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Abstract

Computer aided data mining, and in particular methods of clustering, its

widely used technique, develop very rapidly nowadays. Basically, cluster-

ing is an unsupervised learning technique. However, there is a growing

interest in considering the case where there is a partial knowledge on the

actual grouping of the objects available. This knowledge may take form of

the hints on the co-occurrence of object in the same clusters. In this paper

we propose to solve this problem of constrained clustering using the tech-

nique of differential evolution (DE). We show the efficiency and usefulness

of differential evolution in hard- and soft-constrained clustering tasks. Some

practical examples of the clustering problems are examined and results ob-

tained are compared to two variants of a classic clustering technique, the

k-means algorithm.

Keywords: differential evolution, metaheuristics, constrained clustering,

k-means.
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1 Introduction

In recent years data mining is a very rapidly developing field of modern computer

science, mainly due to the rapid growth of computational capabilities of modern

computers and growing size and number of data collections available. Data min-

ing’s most important goal is to find regularities and patterns of all kinds, which

are invisible to humans, mainly due to their limited computing capabilities and the

volume and multidimensionality of considered datasets. One of the most widely

used techniques of data mining is clustering.

Clustering procedure is basically used for preliminary data processing and un-

supervised classification. The task of a clustering algorithm is to divide a set of

objects into a number of clusters with the assumption that a single cluster contains

objects as similar as possible to each other (maximising the similarities) while the

objects assigned to different clusters differ significantly (maximising the dissimi-

larities). Thus, clustering problem can be stated as an optimization task.

Although clustering is generally considered as unsupervised technique, in

many applications there is some background knowledge which should be utilised.

Inclusion of that a priori knowledge in the process of clustering allows for signif-

icant improvement in quality of solutions and its adaptation to the conditions of

the problem. However, it increases the difficulty of the problem, inter alia through

forcing many local minima. As a result a new data mining task, a clustering with

constraints, is formulated.

The huge size of the solution space and significant computational complexity,

along with the size and multidimensionality of the datasets mentioned earlier,

results in growing interest in the implementation of metaheuristic optimization

methods in clustering problem (see e.g. [2, 3]).

In this paper we present the efficiency and stability of a modern metaheuristic,

differential evolution [11], in constrained clustering task. Obtained results are

discussed, especially in terms of constraints influence on the clustering accuracy

and its robustness, and compared to the results of modifications of classic k-means

algorithm - the COP k-means [13] for hard-constrained task, and the KSC [15] for

soft approach.

2 Clustering with constraints

The considered data mining task, the clustering with constraints, is a special case

of clustering problem [7, 5], which is defined as follow:
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Definition 1 (Clustering problem)

Let O = {o1, o2, . . . , on} be a set of n p-dimensional data instances and let

Xn×p be the matrix describing those data. Each ith object is characterised by a

p-dimensional attributes vector xi (i = 1, 2, . . . , n), where each element xij in xi

corresponds to the value of jth attribute of the ith instance.

Given Xn×p, the feasible solution is a partition G = {C1, C2, . . . , Ck}

(i.e.: Ci 6= Ø, ∀i; Ci ∩ Cj = Ø, ∀i 6= j;
⋃k

i=1 Ci = O) assigning each in-

stance oi (i = 1, 2, . . . , n) to a certain cluster Cj (j = 1, 2, . . . , k). The set of all

feasible solutions is denoted as G = {G1, G2, . . . , Gs}.

As clustering can be stated as an optimisation problem, let f(G) be the quality

function (also called fitness function) of a partition G, which basically measures

how well similar objects are placed in the same clusters and, at the same time,

dissimilar objects are placed in separate clusters.

Given G and f(G), the goal of a clustering algorithm is to find a partition G∗

that minimises the function f(G):

G∗ = arg min
G∈G

f(G) (1)

2.1 Hard and soft pairwise constraints

In clustering with constraints it is assumed that there is a background knowledge

available which imposes, or only suggests, some constraints on possible grouping

of the objects. These constraints may be expressed in various ways. Now we will

discuss one of their general form which will be adopted in this paper.

We consider pairwise constraints, which seems to be a most general represen-

tation. Numerous types of relations encountered in the clustering problem can be

represented as a set of pairwise constraints [14, 1]. They are commonly imple-

mented as two kinds: must-link (denoted ML later) and cannot-link (CL).

ML constraint indicates that the two data instances involved must /should

be placed in the same cluster, whereas CL indicates two instances which can-

not/should not belong to the same cluster.

The constraints specified can be stated as hard or soft constraints, indicating

whether it is required or only advisable to preserve them.

