

Optimal control of multistage

deterministic, stochastic

and fuzzy processes in the

fuzzy environment via

an evolutionary algorithm

J. Stańczak

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

Raport Badawczy

Research Report

RB/72/2005

Control and Cybernetics

vol. 34 (2005) No. 2

Optimal control of multistage deterministic,
stochastic and fuzzy processes in the fuzzy
environment via an evolutionary algorithm

by

Jaros�law Stańczak

Systems Research Institute
Polish Academy of Sciences

Newelska 6, 01-447 Warsaw, Poland
e-mail: stanczak@ibspan.waw.pl

Abstract: This paper deals with the problem of control of deter-
ministic, stochastic and fuzzy systems with a fixed termination time
and fuzzy constraints imposed on controls and states. Constrains
imposed on the system are given as membership functions of partic-
ular fuzzy sets. Transition functions for controlled systems are given
as a matrix of transitions between states for a deterministic object,
a matrix of probabilities of transitions for a stochastic object and a
matrix of membership functions of transitions for a fuzzy system.

An optimal (or sub-optimal) control is obtained using a special-
ized evolutionary algorithm (EA), which is a development over the
previously used methods based on simple genetic algorithm. The
specialized EA seems to be a very effective tool for solving such
a class of optimization problems, comparing advantageously with
the traditional simple genetic algorithm approach and with the pre-
viously used solutions like dynamic programming or branch and
bound. The specialization of the applied EA is obtained using dedi-
cated problem encoding, the method of ranking of genetic operators
and the controlled selection of population members.

Keywords: fuzzy control, multistage optimal fuzzy control,
adaptive evolutionary algorithm.

1. Introduction

Fuzzy logic is a generalization of classical, binary logic to rules and statements,
which cannot be valued as just true or false. Similarly, it is used to describe
situations and effects where exact values are not necessary, but qualitative eval-
uations with a very small set of possible values (i.e. small, medium, big) are
sufficient. Nowadays it is one of the most developed approaches, which enables

526 J. STAŃCZAK

reasoning based on imprecise or incomplete information. Fuzzy logic makes it
possible and easy to decide when facts and rules are uncertain. This uncer-
tainty may not be caused by inaccuracy of measurements or too small level
of knowledge about the problem but it can be its immanent property. This
powerful apparatus was invented by L.A. Zadeh (Zadeh, 1965), who introduced
basic ideas and theoretic foundations of fuzzy sets and fuzzy logic. Since then
the domains of fuzzy sets and fuzzy logic made a great development and be-
came a leading part of artificial intelligence. Some more interesting information
about fuzzy logic and its applications can be found in Czoga�la, Pedrycz (1985),
Kacprzyk (1997), Piegat (1999).

The most important practical applications of fuzzy logic are in automatic
control, where it is widely used, from control of trains and ships to control of
photo cameras, TV-sets and other ”intelligent” electronic equipment.

The multistage optimal fuzzy control is quite a different approach to the
problem of fuzzy control than that presented in Zadeh (1965) and for the first
time it was described by Bellman and Zadeh (1970). The principles of both
approaches are presented below.

The widely used fuzzy controllers contain control rules, which are fuzzy and
imprecise, but the controlled system requirements and limitations are rather
well defined. The fuzziness of these rules is caused by the fact that accurate
rules or formulae describing the object are unknown, complicated or too difficult
to derive and thus it is difficult to find a traditional, model based method to
control such object. Fuzzy rules are good, simple and effective estimations of the
ideal (or optimal) ones. Fuzzy rules are often based on the empirical knowledge
of the problem and can be acquired from experts. Generally, fuzzy controllers
behave more like human operators - they do not know the dynamics of the
controlled object, but know what to do in order to obtain expected results.

The multistage optimal fuzzy control deals with rather known models and
more or less precise control algorithms but, contrary to the approach outlined
before, considers fuzzy constraints, requirements, goal functions and often prob-
abilistic or fuzzy models of controlled objects. This approach allows for finding
more precise or even optimal controls, but in the sense of fuzzy optimization
(with fuzzy constraints, goal functions or models).

The domain of practical applications of this method is quite different (so far)
from that of traditional fuzzy control and covers planning, decision making and
scheduling, for instance flood prevention in Esogbue, Theologiu and Guo (1992)
and Kacprzyk (1997), planning of social and economical regional development
in Kacprzyk (1984) or a schedule of power unit switching in Su and Hsu (1991).

The domain of multistage fuzzy control is often divided into several classes
depending on the type of object under control: deterministic, stochastic and
fuzzy or depending on the control termination time: fixed (specified in ad-
vance), specified as a set of termination states of the controlled object, fuzzy,
and infinite. Thus, several possibilities of the controlled object type and the
control termination time may be derived.

Optimal control via an evolutionary algorithm 527

This paper deals with the problem of multistage fuzzy control and finding
the optimal control sequence with fixed termination time for the simple deter-
ministic, stochastic and fuzzy objects with finite sets of states, possible controls
and known, stationary transition functions. There are also fuzzy constraints
imposed on controls and states of the object at every stage. The goal of control
is to maximize the quality criterion (the resultant membership function - µD)
during the time of the particular system’s operation.

Conventional methods of solving the problem of multistage optimal fuzzy
control cover dynamic programming, branch and bound, interpolative reasoning
and also neural nets and genetic algorithms as presented in Kacprzyk (1997).
The methods mentioned above are mainly open-loop control methods, but the
first steps in applying closed-loop (or feedback) methods in that domain have
also been made in Sousa and Kaymak (2001).

Because of several limitations of conventional methods (especially for large
dimensions of solved problems), usually used to obtain the optimal set of con-
trols, a specialized evolutionary algorithm was proposed to solve this problem
(within the traditional open-loop approach). The problem, the evolutionary
algorithm and the obtained results are in details discussed in this paper.

2. Formulation of the multistage fuzzy control problem

2.1. The deterministic system

To solve the problem it is necessary to find a sequence of N (N - control horizon)
controls u(t) ∈ U , where U is a finite set of possible discrete controls. The dy-
namics of the deterministic object under control is characterized by a transition
function:

x(t + 1) = f(x(t), u(t)) (1)

given as a matrix of transitions between states x(t) ∈ X (X is a finite set of
possible states of the object). The initial state x(0) is known and fixed. There
are fuzzy constraints imposed on controls at each control stage t and µC(t)

is a membership function of the fuzzy set of admissible controls C(t). Also,
fuzzy goals for the consecutive states of the system are defined by membership
functions µG(t) of a set of desired states G(t). Therefore, the solution of the
problem can be found by maximizing the expression (Kacprzyk, 1997):

µD(û(0), . . . , û(N − 1)|x(0)) = max
u(0),...,u(N−1)

[µC(0)(u(0)) ∧ µG(1)(x(1)) ∧ . . .

