
<> Polska Akademia Nauk • Instytut Badań Systemowych

J-\ U'f O 1'1\J-\f Y KJ-\
S'fER.0'1VJ-\~lłE

ZJ-\R.ZJ-\DZJ-\~I ł E

'% Vl\jCLl,II~,

70-lecia urodzin

PROFESORA KAZIMIERZA MAŃCZAKA

pod redakcją
, Jakuba Gutenbauma

<> Polska Akademia Nauk • Instytut Badań Syste11Dwych

S~fERO'iVJ.\~lłE

lf\Rlf\Dlf\~I ł E

Książka jubileuszowa
z okazji

70-Iecia urodzin

PROFESORA KAZIMIERZA MAŃCZAKA

pod redakcją
Jakuba Gutenbauma

Warszawa 2002

Książka jubileuszowa z okazji
70-lecia urodzin

Profesora Kazimierza MAŃCZAKA

Redaktor
prof. dr hab. inż. Jakub Gutenbaum

Copyright © by Instytut Badań Systemowych PAN

Warszawa 2002

ISBN 83-85847-78-2

Wydawca: Instytut Badań Systemowych PAN
ul. Newelska 6 01-447 Warszawa
http://www.ibspan.waw.pl

Opracowanie składopisu: Anna Gostyńska, Jadwiga Hartman

Druk: KOMO-GRAF, Warszawa
nakład 200 egz., 34 ark. wyd., 31 ark. druk.

ADJOINT MULTILA YER NEURAL NETWORKS

Maciej Krawczak
Systems Research Institute

Polish Academy of Sciences
University of lnfonnation Technology and Management

Newelska 6, 0/-447 Warsaw, Poland

Abstract: In the artificial neural networks literature Little attention
has been given to consideration of neural networks from the point of
view of grap/i the01y. Examination of neural networks as flow graphs
gives very interesting and new properties of the neural networks'
learning process. The approach is based on tools used in electric
circuits when Kirchhoff s laws 111ay not be valid. The analysis leads to
the proper equations of the backpropagatio11 algorithm, but in a much
simpler manner. The graph metlzodology i11corporates the reciprocal
graphs i11 whiclz signals flow in opposite directions. Neural networks
in which signals flow in opposite direction are called the adżoint
neural networks.

Keywords: multilayer neural networks, learning front examples, flow
graphs.

1. Introduction

Learning of multilayer neural networks is usually performed by the
backpropagation algorithm, often with some modifications. The algorithm is
a gradient descent one and has a long history. The basie version of the
algorithm is well known from Rumelhart and McClelland (1986), and it was
derived by applying repeatedly the chain rule expansions backward through
the network. There are severa! researchers who claim the right to this
algorithm. We would Iike to mention here the work by Werbos (1974), who
obtained similar results by applying ordered partia] derivatives, and by
Dreyfus (1990), who obtained sirnilar results relating the gradient theory of
flight paths from the late 1950s. Considering the learning process of
multilayer neural networks as a paiticular multistage optima) control

153

Maciej KRA WCZ4K

problem, Krawczak (1994, 1999, 2000) obtained backpropagation-like
equations.

In the very rich artificial neural networks literature little attention has
been given to consideration of neural networks from the point of view of
graph theory. Examination of neural networks as flow graphs gives very
interesting and new properties of the neural networks learning process. The
approach is based on the Tellegen's theorem (Chua and Lin 1975) used in the
electric circuits when Kirchhoffs laws may not be valid. The analysis leads
to the proper equations of the backpropagation algorithm, but in a much
simpler manner. Here we use terminology adopted from the optirnization or
optimal control theory (Bryson and Ho 1969), and such neural networks in
which signals flow in opposite direction are called the adjoint neural
networks.

In this paper we present a flow graph methodology for representing
neural networks, and then the adjoint neural networks for representing
learning algorithms based on gradient methods. The backpropagation
algorithm is considered in details, while the applied notation allows also for
treating multilayer networks with possible feedback signals. Within the
backpropagation algorithm we emphasize the forward propagation of the
inputs through the neural networks and the backward propagation of proper
gradients through the adjoint neural networks. Construction of the adjoint
neural networks yields directly the formulae of the considered learning
algorithm.

