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W Raporcie przedstawiono trzy artykuły zawierąjące wyniki badań w zakresie 
modelowania, symulacji komputerowej, identyfikacji i sterowania procesów technicznych i 
technologicznych zachodzących w mechaniczno-biologicznej oczyszczalni ścieków. Badania 
były prowadzone w ramach projektu badawczego KBN pn. Optymalizacja i sterowanie 
procesu technologicznego w mechaniczno-biologicznej oczyszczalni ścieków na podstawie 
modeli matematycznych. Artykuły te, opublikowane w 2001 r., są następujące: 

1. Modellierung oekologischer Prozesse in Klaeranlagen (autorstwa J. Studzińskiego i J. 
Łomotowskiego), opublikowany w ksiqjce pt. Systemtheorie und Modellierung von 
Oekosystemen, w serii Umweltwissenschajten, wydanej przez Physica-Verlag w 
Heidelbergu pod redakcją A. Gnaucka 

2. Komputerowe wspomaganie zarządzania komunalną oczyszczalnią ścieków (autorstwa 
J. Studzińskiego), prezentowany na konferenC;ji pn. Komputerowe Systemy 
Wielodostępne KSW'2001, w Ciechocinku w br., opublikowany w ksiqjce pt. Rozwój i 
Zastosowania Technologii i Systemów Informatycznych, wydanej przez IBS PAN pod 
redakC;ją J. Studzińskiego, L. Drelichowskiego i O. Hryniewicza 

3. Mathematical and neural network modelling of a wastewater treatment plant 
(autorstwa L. Bogdan, J. Łomotowskiego, Z. Nahorskiego, J. Studzińskiego i R 
Szeteli), opublikowany w piśmie Archives of Control Sciences. 



Spis treści 

1. Modellierung oekologischer Prozesse in Klaeranlagen 
(J. Studziński, J. Łomotawski) .... ..................................................................................... 1 

2. Komputerowe wspomaganie zarządzania komunalną oczyszczalnią ścieków 
(J. Studziński) ................................................................................................................ 14 

3. Mathematical and neural network modelling of a wastewater treatment plant 
(L. Bogdan, J. Łomotowski, Z. Nahorski, J. Studziński, R. Szetela) ................. ............. 27 





A1t'l1ives ą{Contm/ Sciences 
Volume lO(XLVI), 2000 
No. 1-2. paKes 89-118 

Mathematical and Neural Network Modelling of a 
Wastewater Treatment Plant 

LUCYNA BOGDAN, JANUSZ ŁOMOTOWSKI, ZBIGNIEW NAHORSKI, JAN STUDZIŃSKI and RYSZARD 
SZETELA 

Comparison of few methodologies of building models useful in wastewater treatment plant 
maintenance is performed. One is mathematical modelling of the activated sludge process. It 
consists of modellling of the basie vessels: primary clarifiers, aerator basins and secondary clar
ifiers, linked and partially looped, as well as equations describing the physical and biochemical 
transformations going on in the vessels: sedimentation in the clarifiers and biologica! processes 
changing the influent wastewater chemical composition. The models' parameters were esti
mated in two steps. In the first step the active volumes of the vessels were estimated from the 
experiment performed in the plant. In the second step, parameters known from the literature 
were used as the initial guess and then calibrated to fit the observations taken during normal 
plant operation. 

Conceming other methodologies, results from the black box modelling of the performance 
of the plant with the neural network are given. The neural network and the time series rnodels 
are also applied for prediction of the influent wastewater. 

Key words: wastewater treatment, biochemical processes, modelling, parameter estima
tion, neural networks 

1. Introduction 

Conventional automation, with PID type controllers, has entered to the wastewa
ter treatment plants since some time ago. Although it proved very useful in stabilizing 
different unit processes, in many cases it could not cope with the changing conditions 
caused by nonstationary inflow of the municipal wastewater with involved predominant 
diurnał periodicity. 

Knowing mathematical equations describing transformations of wastewater compo
nents, it is possible to formulate a model of the overall treatment process. Models of this 
kind have been already built but their practical use in control of plants is stili limited, 
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because of a rather big complexity of the models and difficulty in obtaining satisfactory 
accuracy of prediction. However, these models, based on physical, chemical, and biolog
ical laws and principles, can be very useful in better understanding of the process itself 
and in its qualitative assessment. Moreover, it seems that more advanced applications of 
these models can be noticed. One of them is estimation of variables that are not possible 
to measure. Another is help in better manuał control of the process, e. g. as a part of an 
expert system for process control. 

The model presented in the first part of this paper goes in this direction. lt has been 
prepared for the existing municipal wastewater treatment plant in Rzeszów, a town in 
southeast part of Poland, and calibrated to the measurements performed during an ac
tive experiment. The model belongs to the class known in the literature as the Activated 
Sludge Model No. I [17]. These kind of models describe wastewater processes with 
degradation of organie and nitrogen components only. The equations of the model pre
sented in the paper form a subset of equations of a more generał model presented in [32], 
chosen and modified to conform to the conditions of the Rzeszów plant. 

This physically oriented model, although useful in many instances, is rather com
plicated and thus not very suitable for control and optimization. That is why simpler 
models have been proposed. Time series models, often with the recursive estimation of 
parameters, were used e. g. in [8, 19, 27, 28]. Carstensen [9] fitted AR models to tran
sient processes occuring in the BIO-DENITRO and BIO-DENIPHO configurations to 
smooth the measurements. This smoothed sequence was further used to estimate the pa
rameters of a physically oriented models. Separated stages of the B10-DENITRO and 
BIO-DENIPHO processes considerably simplified the task. 

Neural networks have been employed in [4, 15]. In the latter one it is combined with 
the fuzzy logic, see also [11,35], which was the third ofproposed simplified methods of 
coping with the problem. 

