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Computer modelling, simulation and identification of molten glass furnaces

Jan Studzinski
Systems Research Institute of Polish Academy of Sciences
Newelska 6, 01-447 Warsaw
studzins@ibspan, waw.pl

A new method for computer aided modelling, simulation and identification of flow dynamics in
molter glass furnaces is presented and numerically analysed. The process of the construction of
glass tank firnace models occurs in several steps on which the sub-models with differentiated
mathematical descriptions (with distributed or honped differential equations) and dynamical
features (with inertial and oscillatory characteristics and with slow and fast changeable dynamics)
are setting up. The method propoesed makes possibie lo prepare the models of glass tank furnaces
of high degree of accuracy, described with the equations of rather high orders. The models are
suited well to estimalte technological parameters of glass tank furnaces and to control the glass
melting processcs.

1. Intreduction

The glass production is a very complex technological process. For this reason there is very
difficult to set up its mathematical models that could be useful for practical applications, such as
computer simulation, control or estimation of technological parameters. The modelling of glass tank
furnaces occurs usually under separated application of Distributed or Lumped Parameter Equations
(DPE or LPE models) and the result is that they are very complicated (DPE models) or very simplified
(LPE models). That is why their practical uscfulness is very limited. This situation is caused by
lacking of adequate identification methods. Thus in the following a numerical algorithm is presented
for setting up molten glass models under consideration of both arts of mathematical description. This
way their drawbacks could be eliminated and their advantages retained. The algorithm presented
consists of two gencral stages. On the first stage a DPE model is formulated with the quasi-lincar
Navier-Stokes and energy equations and with an equation added that describes the glass mass
composition change in the molten glass. On the second stage a complex LPE model is prepared using
the DPE model previously identified. All computations are done using real data from an industrial
glass tank furnace. The fitting of the DPE model to the data occurs by using static optimisation
methods. To estimate the siructure and the parameters of the LPE model an indirect identification
method is used, developed especially for setting up continuous dynamic modeis of higher orders.

2. DPE model formulation

To model the glass mass flow in a tank furmnace by the partial differential equations the
following description is used [2]:
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where the parameters mean: v,,v; — longitudinal and vertical glass mass velocities in x, and x,
directions, p — pressure, T — temperature and 7, — reference temperature, z - chemical composition of
the melt, £ — time, # — dynamic viscosity, p — density, g — gravitational acceleration, g — thermal
expansion, A — thermal conductivity, ¢, — specific capacity, D — diffusion coefficient, ¢ to ey
some fitting coefficients (to it the model to an object),

Equations (1), (2), (2) are known in the classical {luid mechanics as the Navier-Stokes (or
motion), energy and continuity equations, respectively, and they are formulated on the base of the
momentum, energy and mass conservation laws. These equations describe the distributions of the
temperature and the glass melt velocities in 2 tank furnace induced by the free and forced convection
currents in the molten glass. Equation (4) describes the glass mass composition changes induced by
the convection currents and the diffusion. While setting up the equations several simplified
assumptions were made that took into consideration the specific propertics of the glass mass flow and
also the hypothesis that the glass melt is an incompressible and Newtonian liquid [3]. The scheme of a
glass tank furnace modelled and the main convection currents occurring in the molten glass are shown
in Fig, 1,
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Figure 1. Longitudinal section of the glass tank furnace and the main currents occurring in the
melt; 1,2,3 - rotating, withdrawal and surface current, respectively, 4 - raw materials input, 5 - glass
take-out, 6 - temperature distribution on the free surface of the glass melt.

3. DPE model identification

Equations (1-3) make together a two-dimensional DPE model of the glass mass flow in a tank
furnace. After some boundary conditions are given and the temperature and velocitics values are
calculated from equations (1-3), one can calculate subsequently the glass melt composition at each
point of the tank by solving equation (4). To get the numerical solution of the model cquations the
finite difference method is used and a theoretical analysis of the numerical solvability of the mode} is
made [3]. On the first step of the model computing equations (1-3) are solved. The boundary
conditions for the function p arc unknown and this makes necessary 1o transform the cquations. It is
done by replacing the velocities v, vy by the current function i what results in a new model form
cansisting of only two equations contrary to the four ones in (1-3). The reduction of the number of
equations causes in general a better convergence when solving the model numerically, A discrete
approximation of the model cquations occurs by the help of difference quotients. The use of standard




difference quotients leads, however, in the case of high order derivations of equations to a bad stability
of the resulted difference schemes at the edpes of the knotted grid. To improve the approximation
some new central difference quotients have been developed for the high order derivations of w . The
difference schemes resulted from equations (1-3) are solved by means of the relaxation method using
an iterative algorithm. For the numerical calculation the values of the physical coefficients and of the
space dimensions of the model were chosen according to those ones of a real tank fumace. The
convergence of the iterative algorithm was relatively fast with highly satisfactory accuracy of the
calculation. Some results of the temperature and current fields computed are shown in Fig. 2, One can
sce in Fig. 2 that only the rotating and withdrawal currents but not the surface current (as it is shown in
Fig. 1) are determined after the simulation of model (1-3) was made. This current could not be
abtained with a two-dimensional DPE-model.