2. Transformation of a Neural Network into a Flow Graph

Since the pioneering work of McCulloch and Pitts (Zurada 1992)
a model of an artificial neuron is a very simple processing unit, Figure 1,

Xt (t-n .,,,,,. -- -- -- --
X J(I)

J(net1ui)

.... _ -......
Fig. i . An elementary model of a neuron.

154

WJ(t)J(t+n

W J(OW+t)

W j (l)N(/+I)

Adjoint multilayer neural networks

which has a number of inputs X; , say N, each input being weighted with an

appropriate weight w ij , i= 1,2, ... , N . The sum of the weighted inputs and the

bias (included in the inputs) form at the summation point EB the proper input

N N
net J = L, wij xi = L Yij , (1)

i==1 i==I

to the activation function f J (net J) . Here we consider the differentiable

activation functions for generation of outputs from inputs of the neurons.
In the model considered an additional element, depicted by O, is included,
corresponding to a junction point. Generally, the existence of the junction
point in a neuron has been tacitly assumed. Figure 1 shows an extended
notation of indices, namely we indicate the position of each neuron in the
whole network. For example the weight wi(l-l)J(l) indicates the connection

between the neuron i belonging to the (l -1) -st layer and the neuron j from

the (l) -th layer.

In this way three main elements of a neuron can be distinguished, one
part is a summation point, the second is an activation function which
transmits the effect of summation, and the third is a junction point spreading
the value resulting from the activation function output to neurons of the next
layer.

Let us rearrange the neuron' s elements in the following way:

• remove the activation function to the outside of the neuron,

• the removed activation functions are shifted to each of the
connections between the considered neuron and all neurons of the
next layer, becorning thereby the transmittances between neurons,

• the connection between neurons are still weighted,

• the sumrnation point and the junction point make up a node,

• the neural network with the rearranged neurons becomes a flow
graph.

The above rearrangement is pictured in Figure 2.

Now, Equation 1 can be rewritten in the following way:

155

Maciej KRA WCZ4K

N

net j(l) = L wi(l-l)j(l) xi(l-1) =
i=I

N N
= L wi(H)j(l) fi(H) ~ieti(l-1))= LYi(l-l)j(l)

i=I i=l

and description of any separate edge takes the following form:

(2)

Yi(l-l)j(/) = W;(l-l)j(l) Xi(H) = W;(l-l)j(I) li(l-))viet;(l-1))- (3)

net,c,.,>
fViefl(l-1)) J(netJU>)

Wj(/)1(/+I)

Xj(/)1(/+I)

net~'·'>
J(net;u-i>) J(nel.1u>)

Wi<l).(,1+n

xj(,)1.(/+t)

netN"•'>
J(netN<H>) J(net1u>)

Wj(/)N(/+I)

WN(/- l)j(/)

Xj<IJN(l+n

Fig.2. The rearranged neuron with its vicinity as a segment of a flow graph.

Now let us show an example of a simple neural network with one
hidden layer, Figure 3. After using the rearranging procedure described
above the same neural network can be considered as a flow graph of Figure
4.

When comparing these two pictures we can notice that the
architectures of the neural network and the flow graph are exactly the same,
in the position of each neuron a graph node has appeared, while to each
connection an activation function has been added as a transmittance. In
Figure 4 two kinds of reduced nodes appear:

• input nodes are reduced to j unction points,

• output nodes are reduced to surnmation points.

156

Adjoint multilayer neural networks

W2co)20)

Fig.3. A simple two-layer neural network.

X,co) W1 (0) l(I) net,cn

X1c1)

f(net, cl)) W10)1(2) net1c2) X1<2J

f(net,(2i)

f(net2oi)

X2cn

X2coJ W2coi2c 1) net2cl)

Fig.4. A flow graph corresponding to the two-layer neural network from Figure 3.