In this paper the time series and the neural network models are used to predict the in
let flow rate to the plant. Moreover, the neural network model is used for prediction of the 
quality of the effluent from the plant on the basis of measurements of different variables, 
both uncontrollable, in the influent, and controllable ones: the oxygen concentration in 
the aeration basin and the rate of recirculation flow in this basin. 

2. Wastewater Treatment Plant in Rzeszów 

The wastewater plant in Rzeszów is designed for treating 75 OOO m3/day of the 
wastewater coming from the part of Rzeszów town lying on the left bank of the Wisłok 
river. The town sewerage system is partly of the mixed type, as in the old town it is con
nected to the rainwater drainage. Apart from the domestic sanitary wastewater there are 
also industrial discharges, coming from I I 2 plants, among them pharmaceutical, food 
processing, big metal industry works, etc. The wastewater treatment plant consists of 
the inlet pumping station, grit chambers, two primary clarifiers, three parallel aeration 
basins and two secondary clarifiers. This is shown schematically in Fig. 1. 
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Figure I. '\Yater treatment plant in Rzeszów. 

After removal of coarse solids by screening and degriting in the grit chambers the 
wastewater enters the pńmary clańfiers where settleable solids settle down white the rest 
of the wastewater flows to the activated sludge basins equipped with fine pore aeration 
system. The organie materiał is decomposed there biologically under aerobic conditions. 
The mixed Iiquor from the aeration tanks passes to the secondary clańfiers where the 
sludge is separated from the treated wastewater by means of gravitational settling of the 
sludge particles. Part of the sludge is recirculated to the inlet of the aeration basins white 
the excess sludge is removed from the process for further treatment. 

Table I shows the treatment plant influent characteństics, as measured in 1994. On 
the basis of these data the wastewater can be classified as moderately loaded as far as 
nutńents (nitrogen, phosphorus) are concerned but heavily Ioaded in organie matter (high 
values of COD - the chemical oxygen demand, and BODs - the five-day biochemical 
oxygen demand). 

3. Prediction of the Plant Inlet Flow Rate 

An important factor in operation of the wastewater plant is the inlet flow rate. Its ba
sie component is of a cyclic form with predominant diurnał cycle. Moreover, the weekly 
cycle can be clearly seen in the flow rate diagram. They are connected with the periodic 
·human activities in the area covered by the sewerage system. The flow rate depends also 



92 L. BOGDAN, J. ŁOMITTOWSKI, Z. NAHORSKI, J. STUDZIŃSKI, R. SZETELA 

Table 1. Influent loads al the Rzeszów plant in 1994. 

unit mm. average max. 
Flow rate m·'/d 35 ooo 

suspended solids g/m3 84.0 309.2 349.1 
BOD5 gO2/m3 80.0 416.8 770.0 
COD gO2/m3 325.0 507.6 753.0 

ammonia nitrogen gN/m3 14.0 28.3 40.0 
total nitrogen gN/m3 29.0 52.9 81.0 

total phosphorus gP/m3 15.1 
total sulphur gS/m3 94.2 

on the atmospheric conditions, like precipitation, melting of snow, etc., and dynamics of 
the sewerage system. 

A possible approach to prediction of the plant inlet flow is the physically oriented 
mathematical modelling of the sewerage system. A successful application of this kind of 
approach depends on possibility of estimation of, usually many, unknown parameters of 
the system. 

Another posibility is offered by the black box approach. This type of models enable 
prediction of the future values of the inlet flow rate on the basis of its past values as well 
as the past values of some variables which decide on the flow, like rainflow intensities 
in chosen locations of the sewerage area or the wastewater levels in the system, see 
e.g. [16]. As these kind of data were not available to us, we present here only results 
of prediction based on the past values of the inlet flow rate. Thus the model represents 
mainly the inertia of the sewerage system. 

The data used were collected in the Rzeszów wastewater treatment plant in March 
and May I 996. The measurements were taken every 2 mins. and then averaged over one 
our, i .e. the average of 30 consecutive measurements formed one point of data which was 
then taken for further processing. This way 744 data from March and the same number 
from May were obtained. The former were used as the training sequence and the latter 
as the testing sequence. 

Two methods were adopted. The first used a time series model, namely the autore
gressive (AR) model, and the second a neural network. In both of them prediction was 
performed on the basis of five preceeding measurements. Thus the AR model had the 
form 

Y11 =a1Y11-I +a2Y11-2+ ... +aRY11-R+e11 

with R = 5, where a 1 to a5 are model parameters, and e11 , n= 1,2, ... ,N are the errors 
assumed to be independend and identically distributed stochastic variables with the dis
tribution :ł{(O,cr2 ), where cr2 is the unknown variance. Severa} methods of estimation 
of the parameters are known for this model. Out of them, the least squares method was 
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used here. Tests of significance of the parameter estimates were done and a11 estimates 
were found significant. 

A neural network consists of neurons. A neuron produces an output a from an input 
p using a weight w, a bias band a transfer function F. Both w and b are adjustable. By 
adjusting w and b in all neurons, the network will be trained. That training can be done 
by various optimization methods, depending on network architecture, computer power 
and the criterion used. The neurons can be combined into a layer. A network contains 
of one layer or multiple layers. Here three layers were used: the input layer, the hidden 
layer, and the output layer. Each neuron on a layer is then connected through a weight 
matrix w( i, j) to each neuron of the n ext layer. Each neuron sums up the weighted inputs 
and adds a bias. Depending on the form of the transfer function, linear or nonlinear 
neural models can be obtained. To determine the neural network the number of layers, 
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Figure 2. Fits of the models after the learning phase for the AR model (upper panel) and the two neural 
network models (middle and !ower panels). The measurements are depicted with the crosses. The thick 
solid lines represent the outputs of the models. 

