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OBSERVER-BASED APPROACHES TO FAULT 
DIAGNOSIS 

Józef Korbicz and Marcin Witczak 

Institute of Control and Computation Engineering 
University of Zielona Góra 

<J.Korbicz, M.Witczak@issi.uz.zgora.pl> 

Abstract: The design and application of the model-based fault diag­
nosis has received considerable attention during the last few decades. 
In such a task, the model of the real system of interest is utilized 
to provide estimates of certain measured and/or unmeasured sig­
nals. Due to the still increasing popularity of state-space mod­
els, the most popular approach to residua/ generation is to use 
observer. Irrespective of the identification method used, there is 
always the problem of model uncertainty, i.e. the model-reality 
mismatch. Thus, the observer-based fault diagnosis scheme should 
provide robustness to model uncertainty. The objective of this work 
is to review the well-known observers for both linear and non-linear 
systems. 

Keywords: observers, non-linear systems, fault diagnosis, model 
uncertainty. 

1. lntroduction 

It is well-known that there is an increasing demand for modern 
systems to become more effective and reliable. This real world's de­
velopment pressure transformed automatic control, initially perceived 
as the art of designing a satisfactory system, into the modern science 
that it is today. The observed increasing complexity of modern sys­
tems necessitates the development of new control techniques. U nlike 
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in the past, modern control techniques should take into account the 
system's safety. This requirement goes beyond the normally accepted 
safety-critical systems of nuclear reactors and aircraft, where safety is of 
paramount importance, to less advanced industrial systems. 

In a fault diagnosis task, the model of the real system of interest 
is utilized to provide estimates of certain measured and/ or unmeasured 
signals. Then, in the most usual case, the estimates of the measured 
signals are compared with their originals, i.e. a difference between the 
original signal and its estimate is used to form a residua! signal. This 
residua! signal can then be employed for Fault Detection and Isolation 
(FDI). 

Irrespective of the identification method used , there is always the 
problem of model uncertainty, i.e. the model-reality mismatch. Thus, 
the better the model used to represent a system behaviour, the better the 
chance of improving the reliability and performance in diagnosing faults. 
Unfortunately, disturbances as well as model uncertainty are inevitable 
in industrial systems, and hence there exists a pressure creating the need 
for robustness in fault diagnosis systems. This robustness requirement 
is usually achieved in the fault detection stage. 

In the context of robust fault detection, many approaches have 
been proposed (Chen and Patton 1999, Patton and Korbicz 1999, Patton 
et al. 2000). Undoubtedly, the most common approach is to use robust 
observers, such as the Unknown Input Observer (UIO) (Alcorta et al. 
1997, Chen and Patton 1999, Patton et al. 2000), which can tolerate 
a degree of model uncertainty and hence increase the reliability of fault 
diagnosis. Unfortunately, much of the work in this subject is oriented 
towards linear systems. This is mainly because of the fact that the 
theory for observers (or filters in the stochastic case) is especially well­
developed for linear systems. 

In addition to that , the existing non-linear extensions of the UIO 
(Alcorta et al. 1997, Chen and Patton 1999, Seligeer and Frank 2000) 
require a relatively complex design procedure, even for simple laboratory 
systems (Zolghardi et al. 1996). Moreover, they are usually limited to 
a very restricted class of systems. 

Another problem is that, even for linear systems, the research 
concerning UIOs is strongly oriented towards deterministic systems. In­
deed, the question of detecting and isolating faults for systems with both 
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modelling uncertainty and the noise has not attracted enough research 
attention, although most fault diagnosis systems suffer from both mod­
elling uncertainty and the noise. The existing approaches ( Chen and 
Patton 1999, Keller and Darouach 1999) , which can be applied to linear 
stochastic systems, rely on a similar idea to that of the classical Kalman 
Filter (KF) (Anderson and Moore 1979, Korbicz and Bidyuk 1993). 

