Raport Badawczy Research Report

RB/43/2016

Content-based image retrieval tools and techniques

T. Jaworska

Instytut Badań Systemowych Polska Akademia Nauk

Systems Research Institute Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Zakładu zgłaszający pracę: Prof. dr hab. inż. Janusz Kacprzyk

Warszawa 2016

Tatiana Jaworska

Content-Based Image Retrieval Tools and Techniques

In the beginning was an image.

To my mother who inspired me to develop intellectually

]

Contents

1	Int	roduction	10
	1.1	From Retrieval to CBIR	10
	1.2	A Need for an Effective and Efficient Search Engine and GUI	11
	1.3	Outline of the Book	13
2	ть	Concept of the Content Deced Image Detuisuel	15
2		e Concept of the Content-Based Image Retrieval Introduction	
		Main Problems	
		Criteria for the Classification of CBIR Systems	
		The Concept of the Hybrid Semantic System (HSS)	
3	Ime	age Representations	26
5		Introduction. Forms of Image Representation	
		Visual Feature Descriptors	
	3.3	Colour Information	
	3.3	Texture Information	
	3.3	1 The Texture Approach to the Hybrid Semantic System	41
	3.4	Edge Detection	
		.1 Gradient Methods	
	3.4	.2 Boundary Tracking by Active Contours	46
	3.4		
	3.5	Shape Information	50
	3.5	.1 The Shape Approach to the Hybrid Semantic System	51
	3.6	Local Feature Descriptors	53
	3.6	.1 Scale-Invariant Feature Transform (SIFT)	54
	3.6	.2 RootSIFT	56
	3.6		
	3.6		
	3.6	.5 Vectors of Locally Aggregated Descriptors (VLAD)	59
	3.6	.6. Features from accelerated segment test (FAST)	59

	3.6.7	Oriented FAST and Rotated BRIEF (ORB)	60
	3.7 Sta	ndardization Efforts - MPEG-7	
	3.8 Glo	bal Versus Local Comparison of Features	62
		m Features to Signature	
4	Object	Detection	67
		oduction	
		ject Segmentation Based on Colour	
	4.2.1	K-means Algorithm	
	4.2.2	Fuzzy C-means Algorithm	
	4.2.3	Mean Shift	
	4.2.4	The Colour Approach to the Hybrid Semantic System	
		ject Segmentation Based on Texture	
		ject Segmentation Based on Shape	
		ject Segmentation Based on Local Features	
		age Data Representation for the Hybrid Semantic System	
	4.0 1112	age Data Representation for the rivoriti semantic system	
5	Ohiect	Recognition	81
U		oduction	
		ject Classification	
	5.2.1	Object Similarity/Dissimilarity Metrics	
	5.2.2	Decision Trees	
	5.2.3	Naïve Bayes (NB) classifier	
	5.2.4	Support Vector Machine (SVM)	
	5.2.5	Fuzzy Rule-Based Classifier (FRBC)	
		ject Classification for the Hybrid Semantic System	
	5.3.1	Similarity to pattern	
	5.3.1	Decision Tree – Example of Implementation	91
	5.3.2		
		FRBC – Example of Implementation nvolutional Neural Networks	
		atial Relationship of Graphical Objects for the Hybrid Semantic	
	System		99
6	Signat	ure Similarity	102
		oduction	
	6.2 Hai	usdorff Distance	103
		nature Quadratic Form Distance	
		mmetrical Signature Similarity in the Hybrid Semantic System	
		her Signature Similarities	
	5.0 Ou		
7	Data B	Base	111
		oduction	
	7.2 Ber	nchmarking CBIR systems	112
		age Collections	
		e Inner Structure of the Hybrid Semantic System Database	

8	G	raphical User Interface	120
	8.1	Introduction	
	8.2	Query Concept Overview	121
	8.3	User Designed Query (UDQ) for the Hybrid Semantic System	124
9	S	earch Engines – Retrieval Techniques	127
	9.1	Introduction	
	9.2	Visualization and Browsing of Image Databases	128
	9.3	Information Retrieval Based on Low-level Features	132
	9.	3.1 Scale-Invariant Feature Transform SIFT	134
	9.4	Object Ontology to Define High-level Concepts	135
	9.5	Bag of Visual Words (BoVW)	137
	9.6	Relevance Feedback (RF)	139
	9.7	Semantic Template	
	9.8	WWW Image Retrieval	
	9.9	Hybrid Semantic Strategy	
	9.	9.1 Retrieval Results	147
	9.10	Deep Learning (DL)	154
10	A	glimpse at where we can find CBIR	156
	10.1	Introduction	156
	10.2	Application Areas of CBIR	156
	10.3	The CBIR User	161
11	C	onclusions	163
	11.1	Final Remarks	163
	11.2	Future Challenges and Open Problems	163
R	eferen	ices	167
In	dex		184
Li	st of l	Figures	187

10 A glimpse at where we can find CBIR

10.1 Introduction

CBIR in different forms can be found wherever image collections exist and the user needs to find information. Easy availability of all kinds of mobiles, laptops and PC computers has been turning us more and more into an "image" society. CBIR systems in very professional applications, e.g., forensic, are becoming increasingly popular, especially thanks to the Google image search engine offered to all users.

Therefore, these systems have recently been one of the most vivid research areas in the field of computer vision. The abundance of types of images results in constructing adequate systems to process and retrieve them effectively. Additionally, at present images and videos are globally used on TV and You Tube.

10.2 Application Areas of CBIR

Application areas of CBIR are varied and virtually unlimited, the most important being:

- Geographic Information Systems (GIS) These are computer-based tools which allow us to link databases and digital maps to create a dynamic, spatial analysis. They provide applications to visualize, query, and overlay databases in ways not possible with traditional spreadsheets. These abilities distinguish GIS from other information systems, and make them valuable to all using them for predicting outcomes, planning strategies or preventing damages.
- Weather forecasting Multimodal (from infrared through visual up to the ultraviolet wave length) meteorological satellite images are applied to predict future temperatures, relative humidity, rainfall, wind speed and atmospheric pressure [250]. Additionally, nowadays, there are several free web-based

services that provide environmental information in the form of maps showing the extent, type and location of pollution usually encoded numerically or in colour [251]. These environmental data analyses and information forecasting relate to health issues and directly affect a variety of everyday activities.

- Film and video archives Categorization and indexing of videos mainly on TV news, for instance, sports news. In case of films the user needs to recognize standard video units, such as shots and scenes [252].
- Entertainment We can include holiday photo albums, home videos and scenes from favourite TV programmes and films. This area offers a great market for developing CBIR technology products. The new trend in high-tech consumer imagery is 360° still photography and video used in virtual reality (VR). In the nearest future cloud technologies will offer popular tools enabling us to create our own CBIR system instead of a family album.
- Crime prevention and investigation connected very closely with face recognition because many security agencies maintain large archives of visual evidence, including suspects' mug shots, fingerprints, etc. When a new serious crime is committed, a lot of new evidence is added to the records of crime archives. Later, they are searched by many security services around the world. Additionally, when an arrest warrant is issued, all the passport control services check video records to retrieve the suspect's face.
- Electronic retailing CBIR systems help search for clothes in electronic retailing applications by using colour and texture matching techniques. They are applied to electronic retailing, and supply chains of e-commerce, such as design synthesis, predicting customer requirements, inventory management, etc. Moreover, these systems simplify business-to-consumer e-commerce by computer aided sales [253].
- Identification
 - Biometric authentication Modern image analysis systems enhance an observer's ability to make measurements and run a statistical analysis of people's physical and behavioural characteristics from a large or complex set of images, by improving accuracy, objectivity, or speed [254]. Computational technologies accelerate and automate the process of people identification based on large amounts of high-information content biomedical images [255] or video scenes.
 - Face recognition is a process of identifying or verifying a person from a digital image or a video frame. Recognition systems are being very intensively developed and installed at all transportation hubs. Among the different biometric techniques, face recognition is coming to the fore as the most reliable and efficient [205].
- Medicine [256]
 - Medical diagnosis Most kinds of modern diagnoses rely on imaging techniques, such as: X-ray radiography, magnetic resonance imaging (MRI), medical ultrasonography, endoscopy, elastography, tactile imaging, thermography, medical photography and nuclear medicine functional

imaging techniques, etc. [257]. The practitioners are generously supported by image processing equipment which helps in measuring, region of interest (ROI) determination, boundary finding, and so on [258]. Most imaging techniques, although non-invasive, offer more efficient diagnoses to the patient and might save their time, money or even life.

 Patient documentation - There are strict rules of confidentiality for such sensitive information. The images should be kept in special DBs, whereas visual information for scientific use should be provided only anonymously.

Telemedicine - is the use of telecommunication and information technologies to help eliminate distance barriers between the patient and the doctor. It improves access to medical services that are not consistently available in distant communities. Telemedicine is also used to save lives in critical care and emergency situations because it allows us to transmit medical imaging and health data between the patient at home and a medical centre.

Advanced diagnostic methods supported by distributed client/server applications with tele-medical devices permit in-home care support.

- Biological applications Here there are two separate aspects: (i) CBIR systems in which matching methods are inspired by biological achievements, for instance, gene or genetic algorithms [259], and (ii) retrieval biological images like microscopic images or different DBs supporting bio-laboratories in dedicated CBIR systems for particular kinds of images, for example, US patent No. 7 502 519 covering methods of image pattern recognition using vector quantization (VQ) [260] or a CBIR system applied in the collection of biological specimen images [261]. In the latter situation success is possible only in the case of close cooperation between the engineering and biological communities.
- Journalism and advertising Journalists and news agencies maintain archives with millions of images and video shots to illustrate their articles in newspapers and magazines. Keywords indexing these sets are extremely expensive and almost impossible to use without some degree of automatic assistance [262]. Advertising campaigns rely heavily on still and moving imagery to promote products or services. The growth of commercial stock photograph libraries, reflects the profitable nature of the industry.
- Remote sensing offers services including making measurements of the earth's surface using sensors on airplanes or satellites. These sensors collect multimodal images and provide specialized tools for manipulating, analysing, and visualizing such images. Remote sensed imagery is integrated within a GIS for different purposes, including, among others, geological and agricultural ones [263].
- Scientific database Visualization and image analysis are becoming more and more important methods for the scientists. Applications need to be adapted to the salient features of particular images, for example, in astronomy where many hours of pre-recorded sky surveys are automatically searched for interesting objects (SOM), images are blurred and mostly in the grey scale. [226]. From the macro scale to the molecular structure, all the combinations of the state-of-

the-art optical techniques are used. Additionally, in the micro scale the complementing method for visualization is the electron diffraction which opens new possibilities for structural research in chemistry and material science.

- Architectural real estate and engineering design Generally, design applies numerous 2D and 3D modelling techniques and uses different visualizations for the client. Sometimes, instead of preparing a stereoscopic presentation, it is easier to show some images, especially for finished projects, including interior and exterior shots of buildings. When the client is looking for their dream real estate, an agent rarely has a stereovision model to hand, especially that describing the shape of a building and the subtle aspects of architecture need to be projected at least in a sketchy way. However, in the designing process Computer Aided Design (CAD) is used extensively.
- Stereovision Nowadays, CBIR systems are being constructed in order to recognize 3D objects. Modern applications use 3D models more frequently. Two cameras building stereo-pairs are being substituted by a plenoptic camera (SPC) which consists of an array of micro lenses. Thanks to multiple image overlap with proper disparity we can estimate the distance and depth of refocused images. Applying the SPC and the light field is an alternative to the traditional depth map acquisition by disparity analysis [264], [265].
- Art galleries and museum management Computers have become and will continue to be developed as the primary medium for learning and education, and, last but not least, for archiving all historical and cultural materials in digital form in the years to come.