the number of neurons on each layer and the values of parameters of each neuron have to 
be established. The latter are usuaJiy defined during the learning process which consists 
in adjusting the weight matrix and bias vector of each _layer to fit the network output to 
the measurements. Sum of squared errors was used as the criterion and it was minimized 
using the Levenberg-Marquard rnethod. The quality of the model was checked on the 
testing sequence. Two linear neural models were used: the NNAR model (neuronal net 
autoregressive model) had 5 neurons on the input layer, 7 neurons on the hidden layer 
and I neuron on the output layer, while the NNBP model (neuronu! netback propagation 
model) had 5, 6 and I neurons, respectively. In both cases the data were normalized: for 
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Figure 3. Fits of the models for the testing sequence for the AR model (upper panel) and the two neural 
network models (middle and tower panels). The crosses and the thick solid lines depict the measurements 
and the outputs of the models, respectively. 

the NNAR model to form the zero mean and the unit variance series and for the NNBP 
model to the interval [O, I). In the NNAR model additionally pruning has been done, i.e. 
insignificant connections between neurons have been dropped. 

Figures 2 and 3 show results from the learning and the testing phases. They present 
high similarity in the fits after the learning phase. In the testing phase the AR model gave 
a little more accurate fit. Yet for the practical reasons any of the models considered can 
be satisfactorily used for prediction purposes. 

4. Hydrological Model 

The hydrological model consists mainly of submodels of the basie vessels that may 
be treated as the ideally mixed tanks. There is only one unknown parameter in each 
submodel that is the vessel volume. Often only part of the vessel geometrie volume 
is engaged in flow dynamics. It is called the active volume. It may differ significantly 
from the geometrie one, as in the case discussed in the sequel. The main difficulty in 
estimating the active volume experimentally in the wastewater treatment process arises 
from the unsteady inflow to the plant during the day, as seen in Fig. 4. This is the reason 
why a mathematical model with variable parameters is proposed to describe the vessels. 
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Advantage of compensating for the variability of the parameters in flow systems 
before application of an identification procedure has been pointed out in [2], as resulting 
in much better simulation ability of the model and much smaller fluctuations of the 
estimated there residence time. The compensation used there was done by an appropriate 
resampling pattern. This idea can be as well used in our method, although ours works 
well also without resampling. 

Variations of the inflow influence the volume of the liquid in the vessel. Typically, the 
excess liquid overflows through the vessel edges. Thus, higher inflow causes some raise 
of the liquid level. This phenomena will be discussed in the sequel. We start, however, 
with a simpler case, disregarding the changes in the volume. 

2500 

.. ,. 
1500 

{ 
d 

1(!00 

500 

Time,hours 

Figure 4. Influent flow rate to the plant. 

4.1. Constant Vessel Volume 

If a tracer is used in a measuring experiment, the balance of the tracer mass measured 
yields the equation 

dc(t) 
V dt = Q(t)[c;11 (t) - c(t)] (I) 

where V is the active volume, c(t) is the concentration of the tracer in the vessel and 
ci11 (t) its concentration in the influent, Q{t) is the influent flow rate. This is the first order 
ordinary differentia! equation with a varying parameter. 

Let us introduce a new variable [26] 

I 

~{t) = f Q('t}d1: 
o 

which is the amount of wastewater which has passed through the vessel from the begin
ning of observations. As Q(t) > O, then there exists the inverse differentiable function 
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t = g(s). Inserting it to (I) we get 

dc(Ę) dĘ 
V~ dt = Q(ś)[c;n(S) - c(Ę)] 

where c(Ę) = c(g(Ę,)) and similar for c;,1 (Ę,) and Q@. We have used here the same 
notation for the function c(t) and for the superposition of functions c(g(ś)) in order to 
simplify the consideration. But dĘ/dt = Q(t), and therefore 

dc(Ę,) 
V~= C;n(Ś)-c(Ę) (2) 

Thus, when the lapse of time is measured in the passed liquid flow instead of time, then 
the vessel is described by the equation with a constant parameter. 

When planing an active experiment it was found that the piecewise constant applica
tion of the tracer, c;n(S) = c;11 (Ę,n-1) for t11 _1 ~ t < 111 where Ę,11-1 = ś(t,1-1), and t11-1, 111 

are the (n - I )th and nth observation time, respectively, would be technologically most 
suitable. In this case the equation (2) can be transformed to 

(3) 

where !J.n = Ę,,, - Śn-l is the observation interval. 
The data used for estimation of the active volume V were gathered during the exper

iment in which chlorine ions were used as the tracer. This was achieved by adding salt 
(NaCI) to the vessel inflow. An optimal piecewise constant input for the constant obser
vation interval was found to be periodic, with the period between 4V and 6V (depending 
on the value of ,1). The optima! observation interval was around V or 1.5V (two close 
optima), with a rather fiat criterion function between and around them, see [25]. 

If the tracer concentration is observed with good accuracy, then the volume V can be 
estimated from the expression 

c(Ę,11) - c;11(Ś11-d _ ~ 1 2 N 
i:. ) (i:. = e v , n= , , ... , 

c(~11-l - Cin ~11-d 
(4) 

The nonlinear least squares method can be used for this purpose. 
For technological reasons it was not possible to measure concentrations of the chlo

rine ions at each inlet and outlet of the parallel vessels. Thus the respective sums of vol
umes for the two primary clarifiers, three aeration basins and two secondary clarifiers, 
respectively, have been estimated. Two estimation methods have been used: (i) linear 
least squares (LS) using equation (3), (ii) nonlinear least squares (NL) using equation 
(4). To use the LS method the signals c(n) and c;11 (11) were interpolated to get constant 
values of !J.n = Ę,11 - Ę,11_ 1 = !J.. This way the equation could be transformed to the form 
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Table 2 Estimates of the active volumes V of the vessels, in [m3]. 

primary aeration secondary clarifier 
clarifier basin upper !ower 

LS 5676 I 1246 4723 6303 
NL 6283 12087 4612 6514 

average of values above 5980 11667 4668 6408 
geometrie volumes 7820 13500 11060 

~;~~etnc [%] 76,5 86,4 100 

c(n) = ac(n -1) +bci11 (n- 1) where b = I -a and a= exp(-t:../V) are constant param
eters. A selection of the estimation results from [5] is presented in Table 2. 

