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ADJOINT MULTILA YER NEURAL NETWORKS 

Maciej Krawczak 
Systems Research Institute 

Polish Academy of Sciences 
University of lnfonnation Technology and Management 

Newelska 6, 0/-447 Warsaw, Poland 

Abstract: In the artificial neural networks literature Little attention 
has been given to consideration of neural networks from the point of 
view of grap/i the01y. Examination of neural networks as flow graphs 
gives very interesting and new properties of the neural networks' 
learning process. The approach is based on tools used in electric 
circuits when Kirchhoff s laws 111ay not be valid. The analysis leads to 
the proper equations of the backpropagatio11 algorithm, but in a much 
simpler manner. The graph metlzodology i11corporates the reciprocal 
graphs i11 whiclz signals flow in opposite directions. Neural networks 
in which signals flow in opposite direction are called the adżoint 
neural networks. 

Keywords: multilayer neural networks, learning front examples, flow 
graphs. 

1. Introduction 

Learning of multilayer neural networks is usually performed by the 
backpropagation algorithm, often with some modifications. The algorithm is 
a gradient descent one and has a long history. The basie version of the 
algorithm is well known from Rumelhart and McClelland (1986), and it was 
derived by applying repeatedly the chain rule expansions backward through 
the network. There are severa! researchers who claim the right to this 
algorithm. We would Iike to mention here the work by Werbos (1974), who 
obtained similar results by applying ordered partia] derivatives, and by 
Dreyfus (1990), who obtained sirnilar results relating the gradient theory of 
flight paths from the late 1950s. Considering the learning process of 
multilayer neural networks as a paiticular multistage optima) control 
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problem, Krawczak (1994, 1999, 2000) obtained backpropagation-like 
equations. 

In the very rich artificial neural networks literature little attention has 
been given to consideration of neural networks from the point of view of 
graph theory. Examination of neural networks as flow graphs gives very 
interesting and new properties of the neural networks learning process. The 
approach is based on the Tellegen's theorem (Chua and Lin 1975) used in the 
electric circuits when Kirchhoffs laws may not be valid. The analysis leads 
to the proper equations of the backpropagation algorithm, but in a much 
simpler manner. Here we use terminology adopted from the optirnization or 
optimal control theory (Bryson and Ho 1969), and such neural networks in 
which signals flow in opposite direction are called the adjoint neural 
networks. 

In this paper we present a flow graph methodology for representing 
neural networks, and then the adjoint neural networks for representing 
learning algorithms based on gradient methods. The backpropagation 
algorithm is considered in details, while the applied notation allows also for 
treating multilayer networks with possible feedback signals. Within the 
backpropagation algorithm we emphasize the forward propagation of the 
inputs through the neural networks and the backward propagation of proper 
gradients through the adjoint neural networks. Construction of the adjoint 
neural networks yields directly the formulae of the considered learning 
algorithm. 

2. Transformation of a Neural Network into a Flow Graph 

Since the pioneering work of McCulloch and Pitts (Zurada 1992) 
a model of an artificial neuron is a very simple processing unit, Figure 1, 

Xt (t-n .,,,,,. -- -- -- -- .... 
X J(I) 

J(net1ui) 

.... ...... _ -...... 
Fig. i . An elementary model of a neuron. 
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Adjoint multilayer neural networks 

which has a number of inputs X; , say N, each input being weighted with an 

appropriate weight w ij , i= 1,2, ... , N . The sum of the weighted inputs and the 

bias (included in the inputs) form at the summation point EB the proper input 

N N 
net J = L, wij xi = L Yij , (1) 

i==1 i==I 

to the activation function f J (net J ) . Here we consider the differentiable 

activation functions for generation of outputs from inputs of the neurons. 
In the model considered an additional element, depicted by O, is included, 
corresponding to a junction point. Generally, the existence of the junction 
point in a neuron has been tacitly assumed. Figure 1 shows an extended 
notation of indices, namely we indicate the position of each neuron in the 
whole network. For example the weight wi(l-l)J(l) indicates the connection 

between the neuron i belonging to the (l -1) -st layer and the neuron j from 

the (l) -th layer. 