The importance of CBIR technology in the aiding of preservation and analysis of our history in digital media was appreciated by the journal *IEEE Transactions on Image Processing* which published a special issue to discuss the state-of-the-art in image processing applications for cultural heritage [266]. The main focus of this issue is on modelling, retrieval, and authentication of cultural legacy images. Additionally, an introduction of statistical methods can sometime capture subtle characteristics of art which can be easily overlooked by a human observer [179], [267], [268].

Archaeologists also rely heavily on images, for example, pottery pattern data bases are being created for different time periods.

• Digital shopping - There are three types of support in shopping: one type is product catalogues which are used to convey information in e-mail-order shopping. It is becoming a more and more popular shopping method in the era of the Internet boom. The choice is made by selecting the product name, so image content retrieval is less exploited.

The second type is barcode readers (as an application on a mobile) which aid the buyer in collecting his/her order from home or from a shop. When, for instance, impaired or handicapped individuals want to do bigger shopping, they have a serious problem because of the weight of the goods, in which case they can collect the barcodes of the products they have at home to reorder them or walk around the shop, bring each product and eventually read its barcode and send that information to the client service point. Then, after the payment is made, the purchased goods are packed and sent to the client's address. The third type of shopping support is taking a photograph of products on shop shelves or fridge shelves to identify the shortage of a product, and send the list of missing products to the owner.

• Education and training - Increased availability of powerful computers gives greater opportunity for students to work with dynamic models and simulations [269]. From the teacher's point of view, the plethora of good teaching materials to illustrate key points in a lecture could reduce preparation time and improve teaching quality. The accessibility of static images or video collections helps to illustrate the presented subject and to support theoretical lessons, seminar problems, practical seminars, as well as to evaluate students' knowledge and skills.

Additionally, remote learning, characterised by the physical distance between the teacher and the student, is becoming increasingly popular. Moreover, given the explosion of modern mobile devices, the e-learning process can be moved away from standard locations. This fact is closely connected with the researches on mobile multimodal user's interfaces [270].

- Fabric, fashion and interior design Fashion and interior designers need to work with different materials, especially with a collection of fabrics with a variety of colours and textures. The ability of matching the proper material is very useful for the design process.
- Intellectual property Trademark image registration, as well as image copyright protection are really vital areas, given the deluge of unauthorized copies of such images, especially when they have been altered in some way. Moreover, during the trademark registration the new mark image is compared with the existing ones to avoid repetition or any confusion due to similarities to other trademarks.
- Image archiving and management For non-professional use an automatic image downloader for individual photo collections is applied and it can store each batch of shots in a separate folder, labelled with the date on which the files have been saved. It is a natural way to catalogue pictures for a camera but very inconvenient for the user because you have to remember when pictures were taken. A better option then is adding keywords and times to the file name. Some applications allow photographers to tag image files with keywords that represent favourite people, places, or events. This makes it easy to find all the pictures you have taken. But the best method in such a situation is an automatic retrieval system.
- Surveillance is the monitoring of activities, mainly by observation from a distance by means of electronic equipment (especially by CCTV cameras), or interception of electronically transmitted information. Biometric surveillance is any technology that measures and analyses human physical or behavioural characteristics for authentication, identification, or screening purposes. Facial recognition is the use of a person's unique facial features to identify them, usually from a video footage. Many international and national security services are intensively funding research into facial surveillance systems effective, even from the distances up to 500 ft.

Another form of behavioural biometrics is an analysis of people's emotional state based on their facial expressions, how fast they are talking, the tone and pitch of their voice, their posture, and other behavioural traits. This might be used, for instance, to see if any individual's behaviour is suspicious (looking around furtively, 'tense' or 'angry' facial expressions, waving arms, etc.).

- The military military applications of imaging technology are probably the earliest and best developed but generally kept in secret. Surveillance, recognition of enemy's weapons, identification and designation of targets by means of satellites, drones or micro-aerial vehicles, tracking missile trajectories are only the tip of the iceberg of a whole spectrum of military tools already in use and just developed.
- Mobile multimodal user's interfaces Emerging ubiquitous mobile devices support access to the Internet with its Web applications nearly everywhere [271]. All the devices use graphical user's interfaces (GUI) which are mainly based on trigger-action rules. The next generation of GUIs needs to be more user-friendly, adaptive, effective and efficient. The possible procedure could be as follows: the user submits a picture taken with a mobile phone camera and tagged with the user's GPS location that is to be used to perform a search for explanatory information [272]. For this purpose, the GUI can be considered in terms of three elements: the user (the tasks, the preferences, the emotional state, etc.), the devices (their interaction resources, connectivity, multimedia support, etc.), the environment (noise, light, temperature, and so on) [270].
- Tourist information closely connected with mobile devices because the scenario is similar to the above-mentioned application. The important point is the fact that image DBs offered for the user need to contain information about landmarks, monuments, tourist services, etc [273].

10.3 The CBIR User

In contrast with many CBIR systems already described or just being developed, the CBIR users and their needs have so far been subject to little systematic analysis. Most reported research has focused either on specific collections or on specific user types or professions, for example, journalists or art historians.

Generally, we can identify professional users and the inexperienced ones whose needs are quite disparate. The needs of the former are indirectly presented in the previous section in connection with particular domains and, as a matter of fact, their requirements are strictly adapted to the specificity of professional images. The inexperienced users' awareness of image retrieval, especially with regard to the most popular field, such as entertainment or tourism, has dramatically increased through the use of video games, Internet browsers, Google's image search engine, etc. which have all caused CBIR research to concentrate on semantic recovery. In Chapter 8 and sect. 7.2 we signalised the approach of CBIR designers to the users who are treated as an objective rather than subjective.

Nowadays, the most urgent issue is to understand the way in which the user of the system searches for images in order to design the strategy of developing modern systems. The typical user is reluctant to operate a CBIR system, unless the interaction is simple and intuitive. Hence, a user-friendly and simple interface is crucial for the system. It is an apparent paradox because the human brain functions well in a complex environment which provides it with a spectrum of multimodal clues. So far, entities that comprise artificial intelligence cannot function properly in such an environment. Consequently, the user's attitude causes a change in research perspective in terms of CBIR from computer vision, image processing and pattern recognition to other disciplines, such as cognitive science or psychology.

For instance, Markkula and Sormumenn [274] divided journalist requests into four categories:

- particular objects (people's names, buildings or other places);
- background information on the image (film fragments, television programmes and documentaries, or specific news events);
- some abstract information from photographs;
- well-known photographs.

The authors recommended a kind of hybrid system which, on the one hand, offers a classical form as a user interface permiting browsing DB thematically, and on the other hand, it supports traditional concept-based indexing and classification methods.

References

- Y. Yao, Y. Zeng, N. Zhong and X. Huang, "Knowledge Retrieval," in *Proceedings of the* 2007 IEEE/WIC/ACM International Conference on Web Intelligence, Silicon Valley, USA, 2007.
- "http archive," 2016. [Online]. Available: http://httparchive.org/trends.php?s= Top1000&minlabel=Jan+20+2011&maxlabel=Oct+15+2014#bytesImg&reqImg.
- [3] S. Nandagopalan, B. S. Adiga and N. Deepak, "A Universal Model for Content-Based Image Retrieval," World Academy of Science, Engineering and Technology, vol. 46, pp. 644-647, 2008.
- [4] M. Yasmin, S. Mohsin, I. Irum and M. Sharif, "Content Based Image Retrieval by Shape, Color and Relevance Feedback," *Life Science Journal*, vol. 10, no. 4s, pp. 593-598, 2013.
- [5] M. Rehman, M. Iqbal, M. Sharif and M. Raza, "Content Based Image Retrieval: Survey," World Applied Sciences Journal, vol. 19, no. 3, pp. 404-412, 2012.
- [6] Y. J. Lee, I. C. Zitnick and M. F. Cohen, "ShadowDraw: Real-time User Guidance for Freehand Drawing.," ACM Transactions on Graphics (TOG),, vol. 30, no. 4, pp. 1-27, July 2011.
- [7] T. M. Lehmann, M. O. Güld, C. Thies, B. Fischer, D. Keysers, K. Spitzer, H. Ney, M. Kohnen, H. Schubert and B. B. Wein, "Content-Based Image Retrieval in Medical Applications," *Methods on Imformatic in Medicine*, vol. 43, pp. 354-361, 2004.
- [8] S. Antani, J. Cheng, J. Long, R. L. Long and G. R. Thoma, "Medical Validation and CBIR of Spine X-ray Images over the Internet," in *Proceedings of IS&T/SPIE Electronic Imaging. Internet Imaging VII*, San Jose, C, 2006.
- [9] R. K. Srihari, "Automatic Indexing and Content-Based Retrieval of Captioned Images," *IEEE Computer*, vol. 28, no. 9, pp. 49-56, September 1995.
- [10] V. Khanaa, M. Rajani, K. Ashok and A. Raj, "Efficient Use of Semantic Annotation in Content Based Image Retrieval (CBIR)," *International Journal of Computer Science Issues*, vol. 9, no. 2, pp. 273-279, March 2012.
- [11] C. Carson, S. Belongie, H. Greenspan and J. Malik, "Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying," *IEEE Transaction on Pattern Analysis and Machine Intellignece*, vol. 24, no. 8, pp. 1026-1038, Aug. 2002.
- [12] Y. Rubner, C. Tomasi and L. J. Guibas, "The Earth Mover's Distance as a Metric for Image Retrieval," *International Journal of Computer Vision*, vol. 40, no. 2, pp. 99-121, 2000.
- [13] B. Xiao, X. Gao, D. Tao i X. Li, "Recognition of Sketches in Photos," w Multimedia Analysis, Processing and Communications, tom 346, W. Lin, D. Tao, J. Kacprzyk, Z. Li, E. Izquierdo i H. Wang, Redaktorzy, Berlin, Springer-Verlag, 2011, pp. 239-262.
- [14] T. Kato, "Database architecture for content-based image retrieval," in *Proceedings of SPIE Image Storage and Retrieval System*, San Jose, CA, USA, 1992, April,.
- [15] V. N. Gudivada and V. V. Raghavan, "Content-Based Image Retrieval Systems," *IEEE Computer*, vol. 28, no. 9, pp. 18-22, Sep. 1995.