In the secondary clarifiers, see sketch on Fig. 5, the tracer output concentrations were 
measured both in the overflow and in the recirculated sludge outflow from the bottom 
of the clarifiers. Therefore, the total volume was divided into two zones: the upper zone 
V11 , attributed to the overflow, and the !ower zone Vd, attributed to the recirculated sludge 
outflow. Both of them were estimated and the results obtained are shown in the right 
hand part of Table 2. For each estimation method the sum of both zone volumes is very 
close to the geometrie volume of the clarifier. 

Figure 5. Sketch of the secondary clarifier 

In the primary clarifiers only effluent tracer concentration was measured, as the 
slugde outflow is much smaller there. The active volume estimated is significantly 
smaller than the geometrie volume. This can be connected with the sludge bed gathering 
in the bottom of the clarifiers. Few factors could also cause the active volume estimate 
of the aeration basins to be smaller than the geometrie volume. Among them the dead 
parts of the basin volume and the air bubbles from the aeration are likely reasons. 
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4.2. Variable Vessel Volume 

With the variable volume we have 

V(t) = Vo[l +K(t)] (5) 

where Vo is a constant (minimal, average) volume and K(t) is its variable fraction. The 
balance of the tracer mass involves now the following equation 

d[V(t)c(t)} 
dt = Q(t)Cin(t) - Qtm1(t)c(t) (6) 

where Q0 w (t) is the outflow from the vessel which may be now different from the inflow 
Q(t). The balance ofthe liquid in the vessel yields 

dV(t) 
-;ft= Q(t) -Qou1(t) . (7) 

>From (6) and (7) we get 

dc(t) 
V(t) dt = -c(t)[Q(t) - Q0 ,,, (t)] + Q(t)ci11 (t) -Qou1(t)c(t) = Q(t)[c1,1(t) - c(t)] 

which is similar to (I) but with two variable parameters V(t) and Q(t). Taking into 
account (5) we can, however, write 

dc(t) Q(t) 
Vo-d- = ( ) [c111(t) -c(t)] 

t I +1e t 
(8) 

This way we reduced the problem mathematically to that from the previous subsection. 
Introducing now a new variable 

I 

~(t) = I Q('t) d't 
l +K('t) 

l11 

we reduce the equation, as previously, to the constant parameter one 

de(~) 
Vo~ = c;11(~)-c(Ę,) 

(9) 

The variable Ę, is now not merely the integrated flow, like before, but depends on 
the variable K which includes some unknown yet variations of the volume, related to 
changes in the flow Q(t). This relation depends on the construction of the vessel and is 
explained on an example below. 

Let us consider a vessel whose upper part is a cylinder with the radius R. The upper 
edge of the cylinder has the saw-like shape, see Fig. 6. Denote by Vo the volume of the 
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liquid when it reaches the uppermost level with no outflow. Then 1e(t) ;;:: O. Assume that 
the geometrie al dimensions of the edge are as on Fig. 7 where h( t) is the variable height 
of the Iiquid level above the level of the lowest points of the saw. Then the outflow is 

(t)={ Nvlz2(t)tanI if O<Q0 ,,,(t)~1tRHv 
Qo,,, NvH2 tan1+21tR[h(t)-H]v if 1tRHv<Qor,,(t) (IO) 

where v is the velocity of the liquid normal to vessel edge surface, and N is the number 
of the outflow triangles around the whole edge. Because it holds 

a 
2NHtan 2 = 21tR 

so, inserting N from the above to (10) yields 

Q ( ) _ { 1t!v h2(t) if O< Q0w (t) ~ 1tRHv 
0111 t - 1tRv[2h(t)-H] if 1tRHv < Qo111(t) 

(11) 

Two assumptions will be admitted: 

I. change of the volume is slow, so that approximately Qm11 (t) ;::::J Q(t), 

2. the velocity v is constant, independent of the liquid level. 

Thus, the volume of the liquid in the vessel is 

V(t) = Vo+1tR2h(t) = 

= Vo+ V v { 
· f1tR3H Q(t) if O< Q(t) ~ 1tRHv 

4(Q~) +1tRH) if 1tRHv < Q(t) 

and finally 

K(t) ~ { ~Q(t) if O< Q(t) ~ 1tRHv 
vV0 

_!l_(Q(l)+1tRH) if 1tRHv<Q(t) 
2½1 l' 

(12) 

In this case calculation of the variable ~ requires additional knowledge of the vessel 
characteristics as well as the unknown volume V0 • When necessary, as an approximation 
of Vo the geometrie volume can be used in the first iteration. 

To test how much the disregard of variation of the liquid volume influences the dis
tribution of the sampling times, as compared to the constant volume approximation, the 
flow rate data from the experiment described in the previous subsection have been used. 
The calculation gave 1e in the range O.O I 5 - 0.025 and the estimate of the active volume 
slightly smaller than when using the approximation of the constant volume. The differ
ence did not exceed 2,5% which is of the same order as errors of the statistical estimates. 
Taking into account difference in definitions of the active volumes in both cases (aver
age volume versus minimal volume) which is of the order of I%, one can conclude that 
the constant volume approximation gives sufficient precision of estimation although the 
volume estimator rnay be slightly biased, around I% too high. 
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R 

Figure 6. Shape of the upper part of the vessel 

h(t) 

Fig u re 7. Geometrical dimensions of the vessel upper edge 

5. Biological Processes 

Various microorganisms take part in biologica! processes arising in the aeration 
basin, like bacteria, fungi, protozoa, etc. Out of them bacteria are most important for 
biochemical decomposition of the wastewater components. An integrated model of the 
wastewater biochemical transformations is rather complex, and will be not discussed 
here in full extent. More elaborated presentation of the biologica! part is presented in [6]. 
Full details of the model can be found in [32]. 