In this way three main elements of a neuron can be distinguished, one 
part is a summation point, the second is an activation function which 
transmits the effect of summation, and the third is a junction point spreading 
the value resulting from the activation function output to neurons of the next 
layer. 

Let us rearrange the neuron' s elements in the following way: 

• remove the activation function to the outside of the neuron, 

• the removed activation functions are shifted to each of the 
connections between the considered neuron and all neurons of the 
next layer, becorning thereby the transmittances between neurons, 

• the connection between neurons are still weighted, 

• the sumrnation point and the junction point make up a node, 

• the neural network with the rearranged neurons becomes a flow 
graph. 

The above rearrangement is pictured in Figure 2. 

Now, Equation 1 can be rewritten in the following way: 

155 



Maciej KRA WCZ4K 

N 

net j(l) = L wi(l-l)j(l) xi(l-1) = 
i=I 

N N 
= L wi(H)j(l) fi(H) ~ieti(l-1) )= LYi(l-l)j(l) 

i=I i=l 

and description of any separate edge takes the following form: 

(2) 

Yi(l-l)j(/) = W;(l-l)j(l) Xi(H) = W;(l-l)j(I) li(l-))viet;(l-1))- (3) 

net,c,.,> 
fViefl(l-1)) J(netJU>) 

Wj(/)1(/+I) 

Xj(/)1(/+I) 

net~'·'> 
J(net;u-i>) J(nel.1u>) 

Wi<l).(,1+n 

xj(,)1.(/+t) 

netN"•'> 
J(netN<H>) J(net1u>) 

Wj(/)N(/+I) 

WN(/- l)j(/) 

Xj<IJN(l+n 

Fig.2. The rearranged neuron with its vicinity as a segment of a flow graph. 

Now let us show an example of a simple neural network with one 
hidden layer, Figure 3. After using the rearranging procedure described 
above the same neural network can be considered as a flow graph of Figure 
4. 

When comparing these two pictures we can notice that the 
architectures of the neural network and the flow graph are exactly the same, 
in the position of each neuron a graph node has appeared, while to each 
connection an activation function has been added as a transmittance. In 
Figure 4 two kinds of reduced nodes appear: 

• input nodes are reduced to j unction points, 

• output nodes are reduced to surnmation points. 
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W2co)20) 

Fig.3. A simple two-layer neural network. 

X,co) W1 (0) l(I) net,cn 

X1c1) 

f(net, cl)) W10)1(2) net1c2) X1<2J 

f(net,(2i) 

f(net2oi) 

X2cn 

X2coJ W2coi2c 1) net2cl) 

Fig.4. A flow graph corresponding to the two-layer neural network from Figure 3. 

3. Construction of the Adjoint Neural Networks 

In the previous section the possibility of conversion of a neural 
network into a flow graph has been shown, followed by properties of 
interreciprocal flow graphs (Krawczak 2002a). In this section these 
properties will allow us to introduce the adjont neural networks. 

3.1. Adjoint networks 

Using the graph theory notation a feedforward network topology can 
be specified by the following set of equations: 
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N 
xj = 2,Tij wij xi, i,J=l,2, ... ,N 

i=l 
(4) 

where N is the number of all nodes (in our case neurons), X;, x1 are values 

describing nodes i and j, Tij = f ij ( ) is a transmittance ( or an activation 

function of neurons, e.g. a sigmoid function, between the nodes ( i and j ). 

Surnmation is extended over all signals associated with the node x; , 

i= 1,2, ... , N , coming into the node x1 , j = 1,2, ... , N . 

The last equation can be rewritten in a different way by considering 
the values of nodes, i.e. netj(I), for l = 1,2, ... , L, J(l) = 1,2, ... , N(l), and has 

one of the form: 

net j(l) = 

neti(O) = Xi(O) ' l = o 

N(O) 

L wi(O) j(l) xi(O) , l = l 
i(O)=l 

N(l-1) { ) 
L wi(l-I)j(I) f \neti(l-1) , 

i(l-1)=1 
l< l < L 

N(~ { ) 
net j(out) = L wi(L-lj(L) f\neti(L-1) , l = L. 

i(L)=l 

(5) 

Using (5) we can illustrate tlows of signals in a neural network treated 
as a flow graph in the following picture. An example is shown of a two-layer 
neural network with one hidden layer, Figure 5. A chain of directed edges 
linking a selected input node neti(O) = neti(in) with a selected output node 

neti(out) is presented in the figure. 