3. Construction of the Adjoint Neural Networks

In the previous section the possibility of conversion of a neural
network into a flow graph has been shown, followed by properties of
interreciprocal flow graphs (Krawczak 2002a). In this section these
properties will allow us to introduce the adjont neural networks.

3.1. Adjoint networks

Using the graph theory notation a feedforward network topology can
be specified by the following set of equations:

157

Maciej KRA WCZ4K

N
xj = 2,Tij wij xi, i,J=l,2, ... ,N

i=l
(4)

where N is the number of all nodes (in our case neurons), X;, x1 are values

describing nodes i and j, Tij = f ij () is a transmittance (or an activation

function of neurons, e.g. a sigmoid function, between the nodes (i and j).

Surnmation is extended over all signals associated with the node x; ,

i= 1,2, ... , N , coming into the node x1 , j = 1,2, ... , N .

The last equation can be rewritten in a different way by considering
the values of nodes, i.e. netj(I), for l = 1,2, ... , L, J(l) = 1,2, ... , N(l), and has

one of the form:

net j(l) =

neti(O) = Xi(O) ' l = o

N(O)

L wi(O) j(l) xi(O) , l = l
i(O)=l

N(l-1) {)
L wi(l-I)j(I) f \neti(l-1) ,

i(l-1)=1
l< l < L

N(~ {)
net j(out) = L wi(L-lj(L) f\neti(L-1) , l = L.

i(L)=l

(5)

Using (5) we can illustrate tlows of signals in a neural network treated
as a flow graph in the following picture. An example is shown of a two-layer
neural network with one hidden layer, Figure 5. A chain of directed edges
linking a selected input node neti(O) = neti(in) with a selected output node

neti(out) is presented in the figure.

Fig.5 . A schematic exemplary two-layer neural network as a flow graph.

158

Adjoint multilayer neural networks

Now let us recall the learning process of the neural networks.
Learning of the neural networks consists in changing the weights when the
desired output d P , p = 1,2, ... , P, and the actual output x(L) P, resulting both

from the input x(O) P , are different. The index p is a training example, while

L denotes the number of layers in the network. The change is done by the
gradient descent,

~ ~w ~ ~
wi(l-l)j(l) = wi(l-l)j'(I) - w = -ri :i '

i(l-1) j(I) uwi(l-1) j(l)
(6)

where r, is the learning rate, and E is the learning performance. Generally,

the learning performance E is defined as the sum over all the training
pattern examples:

(7)

where N(L) is a number of output nodes (neurons). For a specific training

pattern p we use the squared difference between the patterns and the actual

network output:

1 N(L) ()2
EP=- L \dj(L)p-Xj(L)p .

2 j(L)=l
(8)

Using directly the delta rule for updating the weights wi(l-l)j(I), we obtain:

aEP aEP anetj(l)
~Wi(l-l)j(l) = -r,--'---- = -r,--'-- a = T/Ó j(l)xi(l-1) (9)

awi(l-l)j(l) anetj(l) Wi(l-l)j(l)

where j(l) = 1,2, ... , N (l), i(l -1) = 1,2, ... , N (l - 1), l = 1,2, ... , L .

Let us recall the expression for 8 in (9):

159

Maciej KRA WCZ4K

N(L)

Lf'(netj(L))8j(out)'
j(L)=l

for l = L

8i(l-1) = N(l) (10)
J'(neti(l-1)) LWi(l-I)j(l) 8j(l), for 25al5aL-l

j(l)=l

N(O)

8i(O) = 8i(in) = L wi(O)j(l) 8 j(l) 'for l = 1
j(O)=l

It can be easily noticed that Equations 5 and 10 have the same structure. In
(5) the signals net flow from the inputs through the network to the outputs,
while in (10) the signals 8 flow in the opposite direction, from the outputs
to the inputs. In (10) the influence of a performance index of learning is
included.

According to the definition of interreciprocity of flow graphs it is
required to define the input to the adjoint graph. The term
8j(out) = (dj(L)p-xj(L)p)=ej depends on the shape of the performance

index, and can be treated as the input to the adjoint network. In the original
networks, the input nodes are distinguished, and the response of the network
is simply 8 j(out) =ej . In order to demonstrate some similarity we must

consider input nodes of the original network as output nodes of the adjoint
network, and vice versa - the output nodes of the original network as input
nodes of the adjoint network, equal to ej .