Different subprocesses can be distinguished in the wastewater purification process. 
Simple differentia! equations are typically applied to describe the changes in the con
centrations of different media taking part in the transformations. The most important 
are: 

• The first order kinetics 

dx 
-=-kx 
dt 

where x is the concentration of the medium and k is a constant, 
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• The Monod kinetics 

dx s 
-=µ--x 
dt ks +s 

where x is the concentration of the active biomass, s the concentration of a rate 
limiting nutrient or substrate, 1-1 the maximum specific growth rate of the biomass, 
ks a (half saturation) constant. If more than one limiting nutrient or substrate is 
involved, the product of the Monod expressions can be applied. 

Introducing the yield 

~ 
Y=-

M 

the corresponding rate of nutrient or substrate consumption is given by 

ds µ s 
-=----X 
dt Y ks+s 

The basie subprocesses arising during the wastewater treatment in the plant consid
ered are the following. 

Hydrolysis. In order to grow, bacteria need energy. Most of the activated sludge bacte
ria are heterotrophic ones, which use organics as carbon and energy source. The carbon 
has to be in readily biodegradable organie molecules, like acetic acid, methyl alcohol, 
ethyl alcohol, glucose, etc. The Iarger organie molecules (slowly biodegradable sub
strate) are transformed into smaller ones in a process called hydrolysis. This process is 
rather slow but starts already in the sewerage system. The rate of the hydrolysis is often 
described by a first order kinetic expression. 

Biomass Growth and Decay. The growth of the biomass (organisms) is limited by 
availability of nutrients. The influence of a single Iimiting nutrient or substrate concen
tration on the growth rate can be described using Monod kinetics. Biomass decays due to 
endogenous metabolism, death, predation and lysis. This way the active biomass is trans
formed into slowly biodegradable substrate. The decay of biomass may be described as 
a first order equation. Decays of two kinds of bacteria are considered: the heterotrophic 
bacteria and the autotrophic bacteria. The decaying biomass contains also the inert frac
tion. The rest of the decaying biomass adds up to organie carbon and nitrogen. 

Aerobic Removal of Organie Carbon. The conditions for the growth of the biomass 
depend on the dissolved oxygen and nitrate concentrations. If the dissolved oxygen con
. centration s0 is high (say s0 > 0.5 mg 0 2/1), then the conditions are called aerobic. lf 
the dissolved oxygen concentration is low, but there is a high nitrate concentration SNo 
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(say sNo > 0.5 mg N/1), then they are called the anoxic conditions. When both con-. 
centrations are small, then the conditions are anaerobie. Depending on the conditions, 
different bacteria genera may be predominant in the wastewater. 

Under aerobic conditions, considered in this subsection, formation of a typical 
biomass compound CsH1NO2 from a typical substrate average composition C10H19O3N 
is given by the following reaction 

C10H19O3N + 4.53502 + 0.593 NHt = 2.035CO2 +4.814H2O + l.593C5H7NO2 + 
0.593tt+ 

The rate of this transformation depends on the availability of the substrate, oxygen and 
ammonia giving rise to an appropriate kinetics with three Monod factors. 

The Nitrification Process. Nitrification is a two-step process in which ammonia is 
transformed into nitrite and subsequently into nitrate 

NHt + 1.502 NO2 + H2O + 2tt+ 
NO2 + 0.502 NO3 

Also this reaction arises in the aerobic conditions. The yield coefficient for nitrifying (au
totrophic) bacteria is significantly smaller compared to those of heterotrophic bacteria. 
Taking into account assimilation process (building up the nitrogen in the biomass struc
ture) and the yield coefficient, the following equation for the both phases of nitrification 
is obtained 

l.013NHt + 0.063CO1 + 1.93702 = N03 + 0.975H2O + 0.013CsH1NO2 + 2.0l3H+ 

All three components on the left hand side may be rate limiting but in practice only 
the ammonia and oxygen concentrations impose limitations. Thus the Monod kinetics 
contains two factors. 

The Denitrification Process. Apart of the decomposition of organie materiał, during 
the denitrification process the heterotrophic bacteria transform nitrate into free nitro
gen. This is done under anoxic conditions when the concentration of the nitrate in the 
wastewater is high while there is Jack of oxygen. Heterotrophs use the nitrate as an elec
tron acceptor. For a typical wastewater composition the reaction has the form 

Taking into account the biomass synthesis, it yields 

C10H19O3N + 3.272NO3 + 0.593NHt = 
2.035CO2 + 2.288H2O + l .636N2 + l .593CsH1NO2 + 3.272OH- + 0.593H+ 
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Heterotrophic bacteria use rather ammonia for growth and in its Jack they can use ni
trates. Therefore only two limiting concentrations will be used. 

The processes mentioned above cause the wastewater alkalinity changes which is 
included in the model. The alkalinity may be also affected by chemical precipitation 
of the phosphorus. Phosphorus may be also removed from the wastes in the biologi
cal processes. The plant considered was not constructed for this purpose and therefore 
modelling of the related phenomena was not considered. Presentation of the this kind of 
model can be found in [ 18]. 

6. Wastewater Treatment Plant Model 

A model of the basie treatment line consists of the models of primary clarifiers, aer
ation basins and secondary clarifiers, together with the appropriate connections between 
them, see Fig. 1. Two former vessels were modelled as the ideally mixed tanks, with the 
active volume estimates given in section 4, and with additional transformations going on 
in them. The biochemical transformations arising in the aeration basin were mentioned 
above. Here we concentrate on physical processes occurring in two other vessels and 
give overall view of the integrated model. 

Primary Clarifiers. In the model the influent waste constituents were divided into 
different fractions gathered in two main groups. One is connected with the oxidation 
ability and the other with the contents of ammonia. The rest forms the suspended solids 
group. 