∧ µC(N−1)(u(N − 1) ∧ µG(N)(x(N))] (2)

where:
û(0), . . . , û(N − 1) - the sequence of optimal controls;
u(0), . . . , u(N − 1) - controls in the consecutive time stages;

528 J. STAŃCZAK

x(0), . . . , x(N) - states of the system in the consecutive time stages;
µD(..) - an overall goal function for the problem;
N - the termination time (control horizon);
µG(t)(..) - the membership function of fuzzy set of states (G(t));
µC(t)(..) - the membership function of fuzzy set of desired controls (C(t));
∧ - a t-norm1 symbol (in the considered case - a minimum function).

The problem described above can be solved using many techniques: dynamic
programming - Baldwin and Pilsworth (1982), branch and bound - Kacprzyk
(1978), interpolative reasoning - Kacprzyk (1993), neural nets - Francelin and
Gomide (1993) and also genetic algorithms2 in Kacprzyk (1997), Kacprzyk
(1998), Kacprzyk, Romero and Gomide (1999), but with the increasing num-
ber of control steps, their applicability decreases considerably. The number of
possible solutions to the problem, assuming fixed initial state, is equal:

n = |U |N (3)

where:
|U | - number of possible controls;
N - termination time;
n - number of possible solutions.

Conventional methods, like dynamic programming and branch and bound,
suffer from the effects of growth of the solved problem’s dimensionality. They are
very good for small values of N and are able then to find optimal solutions. For
larger N , only heuristic, random and artificial intelligence based methods can
deal with the problem effectively. The most promising ones are neural networks
- Francelin and Gomide (1993), genetic and evolutionary algorithms - Kacprzyk
(1996), Stańczak (2001) and Stańczak (2003). Unfortunately, genetic and evo-
lutionary algorithms do not ensure finding of the optimal solution in finite time,
but they find very good, sub-optimal solutions quite fast. In practical cases it
is better to obtain sub-optimal solution quickly than to wait for the optimal
one very long time. Thus it seems useful to apply the evolutionary algorithm,
designed specially to solve that kind of problem. The approach described brings
together some advantages of the evolutionary algorithm with some heuristic and
problem-specific methods used as ”intelligent” genetic operators.

1t-norm and its conorm - s-norm are a generalization of binary logic operators: ∧ - and
and ∨ - or. Fuzzy logic defines its own operators and there are many variations of them with
different advantages and disadvantages, Piegat (1999). This paper deals with the simplest
and the most widely used case, where ∧ means minimum (. . .), and ∨ maximum (. . .).

2The difference between the notions of ”genetic algorithm” and ”evolutionary algorithm” is
assumed in this paper as follows. Genetic algorithm is a simple method with binary encoding of
solutions, traditional mutation, crossover and roulette selection, while evolutionary algorithm
is a more general notion, covering a wide range of methods with improved or specialized
encoding, operators and selection, self-adaptation of parameters and similar extensions.

Optimal control via an evolutionary algorithm 529

2.2. The stochastic system

In the case of the stochastic system the transition function relies on conditional
probabilities of accessing some state, depending on a previous state and control
signal and is a matrix of probabilities (exactly a set of |U | matrices, depending
on used controls). The state of the system is described by a column vector of
probabilities - P (x̄(t)) (not an actual value of the state, which is unknown and
may be expressed only as a probability vector) which contains probabilities of
attaining elements (states) of the set X in the moment t

P (x̄(t + 1)) = P (x̄(t)T (x̄(t + 1)|x̄(t)) (4)

where:
P (x̄(t)), P (x̄(t + 1)) - probability distribution on the vector of the system state

in following iterations;
T (x̄(t + 1)|x̄(t)) - a matrix of conditional probabilities (transition matrix);
u(t) - deterministic control signal in moment t;
x̄(t), x̄(t + 1) - states of the system in the consecutive moments.

The described system is an example of a Markov chain.
Starting from the initial state x̄(0) the system goes towards the terminat-

ing state x̄(N), according to (4) with fuzzy constraints imposed on states and
controls in each iteration. The choice of proper control signals u(t) enables to
maximize the quality criterion (Kacprzyk, 1997):

µD(û(0), . . . , û(N − 1)|x(0)) = max
u(0),...,u(N−1)

[µC(0)(u(0)) ∧ EµG(1)(x̄(1)) ∧ . . .

∧ µC(N−1)(u(N − 1)) ∧ EµG(N)(x̄(N))] (5)

where: Eµ(G(t)(. . .) - expected value of the membership function of set G(t) - a
fuzzy constraint (or fuzzy goal) imposed on state of the system, defined as:

EµG(t)(x̄(t)) =
|X|∑
i=1

p(xi(t))µG(t)(xi(t)) (6)

where:
p(xi(t)) - probability that the system is in state xi ∈ X or the i-th coordinate

of vector P (x̄(t));
µG(t)(xi(t)) - a value of the membership function G(t) for the state xi ∈ X ;
all other symbols like in (2) and (4).

Methods usually used to solve the problem are similar to those described in
Section 2.1. It means that also methods based on dynamic programming, inter-
polative reasoning and neural nets were proposed (Kacprzyk, 1997), but they
are properly adjusted to deal with the problem of stochastic systems. The size
of the space of solutions can be estimated from formula (3). As it dramatically
grows with the time horizon of control, it is natural to propose a specialized
evolutionary algorithm to solve it, especially for larger values of N .

530 J. STAŃCZAK

2.3. The fuzzy system

The fuzzy system is described with fuzzy state equation:

X(t + 1) = f(X(t), U(t)) (7)

where:
X(t), X(t + 1) - fuzzy states of the system in moments t and t + 1 belonging

to the finite set of allowable fuzzy states X ;
U(t) - control signal (fuzzy or deterministic) in the moment t, from the finite

set of possible controls U .

This relationship can be more precisely rewritten using membership func-
tions of sets of states and controls (when necessary). The formula (8) shows the
situation where deterministic controls are applied, the formula (9) describes the
fuzzy system with fuzzy control (Kacprzyk, 1997):

µX(t+1)(xi(t + 1)) = max
j∈1..|X |

(µX(t)(xj(t)) ∧ µX(t+1)(xi(t + 1)|xj(t), u(t)))

(8)

µX(t+1)(xi(t + 1) =
max

j∈1..|X |
[max
k∈1..|U|

(µX(t)(xj(t)) ∧ µX(t+1)(xi(t + 1)|xj(t), uk(t) ∧ µU(t)(uk(t)))]

(9)
where:
µX(t)(xi(t + 1)) - membership function value of coordinate xi of the controlled

system state X in the moment t + 1;
µX(t+1)(xi(t + 1)|xj(t), u(t)) - conditional membership function, which describe

transitions between states X(t) and X(t + 1) under control u(t), in the
considered case a matrix of transitions between states, containing values
of membership functions;

uk(t) - represents the k-th coordinate of fuzzy control U(t);
all other symbols like in the formula (7).

Similarly as in the case of deterministic and stochastic systems, there are
fuzzy constraints imposed on states (µG(t)) and controls (µC(t)) of the system
in every iteration. The initial state of the system is known and fixed (X(0)).