Now we must determine the form of the transmittances of the
reciprocal graph, i.e.:

T Tu = Tji, for all i, j = 1,2, ... , N. (11)

For the norma! signals flow direction we can write the following
relationship:

netj(l) = 'I'j(l-l)j(l) wi(l-l)j(l) neti(l-1) = f(neti(l-I)) wi(l-l)j(l) neti(l-1) (12)

while for the opposite signal flow direction we can write:

Ói(l-1) = S j(l)i(l-1) Wi(l-l)j(l) 8 j(l) (13)

160

Adjoint multilayer neural networks

where S j(l)i(l-l) is the transmittance for the delta signals. Let us

differentiate (12) and rewrite (13) using the definition of the delta rule. We
obtain:

dnetjU> _ df(net;(t-1))

a - a t Wi(l-l)j(l) '
net;u-i> ne ;u-,

(14)

dE dE
d t = S j(l)i(l-I) wi(l-l)j(l) d t '

ne i(l-I) ne j(l)

dnetj(l) dE

a t = S j(l)i(l-1) wi(l-l)j(I) dE ,
ne i(l-1)

(15)

and by substituting (14) into (15) we get:

T df (net i) '()
S j(l)i(l-1) = T '(I) ·(1-1) = ---= f net i .

1 1 dneti
(16)

In this way we have shown the form of the transposed transmittances
appearing in the adjoint neural networks. In Figure 5 we have presented an
exemplary path of a two-layer neural network, while a counterpart to this
example - a path of the ad joint neural network is shown in Figure 6.

Fig.6. A schematic exemplary two-layer neural network
as an adjoint neural network.

Looking at Equations 5 and 10 we can notice that both networks are
topologically identical, meaning that there is a strict and unique
correspondence between respective signals and connections. The adjoint
network is found by application of the same network architecture, reversal of
the direction of signal flows, replacement of activation functions by their
derivatives, and switching of the positions of summing points with junction
points within each node.

161

Maciej KRAWCZAK

It is easy to notice that the transformation of the original network into
the adjoint network is governed by very simple rules that will be described in
the next section.

In the transposed graph the signals flow in the reverse direction to that
of the original graph G and therefore the transposed graph becomes the
adjoint network. The adjoint network is characterized by the inputs (which
are the outputs of the original network) and the outputs (which are the inputs
to the original network).

3.2. Neural networks versus networks

In some works of the present author, e.g (Krawczak 2000), the
multilayer neural networks were divided into two kinds of layers. The first
kind consisted only of weights with summation points while the second only
of activation functions. The idea was just the same as in this paper, the
simple weight layers being related to nodes and the activation function layers
being related to edges with transmittances.

When considering the architecture of any class of neural networks,
e.g. feedforward networks, we can observe four basie building elements of
networks:

• summing points,

• junction points,

• univariate functions,

• multivariate functions (Krawczak 2000).

Any architecture of neural networks can be represented as a flow graph by
introduction of the following changes:

• a neuron is divided into three parts: a summation point, a junction
point and an activation function,

• a summation point together with a junction point becomes a node
of a flow graph (of a network),

• an activation function becomes a transmittance of each outgoing
edge,

• a transmittance is multiplied by a synaptic weight.

In the previous section we have shown the idea of changing a neural
network into a flow network, and next deriving the adjoint network.
Construction of an adjoint network requires the reversal of the flow direction

162

Adjoint multilayer neural networks

m the original network, the labeling of all resulting signals as 8 j, and

performing of the operations described above.
By reversing the signal flow, output nodes y out in the considered

network become input nodes in the adjoint network. These inputs are then
taken to be ej . For cost functions different than the squared error considered

here, the input should be set to cJE I dy out .
The rules considered allow for a simple construction of the adjoint

network from the original network. Note that there is a topological
equivalence between the two networks. The order of computations in the
adjoint network is thus identical to the order of computations in the original
network. The signals 8 j that propagate through the adjoint network

correspond to the terms cJE/cJx j necessary for gradient adaptation. The

exact equations can be taken from the adjoint network, which would
complete the derivation.