Two measures of oxydation ability are mainly used. Five day biochemical oxygen 
demand (BOD5) is defined as the mass of oxygen demand of a Pseudomonas culture 
over five days in a unit volume of the wastewater. Chemical oxygen demand (COD) is 
specified as the mass of oxygen required to completely oxidize the constituents of a unit 
volume of the wastewater. It is elear that BODs is always smaller than COD. 

Here we characterize the fractions of the wastewater in parts of COD and the total 
nitrogen N011 : 

- COD fractions: 

• readily biodegradable fraction ss = 0.1608 COD 

• slowly biodegradable fraction Xs = 0.4384 COD 

• dissolved inert fraction s1 = 0.0451 COD 

• suspended inert fraction x1 = 0.3557 COD 

• nitrogen (N011 ) fractions: 

• ammonia SNH = 0.7845 N 011 

• dissolved organie nitrogen SN D = 0.0616 No11 
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• suspended organie nitrogen XNJ> = 0.1539 N0 g 

• suspended solids Zm = 0.2927 Z08 , 

where Z08 is the total suspension load. The fractions given above were identified from 
the measurements taken at the plant. 

It is assumed that the dissolved fractions pass the primary clarifiers without any loss. 
A model describing the change of their concentration is that of an ideally mixed tank 

where Vp is the clarifiers active volume, Q is the flow, s;11 is the concentration of the 
influent dissolved fraction and s is its concentration in the clarifiers. 

The model for the suspended fraction includes, besides that of ideally mixed tank, 
also sedimentation of the suspension. The sedimentation rate is expressed as A.xfi where 
x is the concentration of the suspended fraction. The parameters A and B were estimated 
experimentally. Thus the model is 

· dx • n 
Vp dt = Q(x;,, - x) - VpAX-

where x = x,. + x1 + Zm- Because of sedimentation, the primary clarifiers reduce COD and 
nitrogen concentration of the wastewater. 

Aeration Basins. Also the aeration basins were modelled as the ideally mixed tanks. 
The full model includes all transformations described in the previous section, as well as 
the change of the oxygen concentration and alkalinity of the wastewater. Flows from the 
primary clarifiers and the recirculated sludge from the secondary clarifiers mix together 
to form the input to the basins. The model includes the following processes: 

• aerobic growth of heterotrophs with assimilation of nitrogen from NHt 

• aerobic growth of heterotrophs with assimilation of nitrogen frorn N03 
• anoxic growth of heterotrophs with assirnilation of nitrogen from NHt 

• anoxic growth of heterotrophs with assirnilation of nitrogen from N03 
• aerobic growth of autotrophs 

• decay of heterotrophs 

• decay of autotrophs 

• ammonification of dissolved organie nitrogen 

• hydrolysis 
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and transformations of the following components: 

• organie readily biodegradable component 

• dissolved inert organie component 

• ammonia 

• nitrate 

• dissolved organie nitrogen 

• dissolved oxygen 

• alkalinity 

• organie slowly biodegradable component 

• inert organie component in suspension 

• heterotrophic bacteria biomass 

• autotrophic bacteria biomass 

• inert organie component from decaying organisms 

• organie component in suspension 

• suspended minerals 

d 

Xd(t) 

W Qw,xw(t) 

clarification 
zone 

settling 
zone 

compaction 
zone 

V 
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Figure 8. Secondary clarifier. 
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Secondary Clarifiers. The influent entering the secondary clarifiers from the aera
tion basins consists basically of flocculated bacteria and water. The most important phe
nomenon taking part in the secondary clarifiers is that of separation of these two com
ponents during the sedimentation process. Only this process is taken into account in the 
model. The secondary clarifier consists of two zones shown schematically on Fig. 8: the 
clarification zone and the settling zone. Sometimes also the compaction zone is distin
guished at the very bottom part where the particles are compressed. There are two outlets 
from the clarifier. The effluent overflows the upper edge of the clarifier while the sludge 
leaves the clarifier at the bottom. There are then two currents connected with the out
flows: the effluent current with the velocity w, predominant in the clarification (upper) 
zone, and the sludge current with the velocity v, predominant in the settling (!ower) zone. 
Additionally, the gravitational force acting on solids enforces their move downwards. lts 
velocity u depends exponentially on the concentration of suspended solids x 

u(x) = uoe-hx 

see [23]. Note that x is a function of both depth z of the clarifier and time t. The flux q(x) 
of the suspended solids is then described by the following function (compare Fig. 8) 

(x) _ { x[u(x) + v] for O< z~ D 
q - x[u(x) - w] for - H ~ z < O 

The continuity equation is 

subject to the initial 

x(z, O) = xo(z), -H ~z~ D 

and a boundary (mass conservation at the inlet) condition 

Qdxd(t) = Pox(O,t)[2u(x(O,t)) + v-w] 

where xd is the concentration of suspended solids in the influent, Qd is the influent flow, 
Po is the cross-section of the clarifier at z = O. To solve the above equations the model 
has been divided into 12 horizontal layers with components assumed homogeneous in 
each layer. 

The model for the dissolved components lacks the flux q(x) and reduces to an ideally 
mixed tank model for each layer. 

7. Model Calibration 

The simulation computer program WTPD [32) was used to implement the mathe
matical model at wastewater treatment plant in Rzeszów. High complexity of the model 
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causes severe problems connected with identifiability of its parameters. This is related 
both to too large number of unmeasured states and parameters and to difficulties in 
unique estimation of the Monod kinetic parameters [20]. Moreover, available instrumen
tation and Iaboratory procedures are usually not adequate for verification of the details 
of such a complex model. It is also not elear whether norma! operating varations of the 
input variables perturbe the process well enough to exite all its interesting dynamical 
modes. 