- [16] M. Flickner, H. Sawhney, W. Niblack , J. Ashley, Q. Huang, B. Dom, M. Gorkani , J. Hafner, D. Lee, D. Petkovic, D. Steele and P. Yanker , "Query by Image and Video Content: The QBIC System," *IEEE Computer*, vol. 28, no. 9, pp. 23-32, September 1995.
- [17] V. E. Ogle and M. Stonebraker, "CHABOT: Retrieval from a Relational Database of Images," *IEEE Computer*, vol. 28, no. 9, pp. 40-48, September 1995.
- [18] R. Mehrotra and J. E. Gary, "Similar-Shape Retrieval in Shape Data Management," *IEEE Computer*, vol. 28, no. 9, pp. 57-62, Sep. 1995.
- [19] M. Nakazato i T. S. Huang, "3D MARS: Immersive Virtual Reality for Content-Based Image Retrieval," w *IEEE International Conference on Multimedia and Expo*, Tokyo, August 22-25, 2001.
- [20] S. Saurin, "Saurin Shah Portfolio," 2014. [Online]. Available: http://www.shahsaurin.com/projects_demo/threejs-webgl/.
- [21] G. Chang, M. J. Healey, J. A. M. McHugh i J. T. L. Wang, Mining the World Wide Web: An Information Search Approach., Norwell: Kluwer Academic, 2001.
- [22] T. Jaworska, "Object extraction as a basic process for content-based image retrieval (CBIR) system." Opto-Electronics Review, tom 15, nr 4, pp. 184-195, Dec. 2007.
- [23] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Internationa Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
- [24] D. G. Lowe, "Object Recognition from local scale-invariant features," in International Conferences on Computer Vision, Corfu, Greece, 1999.
- [25] C. Leininger, "Fusion d'images : des outils au service des neurochirurgiens," June 2006. [Online]. Available: https://interstices.info/jcms/c_16870/fusion-d-images-des-outils-auservice-des-neurochirurgiens.
- [26] M. R. Azimi-Sadjadi, J. Salazar and S. Srinivasan, "An Adaptable Image Retrieval System With Relevance Feedback Using Kernel Machines and Selective Sampling," *IEEE Transactions on Image Processing*, vol. 18, no. 7, p. 1645 1659, 2009.
- [27] J. Urban, J. M. Jose and C. J. van Rijsbergen, "An adaptive technique for content-based image retrieval," *Multimedial Tools Applied*, no. 31, pp. 1-28, July 2006.
- [28] X. S. Zhou and T. S. Huang, "Relevance Feedback in Image Retrieval: A Comprehensive Review," ACM Multimedia Systems, vol. 8, no. 6, pp. 536-544, 2003.
- [29] L. Zhang, L. Wang and W. Lin, "Conjunctive patches subspace learning with side information for collaborative image retrieval," *IEEE Transactions on Image Processing*, vol. 21, no. 8, pp. 3707-3720, 2012.
- [30] M. M. Rahman, S. K. Antani and G. R. Thoma, "A query expansion framework in image retrieval domain based on local and global analysis," *Information Processing and Management*, vol. 47, pp. 676-691, 2011.
- [31] L. Zhang, L. Wang and W. Lin, "Generalized biased discriminant analysis for contentbased image retrieval," *IEEE Transactions on System, Man, Cybernetics, Part B - Cybernetics*, vol. 42, no. 1, pp. 282-290, 2012.
- [32] L. Zhang, L. Wang and W. Lin, "Semi-supervised biased maximum margin analysis for interactive image retrieval," *IEEE Transactions on Image Processing*, vol. 21, no. 4, pp. 2294-2308, 2012.
- [33] L. Wang, W. Lin and L. Zhang, "Geometric Optimum Experimental Design for Collaborative Image Retrieval," *IEEE Transactions on Circuits and System for Video Technology*, vol. 24, pp. 346-359, 2014.
- [34] F. Long, H. Zhang and D. D. Feng, "Fundamentals of content-based image retrieval," in Multimedia Information Retrieval and Management Technological Fundamentals and Applications., New York, Sprainger-Verlag, 2003, pp. 1-26.

- [35] S. Gould and X. He, "Scene Understanding by labellilng Pixels," Communications of the ACM, vol. 57, no. 11, pp. 68-77, November 2014.
- [36] J. Yao, S. Fidler and R. Urtasun, "Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation," in *The 26th IEEE Conference on Computer Vision and Pattern Recognition*, Providence, Rhode Island, 2012.
- [37] L.-J. Li, H. Su, E. P. Xing and L. Fei-Fei, "Object Bank: A High-Level Image Representation for Scene Classification and Semantic Feature Sparsification," in 24th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2010.
- [38] D. M. Wells, A. P. French, A. Naeem, O. Ishaq and R. Traini, "Recovering the dynamics of root growth and development using novel image acquisition and analysis methods," *Phisiological Transactions of The Royal Society B*, no. 367, p. 1517–1524, 2012.
- [39] C. Steger, M. Ulrich and C. Wiedemann, Machine Vision Algorithms and Applications, Weinheim: Wiley-VCH, 2008.
- [40] J. Wan, D. Wang, S. C. Hoi, P. Wu, J. Zhu, Y. Zhang and J. Li, "Deep Learning for Content-Based Image Retrieval: A Comprehensive Study," in *Proceedings of the ACM International Conference on Multimedia*, Orlando, Florida, 3-7 Nov. 2014.
- [41] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain, "Content-Based Image Retrieval at the End of the Early Years," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 22, no. 12, pp. 1349-1380, Dec 2000.
- [42] T. Jaworska, "A Search-Engine Concept Based on Multi-Feature Vectors and Spatial Relationship," w *Flexible Query Answering Systems*, tom 7022, H. Christiansen, G. De Tré, A. Yazici, S. Zadrożny i H. L. Larsen, Redaktorzy, Ghent, Springer, 2011, pp. 137-148.
- [43] C.-R. Su, J.-J. Chen and K.-L. Chang, "Content-Based Image Retrieval on Reconfigurable Peer-to-Peer Networks," in *International Symposium on Biometrics and Security Technologies*, 2013.
- [44] "List of CBIR engines," 2015. [Online]. Available: http://en.wikipedia.org/wiki/List_of_CBIR_engines.
- [45] L.-J. Li, C. Wang, Y. Lim, D. M. Blei and L. Fei-Fei, "Building and Using a Semantivisual Image Hierarchy," in *IEEE Conference on Computer Vision and Pattern Recognition*, June, 2010.
- [46] F. Wu, Advances in Visual Data Compression and Communication: Meeting the Requirements of New Applications, CRC Press, 2014, p. 513.
- [47] J. G. Kolo, K. P. Seng, L.-M. Ang and S. R. S. Prabaharan, "Data Compression Algorithms for Visual Information," in *Informatics Engineering and Information Science*, vol. 253, A. A. Manaf, S. Sahibuddin, R. Ahmad, S. M. Daud and E. El-Qawasmeh, Eds., Berlin, Springer-Verlag, 2011, pp. 484-497.
- [48] N. Sharda, "Multimedia Transmission ober Wireless Sensor Networks," in Visual Information Processing in Wireless Sensor Networks: Technology, Trends and Applications, L. Ang, Ed., 2011.
- [49] T. Jaworska, "Object extraction as a basic process for content-based image retrieval (CBIR) system." Opto-Electronics Review, tom 15, nr 4, pp. 184-195, December 2007.
- [50] T. Jaworska, "Database as a Crucial Element for CBIR Systems," in Proceedings of the 2nd International Symposium on Test Automation and Instrumentation, Beijing, China, 16-20 Nov., 2008.
- [51] T. Jaworska, "Application of Fuzzy Rule-Based Classifier to CBIR in comparison with other classifiers," in 11th International Conference on Fuzzy Systems and Knowledge Discovery, Xiamen, China, 19-21.08.2014.

- [52] T. Jaworska, "Spatial representation of object location for image matching in CBIR," in New Research in Multimedia and Internet Systems, vol. 314, A. Zgrzywa, K. Choroś and A. Siemiński, Eds., Wrocław, Springer, 2014, pp. 25-34.
- [53] T. Jaworska, "Query techniques for CBIR," in *Flexible Query Answering Systems*, vol. 400, T. Andreasen, H. Christiansen, J. Kacprzyk, H. Larsen, G. Pasi, O. Pivert, G. De Tre, M. A. Vila, A. Yazici and S. Zadrożny, Eds., Cracow, Springer, 2015, pp. 403-416.
- [54] Y.-J. Zhang, Y. Gao and Y. Luo, "Object-Based Techniques for Image Retrieval," in *Multimedia Systems and Content-Based Image Retrieval*, S. Deb, Ed., Hershey, London, IDEA Group Publishing, 2004, pp. 156-181.
- [55] T. Tuytelaars and K. Mikolajczyk, "Local Invariant Feature Detectors: A Survey," *Computer Graphics and Vision*, vol. 3, no. 3, p. 177–280, 2007.
- [56] W. Niblack, M. Flickner, D. Petkovic, P. Yanker, R. Barber, W. Equitz, E. Glasman, C. Faloutsos and G. Taubin, "The QBIC Project: Querying Images by Content Using Colour, Texture and Shape," SPIE, vol. 1908, pp. 173-187, 1993.
- [57] G. Pass and R. Zabith, "Histogram refinement for content-based image retrieval," *IEEE Workshop on Applications of Computer Vision*, pp. 96-102, 1996.
- [58] M. Pietikäinen, Ed., Texture Analysis in Machine Vision, vol. 40, World Scientific, 2000.
- [59] N. Sebe and M. S. Lew, "Texture Features for Content-Based Retrieval," in *Principles of Visual Information Retrieval*, M. S. Lew, Ed., London, Springer Science & Business Media, 2013, pp. 50-81.
- [60] M. Tuceryan and A. K. Jain, "Texture Analysis," in *The Handbook of Pattern Recognition and Computer Vision*, 2 ed., C. H. Chen, L. F. Pau and P. S. P. Wang, Eds., World Scientific Publishing Co., 1998, pp. 207-248.
- [61] S. W. Zucker, "Toward a Model of Texture," Computer Graphics and Image Processing, vol. 5, pp. 190-202, 1976.
- [62] N. Ahuja, "Dot Pattern Processing Using Voronoi Neighborhoods," *IEEE Transaction on Pattern Analysis and Machine Intelligence*, no. 4, pp. 336-343, May 1982.
- [63] R. M. Haralick, "Statistical and Structural Approaches to Texture," Proceedings of the IEEE, vol. 67, pp. 786-804, 1979.
- [64] M. Pietikäinen, T. Ojala and D. Harwood, "A Comparative Study of Texture Measures with Classification Based on Feature Distributions.," *Pattern Recognition*, vol. 29, no. 1, pp. 51-59, January 1996.
- [65] T. Ojala, M. Pietikäinen and T. Mäenpää, "Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns.," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 24, no. 7, pp. 971-987, 2002.
- [66] M. Pietikäinen, A. Hadid, G. Zhao and T. Ahonen, Computer Vision Using Local Binary Patterns, vol. 40 in Computational Imaging and Vision, Springer Science & Business Media, 2007.
- [67] H. Tamura, S. Mori i T. Yamawaki, "Texture features corresponding to visual perception," *IEEE Transactions On Systems, Man and Cybernetics*, tom 8, pp. 460-473, 1978.
- [68] R. Sriram, J. M. Francos and W. A. Pearlman, "Texture coding using a Wold decomposition model.," *IEEE Transactions of Image Processing*, vol. 5, no. 9, pp. 1382-1386, 1996.
- [69] G. L. Gimel'farb and A. K. Jain, "On retrieving textured images from an image data base.," *Pattern Recognition*, vol. 29, no. 9, pp. 1461-1483, 1996.
- [70] A. P. Pentland, "Fractal-based description of natural scenes," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 6, no. 6, pp. 661-674., June 1984.
- [71] B. B. Mandelbrot, Fractal Geometry of Nature, New York: Freeman, 1982.