To solve the problem a tool for comparing fuzzy sets is needed. The method
is described in Kacprzyk (1997) and Kacprzyk (1996) and is called similarity
function:

µC̄(t)(U(t)) = 1 − d(U(t), C(t)) (10)

µḠ(t)(X(t)) = 1 − d(X(t), G(t)) (11)

where:
d(..) - distance (Hamming3, Euclidean or different);

3In the considered case Hamming distance was applied in computer simulations.

Optimal control via an evolutionary algorithm 531

C(t) - set of constrains imposed on controls in iteration t;
G(t) - set of constrains imposed on state in iteration t;
µC̄(t)(U(t)) and µḠ(t)(X(t)) - measure of similarity of membership functions.

A quality criterion for the system with fuzzy control is shown by the formula
(12), with deterministic control by the formula (13) (Kacprzyk, 1997):

µD(Û(0), . . . , Û(N − 1)|X(0)) = max
U(0),...U(N−1)

[µC̄(0)(U(0)) ∧ µḠ(1)(X(1)) ∧ . . .

∧ µC̄(N−1)(U(N − 1)) ∧ µḠ(N)(X(N))] (12)

µD(û(0), . . . , û(N − 1)|X(0)) = max
u(0),...,u(N−1)

[µC̄(0)(u(0)) ∧ µḠ(1)(X(1)) ∧ . . .

∧ µC̄(N−1)(u(N − 1)) ∧ µḠ(N)(X(N))] (13)

where:
Û(0), . . . , Û(N − 1) - the sequence of optimal fuzzy controls;
U(0), . . . , U(N − 1) - fuzzy controls in subsequent moments;
û(0), . . . , û(N − 1) - the sequence of optimal deterministic controls;
u(0), . . . , u(N − 1) - deterministic controls in subsequent time stages;
X(0), . . . , X(N) - states of the system in subsequent iterations;
µD(..) - an overall goal function for the problem;
N - termination time;
∧ - t-norm sign;
all other symbols like in the formulae (10) and (11).

Similarly to previously described stochastic and deterministic systems, the
methods of solving the described problem cover dynamic programming, branch
and bound, interpolative reasoning, neural nets and also genetic algorithms. In
the case of the deterministic controls, the solution space can be described by
equation (3), for fuzzy controls the solution space is continuous and all possible
solutions are contained in a hypercube [0, 1]N |U|. A high number of dimen-
sions of the problem makes it difficult to solve and it will be shown that the
evolutionary algorithm is a good choice to solve that problem.

3. The evolutionary algorithm in the problem of optimal
fuzzy control

The evolutionary algorithm can be described as follows:
1. Random initialization of the population.
2. Reproduction and modification of solutions, using genetic operators.
3. Evaluation of the obtained solutions.
4. Member selection for the next generation.
5. Unless the stop criterion is satisfied, go to the point 2.

In spite of their universality, the evolutionary algorithms should be prop-
erly adjusted to solve a raised problem. Unchanged remains only the core idea

532 J. STAŃCZAK

of its functioning: owing to small random changes in genotypes of population
members (mutation), the recombination of genes and the selection of the best
individuals, the population develops towards better values of the problem’s goal
function. The adjustment of the genetic algorithm to the solved problem re-
quires a proper encoding of solutions and an invention of proper genetic op-
erators for that problem. Genetic evaluations stop after a fixed number of
generations, when satisfying results are obtained or there are no changes of the
fitness function during some number of generations.

3.1. The individual encoding for EA

3.1.1. The case of deterministic controls

Deterministic controls can be used in all kinds of previously described systems.
In the case of optimal control problem, the whole information about the current
solution is stored in a sequence of controls (Kacprzyk, 1997) (assuming a fixed
initial state). Thus the genotype of every member of the population is a sequence
of indexes (integer values) of control signals from the set U for the subsequent
steps of the controlled object operation. This method of solution encoding is
very effective and gives the advantage of elimination of faulty solutions. A
real member of the population, used for evolutionary computations, contains an
integer vector of N values of controls. Some data required by the evolutionary
algorithm are also added: a number of a genetic operator chosen to modify the
solution in the current iteration and a vector of qualities of genetic operators,
which is a base to choose one in every iteration. Fig. 1 presents a scheme of an
individual of the population with deterministic controls.

3.1.2. The case of fuzzy controls

To the fuzzy system, described by equations (7), (8) and (12), fuzzy controls
are applied. Fuzzy controls are vectors of real values. These real numbers are
the values of the membership function of the set of allowable controls U . Dif-
ferent values of these real numbers (different membership functions) constitute
different control signals.

This implies that a member of the population contains N (number of control
steps) vectors of membership function values, thus it is a matrix Nx|U| of real
values from the interval [0, 1]. This method of encoding also ensures that only
solutions satisfying requirements of the problem may appear. Similarly as in
the case of deterministic controls a member of the solution population contains
also the number of the chosen genetic operator and the vector of qualities of
operators. The method of operator selection is precisely described in Section
3.4. Fig. 2 presents the scheme of an individual from the population with fuzzy
controls.

Optimal control via an evolutionary algorithm 533

Figure 1. A member of the population of solutions for the case of deterministic
controls

Figure 2. A member of the population of solutions for the case of fuzzy controls

534 J. STAŃCZAK

3.2. The fitness function

In all the cases considered, the quality functions of the corresponding problems
(2, 5, 12 or 13) have appropriate properties for being directly treated as fitness
functions for an evolutionary algorithm:

• non-negative values of membership functions are from the interval [0, 1];
• the better the quality of the individual, the higher the value of the prob-

lem’s quality function (maximization);
• fuzzy constraints imposed on states and controls are a part of the quality

function, so it is easy to consider them and no additional elements are
necessary.

Thus, problem’s quality functions are used as fitness functions for EA in the
here considered problem of optimal fuzzy control.

3.3. Genetic operators

The described data structures require specialized genetic operators, which mod-
ify the population of solutions. Simple random operators are easy to devise for
both methods of encoding (with integer and real numbers). They are similar to
the widely used ones: mutation, inversion and crossover. Also multiple versions
of described operators can be here applied. Simulation of the evolutionary al-
gorithm with such ”blind” operators proved that the more sophisticated ones,
enriched with some heuristics, should be used. Random operators have dif-
ficulties with finding even very poor but non-zero solutions (Stańczak, 2001),
especially for problems with deterministic control or N > 10.

It is obvious that heuristic operators give only a higher possibility of finding
better solutions than random ones, but not a 100% certainty. Several versions of
heuristic operators were used together with random operators during computer
simulations. Application of rather big number of genetic operators (about 12)
caused some problems with the choice of appropriate probabilities of operators’
appearance. The method used for this purpose is presented in Section 3.4.

3.3.1. Genetic operators for deterministic control

Three standard, random operators were applied:

• crossover - an exchange of randomly found last parts of encoding strings;
• mutation - a random change of one randomly selected control to another

from the set U ;
• inversion - an inversion of a randomly chosen string subset of the solution.

Besides, the same operators appeared in a multiple version - 3 repetitions of
the operator. These operators belong to the class of ”blind”, random operators.
They are specialized to use accepted solution encoding, but do not know any-
thing about the solved problem. As it was previously mentioned, experiments

Optimal control via an evolutionary algorithm 535

with such a set of operators gave rather poor results (Stańczak, 2001), especially
for N > 10.