Another problem arises from the application of fault diagnosis 
to non-linear stochastic systems. Unfortunately, the only existing ap­
proaches to this class of systems consist in the application of the Ex­
tended Kalman Filter (EKF). Indeed, the non-linear extensions of the 
UIO (Alcorta et al. 1997, Chen and Patton 1999, Seliger and Frank 
2000) can only be applied to non-linear deterministic systems. 

The work is organized as follows. Section 2 introduces the basie 
terminology and concepts of fault diagnosis. Subsequently, in Sections 
3 and 4, various o bservers for both lineai· and non-linear systems are 
reviewed with special attention on their drawbacks and advantages. Fi­
nally, the last section is devoted to conclusions. 

2. Observer-based residua! generation 

A fault can generally be defined as an unexpected change in a sys­
tem of interest, e.g a sensor malfunction. All the unexpected variations 
that tend to degrade the overall performance of a system can also be 
interpreted as faults. Contrary to the term failure, which suggests a 
complete breakdown of the system, the term fault is used to denote 
a malfunction rather than a catastrophe. 

Fault diagnosis can be viewed as a two-stage process, i.e. residua! 
generation and decision making based on this residua! (Fig. 1). 

If the residuals are properly generated, then fault detection be­
comes a relatively easy task. Since without fault detection it is impos­
sible to perform fault isolation and consequently fault identification, all 
efforts regarding the improvement of residua! generation seem to be jus­
tified. This is the main reason why the research effort of this work is 
oriented towards fault detection and especially towards residua! genera­
tion. 

There have been many developments in model-based fault detec­
tion since the beginning of the 1970s, regarding both the theoretical 
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Fig. l. A two-stage process of fault diagnosis. 

context and the applicability to real systems (Chen and Patton 1999, 
Patton and Korbicz 1999, Patton et al. 2000). In almost all cases, the 
residual signal is obtained as a difference between system outputs and 
model outputs, i.e. ą = Yk - Yk- Thus, the better the model used to 
represent a system behaviour, the bet ter the chance of improving the 
reliability and performance in diagnosing faults. Unfortunately, distur­
bances as well as model uncertainty are inevitable in industrial systems, 
and hence there exists a pressure creating the need for robustness in fault 
diagnosis systems. This robustness requirement is usually achieved in 
the fault detection stage, i.e. the problem is to develop residuals genera­
tors which should be insensitive (as far as possible) to model uncertainty 
and real disturbances acting on a system while remaining sensitive to 
faults. 

Although the present work considers the discrete-time systems, 
some of the techniques are described in a continuous-time form. This 
is due to the fact that they were originally presented in such a form. 
However , most of them can relatively easily be applied to discrete-time 
systems. 

The basie idea underlying the observer-based ( or filter-based in the 
stochastic case) approaches to fault detection is to obtain the estimates 
of certain measured and/or unmeasured signals. Then, in the most usual 
case, the estimates of the measured signals are compared with their 
originals, i.e. a difference between the original signal and its estimate 
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is used to form a residual signal ą = Yk - :h (Fig. 2). To tackle 
this problem, many different observers (or filters) can be employed, e.g. 
Luenberger observers, Kalman filters, etc. 

In most robust observer-based fault detection schemes, the prob­
lem of robustness to both model uncertainty and real disturbances acting 
on a system has been tackled by the introduction of the concept of an 
unknown input (Alcorta et al. 1997, Chen and Patton 1999, Selinger 
and Frank 2000). In spite of this, there is a large spectrum of candi­
date solutions. This is the main reason why observer-based approaches 
deserve special attention. 

Yk 

Fig. 2. The principle of observer-based residual generation. 