A commonly used approach for estimation of the model parameters is a step by 
step procedure consisting in separation of different processes arising in the plant in the 
laboratory equipment to measure the relevant model parameters from wastewater sam
pies taken from appropriate points of the plant [IO, 14, 21]. Another approach is to use 
automatic estimation methods, see [I, 21] for examples of their early applications. Out 
of them the extended Kalman fil ter algorithm for recursive estimation of the states and 
parameters gained some popularity [3, 22, 24, 31 ]. It is usually combined with simplifi
cations of the model either by exclusion of some processes, like e.g. denitrification, or 
by a physical insight, [22], or by linearization of the process, [ 13]. 

Yet experience from different wastewater plants show that some parameters are fairly 
constant in changing conditions and only a limited number of those exhibiting greater 
changes have to be adjusted for a specific plant. Coming from this observations the model 
was calibrated here using the human expert method, based on professional experience 
and expertise [21, 34]. Unknown parameter values were determined in a sequential pro
cedure, after assuming default parameters values [32] as first estimates for the simulated 
plant performance calculations. Differences between predicted and observed output val
ues were then noted, and step-wise adjustments in kinetic and stoichiometric parameter 
values were made based on the knowledge and experience of the authors. Such adjust
ments were continued until a reasonable match, as judged by the authors, was obtained 
between model predictions and actual observations. Because of the model overspecifi
cation, the least possible number of parameters necessary to obtain an acceptable fit was 
adjusted. 

The experimental data used for the model calibration were collected during two 
weeks of the plant operation from 1995.10.23 to 1995.11.06. The collected data set con
sisted of concentrations of the basie components: suspended solids, suspended minerals, 
BOD5, COD, ammonia nitrogen, total nitrogen, phosphate (P04) phosphorus, total phos
phorus, dissolved oxygen and a\kalinity, both in the influents and effluents (including 
sludge effluent) for the basie vessels: primary clarifiers, aeration basins and secondary 
clarifiers. These measurements were taken every 2 h at the inlet to the plant ( 168 sam
ples) and once a day (from the sum of samples taken every 2 h with the volumes propor
tional to the flow rates, i.e. daily composite samples) in all plant inner points. Moreover, 
all corresponding flows were measured every 2 min. 

The measurements at the inlet were averaged to get the average diurnał variations of 
the constituents, and normalized by dividing them by the daily means. Organie compo
nent was then calculated as the mean of COD and BODs value, see Fig. 9, and nitrogen 
component as the mean of ammonia and total nitrogen, see Fig. IO. 
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Figure 9. Normalised organie component diurnał variations in the influent as the mean of BODs (•) and 
COD (il). Normalised flow rate drawn with the thin line. 
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Figure IO. Normalized nitrogen diurnał variations in the influent as the mean of the NHt nitrogen (•) and 
the total nitrogen (6.). Nonnalised flow rate drawn with the thin line. 

Initial values of the model unknown parameters were taken from the literature 
[12, 14, 17,36). The average plant inlet values were put into the model to compute the 
stationary (repeated in each day) diurnał values of outlets from different vessels. These 
diurnał values were compared with the appropriate averaged values of measurements 
taken during the experiment. Then some parameter values taken from the literature were 
adjusted to get a satisfactory fit. Table 3 shows the results of fitting the primary clarifiers 
model, Tables 4 and 5 the aeration basins model, and Table 6 the secondary clarifier 
model. The error was measured as the difference between the model and the observation 
daily mean values, in percent. 

As an immediate model application Figs. 11-12 present examples of variations of 
different unmeasurable components as simulated by the model from average day varia-
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Table 3. Calibration results and model fit for primary clarifiers. 

parameter unit calibration literature [32] 
A g/m.1d 1.2 IO 0 J.2 10-b 
B 3.76 4.05 

parameter unit measurements model error[%] 
suspended solids gim·' 163 162 0.6 

suspended minerals g/m3 60 47 22 
BODs gO2/m3 186 188 I 
COD g O2/m3 448 451 0.7 

ammonia gN/m3 29.3 26.3 IO 
total N gN/m3 39.3 32.0 19 

alkalinity val/m3 8.3 7.9 5 

Table 4. Calibration results for aeration basin. 

parameter unit calibration literature [14, 17,36] 
µ11 d-1 2.20 1.5 - 8 
yh gCOD/gCOD 0.67 0.67 

k.v gCOD/m3 IO 5 - 30 
koh gO2/m3 O.I O.I 
kx gCOD/gCOD 0.o3 0.02 - 0.05 
k11 gCOD/gCODd 3.0 0.6- 2.2 
µa d-1 0.5 0.2-0.8 
Ya gCOD/gN 0.15 0.15 

kNH gN/m3 I.O I.O 
koa g O2/m3 0.5 0.5 - I.O 
fp - 0.08 0.08 
b„ d-l 0.62 0.62 
ba d-1 0.05 0.05 
ix1, gN/gCOD 0.086 0.086 
ixp gN/gCOD 0.06 0.06 

tions at the plant inlet. These values were not observed directly but reconstructed from 
the model. For full results see [33]. 

The fit of the model is satisfactory, in many cases very good, of the order of few per
cents. Only in some cases the errors are bigger. The bigger errors in nitrogen fit seem to 
be caused by nonsatisfactory operation of the primary clarifiers during the measurement 
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Table 5. Fit of the aeration basin model. 

parameter unit measurements model error[%] 
biomass gim·' 3815 3890 2 

sludge age d 10.2 IO.O 2 
BOD5 g O2/m3 18 18.3 2 
COD g O2/m3 53 .53.6 I 

ammonia gN/m3 26.3 24.2 8 
total N gN/m3 32.l 26.l 12 

alkalinity val/m3 7.9 7.7 3 

Table 6. Calibration results and model fit for secondary clarifiers. 

parameter unit calibration literature [12] 
U() mld 187.2 187.2 
b m3/g 6.23 10-4 6.2310-4 

PJ 0.00322 0.01088 
parameter unit measurements model error[%] 

suspended solids g/m;1 19 19 o 
suspended minerals g/m3 14 7 50 

BODs gO2/m3 19 23 21 
COD gO2/m3 55 81 47 

ammonia gN/m3 24.9 24.2 3 
total N gN/m3 28.1 26.9 4 

al kali nity val/m3 8.1 7.7 5 
recirculated sludge g/m3 5719 6090 6 

period. A worst fit of suspended minerals and organie materiał in the secondary clarifiers 
is connected either with the modelling, calibration or observation errors. 