Hard constraints are conditions that must be satisfied by the feasible solu-

tions (see Def. 1), to be obtained using the clustering algorithm. A ML constraint

over a pair of data instances indicates, that the output partition must assign those

instances to the same cluster. A CL constraint indicates, that involved data in-

stances cannot be assigned to the same cluster.
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Soft constraints, often referred to as preferences, are statements that may or

may not be satisfied by the feasible solution. The strength of the soft constraint is

modelled by assigning a value s ∈ [0, 1] (s ∈ [−1, 1] if we model both ML and

CL constraints simultaneously), where 1 indicates hard constraint (that must be

satisfied) and 0 means ”no constraint”. A solution should satisfy as much of the

soft constraints as possible.

Definition 2 (Must-link and cannot-link constraints)

Let ConML = {ConML1
, ConML2

, . . . , ConMLnML
} ⊆ O × O be the ML

constraints set and ConCL = {ConCL1
, ConCL2

, . . . , ConCLnCL
} ⊆ O×O be

the CL constraints set, where Con
∗i

denotes a triple 〈ok, ol, s〉, k 6= l, where s is

the constraint strength (s = 1 in hard-constrained approach and s ∈ (0, 1] in soft

approach) and ok and ol are instances affected by the constraint.

For each ConMLi
, if one data instance of the involved pair is assigned to the

cluster Cj then the second one must/should also belong to it:

〈ok, ol, s〉 ∈ ConML ∧ ok ∈ Cj ⇒ ol ∈ Cj , (2)

and if it is not the case then there is a penalty s.

For each ConCLi
, if one data instance of the involved pair is assigned to the

cluster Cj then the second one cannot/should not belong to it:

〈ok, ol, s〉 ∈ ConCL ∧ ok ∈ Cj ⇒ ol /∈ Cj , (3)

and if it is not the case then there is a penalty s.

Equivalently, ConML and ConCL may be treated as fuzzy sets of pairs

(ok, ol) such that µ(ok, ol) = s.

The task of clustering with constraints may be defined as in Def. 1 but assum-

ing that the function f(G) now takes into account a penalty for violating imposed

constraints.

3 Differential Evolution and reference methods

3.1 Differential Evolution

Differential Evolution [11] (denoted DE later) is a metaheuristic method, which

has proved effective in multidimensional, real-valued optimization problems [12].

It is an iterative optimization method based on evolutionary mechanisms. The

most important feature of DE, giving an advantage over conventional optimization
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algorithms (e.g. gradient methods), is the lack of requirements for the existence of

a gradient or a continuity of optimised functions, which is essential for clustering

task.

DE is a population based technique where a population of possible solutions is

represented by real-coded chromosomes. In its basic version, in each iteration, for

each individual xi three other individuals xr1,xr2,xr3 are randomly selected and

a new solution candidate ci is created by mutating one of them with the difference

(also differential vector) of the remaining two:

ci = xr1 + F (xr2 − xr3). (4)

The candidate is then crossed-over with xi and individual with higher quality

value is selected to next generation.

Algorithm 1 presents the DE procedure.

Algorithm 1: Differential Evolution

Procedure COP-DE

Set t← 0;

Initialise pop0 with Np random individuals x1, . . . ,xNp;

while Termination condition do

foreach xi ∈ popt do

Mutation: create candidate ci;

Crossover: cross-over candidate ci with xi;

Selection

Evaluate f(xi);
Evaluate f(ci);
if f(ci) > f(xi) then Select ci;

else Select xi;

t++;

Return best individual xbest;

DE is straightforward to implement, mainly due to the small number of pa-

rameters. Apart from the standard ones of this class of algorithms – population

size Np and maximum number of generations tmax – DE requires two parameters

(coefficients): scaling factor F ∈ R, characterizing the influence of differential

vector on the mutated individual when generating candidate ci, and the crossover

coefficient Cr ∈ R, which determines the probability of crossover for each at-

tribute/dimension (for details see [11, 8]).
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A number of variants of DE which differ in mutation and crossover operators

has been proposed [8]. This work employs the results of our previous studies,

indicating that the choice of the variant had a marginal impact on the quality of

the results [4]. They confirmed the results obtained by other authors (e.g. [7]).

Therefore, in this paper we use the simplest to implement variant: DE/rand/1 with

exponential crossover [8].

Selection of DE parameters was also based on our previous studies [4], where

we show that precise tuning of them has marginal significance, because results

differ only by about 2.5% (for F ∈ [0, 1] and Cr ∈ [0, 1]). In all cases the

coefficients were set as follow: F = 0.3, Cr = 0.8.