Three heuristic operators for deterministic control have been devised:

• ”intelligent” mutation;
• ”forward” genetic operator;
• ”backward” genetic operator.

The first of the heuristic operators resembles mutation but with some heuris-
tics added, so as to be called ”intelligent” mutation. Traditional mutations
works like the operator not on randomly chosen bits of the solution. In this
case mutation is more complicated. It works as follows: in a randomly chosen
place of the encoding string, it changes one control to another one, randomly
chosen from the set U . ”Intelligent” mutation acts in almost the same way,
but the new control is randomly chosen from the set of admissible controls (i.e.
with µC(t)(t) > 0) for the current step t. Sets of admissible controls for every
step of the system are created during the initialization of the EA, and are also
used in other heuristic operators. This way of generating new solutions is po-
tentially more effective than the simple mutation and gives a higher probability
of positive change of modified solution.

The second of them is called ”forward”, because it follows control signals
from t = 0 to t = N − 1. The algorithm of the operator is shown in Algorithm
1. All symbols in Algorithms 1 and 2 have the same meaning as in Section 2.1.
The presented notation of the Algorithm 1 concerns the case of deterministic
system under control, but it can easily be transformed to all cases of system
with deterministic control.

For i := 1 to N do
Begin

Evaluation of µ(i) (a local membership function value):
µ(i) := µC(i−1)(u(i − 1)) ∧ µG(i)(x(i));
where: x(t) = f(x(t − 1), u(t − 1))

If µ(i) ≤ µD(u(0), , u(N − 1)|x(0))
a) creation of the list of admissible pairs

(ul(i − 1), xl(i)), l ∈ 1, , |U |, where:
xl(t) = f(x(t − 1), ul(t − 1))
µl(i) := µC(i−1)(ul(i − 1)) ∧ µG(i)(xl(i))
and
µl(i)µD(u(0), , u(N − 1)|x(0));
x(t − 1) - the previous state of the system;

b) selection of one pair from the list (several choice methods are
possible);
c) modification of the solution on the position i (if the list of possible
pairs is empty, the position i is left unchanged and the operator stops);

End;

536 J. STAŃCZAK

Algorithm 1. The algorithm of the ”forward” genetic operator

The ”forward” operator tries to correct the places, where the local mem-
bership function in the pre-defined trajectory drops to 0 or to the lowest value
and consequently the overall quality function (which is a minimal value of local
membership functions values) is equal 0 or this lowest value. It is done by check-
ing all other possible controls instead of the previously used in that iteration in
order to find the better ones. If this succeeds, a list of possible better solutions
is made. Then, one of the controls from the list is chosen4 and replaces the
formerly used one. If the list for some value of t is empty (it may happen in
some circumstances) no operation is performed and the operator ends its work.

The last heuristic operator is called ”backward”, because it works similarly
to the ”forward” one but in the reverse order (from t = N − 1 to t = 0). In
the case of control (or the position in the solution) when a too low value of the
membership function is found, an appropriate control is chosen (like in the case
of ”forward” operator) from the list of possible controls and state. This chosen
control replaces the previous one. The operator produces the list of controls for
potential replacement. The control is selected from the list so as to preserve
the sequence of the earlier established states of the controlled object. Similarly
like in the ”forward” operator, it may happen that no control can be selected to
satisfy constraints. In that situation the operator stops for t > 0, but changes
performed before that point are valid. It is often difficult to hit the fixed starting
state, because for chosen x(1), u(0) and fixed x(0) there is only one possibility
for x(1) to be equal f(x(0), u(0)) or not and no other moves are allowed. In
such a case the operator does not rather improve the solution but works like
some kind of random genetic operator. The detailed procedure of the method
is presented in Algorithm 2.

For i := N downto 1 do
Begin

Evaluation of µ(i) (a local membership function value)
µ(i) := µC(i−1)(u(i − 1)) ∧ µG(i)(x(i))

for all possible pairs (ul(i − 1), xk(t)):
if i = N : l ∈ 1, , |U | and k ∈ 1, , |X |
if i �= N : l ∈ (1, , |U | and k is fixed - selected in the previous step;

Selection of one pair such that:
µ(i) > µD(u(0), , u(N − 1)|x(0))

Selection from the transition matrix of a state x(i − 1), for which:
x(i) := f(x(i − 1), u(i − 1));

Modification of the i-th position of the solution with chosen control

4Several methods of selection of controls from the list were tested and applied: random,
best one and scaled random (roulette). In computations, all three methods are used randomly
to increase the possibility of finding better sequences of controls.

Optimal control via an evolutionary algorithm 537

(if no control is selected or state x(i − 1) cannot be attained, solution on
position i remains unchanged and operator stops);

End;

Algorithm 2. The algorithm of the ”backward” genetic operator

The ”backward” genetic operator can be successfully applied only in the case
of the deterministic system, because it is then easy to find an inverse transition
function. In the case of a stochastic system an inverse matrix of probabilities
is required to implement the operator, but an inverse simulation of the system
operation may give states with negative or greater than 1 ”probabilities” in
the state vector. This is caused by numerical errors and the fact that inverse
matrices contain also values negative or greater than 1. So, in the case of a
stochastic system its usefulness is rather problematic and it has not been tried
out in simulations. For the fuzzy system it is impossible to perform the inverse
simulation of the system operation and the ”backward” operator cannot work.

3.3.2. Genetic operators for fuzzy control

A real value matrix encoding requires the use of a different set of genetic oper-
ators than in the case of integer vectors. They are similar to methods used in
evolutionary strategies but adjusted to matrix representation used in the solved
problem:

• mutation - a small random change of the randomly chosen element of the
solution, which precisely means a small modification of one value of the
membership function, not exceeding the range [0, 1];

• transposition - an exchange of randomly chosen vectors of control mem-
bership functions in the same individual;

• crossover - an exchange of control vectors between two individuals, where
the point of crossing is obtained randomly;

• inversion - an inversion of a randomly chosen subset of vectors of the
solution.

Also a heuristic operator was added. Its operation resembles a little the
manner in which the ”forward” heuristic operator works.

For i := 1 to N do
Begin

Evaluation of µ(i) (a local membership function value):
µ(i) = µC̄(i−1)(U(i − 1)) ∧ µḠ(i)(X(i))

If µ(i) ≤ µD(U(0), ..., U(N − 1)|X(0)) then:
a) if µC̄(i−1)(U(i − 1)) ≤ µD(U(0), ..., U(N − 1)|X(0)) then:

- Up(i − 1) = C(i − 1);
- µp(i) = µC̄(i−1)(Up(i − 1)) ∧ µḠ(i)(Xp(i));
- if µp(i) > µ(i) then U(i − 1) = Up(i − 1), X(i) = Xp(i)
else Exit;

538 J. STAŃCZAK

b) if µḠ(i)(X(i)) ≤ µD(U(0), ..., U(N − 1)|X(0)) then:
- Up(i − 1) = (|X | ∗ C(i − 1) + |U| ∗ G(i))/(|X | + |U|);
- µp(i) = µC̄(i−1)(Up(i − 1)) ∧ µḠ(i)(Xp(i));
- if µp(i) > µ(i) then U(i − 1) = Up(i − 1), X(i) = Xp(i)
else Exit;

End;

Algorithm 3. The algorithm of the heuristic operator for problem
with fuzzy control

The operator follows the sequence of control vectors from t = 0 to t = N −1.
During that time it finds places where the local membership function (µ(i))
drops to the lowest values and tries to increase them by changing the values
of the membership functions in the control vector. The values are changed to
make the vectors of fuzzy states and controls closer to fuzzy constraints imposed
on the system in the current time step.