- [72] H. E. Hurst, "Long-term storage capacity of reservoirs," *Transactions of the American Society of Civil Engineers*, vol. 116, no. 1, pp. 770-799, 1951.
- [73] S. Ezekiel and J. A. Cross, "Fractal-based Texture Analysis," in APCC/OECC'99, Joint Conference of 5th Asia-Pacific Conference on Communications (APCC) and 4th Opto-Electronics and Communications Conference (OECC), 1999.
- [74] J. Millard, P. Augat, T. M. Link, M. Kothari, D. C. Newitt, H. K. Genant, and S. Majumdar, "Power Spectral Analysis of Vertebral Trabecular Bone Structure from Radiographs: Orientation Dependence and Correlation with Bone Mineral Density and Mechanical Properties," *Calcified Tissue International*, vol. 63, pp. 482-489, 1998.
- [75] S. Selvarajah and S. R. Kodituwakku, "Analysis and Comparison of Texture Features for Content Based Image Retrieval," *International Journal of Latest Trends in Computing*, vol. 2, no. 1, pp. 108-113, March 2011.
- [76] G. M. Haley and B. S. Manjunath, "Rotation-Invariant Texture Classification Using a Complete Space-Frequency Model," *IEEE Transactions on Image Processing*, vol. 8, no. 2, Feb. 1999.
- [77] D. Gabor, "Theory of communication," Journal of the Institution of Electrical Engineers, pp. 445 - 457, 1946.
- [78] T. S. Lee, "Image Representation Using 2D Gabor Wavelets," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 18, no. 10, October 1996.
- [79] T. Jaworska, "Point-to-point correspondence into stereo pair of images," Silesian University of Technology, Gliwice, Poland, 2001.
- [80] N. Sebe and M. S. Lew, "Wavelet Based Texture Classification," in Proceedings. 15th International Conference on Pattern Recognition, 2000.
- [81] P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," *IEEE TRANSACTIONS ON COMMUNICATIONS*, Vols. COM-31, no. 4, pp. 532-540, April 1983.
- [82] J. L. Crowley, "A representation for visual information," 1987.
- [83] I. Daubechies, Ten lectures on wavelets, Philadephia: Society for Industrial and Applied Mathematics, 1992.
- [84] S. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 11, no. 7, pp. 674-693, 1989.
- [85] S. Mallat, "Multiresolution Approximation and Wavelet Orthonormal Bases of L2(R)," *Transactions American Mathematical Society*, vol. 315, no. 1, pp. 69-87, 1989.
- [86] Y. Meyer, Les ondelettes. Algorithmes et applications, Paris: Armand Colin, 1992.
- [87] P. Wojtaszczyk, Wavelet Theory (in Polish), Warsaw: PWN, 2000.
- [88] S. Mallat, A wavelet tour of signal processing, Academic Press, 1998.
- [89] M. Faizal, A. Fauzi and P. H. Lewis, "Automatic texture segmentation for content-based image retrieval application," *Pattern Analysis and Applications*, vol. 9, p. 307–323, 2006.
- [90] R. A. Kirsch, "Computer determination of the constituent structure of biological images," *Computers and Biomedical Research*, vol. 4, no. 3, p. 315–328, July 1971.
- [91] L. Vincent and P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 13, no. 6, p. 583–598, 1991.
- [92] O. Basir, H. Zhu and F. Karray, "Fuzzy Based Image Segmentation," in *Fuzzy Filters foe Image processing*, vol. 122, Berlin, Springer, 2003, pp. 101-128.
- [93] H. M. Sobel, Multivariate Observations, Wiley, 1984.

- [94] J. M. S. Prewitt, "Object Enhancement and Extraction," in *Picture Processing and Psychopictorics*, B. S. B. S. Lipkin and A. Rosenfeld, Eds., NY, Academic Press, 1970.
- [95] J. Canny, "A computational approach to edge detection," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vols. PAMI-8, no. 6, pp. 679-698, 1986.
- [96] C. Xu and J. L. Prince, "Snakes, Shapes, and Gradient Vector Flow," IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 7, no. 3, pp. 359-369, March 1998.
- [97] R. O. Duda and P. E. Hart, "Use of the HOUGH Transformation to Detect Lines and Curves in Pictires," 1971.
- [98] Q. Zhu, I. L. Wang, Y. Wu and J. Shi,, "Contour Context Selection for Object Detection: A Set-to-Set Contour Matching Approach,," in *The 10th European Conference on Computer Vision (ECCV)*, Marseille, France, 2008.
- [99] D. Zhang and G. Lu, "Review of shape representation and description techniques," *Pattern Recognition*, vol. 37, p. 1 19, 2004.
- [100] S. Abbasi, F. Mokhtarian and J. Kittler, "Curvature scale space image in shape similarity retrieval," *Multimedia Systems*, no. 7, p. 467–476, 1999.
- [101] C.-J. Sze, H.-R. Tyan, H.-Y. M. Liao, C.-S. Lu and S.-K. Huang, "Shape-based Retrieval on a Fish Database of Taiwan," *Tamkang Journal of Science and Engineering*, vol. 2, no. 3, pp. 63-173, 1999.
- [102] T. B. Sebasian and B. B. Kimia, "Curves vs Skeltons in Object Recognition," in Proceedings of International Conference on Image Processing, Thessaloniki, 7-10 Oct. 2001.
- [103] L. Kotoulas i I. Andreadis, "Image analysis using moments," w Proceedings of 5th International Conference on Technology and Automation, Thessaloniki, Greece, 2005.
- [104] M. R. Teague, "Image analysis via the general theory of moments," *Journal of the Optical Society of America*, vol. 70, no. 8, pp. 920-930, 1980.
- [105] R. Arandjelović and A. Zisserman, "Three things everyone should know to improve object retrieval," in *IEEE Conference on Computer Vision and Pattern Recognition*, Providence, RI, USA, 2012.
- [106] K. Mikolajczyk and C. Schmid, "Scale & Affine Invariant Interest Point Detectors," *International Journal of Computer Vision*, pp. 63-86, 2004.
- [107] F. Perronnin, J. Sanchez and T. Mensink, "Improving the Fisher Kernel for Large-Scale Image Classification," in *European Conference on Computer Vision, Lecture Notes in Computer Science*, Heraclion, Greece, Sep, 2010.
- [108] F. Perronnin and C. Dance, "Fisher Kernels on Visual Vocabularies for Image Categorization," in *Proceeding Computer Vision and Pattern Recognition*, 2007.
- [109] J. Krapac and S. Śegvić, "Weakly Supervised Object Localization with Large Fisher Vectors," in Proceedings of the 10th International Conference on Computer Vision Theory and Applications, Berlin, 11-14 Mar, 2015.
- [110] H. Jegou, M. Douze, C. Schmid and P. Perez, "Aggregating local descriptors into a compact image representation," in *IEEE Conference on Computer Vision and Pattern Recognition*, San Francisco, 13-18 June, 2010.
- [111] E. Rosten and T. Drummond, "Fusing points and lines for high performance tracking," in *IEEE International Conference on Computer Vision*, 2005.
- [112] E. Rosten i T. Drummond, "Machine learning for high-speed corner detection," w *European Conference on Computer Vision*, 2006.
- [113] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: an efficient alternative to SIFT or SURF," in *IEEE International Conference on Computer Vision (ICCV)*, Barcelona, Spane, 6-12, Nov, 2011.

- [114] M. Brown, R. Szeliski i S. Winder, "Multi-image matching using Multi-Scale Oriented Patches," *Computer Vision and Pattern Recognition*, nr 2, pp. 510-517, 2005.
- [115] The Moving Picture Experts Group, "MPEG," [Online]. Available: http://mpeg.chiariglione.org/. [Accessed 2015].
- [116] MPEG, "MPEG standards Full list of standards developed or under development," 20 April 2010. [Online]. Available: http://mpeg.chiariglione.org/standards.htm.
- [117] I. JTC1/SC29/WG11, "CODING OF MOVING PICTURES AND AUDIO MPEG-7". Palma de Mallorca, Spain Patent N6828, Oct. 2004.
- [118] M. J. Swain and D. H. Ballard, "Color Indexing," International Journal of Computer Vision, vol. 7, no. 1, pp. 11-32, 1991.
- [119] V. Castelli i L. D. Bergman, Redaktorzy, Image Databases: Search and Retrieval of Digital Imagery, New York: Wiley, 2002.
- [120] J.-J. Chen, C.-R. Su, W. E. L. Grimson, J.-L. Liu and D.-H. Shiue, "Object Segmentation of Database Images by Dual Multiscale Morphological Reconstructions and Retrieval Applications," *IEEE Transactions on Image Processing*, vol. 21, no. 2, pp. 828-843, Feb. 2012.
- [121] P. Melin and O. Castillo, Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. An Evolutionary Approach for Neural Networks and Fuzzy Systems., Berlin: Springer, 2005, p. 272.
- [122] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms., New York: Plenum Press, 1981, p. 272.
- [123] Y. Cheng , "Mean Shift Mode Seeking, and Clustering," IEEE TRANSACTIONS on PATTERN ANALYSIS and Machine Intelligence, vol. 17, no. 8, Aug, 1995.
- [124] G. Seber, Multivariate Observations, New York: Wiley, 1984, p. 686.
- [125] H. Späth, Cluster analysis algorithms for data reduction and classification of objects, vol. 4, Pensilvania University: E. Horwood, 1980, p. 226.
- [126] M. Acharyya and M. K. Kundu, "An adaptive approach to unsupervised texture segmentation using M-Band wavelet transform," *Signal Processing*, no. 81, pp. 1337-1356, 2001.
- [127] L. J. Latecki and R. Lakamper, "Application of planar shape comparison to object retrieval in image databases," *Pattern Recognition*, no. 35, pp. 15-29, 2002.
- [128] W.-B. Goh and K.-Y. Chan, "A Shape Descriptor for Shapes with Boundary Noise and Texture," in *British Machine Vision Conference*, Norwich, 24 June, 2003.
- [129] C. Xu and J. Liu, "2D Shape Matching by Contour Flexibility," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 31, no. 1, Jan. 2009.
- [130] J. Mutch and D. G. Lowe, "Object class recognition and localization using sparse features with limited receptive fields," *International Journal of Computer Vision (IJCV)*, vol. 80, no. 1, pp. 45-57, Oct 2008.
- [131] T. Serre, L. Wolf and T. Poggio, "Object Recognition with Features Inspired by Visual Cortex," in *Proceedings on Computer Vision and Pattern Recognition*, Los Alamos, 2005.
- [132] Y. Li and L. G. Shapiro, "Object Recognition for Content-Based Image Retrieval," Dagstuhl Seminar, Leibniz, Austria, 2002.
- [133] G. Quellec, M. Lamard, G. Cazuguel, B. Cochener and C. Roux, "Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval," *IEEE Transactions on Image Processing*, vol. 21, no. 4, pp. 1613-1623, April 2012.
- [134] B. V. Dasarathy, Ed., Nearest neighbor (NN) norms : NN pattern classification techniques, 6th ed., Los Alamitos, Callifornia: IEEE Computer Society Press, 1991.

- [135] C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning, vol. 20, p. 273–297, 1995.
- [136] I. Rish, "An empirical study of the Naïve Bayes classifier," in Proceedings of the IJCAI-2001 Workshop on Empirical Methods in AI, Brussels, 2001.
- [137] G. P. Zhang, "Neural Networks for Classification: A Survey," *IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and reviews*, vol. 30, no. 4, pp. 451-462, Nov 2000.
- [138] J. M. Ali, "Content-Based Image Classification and Retrieval: A Rule-Based System Using Rough Sets Framework," in *Artificial Intelligence for Maximizing Content Based Image Retrieval*, Z. Ma, Ed., NY, Springer, 2009, pp. 68-82.
- [139] T. Jaworska, "Towards Fuzzy Classificaton in CBIR," in *Information Systems Architecture and Technology*. Vols. Knowledge Based Approach to the Design, Control and Decision Support, J. Świątek, L. Borzemski, A. Grzech and Z. Wilimowska, Eds., Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej, 2013, pp. 53-62.
- [140] U. M. Fayyad and K. B. Irani, "The attribute selection problem in decision tree generation," in the 10th National Conference on Artificial Intelligence, AAAI, 1992.
- [141] L. Breiman, J. Friedman, C. J. Stone and R. A. Olshen, Classification and Regression Trees, New York: Chapman and Hall, 1984, p. 368.
- [142] J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1, pp. 81-106, 1986.
- [143] J. R. Quinlan, C4.5: Programs for Machine Learning, San Mateo: Morgan Kaufmann Publishers, 1993.
- [144] H. Schulz, B. Waldvogel, R. Sheikh and S. Behnke, "CURFIL: Random Forests for Image Labeling on GPU," in *Proceedings of the 10th International Conference on Computer Vision Theory and Applications*, Berlin, 11-14 Mar, 2015.
- [145] J. Ylioinas, J. Kannala, A. Hadid and . M. Pietikainen, "Learning Local Image Descriptors Using Binary Decision Trees," in *Proceedings of IEEE Winter Conference on Applications* of Computer Vision (WACV 2014), Steamboat Springs, CO, USA, 2014.
- [146] B. Bouchon-Meunier and C. Marsala, "Fuzzy decision tree and databases," in *Flexible Query Answering Systems*, T. Andreasen, H. Christiansen and H. L. Larsen, Eds., Kluwer Academic Publisher, 1997, pp. 277-288.
- [147] J. D. M. Rennie, L. Shih, J. Teevan and D. R. Karge, "Tackling the Poor Assumptions of Naive Bayes Text Classifiers," in *Proceedings of the 20th International Conference on Machine Learning*, Washington, DC, USA, 2003.
- [148] N. M. Murty and S. V. Devi, Pattern Recognition: An Algorithmic Approach, vol. z serii Undergraduate Topics in Computer Science, Springer Science & Business Media, 2011, p. 263.
- [149] L. Wang, Ed., Support Vector Machines: Theory and Applications, Berlin: Springer, 2005, p. 450.
- [150] H. Ishibuchi and Y. Nojima, "Toward Quantitative Definition of Explanation Ability of Fuzzy Rule-Based Classifiers," in *IEEE International Conference on Fuzzy Systems*, Taipei, Taiwan, June 27-39, 2011.
- [151] H. Ishibuchi and T. Yamamoto, "Rule weight specification in fuzzy rule-based classification systems," *IEEE Transactions on Fuzzy Systems*, vol. 13, no. 4, pp. 428-435, 2005.
- [152] K. Nozaki, H. Ishibuchi and H. Tanaka, "Adaptive fuzzy rule-based classification systems," *IEEE Transactions on Fuzzy Systems*, vol. 13, no. 4, pp. 238-250, 1996.
- [153] H. Ishibuchi and Y. Nojima, "Toward Quantitative Definition of Explanation Ability of Fuzzy Rule-Based Classifiers," in *IEEE International Conference on Fuzzy Systems*, Taipei, Taiwan, June 27-39, 2011.