Fig.5 . A schematic exemplary two-layer neural network as a flow graph. 
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Now let us recall the learning process of the neural networks. 
Learning of the neural networks consists in changing the weights when the 
desired output d P , p = 1,2, ... , P, and the actual output x(L) P, resulting both 

from the input x(O) P , are different. The index p is a training example, while 

L denotes the number of layers in the network. The change is done by the 
gradient descent, 

~ ~w ~ ~ 
wi(l-l)j(l) = wi(l-l)j'(I) - w = -ri :i ' 

i(l-1) j(I) uwi(l-1) j(l) 
(6) 

where r, is the learning rate, and E is the learning performance. Generally, 

the learning performance E is defined as the sum over all the training 
pattern examples: 

(7) 

where N(L) is a number of output nodes (neurons). For a specific training 

pattern p we use the squared difference between the patterns and the actual 

network output: 

1 N(L) ( )2 
EP=- L \dj(L)p-Xj(L)p . 

2 j(L)=l 
(8) 

Using directly the delta rule for updating the weights wi(l-l)j(I), we obtain: 

aEP aEP anetj(l) 
~Wi(l-l)j(l) = -r,--'---- = -r,--'-- a = T/Ó j(l)xi(l-1) (9) 

awi(l-l)j(l) anetj(l) Wi(l-l)j(l) 

where j(l) = 1,2, ... , N (l), i(l -1) = 1,2, ... , N (l - 1), l = 1,2, ... , L . 

Let us recall the expression for 8 in (9): 
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N(L) 

Lf'(netj(L))8j(out)' 
j(L)=l 

for l = L 

8i(l-1) = N(l) (10) 
J'(neti(l-1)) LWi(l-I)j(l) 8j(l), for 25al5aL-l 

j(l)=l 

N(O) 

8i(O) = 8i(in) = L wi(O)j(l) 8 j(l) 'for l = 1 
j(O)=l 

It can be easily noticed that Equations 5 and 10 have the same structure. In 
(5) the signals net flow from the inputs through the network to the outputs, 
while in (10) the signals 8 flow in the opposite direction, from the outputs 
to the inputs. In (10) the influence of a performance index of learning is 
included. 

According to the definition of interreciprocity of flow graphs it is 
required to define the input to the adjoint graph. The term 
8j(out) = (dj(L)p-xj(L)p)=ej depends on the shape of the performance 

index, and can be treated as the input to the adjoint network. In the original 
networks, the input nodes are distinguished, and the response of the network 
is simply 8 j(out) =ej . In order to demonstrate some similarity we must 

consider input nodes of the original network as output nodes of the adjoint 
network, and vice versa - the output nodes of the original network as input 
nodes of the adjoint network, equal to ej . 

Now we must determine the form of the transmittances of the 
reciprocal graph, i.e.: 

T Tu = Tji, for all i, j = 1,2, ... , N. (11) 

For the norma! signals flow direction we can write the following 
relationship: 

netj(l) = 'I'j(l-l)j(l) wi(l-l)j(l) neti(l-1) = f(neti(l-I)) wi(l-l)j(l) neti(l-1) (12) 

while for the opposite signal flow direction we can write: 

Ói(l-1) = S j(l)i(l-1) Wi(l-l)j(l) 8 j(l) (13) 
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where S j(l)i(l-l) is the transmittance for the delta signals. Let us 

differentiate (12) and rewrite (13) using the definition of the delta rule. We 
obtain: 

dnetjU> _ df(net;(t-1)) 

a - a t Wi(l-l )j(l) ' 
net;u-i> ne ;u-, 

(14) 

dE dE 
d t = S j(l)i(l-I) wi(l-l)j(l) d t ' 

ne i(l-I) ne j(l) 

dnetj(l) dE 

a t = S j(l )i(l-1) wi(l-l)j(I) dE , 
ne i(l-1) 

(15) 

and by substituting (14) into (15) we get: 

T df (net i) '( ) 
S j(l)i(l-1) = T '(I) ·(1-1) = ---= f net i . 

