pointed cone in Y and let K* C Y* be its d'ual 
cone with a base 8*. 

For any y E M'ine + K, if M'ine n (y- K) is weakly compact, then there 
exists 7)y E Mine s'uch that 

ve(y) = dconte•(Y -7)y)· 

Proof. Let y E Mine + K. By definition, dconte• (y- 7)) :::; ve(y), for each 
7) E Mine n (y- K), and for any p > 0, there exists 7)p E Mine n (y- K) such 
that for any ()* E 8* 

()* (y- 7)p) 2 dconte· (y- 7)p) > ve(Y) - p. 

Since Mine n (y- K) is weakly compact, the net {7lp} contains a weakly con
vergent subnet and without loss of generality we can assume that the net { 7)p} 

converges weakly to 7)y E Mine n (y - K). Since K is weakly closed, the net 
{kp = y- 7)p} tends to some ky E K, and y = 7)y + ky. Thus, 

in£ B*(y- 7)y) 2 ve(y), 
e• E8* 

which completes the proof. • 
PROPOSITION 4.4 Let K C Y be a closed convex pointed cone in a topolog'ical 
vector space Y with Ki -=f. 0. If 8]' and 82 are any two standard bases, with 
y 1 , Y2 E K_i such that Y2 E ( ry1 + K), r > 0, then there exists a positive real 
n'umber f3 with 

dconte; (k) 2 f3 · dconte; (k ). 

Proof. Let 8]', 82 be any two standard bases, i.e., for Yl,Y2 E r:_i we have 

er ={erE K* I er(yl) = 1} 
e; = {e; E K* 1 e;(Y2) = 1}. 

For any k E K, and Bi E 8]', there exists e; E 82 such that 

where Bi(Y2) > 0. Hence, 

e;(k) 2 e;(y2) inf e;(k) 2 e;(y2) inf. e;(k), 
e;Ee; e:; E82 
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and 

inf e~(k) 2: inf e~(yz) inf. e~(k), (12) 
8~ E8i e; E8i 82 E82 

Since Y2 ET· Yl + JC, by (1a), fJ = infe;Ee; Bi(Yz) >a, and by (12), 

dconte· > fJ · dcontw. • 
l- 2 

5. Holder calmness of minimal points for cones with pos
sibly empty interiors 

In the present section we use the weak containment rate function to derive 
conditions for Holder calmness of M. 

A subset F of Y* is eq'Uicontin'UO'US (Holmes, 1975, 12.D) if for any s > a there 
exists a a-neighbourhood W such that lf(W)I < s for any f E F. Equivalently, 
there exists a balanced a-neighbourhood W such that f(W) :'::: 1 for each f E F, 
i.e., F C (W) 0

• By Banach-Alaoglu theorem , W 0 is weakly-*-compact. When 
Y is a normed linear space, F C Y* is equicontinuous if and only if it is bounded 
in the norm topology of Y*. 

PROPOSITION 5.1 Let JC C Y be a closed convex pointed cone in a nonned space 
Y , int JC =/:- 0. Then, joT any S'ubset A C Y, ( C P) holds joT A if and only if 
(WCP) holds joT A. 

Proof. It follows from Lemma 2.2 of Gallagher (1995) that JC* has a w -
*-compact, and hence an equicontinuous base 8*. By Proposition 4.4, if 
(WCP) holds , then it holds for any equicontinuous base. Thus , (WCP) holds 
for 8*. Take any c > a. By (WCP), there exists 8 > a such that for any 
yE A(s) there exists 'T/y E MinA satisfying 

B*(y- 'T/y) 2: 8, for B* E 8*. 

Since 8* is equicontinuous, there exists a a-neighbourhood 0 such that IB*(q)l 
< 8/2 for q E 0, B* E 8*. Hence, 

B*(y- 'T/y) 2: 8 > B*(q), 

and finally 

B*(y- 'T/y) + B*(q) 2: 8/2. 

Suppose now that ( C P) holds A. There exists 8 > a such that for y E A( s) we 
have 

y- TJy + 8B C JC for some 'T/y E MinA . 