3. Observers for linear systems 

3.1. Luenberger observers and Kalman filters 

Let us consider a linear system described by the following state­
space equations: 

AkXk + BkUk + L1,kfk, 

Ck+1Xk+1 + L2,k+1fk+l . 
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According to the observer-based residual generation scheme (Fig. 2), the 
residual signal can be given as: 

rk+l Yk+l - :Yk+1 = ck+l [xk+l - Xk+1] + L2,k+1fk+l 

Ck+l [Ak - Kk+l Ck+1l [xk - Xk] + Ck+1L1,kfk 

-Ck+Kk+1L2,kfk + L2,k+1fk+l· (3) 

To tackle the state estimation problem, the Luenberger observer can be 
used, i.e. 

(4) 

where Kk stands for the so-called gain matrix and it should be obtained 
in such a way as to ensure an asymptotic convergence of the observer, 
i.e. limk__,00 (xk - xk) = O (Paraskevopolous 1996). If this is the case, 
i.e. Xk - xk, the state estimation error Xk - Xk approaches zero and 
hence the residual signal (3) is only affected by the fault vector fk. 

A similar approach can be realized in a stochastic setting, i.e. for 
the systems which can be mod<"lled by: 

AkXk + BkUk + L1 ,kfk + Wk, 

Ck+lXk+l + L2,k+1fk + Vk, 

(5) 

(6) 

where wk and Vk are zero-mean white noise sequences with covariance 
matrices Qk and Rk, respectively. In this case, the observer structure 
can be similar to that of the Luenberger observer ( 4). To tackle the state 
estimation problem, the celebrated Kalman filter can be employed (An­
derson and Moore 1979, Korbicz and Bidyuk 1993). Finally, the residual 
signal can be given as: 

ą [I - Kk+l ck+l]Ak[Xk - Xk] + [I - Kk+l ck+1]L1,kfk 

Kk+1L2,kfk+l + [I - Kk+l ck+l]wk - Kk+l Vk+l · (7) 

Since the state estimate Xk approaches the real state Xk (in the mean 
sense) asymptotically, i.e. E(xk) - xk , the residual signal is only af­
fected by the faults and the noise. 

In both the deterministic ( the L uenberger o bserver) and stochas­
tic ( the Kalman filter) cases fault detection can be performed by check­
ing that the residual norm lląll exceeds a prespecified threshold, i.e. 
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llrkll > EH- In the stochastic case, it is also possible to use mare so­
phisticated, hypothesis-testing approaches such as Generalized Likeli­
hood Ration Testing (GLRT) or Sequential Probability Ratio Testing 
(SPRT) (Willsky and Jones 1976, Basseville and Nikiforov 1993). 

The presented approaches, in spite of their considerable useful­
ness, sufler from the lack of robustness to model uncertainty. Indeed, in 
both cases a perfect model of the system is assumed. This problem will 
be considered in the subsequent sections, where model uncertainty and 
real disturbances acting on a system are represented by the so-called 
unknown input. 

3.2. Unknown input observers 

Let us consider a linear system described by the following state­
space equations: 

AkXk + Bkuk + Ekdk + L1 ,kfk , 

CkXk+l + L2,k+1fk+1, 

(8) 

(9) 

where the term Ekdk stands for model uncertainty as well as real dis­
turbances acting on the system. The generał structure of an UIO can 
be given as (Chen and Patton 1999): 

Fk+1zk + Tk+lBkuk + Kk+lYk, 

Zk+l + Hk+l , 

(10) 

(11) 

then (assurning the fault-free made, i.e. fk = O ) the state estimation 
error is: 

(12) 

Frorn the above equation, it is elear that to decouple the effect of an 
unknown input from the state estimation error ( and consequently from 
the resid ual), the following relation should be satisfied: 

(13) 

The necessary condition for the existence of a solution to (13) and is 
given in (Chen and Patton 1999, p. 72, Lemma 3.1). The remaining 
task is to design the matrix Ki,k+l so as to ensure the convergence of 
the observer. This can be realized in a similar way as it is dane in the 

141 



Józef KORBICZ, Marcin WITCZAK 

case of the Luenberger observer. Finally, the state estimation error and 
the residual are given by: 

ek+l Fk+lek + Tk+1L1,kfk 

- Hk+1L2,k+1fk+1 - K1,k+1L2,kfk , 

ą+1 = Ck+1ek+1 + L2,k+1fk+1• 

(14) 

(15) 

Since the Kalman fil ter constitutes a stochastic counterpart of the Luen­
berger observer, a stochastic counterpart of the UIO can also be devel­
oped. A detailed description of such an observer can be found in (Chen 
and Patton 1999). 