3.2 Differential Evolution in clustering – chromosome representa-

tion

In the present work, we assume that the proper number of clusters k is known.

This allows for strict comparison between results obtained by DE and k-means in

scope of classification correctness.

To take full advantage of the real-valued character of differential evolution the

solution is encoded in the chromosome as a vector of coordinates of the centroids

of clusters:

xi = (µ1, µ2, . . . µk) , (5)

where µi =
(

µi1, µi2, . . . µip

)

denotes a vector of coordinates of an ith cluster

centroid.

This allows for a direct mutation and crossover of the individuals in line with

the assumptions of DE technique.

3.3 Constraint inclusion - fitness function

For all optimisation metaheuristics definition of the fitness function is crucial.

Function f(G) (the quality function, see Def. 1) must take into account the con-

ditions of similarity and dissimilarity of data instances belonging to the same/dif-

ferent clusters and the number (or strength in soft approach) of constraints vio-

lated.

We use f(G) minimising the combination of classic total variance V of the

partition and the penalty for constraints violation, CV , as proposed in [15] for the

KSC algorithm:

f(G) = (1− w)
V (G)

Vmax
+ w

CV (G)

CVmax
, (6)
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where variance V (G) =
∑k

i=1

∑

x∈Ci
dist(x, µi), and CV (G) is the number of

violated constraints (in hard approach) or the sum of violated constraints strengths

(soft) and CVmax is its maximum value. The quantities V and CV are then nor-

malised by their maximum values (the Vmax is calculated for the case of assign-

ing all instances into one cluster). The w parameter, specifying the importance of

variance minimisation versus constraint preservation, was set to 0.5 in all cases.

3.4 Reference methods - COP k-means and KSC

As reference methods for constrained clustering task we choose a modifications

of classic k-means algorithm. For the hard-constrained approach results are com-

pared with the COP k-means [13], and for soft constraints the KSC [15] was

used for comparison. Both methods differ form the classic k-means in the as-

signing instances to clusters step. The COP k-means assigns each instance to

the closest cluster such that no constraints are violated (if no such cluster exists

method returns failure), and the KSC chooses the cluster that optimises the func-

tion f(G) (6) introduced earlier.

4 Experiments setup

For comparison of the methods the same resources were provided for both the

DE and COP k-means/KSC. As the so-called bottleneck of the algorithms’ per-

formance in most studies (e.g. [7]) is considered the evaluation of the quality of

an individual.

According to this observation and preliminary tests, as a termination condition

of DE the maximum number of iterations tmax = 300 is used, which together with

the population size Np = 50 requires the 15,000 quality evaluations.

For the COP k-means/KSC methods the number of iterations corresponding

to the same number of quality function evaluations were set.

In order to minimise the impact of the stochastic nature of the methods used

on the results the tests were run 20 times for each dataset.

4.1 Considered datasets and constraints generation

The effectiveness of the considered methods is studied over the 5 real-world clus-

tering problems. The datasets are obtained from UCI Machine Learning Repos-

itory [6]. Prior to clustering, data sets have been pre-processed: non-numeric

attributes were mapped by ”1-out-of-n” method [9] and the values of attributes

were normalised to the interval [0, 1].
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Table 1: Description and characteristics of the datasets

No. k p n Name and URL

1 3 4 150 Iris Data Set

http://archive.ics.uci.edu/ml/

datasets/Iris

2 2 9 683 Breast Cancer Wisconsin (Diagnostic) DS

http://archive.ics.uci.edu/

ml/datasets/Breast+Cancer+

Wisconsin+(Diagnostic)

3 2 9 958 Tic-Tac-Toe Endgame Data Set

http://archive.ics.uci.edu/ml/

datasets/Tic-Tac-Toe+Endgame

4 6 4 4435 Statlog (Landsat Satellite) Data Set

http://archive.ics.uci.edu/

ml/datasets/Statlog+(Landsat+

Satellite)

5 6 30 600 Synthetic Control Chart Time Series

http://archive.ics.uci.edu/

ml/datasets/Synthetic+Control+

Chart+Time+Series

The description and characteristics of the datasets are presented in Table 1,

where n, k and p denote the number of data instances, number of clusters and

dimension of data space, respectively.

To prevent the influence of random constraint generation on the results of clus-

tering for each dataset the constraints were randomly chosen for each algorithm’s

run. Two instances were drawn and constraint was generated according to their

labels (the same labels - ML constraint, different - CL constraint).