By taking any Yo E JCi = int JC, we get 5yo E 8B, 5 > a, and 

y - 'T}y - 5yo c JC, 

which means that (WCP) holds. • 
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THEOREM 5.1 Let Y = (Y, 11·11) and U = (U, 11·11) be nonned spaces. Let K C Y 
be a closed convex po-inted cone 'in Y, and let K* be ds dual with an eq·u'icont'in·u
ous base 8*. Let r : U =l Y, be a set-val·ued mapp-ing, ·wdh r( ·uo) convex, wh-ich 
is upper- pse·udo-Holder- of or-der £1 with constant L 1 and loweT pse·udo-Holder 
of order £2 with constant Lz at (yo, ·uo) E gmph(r) for a neighbo·urhood V of 
YO· If 

(i) dr(uo)nv(e) ~ c · eP, w-ith c > 0, joT e <eo, eo> 0, 
(ii) M ·inr(uo)nv is weakly compact, 

then M is ·uppeT pseudo-Holder at uo , i.e ., 

1 

( ( 

£1 +Lz)P) . {f min{t,,t2l} 
M(u) n V cM(uo)+ L1 + 2 c ll·u - ·uo llmm '' P ·By. 

for all ·u 'in some neighbo·urhood of ·uo. 

Pmof. In this proof we fo llow the same reasoning as in the proof of Theorem 
3.1. Using the same notation we only need to show that under our assumptions, 
for ll·u - ·uol l < K. 

M('u) n V n [ (r(uo) n V\ ( Minqu0 )nv 

+( 2L1 : Lz) ~ llu - uoll min{~Jhl . By))+ L111·u - uo lle,. By] = 0, (*) 

To this aim take any 

for ll ·u - ·uol l < K.. We have y = 1 + h , where 1 E r(uo) n V\ (Minf'(uo)nv + 
L +L 1 min{tJ,£2} /! 

(2~);;11 ·u - uoll p · By), b1 EL11iu-·uoii'·By. 

Since 8* is equicontinuous we can assume that B*(b) S 1, for each(}* E 8*, 
and bE By. Hence, for each bE L1 ll ·u- uol lc, ·By we have 

By Proposition 4.3, there exists 'f/-y E M ·irLr(uo)nv satisfying 

B*(!- r~-y) ~ v(!) = in£ B*(!- r~-y) ~ dr(uo)nv(e) ~ c · eP fore< eo , 
O• Ee • 

for each (}* E 8*. By the lower pseudo-Holder continuity of r, T/-y = 11 + b2, 
11 E r(u), bz E L2l l·u - ·uolle2 ·By. Finally 
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B*(y -11) = B*(y -1) + B*(t- r~-y) + B*(·'h -11) 

~ -L&u- ·uoll e' - L2ll ·u- ·uolle2 

+dqu
0
)nv ( ( 2L1

: L 2
) ~ JJu- ·uoJI min{~, •

121
) 

~ -(Ll + L2)JJ·u- ·uo JJmin{e, ,e,) + 2(Ll + L2)JJu- uoJJmin(e,/2} > 0. 
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Consequently, f(y- ')'1) ~ 0 for any f E K*, and y- /l E K, which proves ( *) 
and completes the proof. • 

As in Theorem 3.1, the inequality dr(uo)nV ~ ccP is assumed to hold only for 
c close to zero, and the convexity off( uo) is needed only to ensure the inclusion 
Minquo)nV C Minr(uo)· 

EXAMPLE 5.1 Let K C Rn be a convex closed cone in Rn with empty inteTioT. 
Then K* C Rn has no base since the set KT = {y E K* I y · x = 0 joT each 
x E K} ·is a nontrivial lineaT s·ubspace contained in K*. This shows that the 
above TheoTern cannot be applied to finite-d ·irnensional case. 

EXAMPLE 5.2 Let Y = c0 be the space of all real seq·uences that converge to zero 
with the ·us·ual positive cone K = (eo)+· Then (eo)+ has no inter··ior po·int, and 
K* is the us·ual positive cone in the space £1

, K* = ( £1 )+. The set of seq·uences 
{ ~n} C £1 such that I: ~n = 1 is a base joT K* that is bo·unded and closed in the 
nonn topology. 

The above example shows that m some spaces, for standard cones K of 
nonnegative elements there is int K = 0, and K* has a bounded base. This , 
however, is not the case for the space LP(f"l.) where the nonnegative cone has 
empty interior and does not possess a bounded base. 
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