Figure 2. Computed temperature {figure a) and current distribution (figure b) in the glass melt for
the longitudinal scetion of the glass tank furnace.

The numerical solution of equation (4) oceurs on the second step of the modelling. To
approximate {4) some central difference quotients of the finite difference method are used and as a
result a new difference scheme with some fitting coeflicients is obtained. The glass tank model
deseribed by equations (1-4) constitutes an approximation of a real object. Such an approximation is
usually not exact although the parameters and dimensions of the model correspond to those ones of the
tank. The possible inaccuracies occur while the model equations and boundary conditions are
formulated and the parameter values are determined. Also the numerous simplifications made during
the setting up the model are responsible for many inaccuracies and this is practically unavoidable.
Then the fAtting of the modei to the object can be realised by the help of equation (4) and some
measurements data obtained from the tank furnace under investigation (see Fig. 3). To do it the
following identification problem is formulated:

A
min Q(e; ) = min E(z" -z 5)

where 2* and z* mean the measured data and the discrete values of the model output that is

calculated by selving equation (4) (the glass composition z is here considercd as the radioactivity of
the glass mclt that has been measured while realising an isotope experiment on the tank furmace).




To solve problem (5) a static non-gradient optimisation method is used [4]. The critericn
function Q(e;) is strong non-linear relating to ¢; . Because of that the start points for the optimisation

runs had to be chosen very carefully and close enough to the optimum. The mode! output obtained
from the calculation is shown in Fig. 3. One can see that the output fits well to the data in the farther
section of the curve where the influence of the rotating and withdrawal currents on the glass mass flow
is the strongest. The approximation of the data with the model output in the initial section of the curve
is much worse but there the surface current determines the data which is noticeable through the high
oscillations of the curve, This situation can be explained through the omission of the surface current in
the DPE model. This current could be considered in a three-dimensional DPE model but unfortunately
such a model would be hardly possible to identify because of its great complexity.

Figure 3. Isotope data for modelling the glass mass flow dynamics; 1,2- noisy and smoothed data,
respectively, 3 - output of the DPE model.

4. LPE model and its identification

The glass mass flow in a tank furnace can be described using also LPE models. ‘Their parameters
have no physical meaning and this gives interpretation troubles when comparing the models and
objects. On the other side the setting up of such the models 1s easier than PDE models regarding the
work complexity and the computing time needed for simulation and identification. Usually the non-
linear regression methods are used for developing the lumped parameter models. These methods are
penerally successful if models of lower orders have to be set up but they are not effective in more
complicated cases. The main problems then are connected with the choice of an adequate model
structure and with the fixing a slart point possibly closely to the optimum while making the
identification. The methods of non-linear regression converge usually to the local optimal points if the
start points arc not right. To overcome these problems an indirect identification methed was developed
to model lincar dynamic objects of higher orders from their sampled impulse responses [1]. This
method has been adopied for setting up the LPE models of glass tank furmaces by using a multistage
madelling approach [4].

The mathematical description of an object modelled is now in the form of the homogeneous
ordinary differential equation:
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with the nen-zero initial conditions added:

2{0) = by,
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25Ny =5, —a,2(0) ...
and with the following analytical solution function:
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The continuous equation {6) can be approximated by the following discrete equation:
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with: z, = z(kAf), k=1,2,...,K, At — sampling step, and with the following analytical solution
function:
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By comparison (10) and (8) on¢ can convert very casy the coeffieients of function (10) into the
coeftficients of (8).

The numerical algorithm realising the indirect identification methed is as follows:

i, Filting the difference equation (9) to the impulse response obtained from the object, using a
standard time scries identification methed.
2. Estimation of the coefficients in the time discrete function (10} using a standard optimisation

method (e.g. the linear regression) and the parameters identified in (9).

3. Calculation of the coefficients in the time continuous function (8) converting the coefficients of
function {10) with the help of some simple algebraic formulas.
4. Calculation of the parameters of equations (6) with the help of the parameters of (8).

The main idea of the indirect identification method is that at first a discrete model is found and
afterwards it is converted into the time continuous one. In this way the search for a continuous model
is realised ,indirectly”, i.e. using a discrete model that is much easier to develop from the numerical
point of view. In the case of complex objects it is well-advised to divide the modelling process into
several stages at which sub-models with different dynamics features are constructed and afterwards
put together to one overall model. On ¢ach stage of modelling different data sequences must be used
for identification and they are to be isolated [rom the original measurements. The currents distribution
occurring in the glass melt (see Fig. 1) suggests that the {eatures of the melt mixing dynamics in a tank
furnace depend in a different way on the character and velocities of the currents. The slow-running
withdrawal current decides on the dynamics of the slow-varying inertial character and the fast-running
surface current, as well as the rotating currents decide on the dynamics of the different-varying
oscillatory characlers. Also the isotope data for identification display both the inertial and oscillatory
characters (see Fig. 3). The above remarks justify the application of the multistage approach for
modelling glass tank fumaces. The choice of the best (,,optimal™) sub-modcls as well as of the best
overall model occurs by means of the residual sums.