4. Derivation of the Backpropagation Algorithm

The simplicity of application of the adjoint neural networks in
deriving the error backpropagation algorithm will be clarified in this section.

We derive the standard backpropagation algorithm. For the sake of
consistency with the traditional notation, we have labeled the summation
signal neti(L) with the capital subscript denoting the layer. The adjoint

network shown in Figure 6 is found by applying the construction rules
described above. Prom this figure we may immediately write down the
equations for calculating the delta terms, namely Equation 10.

Equation 9 for the weight update now can be formulated as

Llwi(l-I)j(l) :;: r,8 j(l)xi(l-1) .

These two equations, (5) and (9), precisely describe the standard
backpropagation, the equations well known from many textbooks about
feedforward neural networks. There is no doubt that the presented approach
gives a much more easy way to obtain the equations describing the
backpropagation algorithm.

In this paper we have demonstrated the way for the derivation of the
gradient-based algorithms for any network architectures. For any interesting
neural network we can construct the adjoint neural network. The adjoint
network is built using three rules of changing the original network, and can

163

Maciej KRA WCZ4.K

be obtained in a very simple way. All formulae for the learning algorithms
can be derived using this methodology.

References

Bryson A. E., Ho Y-C. (1969) Applied Optima! Control. Blaisdell, Waltham,
MA.

Chua L. O. and Lin P-M. (1975) Computer-Aided Analysis of Electric
Circuits, Prentice-Hall, New Jersey.

Dreyfus S.E. (1990) Artificial Neural Networks, Back Propagation, and the
-Kelley-Bryson Gradient Procedure. Journal of Guidance, 13, 5,
926-928.

Fettweiss A. (1972) A generał theorem for signal-flow networks, with
applications. in :Digital Signal Processing, IEEE Press, 126-130.

Hassoun M. H. (1995). Fundamentals of Artificial Neural Networks (MIT
Press).

Hornik K., Stinchcombe M. and White H. (1989) Multilayer feedforward
networks are universal approximators, Neural Networks, 2, 359-366.

Krawczak M. and Mizukami K. (1994) The control theory approach to
perceptron learning process. 44 Conference of !EE of Japan,
Okayama.

Krawczak M. (1999) Dynamie learning for feedforward neural networks. In:
Proceedings of the conference: ICONIP'99 ANZllS'99&ANNES'99
&ACNN'99, Perth, Western Australia, 16-20 November, 33-36.

Krawczak M. (2000) Backpropagation versus dynamie programming
approach. Bulletin of Polish Academy of Sciences. 48, 2, 167-180.

Krawczak M . (2001) Neural networks learning as a particular optima!
control problem. Proc. 1h Int. Conference on Methods and Models in
Automation and Robotics, IEEE, Międzyzdroje, Poland, August 2001.

Krawczak M. (2002) Generalized Nets Representation of Neural Networks
Learning. Polish Academy of Sciences, Systems Research (in print).

Raił B. (1981). Automafie Differentiation: Techniques and Applications,
Lecture Notes in Computer Science, Springer-Verlag.

164

Adjoint multilayer neural networks

Rumelhart D. E., Hilton G. E., Williams R. J. (1986) Parallel Distributed
Processing. vol. 1, edited by D. Rumelhatt, J. McClelland, and the
PDP Research Group, MIT Press, Cambridge, MA, Chap. 8.

Wan E., and Beaufays F. (1996) Diagrammatic derivation of gradient
algorithms for neural networks. Neural Computation, 8, 1, January,
182-206.

Werbos P. J. (1989). Maximizing Long-Term Gas Industry Profits in Two
Minutes in Lotus Using Neural Network Methods. IEEE Trans. on
Systems, Man, and Cybernetics, 19, 2, 315-333.

Zurada J. M. (1992) lntroduction to artificial neural systems, West
Publishing Company, St. Paul.

165