1 1 dneti 
(16) 

In this way we have shown the form of the transposed transmittances 
appearing in the adjoint neural networks. In Figure 5 we have presented an 
exemplary path of a two-layer neural network, while a counterpart to this 
example - a path of the ad joint neural network is shown in Figure 6. 

Fig.6. A schematic exemplary two-layer neural network 
as an adjoint neural network. 

Looking at Equations 5 and 10 we can notice that both networks are 
topologically identical, meaning that there is a strict and unique 
correspondence between respective signals and connections. The adjoint 
network is found by application of the same network architecture, reversal of 
the direction of signal flows, replacement of activation functions by their 
derivatives, and switching of the positions of summing points with junction 
points within each node. 
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It is easy to notice that the transformation of the original network into 
the adjoint network is governed by very simple rules that will be described in 
the next section. 

In the transposed graph the signals flow in the reverse direction to that 
of the original graph G and therefore the transposed graph becomes the 
adjoint network. The adjoint network is characterized by the inputs (which 
are the outputs of the original network) and the outputs (which are the inputs 
to the original network). 

3.2. Neural networks versus networks 

In some works of the present author, e.g (Krawczak 2000), the 
multilayer neural networks were divided into two kinds of layers. The first 
kind consisted only of weights with summation points while the second only 
of activation functions. The idea was just the same as in this paper, the 
simple weight layers being related to nodes and the activation function layers 
being related to edges with transmittances. 

When considering the architecture of any class of neural networks, 
e.g. feedforward networks, we can observe four basie building elements of 
networks: 

• summing points, 

• junction points, 

• univariate functions, 

• multivariate functions (Krawczak 2000). 

Any architecture of neural networks can be represented as a flow graph by 
introduction of the following changes: 

• a neuron is divided into three parts: a summation point, a junction 
point and an activation function, 

• a summation point together with a junction point becomes a node 
of a flow graph ( of a network), 

• an activation function becomes a transmittance of each outgoing 
edge, 

• a transmittance is multiplied by a synaptic weight. 

In the previous section we have shown the idea of changing a neural 
network into a flow network, and next deriving the adjoint network. 
Construction of an adjoint network requires the reversal of the flow direction 
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m the original network, the labeling of all resulting signals as 8 j, and 

performing of the operations described above. 
By reversing the signal flow, output nodes y out in the considered 

network become input nodes in the adjoint network. These inputs are then 
taken to be ej . For cost functions different than the squared error considered 

here, the input should be set to cJE I dy out . 
The rules considered allow for a simple construction of the adjoint 

network from the original network. Note that there is a topological 
equivalence between the two networks. The order of computations in the 
adjoint network is thus identical to the order of computations in the original 
network. The signals 8 j that propagate through the adjoint network 

correspond to the terms cJE/cJx j necessary for gradient adaptation. The 

exact equations can be taken from the adjoint network, which would 
complete the derivation. 

4. Derivation of the Backpropagation Algorithm 

The simplicity of application of the adjoint neural networks in 
deriving the error backpropagation algorithm will be clarified in this section. 

We derive the standard backpropagation algorithm. For the sake of 
consistency with the traditional notation, we have labeled the summation 
signal neti(L) with the capital subscript denoting the layer. The adjoint 

network shown in Figure 6 is found by applying the construction rules 
described above. Prom this figure we may immediately write down the 
equations for calculating the delta terms, namely Equation 10. 

Equation 9 for the weight update now can be formulated as 

Llwi(l-I)j(l) :;: r,8 j(l)xi(l-1) . 

These two equations, (5) and (9), precisely describe the standard 
backpropagation, the equations well known from many textbooks about 
feedforward neural networks. There is no doubt that the presented approach 
gives a much more easy way to obtain the equations describing the 
backpropagation algorithm. 

In this paper we have demonstrated the way for the derivation of the 
gradient-based algorithms for any network architectures. For any interesting 
neural network we can construct the adjoint neural network. The adjoint 
network is built using three rules of changing the original network, and can 

163 



Maciej KRA WCZ4.K 

be obtained in a very simple way. All formulae for the learning algorithms 
can be derived using this methodology. 
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