3.3. An eigenstructure assignment approach 

This section focuses on the problem of designing robust observers 
using the eigenstructure (eigenvectors and eigenvalues) assignment (Chen 
and Patton 1999, Chapter 4). The description of the system being con­
sidered has the following (continuous-time) state-space form: 

x(t) = Ax(t) + Bu(t) + L1f(t) + Ed(t), 

y(t) = Cx(t) + Du(t) + L2f(t). 

The observer-based residual generator can be given as: 

(16) 

(17) 

:R(t) (A - KC)x(t) + (B - KD)u(t) + Ky(t), (18) 

y(t) = Cx(t) + Du(t), (19) 

r(t) = Q(y(t) - y(t)), (20) 

where Q E JRP Xm (p ~ m) stands for the residual weighting matrix, 
which constitutes additional design freedom. When the above residual 
generator (18)- (20) is applied to the system (16)- (17), then the residual 
is given by: 

r(s) = QL2f(s) + QC(s1 - AKC)-1(L1 - KL2)f(s) 
+ QC(s1 - AKC)-1Ed(t). (21) 

As can be seen from (21), in order to decouple the unknown input from 
the residual the following relation should be satisfied: 

QC(s1 - AKct·1Ed(t) = O. (22) 

There are, of course, several different approaches which can be applied 
to solve (22), e.g. (Chen and Patton 1999, Theorem 4.4, p. 127). 
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4. Observers for non-linear systems 

Model linearization is a straightforward way of extending the ap­
plicability of linear techniques to non-linear systems. On the other hand, 
it is well known that such approaches work well when there is no large 
mismatch between the linearized model and the non-linear system. Two 
types of linearization can be distinguished, i.e. linearization around the 
constant state and linearization around the current state estimate. It 
is obvious that the second type of linearization usually yields better re­
sults. Unfortunately, during such linearization the influence of terms 
higher than linear is usually neglected ( as in the case of the extended 
Luenberger observer and the extended Kalman filter). This disqualifies 
such approaches for most practical applications. Such conditions have 
led to the development of linearization-free observers for non-linear sys­
tems. 

This section briefly reviews the most popular observer-based resid­
ual generation techniques for non-linear systems. Their advantages, 
drawbacks as well as robustness to model uncertainty are discussed. 

4.1. Extended Luenberger observers and Kalman filters 

Let us consider a non-linear discrete-time system modelled by the 
following state-space equations: 

g(xk, uk) + L1,kfk, 

h(Xk+1) + L2,k+1fk+1· 

(23) 

(24) 

In order to apply the Luenberger observer presented in Section 3.1, it 
is necessary to linearize equations (23) and (24) around either a con­
stant value (e.g. x = O) or the current state estimate xk. This second 
approach seems to be more appropriate as it improves its approxima­
tion accuracy as Xk ten ds to Xk. In this case the approximation can be 
realized as follows: 

(25) 

As a result of using the Luenberger observer (4), the state estimation 
error takes the form: 
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where o(xk, xk) stands for the linearization error caused by the approx­
imation (25). 

Because of a highly time-varying nature of Ak+l and Ck as well 
as the linearization error o(xk,xk), it is usually very difficult to obtain 
an appropriate form of the gain matrix Kk+l. This is the main reason 
why this approach is rarely used in practice. 