- [154] T. Jaworska, "Application of Fuzzy Rule-Based Classifier to CBIR in comparison with other classifiers," in 11th International Conference on Fuzzy Systems and Knowledge Discovery, Xiamen, China, 2014.
- [155] S. K. Candan and W.-S. Li, "On Similarity Measures for Multimedia Database Applications," *Knowledge and Information Systems*, vol. 3, pp. 30-51, 2001.
- [156] A. Hamilton-Wright and D. W. Stashuk, "Constructing a Fuzzy Rule Based Classification System Using Pattern Discovery," in Annual Meeting of the North American Fuzzy Information Processing Society, 2005.
- [157] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," *Nature*, vol. 521, pp. 436-444, 28 May 2015.
- [158] C. Olah, "Conv Nets: A Modular Perspective," blog, July 2014. [Online]. Available: http://colah.github.io/posts/2014-07-Conv-Nets-Modular/.
- [159] A. Krizhevsky, I. Sutskeve and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Advances in Neural Information Processing Systems, 2012.
- [160] MathWorks Inc., "Deep learning with MATLAB," 2016. [Online]. Available: https://www.mathworks.com/discovery/deep-learning.html.
- [161] C.-C. Chang and T.-C. Wu, "An exact match retrieval scheme based upon principal component analysis," *Pattern Recognition Letters*, vol. 16, pp. 465-470, 1995.
- [162] D. S. Guru and P. Punitha, "An invariant scheme for exact match retrieval of symbolic images based upon principal component analysis," *Pattern Recognition Letters*, vol. 25, p. 73–86, 2004.
- [163] S. Rolewicz, Functional Analysis and Control Theory: Linear Systems, vol. Series: Mathematics and its applications, Warsaw: PWN-Polish Scientific Publishers, 1987.
- [164] J. Z. Wang, J. Li and G. Wiederhold, "SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries," *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE*,, vol. 23, no. 9, pp. 947-963, Sep. 2001.
- [165] C. Mallows, "A Note on Asymptotic Joint Normality," The Annals of Mathematical Statistics, vol. 43, no. 2, pp. 508-515., 1972.
- [166] D. Zhou, J. Li and H. Zha, "A new Mallows distance based metric for comparing clusterings," in *Proceedings of the 22nd International Conference on Machine Learning*, Bonn,m Germany, Aug. 2005.
- [167] E. Pękalska and R. P. Duin, The Dissimilarity Representation for Pattern Recognition. Foundations and Applications., 1 ed., Vols. Series in Machine Perception and Artificial Intelligence - Vol. 64, New Jersey, London: World Scientific, 2005, p. 607.
- [168] B. Ko and H. Byun, "Integrated Region-Based Image Retrieval Using Region's Spatial Relationships," in *Proceedings of 16th International Conference on Pattern Recognition*, 11-15 Aug. 2002.
- [169] C. Beecks, M. S. Uysal and T. Seidl, "A Comparative Study of Similarity Measures for Content-Based Multimedia Retrieval," in *Multimedia and Expo (ICME)*, Suntee City, 19-23 July, 2010.
- [170] T. Jaworska, "A Search-Engine Concept Based on Multi-Feature Vectors and Spatial Relationship," in *Flexible Query Answering Systems*, vol. 7022, H. Christiansen, G. De Tré, A. Yazici, S. Zadrożny and H. L. Larsen, Eds., Ghent, Springer, 2011, pp. 137-148.
- [171] T. Jaworska, "An Asymmetric Approach to Signature Matching," in *Multimedia and Network Information Systems*, vol. 506, A. Zgrzywa, K. Choraś and A. Siemiński, Eds., Wrocław, Springer, 2016, pp. 27-37.
- [172] G. Wu, E. Y. Chang and N. Panda, "Formulating context-dependent similarity functions," in *The 13th annual ACM international conference on Multimedia*, Singapore, Nov., 2005.

- [173] A. Natsev and J. R. Smith, "A study of image retrieval by anchoring," in *IEEE International Conference on Multimedia and Expo*, Lausanne, Switzerland, Aug. 2002.
- [174] C.-T. Nguyen, X. Wang, J. Liu and Z.-H. Zhou, "Labeling Complicated Objects: Multi-View Multi-Instance Multi-Label Learning," in 28th AAAI Conference on Artificial Intelligence, Hilton Québec Canada, June, 2014.
- [175] H. Mueller, W. Mueller, S. Marchand-Maillet and T. Pun, "A Framework for Benchmarking in CBIR," *Multimedia Tools and Applications*, no. 21, pp. 55-73, 2003.
- [176] D. A. Narasimhalu, M. S. Kankanhalli and J. Wu, "Benchmarking Multimedia Databases," *Multimedia Tools and Applications*, vol. 4, no. 3, p. 333–356, May 1997.
- [177] J. R. Smith, "Image retrieval evaluation," in IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL '98), Santa Barbara, 1998.
- [178] A. Dimai, "Assessment of effectiveness of content-based image retrieval systems," in 3rd International Conference on Visual Information Systems (VISUAL'99), Amsterdam, The Netherlands, 1999.
- [179] E. L. van den Broek, T. Kok, T. E. Schouten and L. G. Vuurpijl, "Human-Centered Content-Based Image Retrieval," in *Proceedings of XIII Conference on Human Vision and Electronic Imaging*, Feb. 14, 2008.
- [180] M. Everingham, A. S. Eslami, L. Van Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The PASCAL Visual Object Classes Challenge: A Retrospective," *International Journal* of Computer Vision, no. 111, p. 98–136, 2015.
- [181] Corel comp., "The COREL Database for Content based Image Retrieval".
- [182] Z. Yang and C.-C. Jay Kuo, "Learning image similarities and categories from content analysys and relebance feedback," in *Proceedings of the ACM Multimedia Workshops*. *Multimedia00'*, Los Angeles, CA, USA, Oct 30 - Nov 03, 2000.
- [183] the Eastman Kodak Company, [Online]. Available: http://r0k.us/graphics/kodak/.
- [184] D.-C. He and A. Safia, "Multiband Texture Database," 2015. [Online]. Available: http://multibandtexture.recherche.usherbrooke.ca/.
- [185] D.-C. He and A. Safia, "New Brodatz-based Image Databases for Grayscale Color and Multiband Texture Analysis," *ISRN Machine Vision*, vol. Article ID 876386, pp. 1-14, 2013.
- [186] N. Rasiwasia, P. J. Moreno and N. Vasconcelos, "Bridging the Gap: Query by Semantic Example," *IEEE TRANSACTIONS ON MULTIMEDIA*, vol. 9, no. 5, pp. 923-938, Aug 2007.
- [187] X. Wang, S. Qiu, K. Liu i X. Tang, "Web Image Re-Ranking Using Query-Specific Semantic Signatures," *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE*, tom 36, nr 4, pp. 810-823, April 2014.
- [188] M. Everingham, L. Van Gool, C. K. I. Williams, A. Zisserman, J. Winn, A. S. Eslami and Y. Aytar, "The PASCAL Visual Object Classes Homepage," 2015. [Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/index.html.
- [189] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "ImageNet: A Large-Scale Hierarchical Image Database," in *IEEE Conference on Computer Vision and Pattern Recognition*, Miami, USA, June, 2009.
- [190] L. Fei-Fei, K. Li, O. Russakovsky, J. Krause, J. Deng and A. Berg, "ImageNet," Stanford Vision Lab, Stanford University, Princeton University, 2014. [Online]. Available: http://www.image-net.org/.
- [191] G. Griffin, A. D. Holub and P. Perona, "The Caltech 256," California Institute of Technology, Los Angeles, 2006.
- [192] G. Griffin, "Caltech256," 2006. [Online]. Available: http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

- [193] J. Philbin, O. Chum and M. a. S. J. a. Z. A. Isard, "Object Retrieval with Large Vocabularies and Fast Spatial Matching," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2007.
- [194] J. Philbin, R. Arandjelović and A. Zisserman, "The Oxford Buildings Dataset," Department of Engineering Science, University of Oxford, Nov 2012. [Online]. Available: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.
- [195] J. Philbin, O. Chum and M. a. S. J. a. Z. A. Isard, "Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases," in *IEEE Conference on Computer Vision and Pattern Recognition*, Anchorage, USA, 23-28 June, 2008.
- [196] J. Philbin i A. Zisserman, "The Paris Dataset," Visual Geometry Group, Department of Engineering Science, University of Oxford, 2008. [Online]. Available: http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/.
- [197] B. C. Becker, "PubFig83 + LFW Dataset," 2015. [Online]. Available: http://www.briancbecker.com/blog/research/pubfig83-lfw-dataset/.
- [198] B. C. Becker and E. G. Ortiz, "Evaluating Open-Universe Face Identification on the Web," in CVPR 2013, Analysis and Modeling of Faces and Gestures Workshop., Portland, Oregon, USA, 23-28 June, 2013.
- [199] P.-S. P. Chen, "Entity-relationships model Toward a Unified View of Data," ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.
- [200] R. Barker, Entity-Relationship Modelling. Case MethodSM, London, : Addison-Wesley, 1995.
- [201] R. Barker and C. Longman, Function and Process Modelling. Case MethodSM, London: Addison-Wesley Pub. Co., 1993.
- [202] K. Rodden and K. R. Wood, "How Do People Manage Their Digital Photographs?," in SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA., April 5–10, 2003.
- [203] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain, "Content-Based Image Retrieval at the End of the Early Years," *IEEE TRANSACTIONS ON PATTERN* ANALYSIS AND MACHINE INTELLIGEN, vol. 22, no. 12, pp. 1349 - 1380, Dec 2000.
- [204] X. Wang, K. Liu and X. Tang, "Query-Specific Visual Semantic Spaces forWeb Image Re-ranking.," in Computer Vision and Patern Recognition Paper, 2011.
- [205] W. Niblack, M. Flickner, D. Petkovic, P. Yanker, R. Barber, W. Equitz, E. Glasman, C. Faloutsos and G. Taubin, "The QBIC Project: Querying Images by Content Using Colour, Texture and Shape," SPIE, vol. 1908, pp. 173-187, 1993.
- [206] B. Xiao, X. Gao, D. Tao and X. Li, "Recognition of Sketches in Photos," in *Multimedia Analysis, Processing and Communications*, vol. 346, W. Lin, D. Tao, J. Kacprzyk, Z. Li, E. Izquierdo and H. Wang, Eds., Berlin, Springer-Verlag, 2011, pp. 239-262.
- [207] J.-H. Lim and J. S. Jin, "A structured learning framework for content-based image indexing and visual query," *Multimedia Systems*, vol. 10, p. 317–331, 2005.
- [208] J. Assfalg, A. Del Bimbo and P. Pala, "Three-Dimensional Interfaces for Querying by Example in Content-Based Image Retrieval," *IEEE Transactions on Visualization and Computer Graphics*, vol. 8, no. 4, pp. 305-318, Oct-Dec 2002.
- [209] J. Fauqueur and N. Boujemaa, "Mental image search by boolean composition of region categories," *Multimed Tools and Applications*, vol. 31, p. 95–117, 2006.
- [210] T. Jaworska, "Multi-criteria object indexing and graphical user query as an aspect of content-based image retrieval system.," in *Information Systems Architecture and Technology*, L. Borzemski, A. Grzech, J. Świątek and Z. Wilimowska, Eds., Wrocław, Wrocław Technical University Publisher, 2009, pp. 103-112.