Some models have been developed for the glass tank furnace under consideration using this
multistage approach They fit well 1o the farther part of the data curve {(where the ,slow” dynamics of
the object dominate) but their adaptation to the initial phase of the curve (where the oscillatery




components dominate) is much worse. The modelling of this initial data section depends considerably
an the division of the whole data sequence into the components which are used for setting up the sub-
models. This makes the main trouble when using the multistage modelling approach with the LPE
description of the models. Since the runs of the data compenents are not known from the beginning,
they can be guessed only in general and the appropriate data curves are obtained using various
smoothing algoerithms. This leads, however, to greal inaccuracies of the proceeding.

5. Combined algorithm of molten glass modeling

To avoid the disadvantages of the above meodelling approaches a combined algorithm for
modelling glass tank furmaces has been developed. The final models obtained by means of this
approach are-described by ordinary differential equations but a DPE model is used at the first level of
the modelling. The conceplion of this combining medelling resulted from the experience which was
gathered afler the models with distributed and lumped parameters were developed separately, In the
latter case the modelting of the oscillations appearing in the isotope data (and caused by the surface
current) is not exact. The only use of smoothing algorithms does not allow to determine exactly the
initial run of the data curve which is used later to set up the ,slow™ inertial sub-model and because of
that there is not possible to get the right data for farther stages of the modelling. But these difficulties
can be surmounted by help of the DPE model. it allows to isolate correctly the surface current
compenent of the data from the component which is responsible in the main for the glass mass
transport in a tank furnace. This component is caused by the withdrawal and rotating currents and it is
approximated correctly by the DPE model.
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Figure 4. Overall LPE models obtained by means of the combined modefling approach without and
after using the non-lincar regression method (curve 1 and 2 respectively).

The two-level modelling approach is as follows:

1. Formulation of the partial differential equations describing the DPE model and its computer
simulation,
2. ldentification of the DPE model with the help of the measurements data and by means of an

optimisation method.
3. Developing of the slow-varying LPE sub-model using the output of the DPE mode! as the data
for the indirect identification method.




4.  Preparation of the data for setling up the fast-varying LPE sub-model by subtracting the ouiput

of the DPE model from the original measurements and by smoothing the results (this sub-model

will describe the contribution of the surface current in the measurement data).

Developing of the fast-varying LPE sub-model using the indirect identification method.

6. Putting together the sub-models into one overall model and the subsequent estimation of its
paramcters by means of the non-linear regression methods.

After using the combined modelling algorithm a complex LPE medel of the glass mass flow
dynamics was finally set up. The model has the eleventh order and it censists of two sub-models of
sixth and fifth orders, respectively. The 6th order sub-model has the inertial-oscillatory character and
owns two real and four complex roots in its transfer function. It fits very well to the output of the PDE
model. The 5th order sub-model has either the inertial-oscillatory character and it has one real and four
complex roots in its transfer function. It fits very well to the oscillations caused by the surface current.
The overall LPE meodel fits well to the original measurcments and it approximates exactly the
oscillations occutring in the initial section of the data (see Fig. 4 and Table 1).

b

Table 1. Paramcters of the 6th order and 5th order sub-models and of the 11th order overall ODE

model.
Parameters | R=6 R=5 | R=11
T, 263.16 32.26 263,16
T, 14.88 21.19
k, 11.27 31.95 19.88
@ 237.99 | 27.83 | 33.39
k; 1.68 3.77 11.48
@y 191.56 | 7.39 | 22.51
T, 1.32
k, 14.68
@ 1345
ky 3.29
4 4.58

6. Conclusions

The problem of mathematical modelling of the glass mass flow dynamics in a glass tank furnace
is solved and three numerical approaches of modelling are presented, tested and discussed. The first
approach develops two-dimensional DPE models that describe the slow-varying dynamics of the glass
tanks in which the withdrawal and rotating currents occur and no surface current appears. The secend
approach allows the development of L.PE models of relatively smatl order that do not describe exactly
the complex dynamics of the objccts in which all kinds of the currents occur. The troubles arise while
modelling by means of this approach the initial section of the isotope data where the simultancous
cffects of the slow and fast varying currents are particularly strong. Therc is no effective algorithm to
divide the data curve into the compoenents for there is not known a priori in which way the individual
currents influence the measurements. The third approach is a combination of the two and it makes
possible to develop complex LPE models of the high order that have got the inertial-oscillator features
and very dilferentiated parameter values. The modeis computed by help of this approach describe very
well the dynamics of the glass mass flow and all the same they are simple and convenient encugh for
numerical treatment. They can be used for the development of control or stabilisation algorithms with




reference to the chemical composition of the glass as well as for the calculation of the technological
parameters of glass tank furnaces.
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