For the soft-constrained case the strengths of the constraints, s, were randomly

chosen depending on the distance between instances involved:

sML(xi,xj) = 1−
dist(xi,xj)

2 · dist(xi,xj) + δ
, (7)

sCL(xi,xj) = 0.5 +
dist(xi,xj)

2 · dist(xi,xj) + δ
, (8)

where δ ∈ [0.5, 1] is a random value.
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4.2 Clustering evaluation - Rand index

The post-processing step is carried out in order to reliably evaluate results received

through the Differential Evolution and k-means algorithm in scope of clustering

and classification. To calculate agreement between the results of clustering re-

ceived and the labels of each data instance the Rand index is used (Rand [10]).

Given a set of n elements O = {o1, o2, . . . , on} and two partitions of O, Gi

and Gj , each partition is viewed as a n ∗ (n− 1)/2 pairwise decisions whether oi
and oj are assigned to the same or to different clusters.

Let a be the number of the pairs of instances with the same label are assigned

to the same cluster, and let b be the number of instances with different labels are

assigned to different clusters.

The Rand index of partitions Gi and Gj is calculated as follow:

R(Gi, Gj) =
a+ b

n ∗ (n− 1)/2
, (9)

which reaches values in range [0, 1]. It represents percentage of correctly grouped

instances - R = 0 means no agreement with the labels (0%), whereas R = 1
represents full agreement (100%).

5 Experimental results

Figures 1-2 present the results averaged for all datasets. The dark curves are the

mean values of Rand index obtained for different numbers of constraints imposed

(expressed as the percentage of all constraints considered), while the shaded areas

show their standard deviation. Darker shading corresponds to the DE results.

Presented results clearly show the advantage of DE over the COP k-means and

KSC algorithms, particularly in hard-constrained problem, which is more com-

plex due to introduction of a considerable amount of local minima created by

included constraints and instances previously assigned to clusters. The inclusion

of constraints provides better results for both hard- and soft-constrained problem

when using the DE.

The COP k-means in hard-constrained case provides results worse than DE

by about 30-60% (and their 25% higher standard deviation). Its results improve

in relation to the unconstrained case only after including 1̃3% of the constraints,

yet still remaining worse than DE’s. The main reason for this poor performance

of COP k-means method is that it often falls into local minima mentioned earlier.

This artificial local minima are avoided by DE, which, by its evolutionary nature,

utilises them in the process of evaluating a solution quality.
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Figure 1: Results for hard-constrained problem. The DE is compared here with

the COP k-means algorithm.

Figure 2: Results for soft-constrained problem. The DE is compared with the

KSC algorithm.
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In the soft-constrained approach both the DE and KSC benefit from con-

straints inclusion. But still DE provides results better by about 5% and 2–3%

smaller standard deviation. Although this improvement is laden with a substantial

increase of resources needed, it is still worth paying attention to DE because of

it’s great potential of development, which will allow for reduction of the resources

needed (parallelisation, self-adjusting of population size, etc.).

6 Conclusions

In this paper the concept of the application of Differential Evolution to pairwise

constrained (both hard and soft) clustering is presented. DE is compared to the

modifications of the k-means algorithm, the COP k-means and KSC, in terms of

results’ agreement with original data labels and robustness of results. The real

clustering and classification problems based on datasets from the UCI Machine

Learning Repository are considered.

Results obtained allow us to consider the usage of novel metaheuristics, such

as DE, in considered task as legitimate. DE provides more accurate and robust

partitions of datasets both in hard- and soft-constrained approaches. Although

this improvement is laden with a substantial increase of resources required, it is

advisable in most data mining applications.

Moreover, DE (and other metaheuristics) offer great potential of development

in scope of reduction of the resources needed - parallelisation, self-adjusting of

population size, etc. Also simplifying DE variants is worth consideration. The

results obtained in our earlier studies suggest that this should not significantly

affect the quality of the results of clustering.
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The consecutive International Workshops on Intuitionistic Fuzzy Sets and 
Generalized Nets (IWIFSGNs) have been meant to provide a forum for the 
presentation of new results and for scientific discussion  on new 
developments in foundations and applications of intuitionistic fuzzy sets and 
generalized nets pioneered by Professor Krassimir T. Atanassov. Other topics 
related to broadly perceived representation and processing of uncertain and 
imprecise information and intelligent systems have also been included.  The 
Tenth International Workshop on Intuitionistic Fuzzy Sets and Generalized 
Nets (IWIFSGN-2011) is a continuation of this undertaking, and provides many 
new ideas and results in the areas concerned.

We hope that a collection of main contributions presented at the Workshop, 
completed with many papers by leading experts who have not been able to 
participate, will provide a source of much needed information on recent trends 
in the topics considered.
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