- [211] B. Moghaddam, H. Biermann and D. Marg, "Regions-of-Interest and Spatial Layout for Content-Based Image Retrieval," *Multimedia Tools and Applications*, vol. 14, no. 2, pp. 201-210, June 2001.
- [212] M. M. Rahman, S. K. Antani and G. R. Thoma, "A query expansion framework in image retrieval domain based on local and global analysis," *Information Processing and Management*, vol. 47, pp. 676-691, 2011.
- [213] J. Fauqueur, "Instantaneous mental image search with range queries on multiple region descriptors," Cambridge, UK, Jan, 2005.
- [214] Y. Liu, D. Zhang, G. Lu and W.-Y. Ma, "A survey of content-based image retrieval with high-level semantics," *Pattern Recognition*, vol. 40, pp. 262-282, 2007.
- [215] J. C. Cubero, N. Marín, J. M. Medina, E. Pons and A. M. Vila, "Fuzzy Object Management in an Object-Relational Framework," in *Proceedings of the 10th International Conference IPMU*, Perugia, Italy, 4-9 July, 2004.
- [216] F. Berzal, J. C. Cubero, J. Kacprzyk, N. Marín, A. M. Vila and S. Zadrożny, "A General Framework for Computing with Words in Object-Oriented Programming.," in *International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems.*, vol. 15 (Suppl), Singapore, World Scientific Publishing Company, 2007, pp. 111 131.
- [217] W. Plant and G. Schaefer, "Visualization and Browsing of Image Databases," in *Multimedia Analysis, Processing and Communications*, vol. 346, W. Lin, D. Tao, J. Kacprzyk, Z. Li, E. Izquierdo and H. Wang, Eds., Berlin, Springer, 2011, pp. 3-57.
- [218] K. Rodden, "Evaluating similarity-based visualisations as interfaces for image browsing," University of Cambridge, Cambridge, 2002.
- [219] K. Rodden, K. R. Wood, W. Basalaj and D. Sinclair, "Evaluating a Visualisation of Image Similarity as a Tool for Image Browsing," in *IEEE Symposium on Information Visualisation*, 1999.
- [220] W. Basalaj, "Proximity visualisation of abstract data," University of Cambridge, Cambridge, 2001.
- [221] C. Faloutsos and K. Lin, "Fast Map: A Fast Algorithms for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets," in ACM SIGMOD international conference on Management of data, New York, USA, May, 1995.
- [222] L. F. D. Santos, R. L. Dias and M. X. Ribeiro, "Combining Diversity Queries and Visual Mining to Improve Content-Based Image Retrieval Systems: The DiVI Method," in *IEEE International Symposium on Multimedia*, Miami, Dec. 2015.
- [223] A. Bursuc and T. Zaharia, "ARTEMIS@ MediaEval 2013: A Content-Based Image Clustering Method for Public Image Repositories," ACM Multimedia, pp. 18-19, Oct. 2013.
- [224] C. Chen, G. Gagaudakis and P. Rosin, "Similarity-Based Image Browsing," in Proceedings of the 16th IFIP World Computer Congress, International Conference on Intelligent Information Processing, Beijing, China, 2000.
- [225] T. Kohonen, "The Self_Organizing Map," Proceedings of IEEE, vol. 78, no. 9, pp. 1464-1480, Sep. 1990.
- [226] A. Csillaghy, H. Hinterberger and A. B. Benz, "Content-Based Image Retrieval in Astronomy," *Information Retrieval Journal*, vol. 3, no. 3, pp. 229-241, 2000.
- [227] Y. Rui and T. S. Huang, "Relevance Feedback Techniques in Image Retrieval," in *Principal of Visual Information Retrieval*, M. S. Lew, Ed., London, Springer, 2001, pp. 219-258.
- [228] V. Mezaris, I. Kompatsiaris and M. G. Strintzis, "An ontology approach to object-based image retrieval," in *Proceedings of International Conference on Image Processing ICIP* 2003., 2003.

- [229] A. D. Gudewar and L. R. Ragha, "Ontology to Improve CBIR System," International Journal of Computer Applications, vol. 52, no. 21, pp. 23-30, 2012.
- [230] C. Doulaverakis, E. Nidelkou, A. Gounaris and Y. Kompatsiaris, "A Hybrid Ontology and Content-Based Search Engine For Multimedia Retrieval," in *Workshop Proceedings in Advances in Databases and Information Systems ADBIS* '2006, Thessaloniki, 2006.
- [231] O. Allani, N. Mellouli, H. B. Zghal, H. Akdag and H. B. Ghzala, "A Relevant Visual Feature Selection Approach for Image Retrieval," in *Proceedings of the 10th International Conference on Computer Vision Theory and Applications*, Berline, 11-14 Mar, 2015.
- [232] O. Russakovsky and L. Fei-Fei, "Attribute Learning in Large-scale Datasets," in Proceedings of the 12th European Conference of Computer Vision (ECCV), 1st International Workshop on Parts and Attributes., Crete, Greece, 2010.
- [233] T. Hofmann, "Probabilistic latent semantic analysis," in Proceedings of the15th Conference on Uncertainty in Artificial Intelligence, Stockholm, 1999.
- [234] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent Dirichlet Allocation," Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.
- [235] L. Fei-Fei and P. Perona, "A Bayesian Heirarcical Model for Learning Natural Scene Categories," in Computer Vision & Pattern Recognition CVPR, 2005.
- [236] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman and W. T. Freeman, "Discovering objects and their location in images," in *Proceedings of Internationa Conference of Computer Vision*, Beijing, 2005.
- [237] J. Bautista-Ballester, J. Verges-Llahi and D. Puig, "Using Action Objects Contextual Information for a Multichannel SVM in an Action Recognition Approach based on Bag of VisualWords," in *Proceedings of the 10th International Conference on Computer Vision Theory and Applications*, Berlin, 11-14 Mar, 2015.
- [238] T. Kinnunen, J.-K. Kamarainen, L. Lensu and H. Kälviäinen, "Unsupervised object discovery via self-organisation," *Pattern Recognition Letters*, no. 33, p. 2102–2112, Aug 2012.
- [239] J. Urban, J. M. Jose and C. J. van Rijsbergen, "An adaptive technique for content-based image retrieval," *Multimedial Tools Applied*, no. 31, pp. 1-28, July 2006.
- [240] L. Zhang, L. Wang and W. Lin, "Generalized biased discriminant analysis for contentbased image retrieval," *IEEE Transactions on System, Man, Cybernetics, Part B - Cybernetics*, vol. 42, no. 1, pp. 282-290, 2012.
- [241] L. Zhang, L. Wang and W. Lin, "Semi-supervised biased maximum margin analysis for interactive image retrieval," *IEEE Transactions on Image Processing*, vol. 21, no. 4, pp. 2294-2308, 2012.
- [242] S. T. Roweis and L. K. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," *Science*, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
- [243] S.-F. Chang, W. Chen and H. Sundaram, "Semantic Visual Templates: Linking Visual Features to Semantics," in *International Conference on Image Processing*, 1998. ICIP 98., Chicago, 1998.
- [244] Y. Zhuang, X. Liu and Y. Pan, "Apply Semantic Template to Support Content-based Image Retrieval," in the Proceeding of IS&T and SPIE Storage and Retrieval for Media Databases 2000, San Jose, California, USA, Jan, 2000.
- [245] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross and K. Miller, "Introduction to WordNet: An On-line Lexical Database," *Communications of the ACM*, vol. 38, no. 11, pp. 39-41, Nov. 1995.
- [246] M. Mucha and P. Sankowski, "Maximum Matchings via Gaussian Elimination," in Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS'04), 2004.

- [247] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Qualify Assessment: From Error Visibility to Structural Similarity," *IEEE Transactions on Image Processing*, vol. 13, no. 4, p. 600–612, April 2004.
- [248] E. Candes, L. Demanet, D. Donoho and L. Ying, "Fast Discrete Curvelet Transforms," 2006.
- [249] I. Aizenberg, N. N. Aizenberg and J. P. Vandewalle, Multi-Valued and Universal Binary Neurons, Springer US, Springer Science+Business Media Dordrecht, 2000, p. 276.
- [250] T. Yamashita, T. Watasue, Y. Yamauchi and H. Fujiyoshi, "Improving Quality of Training Samples Through Exhaustless Generation and Effective Selection for Deep Convolutional Neural Networks," in *Proceedings of the 10th International Conference on Computer Vision Theory and Applications*, Berlin, 11-14 Mar, 2015.
- [251] F. Juriśić, I. Filković and Z. Kalafatić, "Evaluating the Effects of Convolutional Neural Network Committees," in *Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)*, Rome, Italy, 27-29 Feb, 2016.
- [252] H. H. Aghdam, E. J. Heravi and D. Puig, "Analyzing the Stability of Convolutional Neural Networks against Image Degradation," in *Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP* 2016), Rome, Italy, 27-29 Feb, 2016.
- [253] S. Srinivasulu and P. Sakthivel, "Extracting Spatial Semantics in Association Rules for Weather Forecasting Image," in *Trendz in Information Sciences & Computing(TISC2010)*, Chennai, 17-19 Dec. 2010.
- [254] A. Moumtzidou, V. Epitropou, S. Vrochidis, K. Karatzas, S. Voth, A. Bassoukos, J. Moßgraber, A. Karppinen, J. Kukkone and I. Kompatsiaris, "A model for environmental data extraction from multimedia and its evaluation against various chemical weather forecasting datasets.," *Ecological Informatics*, no. 23, p. 69–82, Sep. 2014.
- [255] K. Choroś, "False and Miss Detections in Temporal Segmentation of TV Sports News Videos - Causes and Remedies," in *New Research in Multimedia and Internet Systems*, Advances in Intellignet Systems and Computing ed., vol. 314, A. Zgrzywa, . K. Choroś and A. Siemiński, Eds., Wrocław, Springer, 2015, pp. 35-46.
- [256] J. Li, "The application of CBIR-based system for the product in electronic retailing," w 2010 IEEE 11th International Conference on Computer-Aided Industrial Design & Conceptual Design (CAIDCD), Yiwy, China, 17-19 Nov. 2010.
- [257] G. De Tre, D. Vandermeulen, J. Hermans, P. Claes, J. Nielandt and A. Bronselaer, "Bipolar Comparison of 3D Ear Models," in *Information Processing and Management of Uncertainty in Knowledge-Based Systems - 15th International Conference - IPMU*, Montpellier, France, 2014.
- [258] A. E. Carpenter, "Extracting Rich Information from Images," in *Cell-Based Assays for High-Throughput Screening*, P. A. Clemons, N. J. Tolliday and B. K. Wagner, Eds., Springer, 2009, pp. 193-211.
- [259] M. Mansourvar and M. A. Ismail, "Content-Based Image Retrieval in Medical Systems," *International Journal of Information Technology*, vol. 20, no. 2, pp. 1-9, 2014.
- [260] A. Obero and M. Singh, "Content Based Image Retrieval System for Medical Databases (CBIR-MD) - Lucratively tested on Endoscopy, Dental and Skull Images," *IJCSI International Journal of Computer Science Issues*, vol. 9, no. Issue 3, No 1, May 2012.
- [261] M. S. Chaibou and K. Kalti, "A New Labeled Quadtree-based Distance for Medical Image Retrieval," in Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016), Rome, Italy, 27-29 Feb., 2016.