As the Kalman filter constitutes a stochastic counterpart of the 
Luenberger observer, the extended Kalman filter can also be designed 
for the following class of non-linear systems: 

g(xk, lik) + L1,kfk + Wk, 

h(xk+1) + L2,k+1fk+1 + vk+l, 

(27) 

(28) 

where, similarly to the linear case, wk and Vk are zero-mean white noise 
sequences. Using the linearization (25) and neglecting the influence of 
the linearization error, it is straightforward to use the Kalman filter 
algorithm described in Section 3.1. The main drawback to such an 
approach is that it works well only when there is no large mismatch 
between the model linearized around the current state estimate and the 
non-linear behaviour of the system. 

The EKF can also be used for deterministic systems, i.e. as an 
observer for the system (23)-(24) (Boutayeb and Aubry 1999) . In this 
case, the noise covariance matrices can be set almost arbitrarily. As was 
proposed in (Boutayeb and Aubry 1999), this possibility can be used to 
increase the convergence of an observer. 

Apart from difficulties regarding linearization errors, similarly to 
the case of linear systems, the presented approaches do not take model 
uncertainty into account. This drawback disqualifies those techniques for 
most practical applications. Although there are applications for which 
such techniques work with an acceptable efficiency, e.g. (Kowalczuk and 
Gunawickrama 2000). 

4.2. The Tau observer 

The observer proposed by Tau (1973) can be applied to a special 
class of non-linear systems which can be modelled by the following state-
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space equations: 

x(t) 

y(t) 
Ax(t) + Bu(t) + Lif(t) + g(x(t), u(t)), 
Cx(t) + L2f(t) . 

(29) 

(30) 

This special model class can represent systems with both linear and 
non-linear parts. The non-linear part is continuously differentiable and 
locally Lipschitz, i.e. 

llg(x(t) , u(t)) - g(x(t) , u(t))II :'.S -Yllx(t) - x(t)II- (31) 

The structure of the Tau observer can be given as: 

x(t) Ax(t) + Bu(t) + g(x(t), u(t)) + K(y(t) - y(t)), (32) 

y(t) Cx(t), (33) 

where K = P01 CT, and Pe is the solution to the Lyapunov equation: 

(34) 

where 0 is a positive parameter, chosen in such a way as to ensure 
a positive definite solution of (34). Moreover, the Lipschitz constant 1' 
should satisfy the following condition (Schreier et al. 1997): 

1 Q_ (cTc + 0Pe) 
'Y < 2 <7 (Pe) ' (35) 

where <7 ( ·) and Q. ( ·) stand for the maximum and minimum singular 
values, respectively. 

In spite of the fact that the design procedure does not require 
any linearization, the conditions regarding the Lipschitz constant 1' are 
rather restrictive. This may limit any practical application of such an 
approach. Another difficulty arises from the lack of robustness to model 
uncertainty. 

4.3. Observers for bilinear and low-order polynomial 
systems 

A polynomial ( and, as a special case, bilinear) system description 
is a natural extension to linear models. Design of observers for bilinear 
and low order polynomial (up to degree three) systems (Hac 1992, Hou 
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and Pugh 1997, Kinneart 1999, Shields and Ashton 2000) involve only 
solutions of non-linear algebraic or Ricatti equations. This allows on-line 
residual generation. 

Let us consider a bilinear continuous-time system modelled by the 
following state-space equations: 

x(t) 

y(t) 

r 

i=l 

Cx(t) + E1d(t). 

(36) 

(37) 

With a slight abuse of notation, the influence of faults is neglected. How­
ever, faults can very easily be introduced without changing the design 
procedure. 

An observer for the system (36)- (37) can be given as (Hou and 
Pugh 1997): 

((t) 

x(t) 

r 

F((t) + Gy(t) + L Liui(t)y(t) , 
i=l 

H((t) + Ny(t). 

(38) 

(39) 

Hou and Pugh (1997) established the necessary conditions for the ex­
istence of the observer (38)- (39). Moreover, they proposed a design 
procedure involving a transformation of the original system (36)- (37) 
into an equivalent, quasi-linear one. 