8. Neural Network Model 

Unlike the case of difference or differentia! models, in neural networks the underly
ing equations of the process to be modelled are unknown. Thus only knowledge ofinput 
and output variables is required to model a process. 

The wastewater treatment process is nonlinear and therefore a network which is ca
pable to handle such nonlinearities was chosen. Namely, it was the feed-forward network 
with three layers (input - hidden - output) and with a nonlinear transfer functions. The 
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Figure 11. Simulated biomass concentration in the aeration basin. 
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Figure 12. Simulated organie compounds concentration in the aeration basin. 

transfer function of the first and the second layer was a sigmoid function 

The transfer function of the third layer was linear 

The data were collected over the first four months in I 997 in the wastewater treat
ment plant in Rzeszów. They consisted of 364 data sets, one data set per working shift, 
i.e. three sets per day. The data were presmoothed by a wavelet shrinkage method [14]. 

The data were measured in 4 different points of the plant (see Fig. I): 

I. the input to the plant, 
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2. the aeration basins, 

3. the extemal recirculation system, and 

4. the output of the plant, 

where the following variables were measured: 

• at the input to the plant the wastewater inflow, BODs, nitrogen, ammonia and 
suspension concentrations, 

• in the aeration basins: the oxygen and the activated sludge concentrations, and the 
activated sludge drop ability, 

• in the external recirculation system: the recirculation flow and recirculated sludge 
concentration; 

• at the output of the plant: BOD5, nitrogen, ammonia and suspension concentra
tions. 

The raw wastewater variables were treated as the uncontrollable input data, the oxy
gen concentration and the recirculation flow as the control variables and the rest of the 
variables measured as the output data. 
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Figure 13. Results from training the network for six output parameters of the process model (points - the 
data, lines - the model). 

For training the neural model all measured variables at the consecutive time t were 
inputed to the network while the outputs of the plant at time t + T were compared with 
the outputs of the network. After having searched and tested for important or unimportant 
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Figure 14. Results of testing the network for the same process parameters as in Fig. 13. 

Table 7. Comparison of the residua! sums of squares (SSE) in the learning and testing phases of the neural 
network model elaboration 

variable SSE 
learning testing 

active sludge concentration 0.0049 0.0047 
active sludge drop ability 0.0024 0.0017 

recirculation sludge concentration 0.0036 0.0029 
BODs 0.0044 0.0058 

ammonia concentration 0.0046 0.0055 
effluent suspensions 0.0037 0.0030 

parameters of the process we finally arrived with the network of 12 neurons on the input 
layer, 6 neurons on the hidden layer, and 6 neurons on the output layer. The value of 
T = 8 h (i.e. one shift) was found to be optima!. 

The fits of the neural model after the learning and the testing phases are depicted on 
Figs. 13 and 14 and summarized in Table 7. 
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9. Conclusions 

In the paper modelling of the wastewater treatment plant in Rzeszów is presented. 
Two approaches were considered: the mathematical model of the physical processes 
taking part in the plant and the black box type neural network model. The consecutive 
stages in construction of the mathematical model consist of: 

• formulation of ordinary differential equations and algebraic equations of the 
model on the basis of physical, chemical and biological mass conservation laws 
for each vessel, 

• formulation of the hydrological models describing the dynamics of flows in the 
vessels, 

• performance of an experiment in the plant to gather measurements necessary for 
estimation of the model unknown parameters, 

• fitting the models to the measurements to obtain estimates of the parameters. 

The basie vessels modelled were: a pair of the preliminary clarifiers (treated as one 
vessel), a triplet of the aeration basins (also treated as one vessel) and a pair of the 
secondary clarifiers (one vessel). The vessels are connected by pipes conveying influent 
or effluent liquids for each vessel. Only degradation of organie and nitrogen components 
was accomplished in the plant at the time when the experiment was carried out. Thus 
the model includes only equations descńbing chemical and biologica! transformations 
connected with these processes. 

Estimation of parameters was performed in two steps. In the first step active volumes 
of the vessels were identified in the hydrological part of the model, describing flows of 
liquids only. For this, measurements from the active experiment in the plant were used 
with the chlorine ions applied as a tracer. The estimates of the active volumes were then 
used in the other equations of the model. The rest of their imprecisely known param
eters were calibrated. For this, initial parameter estimates were first chosen within the 
ranges presented in the literature and then settled in step by step man-induced changes 
within the literature ranges, to obtain a satisfactory fit of the observed model states with 
the measurements done during the experiment. This step was rather burdensome and 
required a good intuition of the influence of different parameters on the model perfor
mance. Quite satisfactory fit obtained indicates that the model well describes the real 
wastewater clearance processes. 

The neural network model is simpler to develop and much quicker in computations 
performed during the simulation stage. Thus it may be very useful for optimization pur
poses. A disadvantage of this kind of models lies in lack of their transparency, making 
impossible any physical interpretations of the neural network parameters. With this re
spect they are sensitive to changes in conditions in which they were trained and tested. 
Frequent adjustments may be needed to keep them relevant. 
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Thus, choice of the modelling approach depends very much on the purpose of their 
use. Although relative easiness in development of a neural network model favourably 
compares them at present with the burdensome physical models, it is our belief that with 
the growing knowledge of the processes and ways of their modelling the physical models 
will prove their superiority in the future. 
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