- [262] H.-s. Kim, H.-W. Chang, H. Liu, J. Lee and D. Lee, "BIM: IMAGE MATCHING USING BIOLOGICAL GENE SEQUENCE ALIGNMENT," 2010. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5414214.
- [263] A. T. Inc., "image pattern recognition using vector quantization uszczegółowić". the United States Patent and Trademark Office Patent 7,502,519, 2009.
- [264] J. Mallik, A. Samal and S. L. Gardnerb, "A content based image retrieval system for a biological specimen collection," *Computer Vision and Image Understanding*, vol. 114, no. 7, p. 745–757, July 2010.
- [265] G. Csurka, J. Ah-Pine and S. Clinchant, "Unsupervised Visual and Textual Information Fusion in CBMIR Using Graph-Based Methods," ACM Transactions on Information Systems, vol. 33, no. 2, pp. 9:1--9:31, Feb, 2015.
- [266] L. Anselin and S. J. Rey, Eds., Perspectives on Spatial Data Analysis, Berlin: Springer, 2010, p. 290.
- [267] C. Hahne, A. Aggoun, S. Haxha, V. Velisavljevic and J. C. J. Fernández, "Light field geometry of a standard plenoptic camera," *Optics Express*, vol. 22, no. 22, pp. 26659-26673, Nov. 2014.
- [268] S. Cloix, T. Pun and D. Hasler, "Real-time Scale-invariant Object Recognition from Light Field Imaging," in *Proceedings of the 11th Joint Conference on Computer Vision, Imaging* and Computer Graphics Theory and Applications (VISIGRAPP 2016), Rome, Italy, 27-29 Feb., 2016.
- [269] IEEE Transactions on Image Processing, vol. 13, no. 3, p. all, March 1994.
- [270] S. Lyu, D. Rockmore i H. Farid, "A digital technique for art authentication," *Proceedings of the National Academy of Sciences of the United States of America*, tom 101, nr 49, p. 17006–17010, 7 Dec. 2004.
- [271] M. Aubry, B. C. Russell and J. Sivic, "Painting-to-3D Model Alignment Via Discimanative Visual Elements," ACM Transactions on Graphics, vol. 28, no. 4, pp. 1-14, Article No. 106, Aug. 2009.
- [272] J. K. Gilbert, Ed., Visualization in Science Education, Springer Science & Business Media, 2006, p. 346.
- [273] E. Alepis and M. Virvou, Object-Orianted User Interfaces fro Personalized Mobile Learning, vol. 64, J. Kacprzyk and J. C. Lakhimi, Eds., Heidelberg: Springer, 2014, p. 129.
- [274] G. Ghiani, M. Manca and F. Paternò, "Authoring Context-dependent Cross-device User Interfaces based on Trigger/Action Rules," in *The 14th International Conference on Mobile and Ubiquitous Multimedia*, Linz, Austria, 30 Nov. - 2nd Dec. 2015.
- [275] Z. Raisi, F. Mohanna and M. Rezaei, "Applying Content-Based Image Retrieval Techniques to Provide New Services for Tourism Indusry," *International Journal of* Advanced Networking and Applications, vol. 6, no. 2, pp. 2222-2232, Oct. 2014.
- [276] W. Premchaiswadi, "An Image Search for Tourist Information Using a Mobile Phone," WSEAS Transactions on Information Science and Applications, vol. 4, no. 7, pp. 532-541, Apr 2010.
- [277] M. Markkula and E. Sormunen, "Searching for Photos Journalists' Practices in Pictorial IR," in *Electronic Workshops in Computing – Challenge of Image Retrieval*, Newcastle, UK,, Feb. 1998.
- [278] D. Gurari, S. D. Jain, M. Betke and K. Grauman, "Pull the Plug? Predicting If Computers or Humans Should Segment Images," in *the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Las Vegas, June, 2016.
- [279] R. Datta, T. Joshi, J. Li and J. Z. Wang, "Image Retrieval: Ideas, Influences, and Trends of the New Age," ACM Computing Surveys, vol. 40, no. 2, pp. 5:1-5:60, Apr. 2008.

- [280] B. B. Mandelbrot and J. W. Van Ness, "Fractional Brownian Motions, Fractional Noises and Applications," *SIAM Review*, vol. 10, no. 4, pp. 422-437, October 1968.
- [281] A. Kundu and J.-L. Chen, "Texture classification using QMF bank-based subband decomposition," CVGIP: Graphical Models and Image Processing, vol. 54, no. 5, p. 369– 384, 1992.
- [282] C. Xu and J. L. Prince, "Snakes, Shapes, and Gradient Vector Flow," IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 7, no. 3, pp. 359-369, March 1998.
- [283] "Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval," *IEEE Transactions on Image Processing*, 2012.
- [284] D. Eads, D. Helmbold and E. Rosten, "Boosting in Location Space," Santa Cruz, 2013.
- [285] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack and D. Petkovic, "Efficient and Effective Querying by Image Content.," *Journal of Intelligent Information Systems*, vol. 3, pp. 231-262, 1994.
- [286] M. Koyuncu and B. Cetinkaya, "A Component-Based Object Detection Method Extended with a Fuzzy Inference Engine," in *Proceedings of the International Conference on Fuzzy* Systems Fuzz-IEEE2015, Istambul, 2015.
- [287] J. Philbin, O. Chum and M. a. S. J. a. Z. A. Isard, "Object Retrieval with Large Vocabularies and Fast Spatial Matching," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2007.
- [288] K. Chen, "Deep and Modular Neural Networks," in *Handbook Computational Intelligence*, 1 ed., J. Kacprzyk and W. Pedrycz, Eds., Berlin, Springer, 2015, pp. 473-494.
- [289] A. Huneiti and M. Daoud, "Content-Based Image Retrieval Using SOM and DWT," Journal of Software Engineering and Applications, no. 8, pp. 51-61, Feb 2015.
- [290] L. Deng and D. Yu, "Deep Learning Methods and Applications," in *Foundations and Trends in Signal Processing*, Vols. 7, nos. 3–4, Now the essence of knowledge, 2014, p. 197–387.
- [291] J. Bautista-Ballester, J. Verges-Llahi and D. Puig, "Using Action Objects Contextual Information for a Multichannel SVM in an Action Recognition Approach based on Bag of VisualWords," in *Proceedings of the 10th International Conference on Computer Vision Theory and Applications*, Berlin, 11-14 Mar, 2015.
- [292] O. Allani, N. Mellouli, H. B. Zghal, H. Akdag and H. B. Ghzala, "A Relevant Visual Feature Selection Approach for Image Retrieval," in VISAPP 2015 - International Conference on Computer Vision Theory and Applications, Berlin, 2015.
- [293] R. K. Srihari, "Automatic indexing and content-based retrieval of captioned images," *IEEE Computer*, pp. 49 - 56, Sep. 1995.
- [294] Y. Liu, D. Zhang, G. Lu and W.-Y. Ma, "A survey of content-based image retrieval with high-level semantics," *Pattern Recognition*, vol. 40, pp. 262-282, 2007.
- [295] S. K. Pal and P. Mitra, Pattern Recognition Algorithms for Data Mining. scalability, Knowledge Discovery and Soft Granular Computing., London, New York: Chapman and Hall CRC Press Company, 2004, p. 244.
- [296] C. Beecks, M. S. Uysal and T. Seidl, "Signature Quadratic Form Distances fer Content-Based Similarity," in ACM Multimedia, Beijing, China, Oct. 19-24, 2009.
- [297] H. E. Hurst, "Long-term storage capacity of reservoirs," *Transactions of the American* Society of Civil Engineers, pp. 770-808, 1951.
- [298] N. Sebe and M. S. Lew, "Texture Features for Content-Based Retrieval," in *Principles of Visual Information Retrieval*, M. S. Lew, Ed., Springer Science & Business Media, 2013, pp. 50-81.
- [299] I. Rish, "An empirical study of the naive Bayes classifier," in *IJCAI-2001 workshop on Empirical Methods in AI*, 2001.

- [300] R. Datta, J. Li and J. Z. Wang, "Content-Based Image Retrieval Approaches and Trends of the New Age," in *Multimedia Information Retrieval (MIR '05)*, Singapour, 2005.
- [301] T. Jaworska, "The Concept of a Multi-Step Search-Engine for the Content-Based Image Retrieval Systems," in *Information Systems Architecture and Technology. Web Information Systems Engineering, Knowledge Discovery and Hybrid Computing*, Wrocław, 2011.
- [302] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Qualifty Assessment: From Error Visibility to Structural Similarity," *IEEE Transactions on Image Processing*, vol. 13, no. 4, p. 600–612, April 2004.

Index

A

artificial intelligence, 13, 162, 169 audio, 16, 21 B Bag of Visual Words, 144 benchmark, 118 С colour, 12, 22, 23, 25, 28, 30, 31, 45, 46, 75, 76, 77, 78, 83, 86, 100, 101, 126, 164 colour coherence vector, 31 colour correlogram, 31 colour histogram, 31 colour moments, 30 content-based image retrieval, 16, 30 convolutional neural network, 101 convolutional neural networks, 23 D database, 117, 134 structure, 123 decision tree, 89, 98 deep learning, 22, 23 Deep learning, 161 discrete cosine transformation, 24 discrete wavelet transformation, 24, 39, 40, 44.45 Gabor wavelet, 43 Gabor wavelet, 42 Haar wavelets, 45 Symmlet wavelets, 41 E edge detection, 46 active contours, 49 Canny, 48, 49 gradient methods, 46 gradient vector flow, 51 Kirsch, 47

Prewitt, 47 Sobel, 34, 47, 48, 49 Euclidean distance, 60, 63, 72 F face recognition, 164 FAST, 63 fast Fourier transform, 37 feature, 12, 20, 24, 25, 30, 32, 33, 34, 35, 43, 44, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 67, 71, 75, 79, 81, 82, 83, 84, 87, 90, 91, 92, 94, 97, 99, 117, 126, 166, 168 feature descriptor scale-invariant feature transform. 20 feature detection, 30 feature extraction, 20, 30 feature vector, 85, 96 feature vectors, 88 global features, 66 local features, 66 Voronoi polygons, 32 Feature Descriptors, 57 visual feature descriptors, 30 Fisher vector, 61 fuzzy c-means, 73 Fuzzy Rule-Based Classifier, 94 G Gabor transform, 37, 39 Gaussian, 37, 38, 48, 50, 51, 58, 61, 62, 64,75 Geographic Information Systems, 163 Graphical User Interface, 130 Н Hough transform, 46, 51, 52, 53, 59 Hurst exponent, 36