An observer for systems which can be described by the state-space 
equations consisting of both linear and polynomial terms was proposed 
in (Shields and Ashton 2000). Similarly to the case of the observer (36)­
(37), here robustness to model uncertainty is tackled by means of an 
unknown input. 

4.4. Non-linear unknown input observers 

This section presents an extension of the unknown input observer 
for linear systems described in Section 3.2. Such an extension can be 
applied to systems which can be modelled by the followi11g state-space 
equations: 

x(t) a(x(t)) + B(x(t))u(t) + E1(x(t), u(t))d(t) 

+ K1(x(t), u(t))f(t), (40) 
y(t) c(x(t)) + E2(u(t))d(t) + K2(x(t))f(t). (41) 
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For notational convenience, the dependence of time t is neglected ( e.g. 
u= u(t)). 

The underlying idea is to design an unknown input observer for the 
system (40)~(41) without model linearization. For that purpose the fol­
lowing observer structure is proposed (Alcorta and Frank 1997, Selinger 
and Frank 2000): 

z 

r 

where 

l(z, y , u , u), 

m(z, y , u) , 

z= T(x, u). 

(42) 

( 43) 

(44) 

From (40)-(41) and (42)-(43), it can be seen that the residual r is gov­
erned by: 

r = m(T(x, u), c(x) + E2(u)d + K2(x)f, u). (45) 

Taking the time derivative of ( 44) yields: 

. 8T(x, u) . 8T(x, u) . 
z= ox x+ ox u. (46) 

Substituting ( 40) into ( 46) leads to: 

ż 
8T(x, u) ox (a(x) + B(x)u + E1(x, u)d + K 1(x, u)f) 

8T(x, u). 
+ ox u. (47) 

From the above equation, it is elear that the unknown input decoupling 
condition can be stated as: 

Vx,u 
8T(x, u) 

ox E1(x, u)= O. (48) 

The unknown input decoupling problem can now be resolved by analyt­
ically solving a set of linear first order partial differentia! equations (48). 

Moreover, if any fault f is to be reflected by the transformed model, 
it must be required that: 
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The effect of an unknown input can be decoupled from the output sig­
nal (41) in a similar way (Selinger and Frank 2000). 

The main drawback to the proposed approach is that it requires 
a relatively complex design procedure, even for simple laboratory sys­
tems (Zolghardi et al. 1996). This may limit most practical applications 
of non-linear input observers. Other problems may arise from the appli­
cation of the presented observer to non-linear discrete-time systems. 

5. Conclusions 

O bserver-based techniques constitute one of the most popular ways 
of residual generation. As for almost all techniques, the robustness to 
model uncertainty and other factors which may lead to an unreliable 
fault detection is tackled by means of an unknown input. The popu­
larity of observer comes also from the fact that they are widely used in 
modern control systems. This means that an observer can be employed 
for both fault diagnosis and control purposes. Such consideration leads 
directly to fault tolerant control. 

There are efficient approaches to robust observer-based residual 
generation for linear systems (e.g. unknown input observers) but the 
existing solutions for non-linear systems are not mature yet. There are 
of course many approaches which can be applied to certain classes of 
non-linear systems, e.g. for bilinear or polynomial systems. However, 
this requirement limits the applicability of such approaches. On the 
other hand, the existing non-linear extensions of the UIO (Selinger and 
Frank 2000), which can be applied to a wider class of systems, require 
a relatively complex design procedure, even for simple laboratory sys­
tems (Zolghardi et al. 1996). 
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Notation 

t 
k 

Xk , Xk (x(t) , i(t)) E ]Rn 

Yk, Yk E ]Rffi 

ek E ]Rn 

Ek E JRm 
Uk E JRr 
dk E ]RQ 

Wk, Vk 

Qk, Rk 
fk E ]R5 

g(·), h(·) 
Ek E JRilXQ 

L1,k, L2,k 
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