The algorithm of the heuristic operator for fuzzy control is shown in Algo-
rithm 3 (all symbols like in formulae 7, 8 and 12).

3.4. Evolutionary algorithm with ranking of genetic operators

Using rather a big number of genetic operators requires applying some method
of sampling them in all iterations of the algorithm. In the used approach, based
on Mulawka and Stańczak (1999), Stańczak (1999, 2000, 2003), it is assumed
that an operator that generates good results should have bigger probability of
application and should more frequently affect the population. But it is very
likely that an operator, which is good for one individual, gives worse effects for
another one, for instance because of its location in the domain of possible so-
lutions. Thus, every individual may have its own preferences. Every individual
has a vector of floating point numbers - q (besides the encoded solution). Each
position in the vector q corresponds to one genetic operation. It is a measure
of quality of the genetic operator. The probability of execution of the operator
is proportional to the value of its quality. This relationship may be written as
follows:

pij(t) =
qij(t)∑L(t)

i=1 qij(t)
(14)

where:
qij(t) - quality coefficient of the operation i at the moment t for the member j;
pij(t) - probability of appearance of the operation i at the moment t for the

member j;
L(t) - number of genetic operators (may vary during genetic computations).

This ranking becomes the basis for computing the probabilities of appear-
ance and execution of genetic operators. This set of probabilities is also a base

Optimal control via an evolutionary algorithm 539

of experience of every individual and according to it an operator is chosen in
each epoch of the algorithm. Due to the accumulated experience one can max-
imize the chances of its offspring to survive. The quality factors are computed
according to the formula (15):

qij(t + 1) =
{

q0
lj(t) + xlj(t) + αlj(t) ∗ qlj(t) for i=l

qij(t) otherwise
(15)

where:
qij(t + 1), qij(t) - quality of the operation i for the individual j in consecutive

generations;
q0
ij(t) - a small credit value;

xlj(t) - an improvement of the problem’s quality function, obtained by the l-th
operator for the j-th member of population, defined as follows:

xij(t) =

⎧⎪⎨
⎪⎩

Q(t) − Qij(t) minimization
Qij(t) − Q(t) maximization
0 no improvement

(16)

where:
Q(t), Qlj(t) - the best found solution value and the value of solution for member

j;
αlj(t) - a coefficient of forgetting, α ∈ [0, 1];
l - an index of the operator chosen for modification of the particular solution.

The first element of the formula (15) - q0
ij(t) - plays the role of a credit,

a small value, which supports a small level of qij(t) even if the operator does
not give any advantages for a long term. Dropping this value to zero would
eliminate the operation corresponding to it for current individual and for its
possible offspring. This fact is not advantageous, because it is possible that the
excluded operator will work better on other stages of the evolution process. For
exploring operators, like mutation, it is often necessary to let them work even
without any visible improvements of the fitness function.

The second addend is an improvement of the problem’s quality function in
the current generation or zero when no improvement is achieved.

The third part of the formula (15) is responsible for storing previous achieve-
ments of an operator multiplied by the forgetting factor αlj(t). It is responsible
for balancing the influence on the quality factor of an operator originating from
old and new improvements. Decreasing the value achieved by an operator is
introduced to make the evolutionary algorithm more flexible. It should be no-
ticed that some genetic operators may achieve good results in some phases of
simulation, and then exhaust their capacities, but other ones, probably better in
the later phases, would have small probabilities of appearance, so it would take
a lot of time to change this situation. The effect of forgetting former achieve-
ments can overcome this problem. When operators do not change the global

540 J. STAŃCZAK

best solution for some time, the probabilities of operators become almost equal.
After every generation only the value qij(t + 1) associated with the chosen op-
erator is updated, the other ones remaining unchanged. Only one operator is
executed in one generation for one individual, thus there is no reason to change
the coordinates corresponding to the other, not selected operators.

3.5. Controlled selection

The applied selection method consists of two methods with different properties:
histogram selection (increases the diversity of the population) and determinis-
tic roulette (strongly promotes best individuals) (Stańczak, 1999), which are
selected at random during the execution of the algorithm. The probability of
execution of the selection method is obtained from the formula (17).

If individuals in the population are described by a too small standard devia-
tion of the fitness function (σ(F (t))) with respect to the extent of this function
(max(Fav(t)−Fmin(t), Fmax(t)−Fav(t)) or R(t)), then it is desirable to increase
the probability of appearance of histogram selection. In the contrary situation
the probability of the deterministic roulette selection is increased. If the para-
meters of the population are located in some range, considered advantageous, we
may keep approximately the same probabilities of appearance for both methods
of selection. It is important that always p his(t) + p det(t) = 1, which means that
some method of selection must be executed.

p his(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

p his(t)(1 − a) if R(t) > 3σ(F (t))
p his(t)(1 − a) + a if R(t) < 0.5σ(F (t))
p his(t)(1 − a) + 0.5a if R(t) ≥ 0.5σ(F (t))

∧R(t) ≤ 3σ(F (t))

(17)

where:
p his(t) - probability of application of histogram selection (1 − p his(t) is the

probability of application of deterministic roulette method p det(t));
R(t) = max(F av(t) − Fmin(t), Fmax(t) − F av(t)) ;
F av(t) , Fmin(t), Fmax(t) - average, minimal and maximal values of fitness func-

tion in the population;
σ(F (t)) - standard deviation of fitness function value in the population;
a - a small value to change probability p his(t), in simulations a = 0.05.

4. Simulation results

Results, obtained using the simple genetic algorithm (Kacprzyk, 1996, 1997;
Kacprzyk, Romero and Gomide, 1999), were promising, but the evolutionary
methods were expected to behave better, especially for a bigger number of
control steps. To overcome this problem it is necessary to use the specialized
evolutionary algorithm, which was described in the previous section. Results of

Optimal control via an evolutionary algorithm 541

evolutionary evaluations are presented in this section. Common parameters of
computer simulations conducted are listed below:

• the results presented are minimal/average/maximal values obtained from
100 simulations for each problem, in cases where a smaller number of
simulations were conducted (due to a long time of simulation) this number
is shown;

• the presented values are computed using best solutions obtained during
computations;

• starting populations are generated randomly for the not specialized EA or
in the following manner for the specialized EA: half of the population is
obtained randomly from the set of all possible controls. The second part
is generated randomly but only from the set of controls with the values
of membership functions for the current step greater than 0 (which gives
better starting points than the simple random method);

• the same problem was solved with and without heuristic operators;
• all solved problems were generated randomly;
• the strategy (µ + λ)5 was applied, where µ = 60, λ = 4206;
• for each simulation the same methods of individual selection and ranking

of genetic operators were used.