Ι

image, 28 image analysis, 39, 164, 166 image archiving, 167 image format, 25 GIF, 24 JPEG, 24, 25 PNG, 24 RGB, 26, 72 image processing, 16, 22, 30, 35, 91, 165, 166, 169 image collection, 117 image collections, 122 image representation, 28 image retrieval, 16, 22, 24, 61, 85, 87, 169 Image retrieval, 13, 16, 22, 30 K K-means, 71, 72, 76, 78, 79 Knowledge retrieval, 10 L Laplacian, 46, 47 Μ Mandelbrot, 35 Metrics properties, 88 metrics space, 88 multimedia, 13, 16, 21, 24, 64, 87, 123, 142, 168 Ν Naïve Bayes classifier, 91 0 object segmentation, 71, 78, 80 Ρ Q query, 12 query by example, 12, 13

LoG kernel, 60

mean shift, 75 membership function, 73 Metrics multi-dimensional scaling, 126, 135

object classification, 87 object recognition, 86 objective function, 73 ORB, 63, 64

plenoptic camera, 166 precision, 23

query formulation, 12 Query, 127 R recall, 23, 36 relevance feedback, 22

Relevance feedback, 146 remote sensing, 165 RIFT, 60 RootSIFT, 60 S scale-invariant feature transform, 57, 140 search engine, 23, 24, 25, 30, 169 peer-to-peer, 24 Semantic Template, 9, 148, 188 shape, 12, 22, 25, 30, 44, 53, 54, 55, 56, 71, 76, 80, 81, 126, 166 shape description, 53, 54 curvature scale space, 54 generic Fourier descriptor, 56 moments of inertia, 55 signature similarity, 108 stereovision, 166 Support Vector Machine, 92 surveillance, 168 Т text annotation, 22, 25 texture Tamura feature, 34 texture, 12, 22, 23, 25, 31, 32, 33, 34 autocorrelation, 33 co-occurrence matrices, 32 Local Binary Pattern, 33 texture, 34 texture Wold decomposition, 34 texture, 34 texture Markov random fields, 34 texture, 34 texture Gibbs random fields, 35 texture, 35 texture, 35 texture fractal-based, 35 texture, 36, 37, 39, 43, 44, 45, 60, 67, 78, 79, 80, 83, 97, 126, 164 U user interface, 126, 167, 168, 169 Graphical User Interface, 126 V Vectors of Locally Aggregated Descriptors, 62 video, 13, 16, 21, 23, 62, 63, 164, 165, 167, 168, 169 visualization, 134 Ζ Zernike moments, 55, 97

Zucker's model, 32

List of Figures


Fig. 1.1 This chart from [2] shows the average number of image requests and the total	
image bytes over the last five years.	11
Fig. 2.1 A young and old woman drawn by an anonymous German postcard designer,	
1888	
Fig. 2.2 Example of the system answer to a query containing the word 'lamp'	17
Fig. 2.3 Example of 3D visualization of results obtained from a CBIR system [19].	18
Fig. 2.4 3D visualization of connections between users on Facebook Network FritWork	
THREE.js created by Saurin Shah [20]	18
Fig. 2.5 General CBIR architecture.	
Fig. 2.6 Example of an original image	
Fig. 2.7 The block diagram of the Hybrid Semantic System.	
Fig. 3.1 Two most often used image representations: raster and vector; a) vector	
representation, b) vector with colour filling, c) close-up of the vector representation,	
d) close-up of the raster representation.	27
Fig. 3.2 Example of a vector image - used as a prompt in the GUI.	
Fig. 3.3 The categories of texture describing methods.	
Fig. 3.4 Gabor function, where a) the real part of the function and b) the imaginary part of	25
the function [79].	35
Fig. 3.5 Examples of 2D Gabor functions for particular angles $\theta = n\pi K$, where K is the number of orientations. The outside windows present 2D Gabor filters, where $K = 9$. The central contours correspond to the half-peak magnitude of the filter responses in the set of Gabor filters with the upper and lower centre frequency of interest: $\omega_h = 0.4$ and $\omega_l = 0.05$, respectively, six orientations ($K = 6$), and four scales ($S = 4$), followed by [80].	.37
Fig. 3.6 A function $f(x)$ and its projection onto two consecutive levels V_{-1} and V_0 of the	
multiresolution analysis [83].	38
Fig. 3.7 An example of the dyadic Symmlet wavelets. A scale j and location k are	
presented for each wavelet $\psi_{j,k}$ on the right side [79]	30
Fig. 3.8 The real and imaginary parts of the Gabor wavelet for $\sigma = 2$ and $\omega = 3$ which are	
Fig. 3.8 The real and imaginary parts of the Gaboi wavelet for $0-2$ and $\omega-3$ which are 'larger' than the example of the subset shown in Fig. 3.5 [79].	20
Fig. 2.0.4 Australian field of the subset shown in Fig. 3.5 [79].	
Fig. 3.9 A texture classifier flow chart based on the Gabor wavelet transformation (follows	10
[80], [88]).	40
Fig. 3.10 Distance maps of texture calculated based on the 2D FWT with Haar wavelets. a)	
The disposition of wavelet image coefficients d_j^p where j is a multiresolution level,	
and a_j is an approximation at <i>j</i> level. b) Horizontal wavelet coefficients presented along the 100 th column of the image transform (for the Haar wavelet, where $j = 1$). c) Cross-section through the 100 th column of the distance map for positive horizontal wavelet coefficients. d) Cross-section through the 100 th column of the distance map	

for negative horizontal wavelet coefficients. e) Original image of a roof segment (the segment was separated from the whole image based on our colour algorithm (cf. subsect. 4.2.3). f) The red component of the original image. g) Distance map for negative horizontal wavelet coefficients cH1. h) Distance map for negative vertical Fig. 3.11. The kind of edges (at the top), the first derivative of the edges (in the middle), Fig. 3.12 An example of edge detection. a) the original image, b) a layer segmented by clustering, c) an example of the Sobel method for the layer from b), d) an example of Fig. 3.13 A gradient vector flow (GVF) field for a U-shaped object. These vectors will pull an active contour towards the object boundary. (Follows: Active Contours, Deformable Models, and Gradient Vector Flow Chenyang Xu and Jerry L. Prince Fig. 3.15 The Hough transform space. White sinusoids represents lines visible in Fig. 3.14...... 49 Fig. 3.18 The gradient magnitude and orientation at each point of a 4x4 set of samples (on the left) which are accumulated into orientation histograms with 8 bins each (in the middle). The key-points descriptor summarizes the contents over 4x4 subregions, as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. Peaks in the orientation Fig. 3.19 Scale invariant interest point detection: (Top) Initial multi-scale Harris points Fig. 3.20 Relations between different tools and the elaboration process of MPEG 7 [117]....... 62 Fig. 3.23 Different types of image similarity measure and their mathematical formulations...... 66 Fig. 4.2 The way of labelling the set of pixels. Regions I, II, III show pixel brightness and Fig. 4.3 a) 12 cluster segmentation of Fig. 2. obtained by using the 'colour' algorithm, b) segmented objects presented in their average colours, c) the red layer consisted of three brightness regions, d), e) and f) extracted objects in natural colour: chimney, Fig. 4.4 Texture mosaic segmentation based on LBP [65].....74 Fig. 4.5 Natural scene segmentation based on the texture according to the LBP [65]......75 Fig. 4.7 Feature computation in the base model. Each layer has units covering three spatial dimensions (x/y/scale), and at each 3D location, an additional dimension of feature type. The image layer has only one type of pixels, layers S1 and C1 have 4 types, and the upper layers have d (many) types per location. Each layer is computed from the Fig. 4.8 The left side shows an image region and its corresponding ellipse. The right side shows the same ellipse with the solid lines as the axes, the dots on the major axis as foci and the orientation which is the angle α between the horizontal dotted line and Fig. 5.1 Example of a decision tree pruned to the 7th level. We omitted the feature values in Fig. 5.2 The optimal hyperplane and margins M for an SVM trained with samples from

Fig. 5.4 Exemplification of a membership function calculated on the basis of statistical	
class parameters	93
Fig. 5.5 Classification example [51]. The new element marked by the full green square is	
recognized as an arc among classes: arc, pillar and balcony. Membership functions	
are represented by solid colour lines and linguistic intervals are drawn in dashed	~ .
lines. In this case, x_1 is orientation and x_2 the real part of Zernike's moment.	94
Fig. 5.6 Classification example [51]. The new element marked by the full green square is	
recognized as an arc among classes: arc, pillar and balcony. Membership functions	
are represented by solid colour lines and linguistic intervals are drawn in dashed	05
lines. In this case, x_1 is area and x_2 the real part of Zernike's moment.	95
Fig. 5.7 The simplest 2D segment of a CNN. For each patch of samples - neurons x _[0,1] (for pixels in image), A computes features [158]	06
Fig. 5.8 <i>A</i> - convolutional layer, <i>B</i> - pooling layer	90
Fig. 5.9 The three colour components RGB (red, green, blue) (bottom right) of the image	97
of a dog are the inputs to a typical convolutional network. Information flows bottom	
up, with lower-level features acting as oriented edge detectors, and a score is	
computed for each image class in output [157]. The outputs of each layer	
(horizontally) are the inputs to the next layer. Each rectangular image is a feature	
map corresponding to the output for one of the learned features, detected in each of	
the image positions.	98
Fig. 5.10 General scheme of the deep learning classification process. The top flow presents	
a CNN training to perform an image classification task where the output of each	
convolved image is used as the input to the next layer. The bottom scheme shows the	
proper classification process (FC – Fully Connected layer) [160].	98
Fig. 5.11 The main stages of the PCV applied to determine the unique object spatial	
location in an image [52].	.101
Fig. 6.1. Illustration of the asymmetric Hausdorff distance between sets A and B:	
$d_H(A,B) = \varepsilon$ and sets B and A: $d_H(B,A) = \varepsilon$.	.105
Fig. 6.2 (a) Two feature signatures with their centroids and weights. (b) The illustration of	
the structure of similarity matrix A for two signatures S^{o} and S^{q} , according to Beeks	
et al. [169]	
Fig. 6.3 Matching results for signature quadratic form distance for query 1	
Fig. 6.4 Matching results for signature quadratic form distance for query 2	.107
Fig. 7.1 For each year and class the plot presents the average precision at the object detection category obtained by the best-performing method in a particular class in a	
particular year [180] for participation in the Pascal VOC challenge	115
Fig. 7.2 The database server model which supports our CBIR system.	
Fig. 8.1 Query types [53]	
Fig. 8.2 The main GUI window. An early stage of a terraced house query construction	.122
[53].	124
Fig. 8.3 Main components of the GUI. We can draw a contour of the bitmap (see a) and b))	
and change the colour of an element (see c) and d)) [53]	.125
Fig. 9.1 DB browsing based on visual similarity [218].	
Fig. 9.2 A content-based image clustering method for public image repositories [223]	.130
Fig. 9.3 Pathfinder networks of images organized by colour histogram [224]	.130
Fig. 9.4 Schematic representation of the SOM ANN architecture.	.131
Fig. 9.5 Retrieval process based on feature object representation [227].	.133
Fig. 9.6 Point-to-point correspondence found by the SIFT descriptors	
Fig. 9.7 A hybrid ontology and content-based search engine architecture follows [230]	
Fig. 9.8 Visual feature ontology [231]	
Fig. 9.9 Flow chart of the algorithm follows [235]	
Fig. 9.10 CBIR architecture with the relevance feedback (RF) mechanism	.140
Fig. 9.11 The full structure of our hybrid semantic CBIR system.	
Fig. 9.12 Information flow in our hybrid semantic CBIR system.	.144

Fig. 9.13 The method for object comparison, where I_q – query and I_b – an image from the	
DB	. 146
Fig. 9.14 A main concept of the hybrid search engine.	. 147
Fig. 9.15 An example of the Curvelet Lab system retrieval for our query. (Efficiency	
according to Curvelet Lab system)	. 151
Fig. 9.16 An example of the Curvelet Lab system retrieval for our query. (Efficiency	
according to Curvelet Lab system)	. 152
Fig. 11.1 Examples of images which remain open problems in CBIR	. 165

- - -