4.1. The deterministic system

In the conducted simulations three sizes of problems were considered, with
N = 10, 100 and 1000. For all cases |U | = 32, |X | = 20, with appropriate
number of fuzzy constrains for controls and stages for all sizes of the problem.
It would be difficult to present all the parameters of the solved problems in this
paper, so only a short description of them is presented. The transition function
is a 20x32 matrix that describes which state (one of 20) is obtained from the
previous one using one of 32 possible controls. Controls and states are num-
bers from [0, 1], which is chosen for simplicity and every problem can be scaled
to that interval. The problem’s goal function (2) is also a fitness function of
the evolutionary algorithm. Membership functions for imposed constraints are
trapezoidal functions on X and U . For every element of X and U a membership
function value is given. These values, ordered from the smallest to the highest
value of the support, form a vector, which is a fuzzy constraint G(t) or C(t).

In Figs. 3 and 4 graphical comparisons of obtained results are shown (mean
values of best results from 100 simulations). Table 1 contains numerical values
of the results presented in Figs. 3 and 4 and additionally the values of the worst
and the best solutions obtained at definite time moments during 100 simula-
tions. The comparison of the presented minimal, average and maximal values

5The symbol (µ + λ) means that the descendant population is chosen from parents and
offspring.

6Some authors (Arabas, 2001) claim that there is an optimal proportion between λ and µ:
λ/µ = 7, which gives the best results and shortest computations.

542 J. STAŃCZAK

Figure 3. EA with both types of operators: a - N=10, b - N=100, c - N=1000

Figure 4. EA with random operators only: a - N=10, b - N=100, c - N=1000

Optimal control via an evolutionary algorithm 543

Table 1. Numerical results of simulations for the deterministic system

1.
E

A
w

it
h

bo
th

ty
pe

s
of

op
er

at
or

s
It

er
at

io
ns

0
1

5
10

50
10

0
50

0
10

00
50

00
10

00
0

50
00

0
10

00
00

(m
in

)
0.

00
0

0.
16

5
0.

66
7

0.
89

1
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
N

=
10

(a
v)

0.
00

5
0.

68
5

0.
93

1
0.

95
7

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

(m
ax

)
0.

16
5

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
0.

95
9

0.
95

9
(m

in
)

0.
00

0
0.

00
0

0.
01

7
0.

04
6

0.
16

6
0.

16
6

0.
30

2
0.

30
3

0.
32

3
0.

33
7

0.
33

7
0.

33
7

N
=

10
0

(a
v)

0.
00

0
0.

04
6

0.
09

6
0.

13
8

0.
23

4
0.

28
2

0.
33

8
0.

34
7

0.
35

6
0.

35
7

0.
35

9
0.

36
2

(m
ax

)
0.

00
0

0.
17

7
0.

25
8

0.
30

3
0.

33
7

0.
37

6
0.

37
6

0.
37

6
0.

37
6

0.
37

6
0.

37
6

0.
37

6
(m

in
)

0.
00

0
0.

00
4

0.
02

0
0.

02
7

0.
08

8
0.

12
0

0.
16

6
0.

18
2

0.
22

7
0.

25
9

0.
27

9
0.

28
2

N
=

10
00

(a
v)

0.
00

0
0.

03
2

0.
04

8
0.

05
8

0.
12

3
0.

15
3

0.
19

9
0.

21
9

0.
26

9
0.

28
3

0.
30

6
0.

31
9

(m
ax

)
0.

00
0

0.
34

2
0.

34
7

0.
34

7
0.

34
7

0.
34

7
0.

34
7

0.
34

7
0.

34
7

0.
35

3
0.

38
8

0.
39

0
2.

E
A

w
it

h
ra

nd
om

op
er

at
or

s
It

er
at

io
ns

0
1

5
10

50
10

0
50

0
10

00
50

00
10

00
50

00
0

10
00

00
(m

in
)

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

N
=

10
(a

v)
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
5

0.
00

5
0.

01
1

0.
02

1
0.

04
7

0.
05

8
0.

05
8

0.
05

8
(m

ax
)

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
13

4
0.

24
9

0.
65

3
0.

86
5

0.
95

9
0.

95
9

0.
95

9
0.

95
9

(m
in

)
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
N

=
10

0
(a

v)
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
(m

ax
)

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

(m
in

)
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
N

=
10

00
(a

v)
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
(m

ax
)

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

544 J. STAŃCZAK

obtained during genetic computations may be helpful to realize that the results
can be very different in simulations conducted with the same parameters. To
be exact, the parameters of simulations are always different, because the start-
ing population is generated randomly (with or without additional information
about the problem) and is differently distributed in the solution space. It is easy
to notice that better results are obtained with the method using both types of
operators, especially for higher values of N (100, 1000). The method using
random operators and randomly generated starting population gives very poor
results. Poor results are connected in this case with a very low probability of
random generation of any admissible solution and, as it can be seen, it happened
several times only for N = 10.

4.2. The stochastic system

In this section, results obtained for the stochastic system are discussed. Evo-
lutionary computations were conducted for N = 10, N = 100 and N = 1000
(for N = 1000 computations last very long and so only 15 simulations were
performed). Fortunately, in practical cases computations for such a long time
horizon are very rare, but are interesting for comparing the properties of algo-
rithms. Similarly to the previously described case, the system with 20 states and
32 possible deterministic controls with appropriate number of fuzzy constraints
(constructed in the same manner) for them was assumed. The transition ma-
trix for that case contains probabilities of transitions among states, considering
possible controls. Precisely, it is a set of 32 matrices 20x20, depending on ap-
plied controls. In Figs. 5 and 6 results are shown graphically, whereas Table 2
presents their numerical values.

Figure 5. EA with both types of operators: a - N=10, b - N=100, c - N=1000

Optimal control via an evolutionary algorithm 545

Figure 6. EA with random operators only: a - N=10, b - N=100, c - N=1000

Table 2. Numerical results of simulations for the stochastic system
1. EA with both types of operators

Iterations 0 1 5 10 50 100 500 1000 5000 10000

(min) 0.148 0.163 0.184 0.186 0.186 0.186 0.186 0.186 0.186 0.186

N=10 (av) 0.173 0.182 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186

(max) 0.185 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186

(min) 0.016 0.021 0.081 0.090 0.122 0.122 0.122 0.122 0.122 0.122

N=100 (av) 0.036 0.060 0.110 0.119 0.122 0.122 0.122 0.122 0.122 0.122

(max) 0.088 0.118 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122

(min) 0.004 0.005 0.009 0.018 0.069 0.170 0.258 0.259 0.259 0.259

N=1000 (av) 0.006 0.007 0.016 0.023 0.104 0.198 0.259 0.259 0.259 0.259

(max) 0.011 0.011 0.026 0.037 0.130 0.233 0.259 0.259 0.259 0.259

2. EA with random operators

Iterations 0 1 5 10 50 100 500 1000 5000 10000

(min) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.175 0.175

N=10 (av) 0.000 0.005 0.024 0.041 0.100 0.139 0.168 0.170 0.175 0.175

(max) 0.000 0.173 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175

(min) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N=100 (av) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(max) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(min) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N=1000 (av) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(max) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

546 J. STAŃCZAK

The results presented in this section also provide the evidence for the propo-
sition that heuristic operators are very powerful. They make it possible to
obtain good results even for large dimensions of the solved problem or signifi-
cantly speed up evolutionary computations for small values of N . The version
with random operators only, which resembles a bit a simple genetic algorithm
(only simple random operators are used, but other parameters are the same as
in the ”heuristic” version), works rather poorly.

It should be noticed that the stochastic system needs less iterations than the
deterministic one to find good solutions. Unfortunately, though, one iteration
lasts much longer and the overall time of evolutionary computations is much
longer than in the deterministic case.

4.3. The fuzzy system with deterministic control

The EA for solving the problem of optimal fuzzy control for a fuzzy system
with deterministic controls was tested using an object described by a transition
function with 20 fuzzy states and 32 deterministic controls. The dynamics of this
object is described by 32 matrices 20x20, also fuzzy constraints are imposed on
states and controls in a manner similar to the deterministic version. The actual
state of the system is described by a vector of membership function values
consisting of 20 membership values to elements of X . Tests were performed for
N = 10, N = 100 and N = 1000. The results of simulations are presented in
Figs. 7 and 8 and Table 3.

Figure 7. EA with both types of operators: a - N=10, b - N=100, c - N=1000

Optimal control via an evolutionary algorithm 547

Figure 8. EA with random operators only: a - N=10, b - N=100, c - N=1000

Table 3. Numerical results of simulations for the fuzzy system with deterministic
controls

1. EA with both types of operators

Iterations 0 1 5 10 50 100 500 1000 5000 10000 20000

(min) 0.259 0.361 0.382 0.390 0.393 0.393 0.397 0.398 0.398 0.398 0.398

N=10 (av) 0.358 0.374 0.393 0.396 0.400 0.401 0.401 0.402 0.402 0.402 0.402

(max) 0.396 0.396 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.404 0.404

(min) 0.029 0.032 0.061 0.064 0.236 0.363 0.363 0.363 0.368 0.368 0.368

N=100 (av) 0.055 0.065 0.106 0.145 0.340 0.365 0.368 0.369 0.369 0.369 0.369

(max) 0.110 0.124 0.225 0.286 0.370 0.370 0.370 0.370 0.370 0.370 0.370

(min) 0.008 0.008 0.020 0.029 0.095 0.166 0.305 0.305 0.329 0.329 0.329

N=1000 (av) 0.008 0.009 0.023 0.033 0.116 0.191 0.316 0.317 0.329 0.329 0.329

(max) 0.009 0.010 0.026 0.037 0.137 0.216 0.328 0.328 0.328 0.328 0.328

2. EA with random operators

Iterations 0 1 5 10 50 100 500 1000 5000 10000 20000

(min) 0.000 0.000 0.000 0.368 0.392 0.395 0.397 0.397 0.398 0.398 0.398

N=10 (av) 0.051 0.157 0.356 0.392 0.400 0.401 0.402 0.402 0.402 0.402 0.402

(max) 0.375 0.384 0.396 0.402 0.403 0.403 0.403 0.403 0.403 0.403 0.403

(min) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N=100 (av) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(max) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(min) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N=1000 (av) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(max) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

548 J. STAŃCZAK

The evolutionary algorithm with heuristic operators works much better than
the ”blind” method also in this case. For N = 100 and N = 1000 the traditional
version of EA with only ”blind” operators cannot find any acceptable solution
with µD > 0. The properties of evolutionary computations displayed in that
case are very similar to those shown for the stochastic case, but computations
last a little bit longer. For N = 1000 only two simulations were conducted due
to the long time of computations, but similarly like in the stochastic task this
case was considered only for testing purposes. In practical applications it is
easier to split the problem into shorter time periods and compute the solutions
separately, beginning from the state obtained from the previous simulation.

4.4. The fuzzy system with fuzzy control

The case of fuzzy system with fuzzy controls is quite different from all the
systems described before. The encoding method of the population member
is quite complicated - a matrix of Nx|U| real values from the interval [0, 1].
The investigated control system was similar to the ones previously described:
|U| = 32, |X | = 20 with fuzzy constraints imposed on states and controls and
the transition matrix 32x20x20 (32 matrices 20x20). This situation is more
complicated than for the deterministic control and computations, especially for
N = 1000, last very long.

Fortunately, the best solutions (note that there is, of course, no certainty
that solutions found are optimal) are found after not very many iterations,
especially in comparison with the deterministic case. But the overall time of
computations is about 1000 times longer than in the deterministic case, so only
two test runs have been performed for N = 1000. The simulation results are
presented in Figs. 9 and 10 and Table 4.

Figure 9. EA with both types of operators: a - N=10, b - N=100, c - N=1000

Optimal control via an evolutionary algorithm 549

Figure 10. EA with random operators only: a - N=10, b - N=100, c - N=1000

Table 4. Numerical results of simulations for fuzzy system with fuzzy controls

1. EA with both types of operators

Iterations 0 1 2 5 10 50 100 500 1000 2000 5000

(min) 0.419 0.421 0.425 0.431 0.449 0.498 0.516 0.521 0.521 0.521 0.521

N=10 (av) 0.439 0.443 0.449 0.464 0.485 0.519 0.520 0.521 0.521 0.521 0.521

(max) 0.474 0.474 0.476 0.508 0.521 0.521 0.521 0.521 0.521 0.521 0.521

(min) 0.364 0.375 0.377 0.391 0.399 0.399 0.448 0.502 0.502 0.506 0.506

N=100 (av) 0.378 0.400 0.412 0.418 0.427 0.465 0.486 0.510 0.511 0.513 0.513

(max) 0.408 0.428 0.454 0.454 0.454 0.486 0.512 0.516 0.516 0.516 0.516

(min) 0.341 0.345 0.358 0.375 0.400 0.440 0.463 0.500 0.500 0.500 0.500

N=1000 (av) 0.364 0.373 0.379 0.388 0.408 0.444 0.469 0.500 0.500 0.500 0.500

(max) 0.388 0.400 0.400 0.400 0.416 0.448 0.475 0.500 0.500 0.500 0.500

2. EA with random operators

Iterations 0 1 2 5 10 50 100 500 1000 2000 5000

(min) 0.411 0.413 0.421 0.425 0.431 0.466 0.513 0.521 0.521 0.521 0.521

N=10 (av) 0.443 0.446 0.449 0.455 0.461 0.505 0.521 0.521 0.521 0.521 0.521

(max) 0.480 0.486 0.486 0.486 0.498 0.521 0.521 0.521 0.521 0.521 0.521

(min) 0.345 0.345 0.357 0.380 0.382 0.385 0.402 0.481 0.485 0.497 0.506

N=100 (av) 0.374 0.378 0.383 0.397 0.402 0.424 0.439 0.496 0.503 0.505 0.506

(max) 0.412 0.412 0.412 0.425 0.425 0.455 0.468 0.506 0.506 0.506 0.508

(min) 0.088 0.088 0.088 0.088 0.088 0.316 0.371 0.416 0.416 0.416 0.430

N=1000 (av) 0.225 0.225 0.225 0.225 0.227 0.364 0.400 0.423 0.423 0.423 0.436

(max) 0.361 0.361 0.361 0.361 0.366 0.412 0.430 0.430 0.430 0.430 0.442

550 J. STAŃCZAK

In this case the difference between EA with and without heuristic operators
is not so pronounced as in the previously described results, but the superiority
of EA with heuristic operators is also unquestionable. This situation can be
explained by the fact that in the case now considered it is quite easy to obtain
any admissible solution (with µD > 0) and even simple operators can improve
such solution. The most difficult thing is to move the solution from 0. If it
happens, it is possible to improve the solution using simple genetic operators,
but it takes more time to acquire similar results as with heuristic operators. For
deterministic controls it is very difficult to obtain any solution with µD > 0, so
only heuristic operators can deal with this problem and then efficiently improve
the solution (Table 3).

5. Conclusions

Optimal multistage fuzzy control is a promising but not very often used tool
for solving many difficult problems in the domain of automatics and decision
making. Optimal fuzzy control is rather a difficult method, requiring heavy
computations to find desired controls. Thus, the use of specialized evolutionary
algorithms, described in this paper, can make it significantly easier to practically
apply this method.

The computational results, presented in the previous section, show that there
are computational tasks, where utilization of only random operators, similar to
the widely used mutation and crossover, is useless. Only the method with
specialized, knowledge-based operators, together with the simple random ones,
give satisfactory results. Thus, practical application of evolutionary algorithms
should involve a high level of knowledge about the problem. The more an EA
knows about the solved problem, the better it works. The big advantage of
evolutionary algorithms lies the fact that they can be easily developed from the
completely ”blind” to problem specific without changing the manner in which
they work.

There are also different types of optimal multistage fuzzy control tasks
(Kacprzyk, 1997 and Stańczak, 2003), for instance with infinite or fuzzy ter-
mination time, which can be solved using similar EA based methods and which
will constitute the object of research in the nearest future.

References

Arabas, J. (2001) Wyk�lady z algorytmów ewolucyjnych. Wydawnictwa Naukowo-
Techniczne.

Baldwin, J.F. and Pilsworth, B.W. (1982) Dynamic programming for fuzzy
systems with fuzzy environment. Journal of Mathematical Analysis and
Applications 85, 1-23.

Bellman, R.E. and Zadeh, L.A. (1970) Decision making in a fuzzy envi-
ronment. Management Science 17, 141-164.

Optimal control via an evolutionary algorithm 551

Czoga�la, E. and Pedrycz, W. (1985) Elementy i metody teorii zbiórw rozmy-
tych. PWN, Warszawa.

Esogbue, A.O., Theologidu, M. and Guo, K. (1992) On the application
of fuzzy sets theory to the optimal flood control arising in water resources
systems. Fuzzy Sets and Systems 48, 155-172.

Francelin, R.A. and Gomide, F.A.C. (1993) A neural network for fuzzy
decision making problems. Proceedings of Second IEEE International
Conference on Fuzzy Systems - FUZZ-IEEE’93, San Francisco, 655-660.

Kacprzyk, J. (1978) A branch and bound algorithm for the multistage control
of a nonfuzzy system in a fuzzy environment. Control and Cybernetics 7,
51-64.

Kacprzyk, J. (1984) Design of socio-economic regional development policies
via a fuzzy decision making model. Large Scale Systems Theory and Ap-
plications - Proceedings of Third IFAC/IFORS Symposium. Pergamon
Press, Oxford, 228-232.

Kacprzyk, J. (1993) Interpolative reasoning in optimal fuzzy control. Pro-
ceedings of Second Conference on Fuzzy Systems - FUZZ-IEEE’93, II, San
Francisco, USA, 1259-1263.

Kacprzyk, J. (1996) Multistage control under fuzziness using genetic algo-
rithms. Control and Cybernetics 25, 1181-1215.

Kacprzyk, J. (1997) Multistage Fuzzy Control. John Wiley & Sons.
Kacprzyk, J. (1998) Multistage control of a stochastic system in a fuzzy en-

vironment using a genetic algorithm. International Journal of Intelligent
Systems 13, 1011-1023.

Kacprzyk, J.R.A., Romero, R.A. and Gomide, F.A.C. (1999) Involving
objective and subjective aspects in multistage decision making and con-
trol under fuzziness: dynamic programming and neural networks. Inter-
national Journal of Intelligent Systems 14, 79-104.

Mulawka, J. and Stańczak, J. (1999) Genetic algorithms with adaptive
probabilities of operators selection. Proceedings of ICCIMA’99, New Delhi,
India, 464-468.

Piegat, A. (1999) Modelowanie i sterowanie rozmyte (Fuzzy modelling and
control ; in Polish). Akademicka Oficyna Wydawnicza EXIT, Warszawa.

Sousa, J. M. and Kaymak, U. (2001) Model predictive control using fuzzy
decision functions. IEEE Transactions on Systems, Man and Cybernetics
- Part B: Cybernetics 31(1), 54-65.

Stańczak, J. (1999) Rozwój koncepcji i algorytmów dla samodoskonala̧cych
siȩ systemów ewolucyjnych. (The development of the concept and al-
gorithms for the self-improving evolutionary systems; in Polish). Ph.D.
Dissertation, Warsaw University of Technology.

Stańczak, J. (2000) Algorytm ewolucyjny z populacja̧ “inteligentnych” os-
obników (An evolutionary algorithm with a population of “intelligent”
individuals; in Polish). Materia�ly IV Krajowej Konferencji Algorytmy
Ewolucyjne i Optymalizacja Globalna, La̧dek Zdrój.

552 J. STAŃCZAK

Stańczak, J. (2001) Evolutionary algorithm with heuristic operators in the
problem of optimal fuzzy control. Materia�ly V Krajowej Konferencji Al-
gorytmy Ewolucyjne i Optymalizacja Globalna, Jastrzȩbia Góra, 216-222.

Stańczak, J. (2003) Biologically inspired methods for control of evolutionary
algorithms. Control and Cybernetics 32, 411-433.

Stańczak, J. (2003) Evolutionary algorithm in the problem of optimal fuzzy
control of deterministic system with indirectly given and infinite control
horizon. Materia�ly VI Krajowej Konferencji Algorytmy Ewolucyjne i Op-
tymalizacja Globalna, �Lagów, 213-222.

Su, C.C. and Hsu, Y.Y. (1991) Fuzzy dynamic programming: An applica-
tion to unit commitment. IEEE Transactions on Power Systems PS-6,
1231-1237.

Zadeh, L.A. (1965) Fuzzy sets. Information and Control 8, 338-353.

